1
|
El-Zahaby SA, Kaur L, Sharma A, Prasad AG, Wani AK, Singh R, Zakaria MY. Lipoplexes' Structure, Preparation, and Role in Managing Different Diseases. AAPS PharmSciTech 2024; 25:131. [PMID: 38849687 DOI: 10.1208/s12249-024-02850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Lipid-based vectors are becoming promising alternatives to traditional therapies over the last 2 decades specially for managing life-threatening diseases like cancer. Cationic lipids are the most prevalent non-viral vectors utilized in gene delivery. The increasing number of clinical trials about lipoplex-based gene therapy demonstrates their potential as well-established technology that can provide robust gene transfection. In this regard, this review will summarize this important point. These vectors however have a modest transfection efficiency. This limitation can be partly addressed by using functional lipids that provide a plethora of options for investigating nucleic acid-lipid interactions as well as in vitro and in vivo nucleic acid delivery for biomedical applications. Despite their lower gene transfer efficiency, lipid-based vectors such as lipoplexes have several advantages over viral ones: they are less toxic and immunogenic, can be targeted, and are simple to produce on a large scale. Researchers are actively investigating the parameters that are essential for an effective lipoplex delivery method. These include factors that influence the structure, stability, internalization, and transfection of the lipoplex. Thorough understanding of the design principles will enable synthesis of customized lipoplex formulations for life-saving therapy.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Lovepreet Kaur
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Ankur Sharma
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Rattandeep Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
| |
Collapse
|
2
|
Kola NS, Patel D, Thakur A. RNA-Based Vaccines and Therapeutics Against Intracellular Pathogens. Methods Mol Biol 2024; 2813:321-370. [PMID: 38888787 DOