1
|
Yusuff AS. Exploring Potential Mechanisms of Sleep Disorders in Alzheimer's Dementia: A Scoping Review. Cureus 2025; 17:e76859. [PMID: 39902010 PMCID: PMC11788456 DOI: 10.7759/cureus.76859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Alzheimer's dementia (AD) is characterized by a progressive decline in behavioral and cognitive functions, with sleep disorders (SDs) increasingly recognized as one of the noncognitive symptoms. Sleep plays a critical role in the brain, supporting learning and memory, regulating synaptic plasticity, and facilitating waste clearance. However, the mechanisms underlying sleep disturbances in AD remain poorly understood. This review aims to explore these mechanisms and their potential relevance for clinicians managing AD. A systematic search was conducted across multiple sources and databases, using keywords such as "Alzheimer AND sleep disorder", along with terms related to neurodegeneration and sleep disturbances. Of the 1,511 records identified, 18 were included in the final analysis. The findings highlight several mechanisms linking AD and SDs, suggesting a bidirectional relationship. These mechanisms include (i) shared genetic factors; (ii) disruption of the glymphatic system; (iii) circadian system dysregulation; (iv) neuroinflammation; (v) abnormal functional connectivity between related brain regions; and (vi) atrophy in brain regions involved in memory and sleep. In conclusion, the relationship between AD and SDs is complex and bidirectional. Sleep disturbances not only precede the onset of AD but also worsen as the disease progresses. Sleep may, therefore, serve as a promising biomarker for AD, with targeting sleep disturbances offering a potential early therapeutic strategy in managing AD.
Collapse
|
2
|
Khan AH, Abdullah A, Mustafa MS, Abdul Qadeer M. Disruption in Sleep and Circadian Rhythm: A Potential Accelerator in Alzheimer's Disease Progression. Ann Neurosci 2024; 31:246-249. [PMID: 39840145 PMCID: PMC11744612 DOI: 10.1177/09727531231200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Affiliation(s)
- Abdul Hadi Khan
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Ali Abdullah
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | | | | |
Collapse
|
3
|
Zhang H, Chen C, Zhang EE, Huang X. TDP-43 deficiency in suprachiasmatic nucleus perturbs rhythmicity of neuroactivity in prefrontal cortex. iScience 2024; 27:109522. [PMID: 38585660 PMCID: PMC10995886 DOI: 10.1016/j.isci.2024.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Individuals within the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD) often experience disruptive mental behaviors and sleep-wake disturbances. The hallmark of ALS/FTD is the pathological involvement of TAR DNA-binding protein 43 (TDP-43). Understanding the role of TDP-43 in the circadian clock holds promise for addressing these behavioral abnormalities. In this study, we unveil TDP-43 as a pivotal regulator of the circadian clock. TDP-43 knockdown induces intracellular arrhythmicity, disrupts transcriptional activation regulation, and diminishes clock genes expression. Moreover, our experiments in adult mouse reveal that TDP-43 knockdown, specifically within the suprachiasmatic nucleus (SCN), induces locomotor arrhythmia, arrhythmic c-Fos expression, and depression-like behavior. This observation offers valuable insights into the substantial impact of TDP-43 on the behavioral aberrations associated with ALS/FTD. In summary, our study illuminates the significance of TDP-43 in circadian regulation, shedding light on the circadian regulatory mechanisms that may elucidate the pathological underpinnings of ALS/FTD.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Xiaotian Huang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
5
|
Astara K, Tsimpolis A, Kalafatakis K, Vavougios GD, Xiromerisiou G, Dardiotis E, Christodoulou NG, Samara MT, Lappas AS. Sleep disorders and Alzheimer's disease pathophysiology: The role of the Glymphatic System. A scoping review. Mech Ageing Dev 2024; 217:111899. [PMID: 38163471 DOI: 10.1016/j.mad.2023.111899] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is highly intertwined with sleep disturbances throughout its whole natural history. Sleep consists of a major compound of the functionality of the glymphatic system, as the synchronized slow-wave activity during NREM facilitates cerebrospinal and interstitial long-distance mixing. OBJECTIVE The present study undertakes a scoping review of research on the involvement of the glymphatic system in AD-related sleep disturbances. DESIGN we searched Medline, Embase, PsychInfo and HEAL-link databases, without limitations on date and language, along with reference lists of relevant reviews and all included studies. We included in vivo, in vitro and post-mortem studies examining glymphatic implications of sleep disturbances in human populations with AD spectrum pathology. A thematic synthesis of evidence based on the extracted content was applied and presented in a narrative way. RESULTS In total, 70 original research articles were included and were grouped as following: a) Protein aggregation and toxicity, after sleep deprivation, along with its effects on sleep architecture, b) Glymphatic Sequalae in SDB, yielding potential glymphatic markers c) Circadian Dysregulation, d) Possible Interventions. CONCLUSIONS this review sought to provide insight into the role of sleep disturbances in AD pathogenesis, in the context of the glymphatic disruption.
Collapse
Affiliation(s)
- Kyriaki Astara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, 417 Army Equity Fund Hospital (NIMTS), Athens, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
| | - Konstantinos Kalafatakis
- Faculty of Medicine & Dentistry (Malta campus), Queen Mary University of London, VCT 2520, Victoria, Gozo, Malta.
| | - George D Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia, Cyprus; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, Athens Naval Hospital, Athens, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Medical School, University of Nottingham, Lenton, Nottingham, UK
| | - Myrto T Samara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Aneurin Bevan University Health Board, Wales, UK
| |
Collapse
|
6
|
Steinbach MJ, Denburg NL. Melatonin in Alzheimer's Disease: Literature Review and Therapeutic Trials. J Alzheimers Dis 2024; 101:S193-S204. [PMID: 39422936 DOI: 10.3233/jad-230760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
There are currently no effective treatments to prevent, halt, or reverse Alzheimer's disease (AD), the most common cause of dementia in older adults. Melatonin, a relatively harmless over-the-counter supplement, may offer some benefits to patients with AD. Melatonin is known for its sleep-enhancing properties, but research shows that it may provide other advantages as well, such as antioxidant and anti-amyloidogenic properties. Clinical trials for melatonin use in AD have mixed results but, overall, show modest benefits. However, it is difficult to interpret clinical research in this area as there is little standardization to guide the administration and study of melatonin. This review covers basic biology and clinical research on melatonin in AD focusing on prominent hypotheses of pathophysiology of neurodegeneration and cognitive decline in AD (i.e., amyloid and tau hypotheses, antioxidant and anti-inflammation, insulin resistance and glucose homeostasis, the cholinergic hypothesis, sleep regulation, and the hypothalamic-pituitary-adrenal axis and cortisol). This is followed by a discussion on pending clinical trials, considerations for future research protocols, and open questions in the field.
Collapse
Affiliation(s)
- Marilyn J Steinbach
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Natalie L Denburg
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
7
|
Yang Y, Kim WS, Michaelian JC, Lewis SJG, Phillips CL, D'Rozario AL, Chatterjee P, Martins RN, Grunstein R, Halliday GM, Naismith SL. Predicting neurodegeneration from sleep related biofluid changes. Neurobiol Dis 2024; 190:106369. [PMID: 38049012 DOI: 10.1016/j.nbd.2023.106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Yang
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Woojin Scott Kim
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Simon J G Lewis
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Angela L D'Rozario
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia.
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Ralph N Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Ron Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Glenda M Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
8
|
Kim SJ, Lee JH, Jang JW, Lee SH, Suh IB, Jhoo JH. Effect of Personalized Blue-Enriched White Light Intervention on Rest-Activity and Light Exposure Rhythms in Mild and Moderate Alzheimer's Disease. Psychiatry Investig 2023; 20:1007-1017. [PMID: 37997328 PMCID: PMC10678145 DOI: 10.30773/pi.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE We aimed to examine the effectiveness of personalized light intervention using a blue-enriched light-emitting-diodes device on rest-activity rhythm (RAR) and light exposure rhythm (LER) in patients with mild and moderate Alzheimer's disease (AD). METHODS AD patients with poor sleep quality and/or insomnia symptoms were assigned into either an experimental group (EG) or control group (CG) in a single-blind design. Personalized light intervention was given at 9-10 h after individual dim light melatonin onset, lasting for 1 h every day for two weeks in the EG (77.36±5.79 years, n=14) and CG (78.10±7.98 years, n=10). Each patient of CG wore blue-attenuating sunglasses during the intervention. Actigraphy recording at home for 5 days was done at baseline (T0), immediate postintervention (T1), and at four weeks after intervention (T2). The variables of RAR and LER were derived using nonparametric analysis. RESULTS We found a significant time effect on the intradaily variability (IV) of RAR at T2 with respect to T0 (p=0.039), indicating reduced IV of RAR at four weeks after personalized light intervention regardless of blue-enriched light intervention. There was a time effect on the IV of LER at T1 with respect to T0 (p=0.052), indicating a reduced tendency in the IV of LER immediately after intervention. CONCLUSION Our personalized light intervention, regardless of blue-enriched light source, could be useful in alleviating fragmentation of RAR and LER in AD patients.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Psychiatry, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Jung Hie Lee
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- Department of Psychiatry, Gwanggyo Good Sleep Clinic, Suwon, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sun Hee Lee
- Department of Psychiatry, Silverheals Hospital, Namyangju, Republic of Korea
| | - In Bum Suh
- Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
9
|
de Bergeyck R, Geoffroy PA. Insomnia in neurological disorders: Prevalence, mechanisms, impact and treatment approaches. Rev Neurol (Paris) 2023; 179:767-781. [PMID: 37620177 DOI: 10.1016/j.neurol.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Insomnia is more prevalent in neurological disorders compared to the general population, with rates ranging from 11 to 74.2% in neurodegenerative disorders, 20 to 37% in vascular diseases, 13.3 to 50% in inflammatory diseases, 28.9 to 74.4% in epilepsy, and nearly 70% in migraines. Insomnia in neurological disorders stems from a variety of factors, encompassing physical and neuropsychiatric factors, behavioral patterns, and disruptions in the biological clock and circadian rhythm. There are bidirectional connections between neurological disorders and insomnia. Insomnia in neurological disorders worsens symptoms, resulting in heightened depressive symptoms, elevated mortality rates, reduced quality of life, and intensified acute symptoms. Managing comorbid sleep disorders, especially in the presence of psychiatric comorbidities, is crucial. Cognitive behavioral therapy for insomnia (CBT-I) is the first-line recommendation for insomnia management in neurological disorders. Other treatments are second-line strategies. Melatonin may demonstrate effectiveness in addressing insomnia, with soporific and chronobiotic effects. Furthermore, it has the potential to alleviate "sundowning" and behavioral disturbances, while generally being well-tolerated. Other treatment options that may be of interest include morning bright light therapy, sedative antidepressants, new orexin dual antagonists and levodopa specifically indicated for Parkinson's disease. Benzodiazepines and z-drugs can be used primarily during acute phases to prevent pharmacotolerance and minimize side effects. However, they should be avoided in patients with neurological disorders and not used in patients over 75 years old due to the risk of falls and confusion. In neurological disorders, insomnia has a profound impact on daytime functioning, making its management crucial. Effective treatment can result in improved outcomes, and additional research is necessary to investigate alternative therapeutic options and enhance patient care.
Collapse
Affiliation(s)
- R de Bergeyck
- Centre ChronoS, GHU Paris - Psychiatry Neurosciences, 1, rue Cabanis, 75014 Paris, France.
| | - P A Geoffroy
- Centre ChronoS, GHU Paris - Psychiatry Neurosciences, 1, rue Cabanis, 75014 Paris, France; Département de psychiatrie et d'addictologie, DMU Neurosciences, GHU Paris Nord, hôpital Bichat-Claude-Bernard, AP-HP, 75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm U1141, 75019 Paris, France; CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5, rue Blaise-Pascal, 67000 Strasbourg, France
| |
Collapse
|
10
|
Takebayashi G, Chiba Y, Wakamatsu K, Murakami R, Miyai Y, Matsumoto K, Uemura N, Yanase K, Shirakami G, Ogino Y, Ueno M. E-Cadherin Is Expressed in Epithelial Cells of the Choroid Plexus in Human and Mouse Brains. Curr Issues Mol Biol 2023; 45:7813-7826. [PMID: 37886936 PMCID: PMC10605538 DOI: 10.3390/cimb45100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Evidence showing the functional significance of the choroid plexus is accumulating. Epithelial cells with tight and adherens junctions of the choroid plexus play important roles in cerebrospinal fluid production and circadian rhythm formation. Although specific types of cadherin expressed in adherens junctions of choroid plexus epithelium (CPE) have been examined, they remained uncertain. Recent mass spectrometry and immunolocalization analysis revealed that non-epithelial cadherins, P- and N-cadherins, are expressed in the lateral membrane of CPE, whereas E-cadherin expression has not been confirmed in CPE of humans or mice. In this study, we examined E-cadherin expression in CPE of mice and humans by RT-PCR, immunohistochemical-, and Western blotting analyses. We confirmed, by using RT-PCR analysis, the mRNA expression of E-cadherin in the choroid plexus of mice. The immunohistochemical expression of E-cadherin was noted in the lateral membrane of CPE of mice and humans. We further confirmed, in Western blotting, the specific immunoreactivity for E-cadherin. Immunohistochemically, the expression of E- and N-cadherins or vimentin was unevenly distributed in some CPE, whereas that of E- and P-cadherins or β-catenin frequently co-existed in other CPE. These findings indicate that E-cadherin is expressed in the lateral membrane of CPE, possibly correlated with the expression of other cadherins and cytoplasmic proteins.
Collapse
Affiliation(s)
- Genta Takebayashi
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Yumi Miyai
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Gotaro Shirakami
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (N.U.); (K.Y.); (G.S.); (Y.O.)
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Takamatsu 761-0793, Kagawa, Japan; (G.T.); (Y.C.); (K.W.); (R.M.); (Y.M.); (K.M.)
| |
Collapse
|
11
|
Reiter RJ, Sharma R, Cucielo MS, Tan DX, Rosales-Corral S, Gancitano G, de Almeida Chuffa LG. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci 2023; 80:88. [PMID: 36917314 PMCID: PMC11072793 DOI: 10.1007/s00018-023-04736-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-β peptide (Aβ) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer's disease (AD) defers Aβ accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| | | | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Giuseppe Gancitano
- 1st "Tuscania" Paratrooper Regiment, Italian Ministry of Defense, 57127, Leghorn, Italy
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
12
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
13
|
Liao H, Pan D, Deng Z, Jiang J, Cai J, Liu Y, He B, Lei M, Li H, Li Y, Xu Y, Tang Y. Association of shift work with incident dementia: a community-based cohort study. BMC Med 2022; 20:484. [PMID: 36522755 PMCID: PMC9753386 DOI: 10.1186/s12916-022-02667-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Some observational studies had found that shift work would increase risks of metabolic disorders, cancers, and cardiovascular diseases, but there was no homogeneous evidence of such an association between shift work and incident dementia. This study aimed to investigate whether shift work would increase the risk of dementia in a general population. METHODS One hundred seventy thousand seven hundred twenty-two employed participants without cognitive impairment or dementia at baseline recruited between 2006 and 2010 were selected from the UK Biobank cohort study. Follow-up occurred through June 2021. Shift work status at baseline was self-reported by participants and they were categorized as non-shift workers or shift workers. Among shift workers, participants were further categorized as night shift workers or shift but non-night shift workers. The primary outcome was all-cause dementia in a time-to-event analysis, and the secondary outcomes were subtypes of dementia, including Alzheimer's disease, vascular dementia, and other types of dementia. RESULTS In total, 716 dementia cases were observed among 170,722 participants over a median follow-up period of 12.4 years. Shift workers had an increased risk of all-cause dementia as compared with non-shift workers after multivariable adjustment (hazard ratio [HR], 1.30, 95% confidence interval [CI], 1.08-1.58); however, among shift workers, night shift work was not associated with the risk of dementia (HR, 1.04, 95% CI, 0.73-1.47). We found no significant interaction between shift work and genetic predisposition to dementia on the primary outcome (P for interaction = 0.77). CONCLUSIONS Shift work at baseline was associated with an increased risk of all-cause dementia. Among shift workers, there was no significant association between night shift work and the risk of dementia. The increased incidence of dementia in shift workers did not differ between participants in different genetic risk strata for dementia.
Collapse
Affiliation(s)
- Huanquan Liao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 517108, People's Republic of China
| | - Dong Pan
- Department of Neurology, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, People's Republic of China
| | - Zhenhong Deng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Baixuan He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ming Lei
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510062, People's Republic of China.
| |
Collapse
|
14
|
|
15
|
Godfrey S, Iversen HK, West AS. Melatonin profile in healthy, elderly subjects - A systematic literature review. Chronobiol Int 2022; 39:476-492. [PMID: 34983254 DOI: 10.1080/07420528.2021.2016794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melatonin plays an important role in regulation and maintaining of the circadian rhythm. In the elderly population, an array of disturbances of circadian rhythm and sleep can be observed; however the current knowledge within the group of healthy, elderly is scarce. This systematic literature review of studies on the melatonin profile measured in the blood of healthy, elderly individuals included 519 studies, found in the primary search on PubMed. After reviewing the title and abstract, 47 studies were found eligible for full text review. The inclusion criteria were defined as follows: healthy, elderly individuals, with a mean or average age over 65 years and analysis done in blood or plasma. In addition to the primary search, three studies were directly identified by the reference lists of already included studies. A final total of 23 studies were included in the systematic literature review. In reviewing the literature, a clear circadian melatonin profile with a nocturnal peak at 3 am and lower daytime levels was observed in the healthy, elderly population. In elderly over 75 years of age, the nocturnal level of melatonin may be lower; however, the circadian rhythmicity is maintained. In the comparison of elderly, independently living individuals and individuals living in care facilities, the latter group had lower levels of nocturnal melatonin peak as well as higher daytime levels; however one can wonder if elderly in care facilities are healthy. The 23 included studies in the systematic literature review had varying primary objectives and generally the term "healthy" within this population group proves difficult to clearly define. As a result of this, an obvious interstudy variability existed, which is a limitation of this systematic literature review. However, the graphs depicted represent the best possible estimation of the melatonin profile in a healthy, elderly population. Future research in the melatonin profile within this population should focus on clearly defined healthy elderly to ensure a valid normal material in this age group.
Collapse
Affiliation(s)
- Sara Godfrey
- Department of Neurology, Stroke Centre Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle K Iversen
- Department of Neurology, Stroke Centre Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sode West
- Department of Neurology, Stroke Centre Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
16
|
Blackman J, Love S, Sinclair L, Cain R, Coulthard E. APOE ε4, Alzheimer's disease neuropathology and sleep disturbance, in individuals with and without dementia. Alzheimers Res Ther 2022; 14:47. [PMID: 35354468 PMCID: PMC8969347 DOI: 10.1186/s13195-022-00992-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/20/2022] [Indexed: 12/20/2022]
Abstract
Background Apolipoprotein E epsilon 4 (APOE-ε4) carrier status is an established risk factor for Alzheimer’s disease (AD) dementia. It has also been linked with sleep disturbance in healthy older adults and increased insomnia risk. This association may be driven by the effect of APOE-ε4 on AD pathological change, itself associated with sleep abnormalities. To assess this relationship, we have evaluated post-mortem neuropathological findings in patients with and without cognitive impairment and AD pathology, who had extensive clinical assessment within 12 months of death. Methods This retrospective cohort study used UK Brain Banks Network data. Eligible subjects were aged over 50, with pre-mortem neuropsychiatry inventory scores of sleep disturbance (NPI-K), neurocognitive testing and functional cognitive status assessment (Clinical Dementia Rating scale). Neuropathological data included Thal phase, Braak stage and CERAD scores (measures of Aβ plaque distribution, tangle distribution and neuritic plaque density, respectively) combined to form the National Institute on Aging Alzheimer’s Association (NIA-AA) ABC score reflecting AD neuropathology. Participants with other significant intracerebral pathology or pathological features of non-AD dementia were excluded. Multivariate linear regression was performed with NPIK Global Score (NPIK frequency score multiplied by severity score) as the dependent variable and APOE-ε4 heterozygosity or homozygosity as independent variables. Covariates included age, gender, APOE-ε2 status and ABC NPI measures reflecting depression and anxiety. Further models stratified by ABC score and functional cognitive status were also produced. Results Seven hundred twenty-eight records were identified. Two hundred two participants were included in the final analysis: mean (SD) age 84.0 (9.2) and MMSE 14.0 (11.8). Mean sleep disturbance scores were highest in ε4 homozygosity (n=11), 4.55 (5.4); intermediate in ε4 heterozygosity (n=95), 2.03 (4.0); and lowest in non-ε4 carriers (n=96), 1.36 (3.3). Within the full sample, controlling for pathological status, age, gender, depression, anxiety and CDR-SOB status, APOE-ε4 homozygosity was associated with sleep disturbance (β 2.53, p=0.034). APOE-ε4 heterozygosity was similarly associated in individuals without dementia (β 1.21, p=0.048). Conclusion These findings lend weight to the hypothesis that APOE-ε4 affects sleep by mechanisms independent of AD pathological change. Evaluation of those mechanisms would enhance understanding of sleep disturbance pathways and potentially provide treatment targets. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00992-y.
Collapse
Affiliation(s)
| | - Seth Love
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Lindsey Sinclair
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Richard Cain
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Elizabeth Coulthard
- Learning and Research, University of Bristol, Southmead, Bristol, BS10 5NB, UK.
| |
Collapse
|
17
|
Cremascoli R, Sparasci D, Giusti G, Cattaldo S, Prina E, Roveta F, Bruno F, Ghezzi C, Cerri S, Picascia M, Bernini S, Sinforiani E, Terzaghi M, Priano L, Mauro A, Manni R. Effects of Circadian Phase Tailored Light Therapy on Sleep, Mood, and Cognition in Alzheimer's Disease: Preliminary Findings in a Pivotal Study. Front Physiol 2022; 12:755322. [PMID: 35069234 PMCID: PMC8770402 DOI: 10.3389/fphys.2021.755322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
It is shown that the circadian system is affected in patients with Alzheimer’s disease (AD) even at an early stage of the disease and that such dysfunction may be detrimental to sleep, mood, and cognitive functioning. Light is a strong central modulator of the circadian rhythms and is potentially beneficial to mood and cognitive functioning via a direct effect or indirectly via its modulating effects on circadian rhythms. This study focuses on tracking the effect of light therapy on sleep quality, mood, and cognition in AD of mild/moderate severity. We performed a single-blind randomized controlled trial to investigate the effects of a light therapy treatment tailored to the individual circadian phase as measured by dim light melatonin onset (DLMO). Such a treatment induced an objective circadian phase shift consistent with the melatonin phase response curve to light exposure, led to a shortening of the phase angle DLMO-falling asleep time, and was associated with an improvement in subjective sleep quality and cognitive performance.
Collapse
Affiliation(s)
- Riccardo Cremascoli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy.,Department of Neurology and Neurorehabilitation, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Davide Sparasci
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Gianluca Giusti
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefania Cattaldo
- Laboratory of Clinical Neurobiology, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Italy
| | - Elisa Prina
- Laboratory of Clinical Neurobiology, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Italy
| | - Fausto Roveta
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Francesco Bruno
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Pavia, Italy
| | - Marta Picascia
- Neuropsychology/Alzheimer's Disease Assessment Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Bernini
- Neuropsychology/Alzheimer's Disease Assessment Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Sinforiani
- Neuropsychology/Alzheimer's Disease Assessment Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Lorenzo Priano
- Department of Neurology and Neurorehabilitation, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Alessandro Mauro
- Department of Neurology and Neurorehabilitation, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of Torino, Turin, Italy.,Laboratory of Clinical Neurobiology, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Italy
| | - Raffaele Manni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
18
|
Tseng PT, Zeng BY, Chen YW, Yang CP, Su KP, Chen TY, Wu YC, Tu YK, Lin PY, Carvalho AF, Stubbs B, Matsuoka YJ, Li DJ, Liang CS, Hsu CW, Sun CK, Cheng YS, Yeh PY, Shiue YL. The Dose and Duration-dependent Association between Melatonin Treatment and Overall Cognition in Alzheimer's Dementia: A Network Meta- Analysis of Randomized Placebo-Controlled Trials. Curr Neuropharmacol 2022; 20:1816-1833. [PMID: 35450525 PMCID: PMC9886806 DOI: 10.2174/1570159x20666220420122322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND While Alzheimer's dementia (AD) has a prevalence as high as 3-32% and is associated with cognitive dysfunction and the risk of institutionalization, no efficacious and acceptable treatments can modify the course of cognitive decline in AD. Potential benefits of exogenous melatonin for cognition have been divergent across trials. OBJECTIVE The current network meta-analysis (NMA) was conducted under the frequentist model to evaluate the potential beneficial effects of exogenous melatonin supplementation on overall cognitive function in participants with AD in comparison to other FDA-approved medications (donepezil, galantamine, rivastigmine, memantine, and Namzaric). METHODS The primary outcome was the changes in the cognitive function [measured by mini-mental state examination (MMSE)] after treatment in patients with Alzheimer's dementia. The secondary outcomes were changes in the quality of life, behavioral disturbance, and acceptability (i.e., drop-out due to any reason and rate of any adverse event reported). RESULTS The current NMA of 50 randomized placebo-controlled trials (RCTs) revealed the medium-term lowdose melatonin to be associated with the highest post-treatment MMSE (mean difference = 1.48 in MMSE score, 95% confidence intervals [95% CIs] = 0.51 to 2.46) and quality of life (standardized mean difference = -0.64, 95% CIs = -1.13 to -0.15) among all of the investigated medications in the participants with AD. Finally, all of the investigated exogenous melatonin supplements were associated with similar acceptability as was the placebo. CONCLUSION The current NMA provides evidence for the potential benefits of exogenous melatonin supplementation, especially medium-term low-dose melatonin, in participants with AD.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-DA Dachang Hospital, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition, Huangkuang University, Taichung, Taiwan
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei112, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Andre F. Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Yutaka J. Matsuoka
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- Former Division Chief of Health Care Research, National Cancer Center, Japan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students
| | - Yu-Shian Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai’s Home, Taiwan
| | - Pin-Yang Yeh
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Clinical Psychology Center, Asia University Hospital, Taichung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Moderie C, Carrier J, Dang-Vu TT. [Sleep disorders in patients with a neurocognitive disorder]. Encephale 2021; 48:325-334. [PMID: 34916075 DOI: 10.1016/j.encep.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Sleep disorders are prevalent in patients with a neurocognitive disorder, and diagnosis and treatment in these patients remain challenging in clinical practice. METHODS This narrative review offers a systematic approach to diagnose and treat sleep disorders in neurocognitive disorders. RESULTS Alzheimer's disease is often associated with circadian rhythm disorders, chronic insomnia, and sleep apnea-hypopnea syndrome. Alpha-synucleinopathies (e.g., Parkinson's disease and Lewy body dementia) are often associated with a rapid eye movement sleep behavior disorder, restless legs syndrome, chronic insomnia, and sleep apnea-hypopnea syndrome. A focused history allows to diagnose most sleep disorders. Clinicians should ensure to gather the following information in all patients with a neurocognitive disorder: (1) the presence of difficulties falling asleep or staying asleep, (2) the impact of sleep disturbances on daily functioning (fatigue, sleepiness and other daytime consequences), and (3) abnormal movements in sleep. Sleep diaries and questionnaires can assist clinicians in screening for specific sleep disorders. Polysomnography is recommended if a rapid eye movement sleep behavior disorder or a sleep apnea-hypopnea syndrome are suspected. Sleep complaints should prompt clinicians to ensure that comorbidities interfering with sleep are properly managed. The main treatment for moderate to severe obstructive sleep apnea-hypopnea syndrome remains continuous positive airway pressure, as its efficacy has been demonstrated in patients with neurocognitive disorders. Medications should also be reviewed, and time of administration should be optimized (diuretics and stimulating medications in the morning, sedating medications in the evening). Importantly, cholinesterase inhibitors (especially donepezil) may trigger insomnia. Switching to morning dosing or to an alternative drug may help. Cognitive-behavioral therapy for insomnia is indicated to treat chronic insomnia in neurocognitive disorders. False beliefs regarding sleep should be addressed with the patient and their caregiver. The sleep environment should be optimized (decrease light exposure at night, minimize noise, avoid taking vital signs, etc.). Sleep restriction can be considered as patients with a neurocognitive disorder often spend too much time in bed. The need for naps should be assessed case by case as naps may contribute to insomnia in some patients but allow others to complete their diurnal activities. Trazodone (50mg) may also be used under certain circumstances in chronic insomnia. Recent evidence does not support a role for exogenous melatonin in patients with a neucognitive disorder and insomnia. Patients in long-term care facilities are often deprived of an adequate diurnal exposure to light. Increasing daytime exposure to light may improve sleep and mood. Patients with circadian rhythm disorders can also benefit from light therapy (morning bright light therapy in case of phase delay and evening bright light therapy in case of phase advance). Rapid eye movement sleep behavior disorder can lead to violent behaviors, and the sleeping environment should be secured (e.g., mattress on the floor, remove surrounding objects). Medication exacerbating this disorder should be stopped if possible. High dose melatonin (6 to 18mg) or low dose clonazepam (0.125-0.25mg) at bedtime may be used to reduce symptoms. Melatonin is preferred in first-line as it is generally well tolerated with few side effects. Patients with restless legs syndrome should be investigated for iron deficiency. Medication decreasing dopaminergic activity should be reduced or stopped if possible. Behavioral strategies such as exercise and leg massages may be beneficial. Low-dose dopamine agonists (such as pramipexole 0.125mg two hours before bedtime) can be used to treat the condition, but a prolonged treatment may paradoxically worsen the symptoms. Alpha-2-delta calcium channel ligands can also be used while monitoring for the risk of falls. CONCLUSION Multiple and sustained nonpharmacological approaches are recommended for the treatment of sleep disturbances in patients with neurocognitive disorder. Pharmacological indications remain limited, and further randomized clinical trials integrating a multimodal approach are warranted to evaluate the treatment of sleep disorders in specific neurocognitive disorders.
Collapse
Affiliation(s)
- C Moderie
- Département de psychiatrie, université McGill, Montréal, Québec, Canada
| | - J Carrier
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada; Département de psychologie, université de Montréal, Montréal, Québec, Canada; Centre d'études avancées en médecine du sommeil, Montréal, Québec, Canada
| | - T T Dang-Vu
- Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada; Département de psychologie, université de Montréal, Montréal, Québec, Canada; Département de santé, kinésiologie et physiologie appliquée, centre d'études en neurobiologie comportementale et centre PERFORM, université Concordia, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
21
|
Zhao H, Feng L, Zhong W, Zhen H, Chi Q, Wang X. Hyperphosphorylation of Tau Due to the Interference of Protein Phosphatase Methylesterase-1 Overexpression by MiR-125b-5p in Melatonin Receptor Knockout Mice. Int J Mol Sci 2021; 22:ijms222111850. [PMID: 34769281 PMCID: PMC8611649 DOI: 10.3390/ijms222111850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Melatonin has been indicated to ameliorate tau hyperphosphorylation in the pathogenesis of tau diseases, but the role of melatonin-receptor signal transduction has not been clearly discovered. In this study, we found intensive tau hyperphosphorylation in melatonin receptor knockout mice. Bielschowsky silver staining showed ghostlike neurofibrillary tangles in melatonin receptor-2 knockout (MT2KO) as well as melatonin receptors-1 and -2 knockout (DKO) mice, and an argyrophilic substance was deposited in melatonin receptor-1 knockout (MT1KO) mice. Furthermore, we found significantly decreased activity of protein phosphatase 2A (PP2A) by Western blot and enzyme-linked immunosorbent assay (ELISA), which was partly due to the overexpression of protein phosphatase methylesterase-1 (PME-1), but not glycogen synthase kinase-3β (GSK-3β), cyclin-dependent kinase 5 (CDK5) or protein kinase B (Akt). Finally, we observed a significant increase in cyclic adenosine monophosphate (cAMP) and a decrease in miR-125b-5p levels in MT1KO, MT2KO and DKO mice. Using a luciferase reporter assay, we discovered that miR-125b-5p largely decreased the expression of firefly luciferase by interfering with the 3′UTR of PME-1. Furthermore, miR-125b-5p mimics significantly decreased the expression of PME-1, while miR-125b-5p inhibitor induced tau hyperphosphorylation. These results show that melatonin-receptor signal transduction plays an important role in tau hyperphosphorylation and tangle formation.
Collapse
Affiliation(s)
- Han Zhao
- Department of Histology and Embryology, Medical College, Jianghan University, Wuhan 430030, China; (H.Z.); (W.Z.)
| | - Lingyan Feng
- Department of Immunology, Medical College, Jianghan University, Wuhan 430030, China;
| | - Wei Zhong
- Department of Histology and Embryology, Medical College, Jianghan University, Wuhan 430030, China; (H.Z.); (W.Z.)
| | - Hongyan Zhen
- Department of Pathology and Pathophysiology, Medical College, Jianghan University, Wuhan 430030, China;
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan 430070, China;
| | - Xiang Wang
- Department of Histology and Embryology, Medical College, Jianghan University, Wuhan 430030, China; (H.Z.); (W.Z.)
- Correspondence:
| |
Collapse
|
22
|
Abstract
Neurodegenerative diseases encompass a large group of conditions that are clinically and pathologically diverse yet are linked by a shared pathology of misfolded proteins. The accumulation of insoluble aggregates is accompanied by a progressive loss of vulnerable neurons. For some patients, the symptoms are motor focused (ataxias), while others experience cognitive and psychiatric symptoms (dementias). Among the shared symptoms of neurodegenerative diseases is a disruption of the sleep/wake cycle that occurs early in the trajectory of the disease and may be a risk factor for disease development. In many cases, the disruption in the timing of sleep and other rhythmic physiological markers immediately raises the possibility of neurodegeneration-driven disruption of the circadian timing system. The aim of this Review is to summarize the evidence supporting the hypothesis that circadian disruption is a core symptom within neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, and to discuss the latest progress in this field. The Review discusses evidence that neurodegenerative processes may disrupt the structure and function of the circadian system and describes circadian-based interventions as well as timed drug treatments that may improve a wide range of symptoms associated with neurodegenerative disorders. It also identifies key gaps in our knowledge.
Collapse
|
23
|
Fusilier AR, Davis JA, Paul JR, Yates SD, McMeekin LJ, Goode LK, Mokashi MV, Remiszewski N, van Groen T, Cowell RM, McMahon LL, Roberson ED, Gamble KL. Dysregulated clock gene expression and abnormal diurnal regulation of hippocampal inhibitory transmission and spatial memory in amyloid precursor protein transgenic mice. Neurobiol Dis 2021; 158:105454. [PMID: 34333153 PMCID: PMC8477442 DOI: 10.1016/j.nbd.2021.105454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Patients with Alzheimer's disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock) in Tg-SwDI mice with human amyloid-beta precursor protein mutations. Here, we report that Tg-SwDI mice failed to show day/night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer's disease symptoms or delay pathological onset.
Collapse
Affiliation(s)
- Allison R Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefani D Yates
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura J McMeekin
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neuroscience, Southern Research, Birmingham, AL 35205, USA
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mugdha V Mokashi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalie Remiszewski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas van Groen
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita M Cowell
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neuroscience, Southern Research, Birmingham, AL 35205, USA
| | - Lori L McMahon
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Nous A, Wittens MMJ, Vermeiren Y, De Deyn PP, Van Broeckhoven C, Nagels G, Smolders I, Engelborghs S. Serum Daytime Melatonin Levels Reflect Cerebrospinal Fluid Melatonin Levels in Alzheimer's Disease but Are Not Correlated with Cognitive Decline. J Alzheimers Dis 2021; 83:693-704. [PMID: 34366353 PMCID: PMC8543270 DOI: 10.3233/jad-210562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Nocturnal cerebrospinal fluid (CSF) and blood melatonin levels are altered in Alzheimer’s disease (AD). However, literature remains inconclusive on daytime blood melatonin levels. A positive correlation between melatonin levels and Mini-Mental State Examination (MMSE) scores in AD subjects has been evidenced following cross-sectional analyses. Whereas a correlation between serum and spinal CSF melatonin has been shown in healthy volunteers, an equal investigation in AD patients still has to be undertaken. Objective: 1) To evaluate whether serum melatonin levels correlate with spinal CSF melatonin levels in AD. 2) To compare daytime CSF and serum melatonin levels between patients with AD dementia, mild cognitive impairment due to AD, and healthy controls, and to evaluate whether melatonin can affect cognitive decline in AD. Methods: Subjects with AD and healthy controls included in two existing cohorts, of whom a CSF and serum sample was available at the neurobiobank and had at least 6 months of neuropsychological follow-up, were included in the present study. Melatonin concentrations were measured with liquid chromatography-mass spectrometry. Results: Daytime serum melatonin levels correlated with spinal CSF melatonin levels in AD (r = 0.751, p < 0.001). No significant differences regarding daytime melatonin levels were found between patients and controls. No correlations were observed between daytime melatonin levels and MMSE score changes. Conclusion: Daytime serum melatonin accurately reflects CSF melatonin levels in AD, raising the possibility to assess melatonin alterations by solely performing blood sampling if also confirmed for night-time values. However, daytime melatonin levels are not associated with changes of cognitive impairment.
Collapse
Affiliation(s)
- Amber Nous
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mandy Melissa Jane Wittens
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Faculty of Medicine & Health Sciences, Translational Neurosciences, University of Antwerp, Antwerp, Belgium.,Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Peter Paul De Deyn
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, Antwerp Belgium
| | - Guy Nagels
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
[Positive effect of bright light therapy on mood and sleep quality in institutionalized older people]. Rev Esp Geriatr Gerontol 2021; 56:354-360. [PMID: 34330543 DOI: 10.1016/j.regg.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Bright light exposure during the day has a positive effect on health and its deficit can cause multiple physiological and cognitive disorders, including depression. The aim of this study was to evaluate the effect of bright light therapy (BLT) on the quality of sleep and mood emotional state; cognitive status, global deterioration and quality of life in institutionalized elderly. MATERIAL AND METHODS This is a study with repeated measures design. Thirty-seven older people admitted to a nursing home. The study lasted 3 weeks. The first week, the reference values were established with the Oviedo Sleep Questionnaire, Yesavage Depression Scale, Mini-Mental, Global Scale of Impairment and European Quality of Life Questionnaire. During the second week, they were exposed to BLT (7,000-10,000lx at eye level) between 9:30 a.m. and 11:00 a.m. During the third week, all the data were re-evaluated. RESULTS All variables improved significantly after the application of light therapy. Sleep (COS) pre-test 4.1±1.49, post-test 4.9±1.46, p: 0.01), mood (pre-test 3.65±2.78, post-test 2.65±2.9, p: 0.01), cognitive state (pre-test 22.72±6.53, post-test 24±5.92, p: 0.001), state of global deterioration (pre-test 3.10±1.26, post-test 2.72±5.92, p: 0.001) and health-related quality of life (pre-test 6.93±1.86, post-test 7.82±1.62, p: 0.001). CONCLUSIONS Sleep quality, mood, cognitive status, global deterioration status and quality of life significantly improved after the application of light bright therapy.
Collapse
|
26
|
Kennaway DJ. Trough Melatonin Levels Have No Physiological or Clinical Relevance. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:391-392. [PMID: 33888668 PMCID: PMC8077047 DOI: 10.9758/cpn.2021.19.2.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Dumas G, Goubran‐Botros H, Matondo M, Pagan C, Boulègue C, Chaze T, Chamot‐Rooke J, Maronde E, Bourgeron T. Mass-spectrometry analysis of the human pineal proteome during night and day and in autism. J Pineal Res 2021; 70:e12713. [PMID: 33368564 PMCID: PMC8047921 DOI: 10.1111/jpi.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
- Precision Psychiatry and Social Physiology laboratoryCHU Ste‐Justine Research CenterDepartment of PsychiatryUniversity of MontrealQuebecQCCanada
| | - Hany Goubran‐Botros
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| | - Mariette Matondo
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Cécile Pagan
- Paris Descartes UniversityParisFrance
- Service de Biochimie et Biologie MoléculaireINSERM U942Hôpital LariboisièreAPHPParisFrance
| | - Cyril Boulègue
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Thibault Chaze
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Erik Maronde
- Institute for Anatomy IIFaculty of MedicineGoethe UniversityFrankfurtGermany
| | - Thomas Bourgeron
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| |
Collapse
|
28
|
Nous A, Engelborghs S, Smolders I. Melatonin levels in the Alzheimer's disease continuum: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2021; 13:52. [PMID: 33622399 PMCID: PMC7903801 DOI: 10.1186/s13195-021-00788-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Background The search for new Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and blood biomarkers with potential pathophysiological and clinical relevance continues, as new biomarkers might lead to improved early and differential diagnosis, monitoring of disease progression and might even identify new druggable targets. Melatonin might be an interesting biomarker as an inverse correlation between CSF melatonin levels, and severity of the neuropathology as measured by Braak stages has been described. Melatonin can be measured in different body fluids, such as CSF, blood, saliva and urine. Objectives The aim of this systematic review was to review all available studies regarding melatonin levels in different body fluids in the AD continuum and give an extensive overview of reported outcomes. Methods We included papers comparing melatonin levels between healthy controls and human patients belonging to the AD continuum. A systematic search of PubMed and Web of Science led to inclusion of 20 full-length English papers following exclusion of duplicates. Results This systematic literature search showed that disruptions in melatonin levels occur with age, but also in AD when compared to age-matched controls. Night-time melatonin levels were found to be lower in CSF and blood of AD patients as compared to controls. Literature was not conclusive regarding alterations in blood daytime melatonin levels or regarding saliva melatonin in AD patients. Decreased total and night-time melatonin production has been described in urine of AD patients. Conclusion Our systematic review shows evidence for disruptions in (night-time) melatonin levels in AD as compared to age-matched controls. Although more studies are needed to understand the contribution of disruption of the melatonergic system to the pathophysiology of AD, the potential anti-AD effects that have been attributed to melatonin, renders research on this topic relevant for the discovery of potential future treatment effects of melatonin for AD. The use of melatonin as potential blood biomarker for disease progression should also be further investigated.
Collapse
Affiliation(s)
- Amber Nous
- Research group Experimental Pharmacology (EFAR), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.,Department of Neurology, UZ Brussel, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Neurology, UZ Brussel, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium. .,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
29
|
Kent BA, Feldman HH, Nygaard HB. Sleep and its regulation: An emerging pathogenic and treatment frontier in Alzheimer's disease. Prog Neurobiol 2021; 197:101902. [PMID: 32877742 PMCID: PMC7855222 DOI: 10.1016/j.pneurobio.2020.101902] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/19/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
A majority of patients with Alzheimer's disease (AD) experience some form of sleep disruption, including nocturnal sleep fragmentation, increased daytime napping, decreased slow-wave sleep (SWS, stage N3), and decreased rapid-eye-movement sleep (REM). Clinical studies are investigating whether such sleep disturbances are a consequence of the underlying disease, and whether they also contribute to the clinical and pathological manifestations of AD. Emerging research has provided a direct link between several of these sleep disruptions and AD pathophysiology, suggesting that treating sleep disorders in this population may target basic mechanisms of the disease. Here, we provide a comprehensive review of sleep disturbances associated with the spectrum of AD, ranging from the preclinical stages through dementia. We discuss how sleep interacts with AD pathophysiology and, critically, whether sleep impairments can be targeted to modify the disease course in a subgroup of affected AD patients. Ultimately, larger studies that fully utilize new diagnostic and experimental tools will be required to better define the most relevant sleep disturbance to target in AD, the interventions that best modulate this target symptom, and whether successful early intervention can modify AD risk and prevent dementia.
Collapse
Affiliation(s)
- Brianne A Kent
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Division of Neurology, University of British Columbia, Vancouver, Canada.
| | - Howard H Feldman
- Division of Neurology, University of British Columbia, Vancouver, Canada; Department of Neurosciences, University of California, San Diego, La Jolla, USA
| | - Haakon B Nygaard
- Division of Neurology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Hardeland R. Sirtuins, melatonin, and the relevance of circadian oscillators. SIRTUIN BIOLOGY IN MEDICINE 2021:137-151. [DOI: 10.1016/b978-0-12-814118-2.00011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Pan B, Jing L, Cao M, Hu Y, Gao X, Bu X, Li Z, Feng H, Guo K. Melatonin promotes Schwann cell proliferation and migration via the shh signalling pathway after peripheral nerve injury. Eur J Neurosci 2020; 53:720-731. [PMID: 33022764 DOI: 10.1111/ejn.14998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury (PNI) is a common and incurable disease in the clinic, but the effects of available treatments are still not satisfactory. Therefore, it is necessary to explore new treatment methods. To explore the effect and mechanism of melatonin in peripheral nerve regeneration, we administered melatonin to mice with PNI by intraperitoneal injection. We applied microarray analysis to detect differentially expressed genes of mice with sciatic nerve injury after melatonin application. Then, we conducted gene ontology and protein-protein interactions to screen out the key genes related to peripheral nerve regeneration. Cell biology and molecular biology experiments were performed in Schwann cells in vitro to verify the key genes identified by microarray analysis. Our results showed that a total of 598 differentially expressed genes were detected after melatonin subcutaneously injecting into mice with sciatic nerve injury. Bioinformatics analysis showed that Shh may be the key gene for the promotion of peripheral nerve regeneration by melatonin. In vitro, the proliferation and migration abilities of schwann cells in the melatonin group were significantly higher than those of Schwann cells in the control group; while after treating with both melatonin and luzindole (a Shh signalling pathway inhibitor), the proliferation and migration abilities of Schwann cells decreased compared with the melatonin group. Our study suggests that melatonin might improve the proliferation and migration of Schwann cells via the Shh signalling pathway after PNI, thus promoting peripheral nerve regeneration. Our study provides a new approach and target for the clinical treatment of PNI.
Collapse
Affiliation(s)
- Bin Pan
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Li Jing
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Menghan Cao
- Department of Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Youzhong Hu
- Department of Orthopedics, Kuitun Hospital, Ili Prefecture, China
| | - Xiao Gao
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiangbo Bu
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ziang Li
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hu Feng
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kaijin Guo
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Kataoka H, Saeki K, Kurumatani N, Sugie K, Obayashi K. Melatonin secretion in patients with Parkinson's disease receiving different-dose levodopa therapy. Sleep Med 2020; 75:309-314. [PMID: 32950012 DOI: 10.1016/j.sleep.2020.07.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Melatonin is involved in the regulation of sleep and circadian biological rhythmicity; decreased melatonin secretion has been associated with circadian disruptions. Previous studies evaluating melatonin levels between patients with Parkinson's disease (PD) and controls without PD have found conflicting results; however, large-scale studies have not been performed. Our aim is to compare endogenous melatonin levels between patients with Parkinson's disease (PD) and non-PD older adults. METHODS In this cross-sectional study on 201 outpatients with PD and 380 community-dwelling older Japanese adults (controls), urinary 6-sulfatoxymelatonin excretion was measured to estimate endogenous melatonin levels. RESULTS Urinary 6-sulfatoxymelatonin excretion (UME) did not significantly differ overall between PD patients and non-PD controls, even after adjusting for age, gender, medications, sleep habits, and seasons. Among PD patients, a clear and robust dose-response association was found between levodopa equivalent dose and UME, independent of potential confounding factors, including Parkinson's disease severity. Compared with the lowest levodopa equivalent dose quartile group (mean levodopa equivalent dose, 132 mg/day), the highest group (mean levodopa equivalent dose, 973 mg/day) exhibited a 68% increase in UME (17.8 vs. 30.0 ng/mg cre, respectively). In addition, compared with the non-PD controls, PD patients receiving a lower levodopa equivalent dose displayed decreased UME and those receiving higher levodopa equivalent dose displayed increased UME. CONCLUSION Our study suggests that melatonin levels in PD patients receiving average levodopa doses are comparable with those in older adults, even after considering confounding factors. This association was modulated by daily levodopa dose in PD patients.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Neurology, Nara Medical University School of Medicine, Nara, Japan.
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Norio Kurumatani
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University School of Medicine, Nara, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan.
| |
Collapse
|
33
|
Imamura S, Tabuchi M, Oizumi H, Ueki T, Omiya Y, Ikarashi Y, Mizoguchi K. Yokukansankachimpihange, a traditional Japanese (Kampo) medicine, enhances the adaptation to circadian rhythm disruption by increasing endogenous melatonin levels. J Pharmacol Sci 2020; 144:129-138. [PMID: 32921394 DOI: 10.1016/j.jphs.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022] Open
Abstract
The traditional Japanese (Kampo) medicines yokukansan (YKS) and yokukansankachimpihange (YKSCH) have similar formulas and the same indications. In animals or cultured cells, the neuropharmacological actions of YKS are sometimes more beneficial than those of YKSCH. Since both drugs are used to treat sleep disorders in Japan, we examined the ameliorative effects of YKS and YKSCH on circadian rhythm disturbance and compared their efficacy using a mouse model of circadian rhythm disruption. Ramelteon was used as the positive control. Ramelteon treatment significantly reversed decreased running wheel activity during the advanced dark phase, indicating facilitation of circadian adaptation. YKS treatment also reversed the activity in the early period of drug treatment; however, it was not statistically significant. YKSCH treatment significantly reversed the decreased activity during the advanced dark phase. Plasma melatonin (MT) levels were significantly increased in the YKSCH but not in the YKS group. The ameliorative effect of YKSCH on rhythm disruption was significantly inhibited by coadministration of the MT2 receptor antagonist. Therefore, the therapeutic effect of YKSCH on circadian rhythm disruption would be attributable, to elevated endogenous MT levels. Taken together, YKS and YKSCH have different pharmacological properties and may be more precisely prescribed depending on patients' psychological symptoms.
Collapse
Affiliation(s)
- Sachiko Imamura
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan.
| | - Masahiro Tabuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Toshiyuki Ueki
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| |
Collapse
|
34
|
Chen D, Mei Y, Kim N, Lan G, Gan CL, Fan F, Zhang T, Xia Y, Wang L, Lin C, Ke F, Zhou XZ, Lu KP, Lee TH. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer's disease. J Pineal Res 2020; 69:e12665. [PMID: 32358852 PMCID: PMC7890046 DOI: 10.1111/jpi.12665] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Death-associated protein kinase 1 (DAPK1) is upregulated in the brains of human Alzheimer's disease (AD) patients compared with normal subjects, and aberrant DAPK1 regulation is implicated in the development of AD. However, little is known about whether and how DAPK1 function is regulated in AD. Here, we identified melatonin as a critical regulator of DAPK1 levels and function. Melatonin significantly decreases DAPK1 expression in a post-transcriptional manner in neuronal cell lines and mouse primary cortical neurons. Moreover, melatonin directly binds to DAPK1 and promotes its ubiquitination, resulting in increased DAPK1 protein degradation through a proteasome-dependent pathway. Furthermore, in tau-overexpressing mouse brain slices, melatonin treatment and the inhibition of DAPK1 kinase activity synergistically decrease tau phosphorylation at multiple sites related to AD. In addition, melatonin and DAPK1 inhibitor dramatically accelerate neurite outgrowth and increase the assembly of microtubules. Mechanistically, melatonin-mediated DAPK1 degradation increases the activity of Pin1, a prolyl isomerase known to play a protective role against tau hyperphosphorylation and tau-related pathologies. Finally, elevated DAPK1 expression shows a strong correlation with the decrease in melatonin levels in human AD brains. Combined, these results suggest that DAPK1 regulation by melatonin is a novel mechanism that controls tau phosphorylation and function and offers new therapeutic options for treating human AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingxue Mei
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Nami Kim
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guihua Lan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Chen-Ling Gan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Fei Fan
- Fujian Provincial Key Laboratory of Neuroglia and Diseases, Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Health College, Fuzhou, Fujian, China
| | - Tao Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongfang Xia
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Neuroglia and Diseases, Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Fang Ke
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
35
|
Abstract
The circadian clock controls daily rhythms in animal physiology, metabolism, and behavior, such as the sleep‐wake cycle. Disruption of circadian rhythms has been revealed in many diseases including neurodegenerative disorders. Interestingly, patients with many neurodegenerative diseases often show problems with circadian clocks even years before other symptoms develop. Here we review the recent studies identifying the association between circadian rhythms and several major neurodegenerative disorders. Early intervention of circadian rhythms may benefit the treatment of neurodegeneration.
Collapse
Affiliation(s)
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, 1664 N Virginia St, Reno, NV 89557, U.S.A
| |
Collapse
|
36
|
Impact of circadian and diurnal rhythms on cellular metabolic function and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:393-412. [PMID: 32739012 DOI: 10.1016/bs.irn.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The 24-h rotational period of the earth has driven evolution of biological systems that serve to synchronize organismal physiology and behavior to this predictable environmental event. In mammals, the circadian (circa, "about" and dia, "a day") clock keeps 24-h time at the organismal and cellular level, optimizing biological function for a given time of day. The most obvious circadian output is the sleep-wake cycle, though countless bodily functions, ranging from hormone levels to cognitive function, are influenced by the circadian clock. Here we discuss the regulation of metabolic pathways by the circadian clock, discuss the evidence implicating circadian and sleep disruption in neurodegenerative diseases, and suggest some possible connections between the clock, metabolism, and neurodegenerative disease.
Collapse
|
37
|
Uddin MS, Tewari D, Mamun AA, Kabir MT, Niaz K, Wahed MII, Barreto GE, Ashraf GM. Circadian and sleep dysfunction in Alzheimer's disease. Ageing Res Rev 2020; 60:101046. [PMID: 32171783 DOI: 10.1016/j.arr.2020.101046] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating and irreversible cognitive impairment and the most common type of dementia. Along with progressive cognitive impairment, dysfunction of the circadian rhythms also plays a pivotal role in the progression of AD. A mutual relationship among circadian rhythms, sleep, and AD has been well-recommended. The etiopathogenesis of the disturbances of the circadian system and AD share some general features that also unlock the outlook of observing them as a mutually dependent pathway. Indeed, the burden of amyloid β (Aβ), neurofibrillary tangles (NFTs), neuroinflammation, oxidative stress, and dysfunction of circadian rhythms may lead to AD. Aging can alter both sleep timings and quality that can be strongly disrupted in AD. Increased production of Aβ and reduced Aβ clearance are caused by a close interplay of Aβ, sleep disturbance and raised wakefulness. Besides Aβ, the impact of tau pathology is possibly noteworthy to the sleep deprivation found in AD. Hence, this review is focused on the primary mechanistic complexities linked to disruption of circadian rhythms, sleep deprivation, and AD. Furthermore, this review also highlights the potential therapeutic strategies to abate AD pathogenesis.
Collapse
|
38
|
Gunata M, Parlakpinar H, Acet H. Melatonin: A review of its potential functions and effects on neurological diseases. Rev Neurol (Paris) 2020; 176:148-165. [DOI: 10.1016/j.neurol.2019.07.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
|
39
|
Ozansoy M, Ozansoy MB, Yulug B, Cankaya S, Kilic E, Goktekin S, Kilic U. Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci 2020; 73:237-244. [PMID: 32061493 DOI: 10.1016/j.jocn.2019.11.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent studies have been revealed that oxidative damage is the main cause of aging and age-related neurodegenerative diseases like Alzheimer's disease (AD). Melatonin is secreted from the pineal gland and its secretion has been found to be altered in AD. In the last decade the role of exosomes in spreading toxic proteins and inducing the propagation of diseases like AD has been discussed. However, it is not known how melatonin affects the amount of exosomes released from the cells and the content of the exosomes. OBJECTIVE Herein, we investigated the possible role of melatonin treatment in the releasing of exosomes and exosomal tau content in an in vitro Aβ toxicity model. METHOD SH-SY5Y cell line was used. The optimum concentration of Aβ was determined by cell viability and cell proliferation tests. Melatonin (100 µM) was applied before and after Aβ application. Total exosomes isolated from cell culture media were immunoprecipitated. The amount of released exosomes and their tau content were analyzed by Western blots. RESULTS Our data demonstrated for the first time that melatonin treatment clearly affected the amount of released exosomes. It would decrease the amyloid beta load and toxicity by inhibiting exosome release. We also demonstated that melatonin also affected the level of tau carried by exosomes depending on whether melatonin was applied before or after Aβ application. CONCLUSION It is considered that the effect of melatonin in the release of exosomes and exosomal tau content would contribute the development of therapeutic strategies in AD and related disorders.
Collapse
Affiliation(s)
- Mehmet Ozansoy
- T.C. Istanbul Bahcesehir University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Muzaffer Beyza Ozansoy
- T.C. Istanbul Aydin University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Burak Yulug
- Alaaddin Keykubat University, The Faculty of Medicine, Dept. of Neurology, Alanya, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Seyda Cankaya
- Alaaddin Keykubat University, The Faculty of Medicine, Dept. of Neurology, Alanya, Turkey
| | - Ertugrul Kilic
- T.C. Istanbul Medipol University, School of Medicine, Dept. of Physiology, Istanbul, Turkey; T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Sule Goktekin
- T.C. Istanbul Medipol University, Regenerative and Restorative Medical Research Center (REMER), Istanbul, Turkey
| | - Ulkan Kilic
- University of Health Sciences, Medical School, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
40
|
Ferini-Strambi L, Galbiati A, Casoni F, Salsone M. Therapy for Insomnia and Circadian Rhythm Disorder in Alzheimer Disease. Curr Treat Options Neurol 2020; 22:4. [PMID: 32025925 DOI: 10.1007/s11940-020-0612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW There is strong evidence for a bidirectional association between sleep disorders and Alzheimer's disease (AD). In particular, insomnia may be a potentially modifiable risk factor for AD. The present review summarizes recent advances in treatment of sleep disorders in AD. RECENT FINDINGS Some studies investigated the efficacy and safety of hypnotic agents as ramelteon and mirtazapine to treat sleep disorders in AD but no significant therapeutic effects have been observed. Benzodiazepines are the most frequently used medication for treatment of insomnia but they may cause significant side effects in old subjects. Suvorexant, an orexin receptor antagonist, showed a positive effect on AD insomnia. Recent report suggests an association between trazodone use and delayed cognitive decline in AD. With respect to circadian rhythm disorders, non-pharmacological treatments, especially bright light therapy, could be useful and safe options for treatment in AD. Some pharmacological and non-pharmacological treatments might have benefits in AD patients with sleep disturbances, but further well-designed controlled trials are needed.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy. .,Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Galbiati
- Department of Clinical Neurosciences, "Vita-Salute" San Raffaele University, Milan, Italy
| | - Francesca Casoni
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Salsone
- National Research Council, Institute of Molecular Bioimaging and Physiology, Catanzaro, Italy
| |
Collapse
|
41
|
Hussain S, Villarreal S, Ramirez N, Hussain A, Sumaya IC. Haloperidol-induced hypokinesia in rats is differentially affected by the light/dark phase, age, and melatonin. Behav Brain Res 2020; 379:112313. [PMID: 31715211 DOI: 10.1016/j.bbr.2019.112313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
It has been well established that the striatal dopaminergic system is compromised with aging, namely D2 receptor function. Also well documented is the age related decline of the neurohormone, melatonin, in both humans and nonhuman animals. What has not been well studied is the possible interaction between the D2 receptor system and the age related decline in melatonin with its unmistakable pattern of synthesis and release exclusively during the dark phase. We tested the effect of the D2 antagonist, haloperidol (1.0 mg/kg ip), in adolescent (2 mo old) and adult rats (10 mo old) in the light (ZT3) and dark phases (ZT 15) in rats kept in a 12 L/12D cycle and the effect of exogenous melatonin (15 mg/kg ip/day x 4 days for a total of 60 mg/kg) on D2 antagonism. Using the bar test, measuring the extrapyramidal side-effect of hypokinesia, we report haloperidol to work differentially depending on both age and phase. Adult rats experienced the effect of the D2 antagonist in both the light and dark phases, while younger rats did not show hypokinetic affects in the dark. By manipulated lighting, we were able to restore the effect of haloperidol in younger rats in the dark phase. We also found ameliorating effects of melatonin lessening time on the bar after treatment with haloperidol, however, this effect was only found in older rats. These data demonstrate the importance of the light/dark cycle and age in the susceptibility of extrapyramidal effects with use of drugs that target D2 receptor function.
Collapse
Affiliation(s)
- Samirah Hussain
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Susie Villarreal
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Nayeli Ramirez
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Anjum Hussain
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Isabel C Sumaya
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States.
| |
Collapse
|
42
|
Canazei M, Turiaux J, Huber SE, Marksteiner J, Papousek I, Weiss EM. Actigraphy for Assessing Light Effects on Sleep and Circadian Activity Rhythm in Alzheimer's Dementia: A Narrative Review. Curr Alzheimer Res 2020; 16:1084-1107. [DOI: 10.2174/1567205016666191010124011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/10/2019] [Accepted: 09/08/2019] [Indexed: 12/18/2022]
Abstract
Background:
Alzheimer's Disease (AD) is often accompanied by severe sleep problems and
circadian rhythm disturbances which may to some extent be attributed to a dysfunction in the biological
clock. The 24-h light/dark cycle is the strongest Zeitgeber for the biological clock. People with AD,
however, often live in environments with inappropriate photic Zeitgebers. Timed bright light exposure
may help to consolidate sleep- and circadian rest/activity rhythm problems in AD, and may be a low-risk
alternative to pharmacological treatment.
Objective & Method:
In the present review, experts from several research disciplines summarized the
results of twenty-seven light intervention studies which used wrist actigraphy to measure sleep and circadian
activity in AD patients.
Results:
Taken together, the findings remain inconclusive with regard to beneficial light effects. However,
the considered studies varied substantially with respect to the utilized light intervention, study design,
and usage of actigraphy. The paper provides a comprehensive critical discussion of these issues.
Conclusion:
Fusing knowledge across complementary research disciplines has the potential to critically
advance our understanding of the biological input of light on health and may contribute to architectural
lighting designs in hospitals, as well as our homes and work environments.
Collapse
Affiliation(s)
- Markus Canazei
- Research Department, Bartenbach LichtLabor GmbH Ringgold Standard Institution, Bartenbach GmbH, Rinnerstrasse 14, Aldrans 6071, Austria
| | - Julian Turiaux
- Department of Psychology, University of Graz, Graz, Austria
| | - Stefan E. Huber
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Tirol, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, General Hospital, Milserstrasse 10 , Hall Tirol 6060, Austria
| | - Ilona Papousek
- Department of Psychology, University of Graz, Graz, Austria
| | | |
Collapse
|
43
|
Clinical Aspects of Neurobehavioral Symptoms of Dementia. Dement Neurocogn Disord 2020; 19:54-64. [PMID: 32602280 PMCID: PMC7326614 DOI: 10.12779/dnd.2020.19.2.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/03/2022] Open
Abstract
Neurobehavioral symptoms of dementia (NBSD) are very common and are significant symptoms of the illness, contributing most to caregiver burdens and often resulting in premature institutionalization of the person with dementia. The main symptoms of NBSD are anxiety, depression, delusions, and hallucinations. NBSD produce significant problems for both patients and caregivers. The pathophysiology of NBSD is determined by genetic, structural, or environmental factors. Therefore, treatment of NBSD requires continuous and organic cooperation between patients, caregivers, social environments, and doctors. Therefore, it is important for neurologists, who mainly view NBSD for dementia patients, to increase their understanding of these more comprehensive areas as well as the latest insights and treatments to help patients and caregivers.
Collapse
|
44
|
Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YES. Circadian Rest-Activity Pattern Changes in Aging and Preclinical Alzheimer Disease. JAMA Neurol 2019; 75:582-590. [PMID: 29379963 DOI: 10.1001/jamaneurol.2017.4719] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Circadian rhythm disturbances occur in symptomatic Alzheimer disease (AD) and have been hypothesized to contribute to disease pathogenesis. However, it is unknown whether circadian changes occur during the presymptomatic phase of the disease. Objective To examine the associations between circadian function, aging, and preclinical AD pathology in cognitively normal adults. Design, Setting, and Participants This cross-sectional study was conducted using community volunteers from the Knight Alzheimer's Disease Research Center at Washington University in St Louis. Cognitively normal participants (n = 205) underwent 7 to 14 days of actigraphy in their home environment between 2010 and 2012, in addition to clinical assessment, amyloid imaging with Pittsburgh Compound B (PiB), and cerebrospinal fluid biomarker collection. Data collected from 3 years before to 6 months after actigraphy were included. Sixteen participants were excluded owing to incomplete data collection. Main Outcomes and Measures Circadian rhythm analysis was performed on actigraphy data using 3 methods: cosinor, nonparametric, and empirical mode decomposition. Preclinical AD was assessed by longitudinal clinical assessment, amyloid imaging with PiB, and cerebrospinal fluid biomarker collection. Results Data from 189 participants were included in the analyses. The mean (SD) age was 66.6 (8.3) years, and 121 participants (64%) were women. Older age (β = .247; P = .003) and male sex (β = .170; P = .04), in the absence of amyloid pathology, were associated with a significant increase in intradaily variability, a nonparametric measure of rest-activity rhythm fragmentation, as well as decreased amplitude by several measures. After correction for age and sex, the presence of preclinical amyloid plaque pathology, assessed by positive PiB imaging (mean [SD], 0.804 [0.187] for PiB negative vs 0.875 [0.178] for PiB positive; P = .05) or increasing cerebrospinal fluid phosphorylated-tau to amyloid β 42 ratio (β = .231; P = .008), was associated with increased intradaily variability, indicating rest-activity rhythm fragmentation. Conclusions and Relevance Preclinical AD is associated with rest-activity rhythm fragmentation, independent of age or sex. Aging was also associated with circadian dysfunction independently of preclinical AD pathology, particularly in men. The presence of circadian rhythm abnormalities in the preclinical phase of AD suggests that circadian dysfunction could contribute to early disease pathogenesis or serve as a biomarker of preclinical disease.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - Meghana Bhimasani
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Margaret A Zangrilli
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri
| | - Yo-El S Ju
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
45
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
46
|
Melatonin in Alzheimer’s Disease: A Latent Endogenous Regulator of Neurogenesis to Mitigate Alzheimer’s Neuropathology. Mol Neurobiol 2019; 56:8255-8276. [DOI: 10.1007/s12035-019-01660-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
|
47
|
Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q. Melatonin in Synaptic Impairments of Alzheimer's Disease. J Alzheimers Dis 2019; 63:911-926. [PMID: 29710712 DOI: 10.3233/jad-171178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-β neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Integrated TCM and Western Medicine Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Manni R, Cremascoli R, Perretti C, De Icco R, Picascia M, Ghezzi C, Cerri S, Sinforiani E, Terzaghi M. Evening melatonin timing secretion in real life conditions in patients with Alzheimer disease of mild to moderate severity. Sleep Med 2019; 63:122-126. [PMID: 31622953 DOI: 10.1016/j.sleep.2019.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Circadian dysfunction is thought to take part in the pathogenesis of sleep disorders in Alzheimer's disease (AD) and in AD pathophysiology itself. OBJECTIVE Our study aims to calculate dim light melatonin onset (DLMO) secretion in order to define the circadian phase in patients with AD at an early stage of the disease. METHODS Twenty-one patients (M/F: 11/10; mean age 74.1 ± 5.4 years; mean disease duration 3.4 ± 1.6 years) with a diagnosis of AD and 17 healthy controls (HC; M/F: 10/7; mean age 67.47 ± 3.8 years) were investigated for subjective nocturnal sleep quality and chronotype, for DLMO and quantitative aspects of the evening melatonin secretion by means of a 5-point in-home evening melatonin saliva test. RESULTS Subjective sleep quality score on the Pittsburgh Sleep Quality Index questionnaire (PSQI) above 5 (p = 0.24), insomnia frequency as measured by Sleep Condition Indicator Questionnaire (p = 0.823) and the subjective chronotype according to Morning Evening Questionnaire (MEQ) scores distribution (p = 0.464) did not differ between AD and HC. However, DLMO occurred significantly later (55 min; p = 0.028), and melatonin secretion following DLMO was significantly decreased in AD patients compared to HC. CONCLUSION Initial evening secretion of melatonin proves to be delayed and mildly impaired in patients with a mild/moderate form of Alzheimer disease while patients' subjective sleep parameters and chronotype are reported to be similar to those of HC. These results indicate that subclinical altered patterns of melatonin secretion occur in subjects with AD at an early stage of the disease.
Collapse
Affiliation(s)
- Raffaele Manni
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy.
| | - Riccardo Cremascoli
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Carlo Perretti
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Marta Picascia
- Neuropsychology/Alzheimer's Disease Assessment Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Elena Sinforiani
- Neuropsychology/Alzheimer's Disease Assessment Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Michele Terzaghi
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
49
|
Mitolo M, Tonon C, La Morgia C, Testa C, Carelli V, Lodi R. Effects of Light Treatment on Sleep, Cognition, Mood, and Behavior in Alzheimer's Disease: A Systematic Review. Dement Geriatr Cogn Disord 2019; 46:371-384. [PMID: 30537760 DOI: 10.1159/000494921] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bright light treatment is a therapeutic intervention mainly used to treat sleep and circadian disturbances in Alzheimer's disease (AD) patients. Recently, a handful of studies also focused on the effect on cognition and behavior. Conflicting findings are reported in the literature, and no definite conclusions have been drawn about its specific therapeutic effect. SUMMARY The aim of this review is to provide a critical evaluation of available evidence in this field, highlighting the specific characteristics of effective bright light treatment. Eligible studies were required to assess at least one of the following outcome measures: sleep, cognition, mood, and/or behavior (e.g., depression, agitation). A total of 32 articles were included in this systematic review and identified as research intervention studies about light treatment in AD. The quality of the papers was evaluated based on the US Preventive Service Task Force guidelines. Key Messages: Overall, the current literature suggests that the effects of light treatment in AD patients are mixed and may be influenced by several factors, but with a general trend toward a positive effect. Bright light seems to be a promising intervention treatment without significant adverse effects; therefore, further well-designed randomized controlled trials are needed taking into account the highlighted recommendations.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italy
| | - Chiara La Morgia
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Clinica Neurologica, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences, Functional MR Unit, University of Bologna, Bologna, Italy, .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Diagnostica Funzionale Neuroradiologica, Bologna, Italy,
| |
Collapse
|
50
|
Sulkava S, Muggalla P, Sulkava R, Ollila HM, Peuralinna T, Myllykangas L, Kaivola K, Stone DJ, Traynor BJ, Renton AE, Rivera AM, Helisalmi S, Soininen H, Polvikoski T, Hiltunen M, Tienari PJ, Huttunen HJ, Paunio T. Melatonin receptor type 1A gene linked to Alzheimer's disease in old age. Sleep 2019; 41:5049081. [PMID: 29982836 PMCID: PMC6047434 DOI: 10.1093/sleep/zsy103] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 11/14/2022] Open
Abstract
Disruption of the circadian rhythms is a frequent preclinical and clinical manifestation of Alzheimer’s disease. Furthermore, it has been suggested that shift work is a risk factor for Alzheimer’s disease. Previously, we have reported association of intolerance to shift work (job-related exhaustion in shift workers) with a variant rs12506228A, which is situated close to melatonin receptor type 1A gene (MTNR1A) and linked to MTNR1A brain expression levels. Here, we studied association of that variant with clinical and neuropathological Alzheimer’s disease in a Finnish whole-population cohort Vantaa 85+ (n = 512, participants over 85 years) and two follow-up cohorts. Rs12506228A was associated with clinical Alzheimer’s disease (p = 0.000073). Analysis of post-mortem brain tissues showed association with higher amount of neurofibrillary tangles (p = 0.0039) and amyloid beta plaques (p = 0.0041). We then followed up the associations in two independent replication samples. Replication for the association with clinical Alzheimer’s disease was detected in Kuopio 75+ (p = 0.012, n = 574), but not in the younger case-control sample (n = 651 + 669). While melatonin has been established in regulation of circadian rhythms, an independent role has been also shown for neuroprotection and specifically for anti-amyloidogenic effects. Indeed, in vitro, RNAi mediated silencing of MTNR1A increased the amyloidogenic processing of amyloid precursor protein (APP) in neurons, whereas overexpression decreased it. Our findings suggest variation close to MTNR1A as a shared genetic risk factor for intolerance to shift work and Alzheimer’s disease in old age. The genetic associations are likely to be mediated by differences in MTNR1A expression, which, in turn, modulate APP metabolism.
Collapse
Affiliation(s)
- Sonja Sulkava
- Department of Health, Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Raimo Sulkava
- Unit of Geriatrics, University of Eastern Finland, Kuopio, Finland
| | - Hanna M Ollila
- Department of Health, Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Stanford University Center for Sleep Sciences, Palo Alto, CA
| | - Terhi Peuralinna
- Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Karri Kaivola
- Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - David J Stone
- Genetics and Pharmacogenomics, Merck Research Labs, West Point, PA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Alan E Renton
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alberto M Rivera
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Tuomo Polvikoski
- Institute for Ageing and Health, Newcastle University, Newcastle, UK
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Pentti J Tienari
- Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| | | | - Tiina Paunio
- Department of Health, Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|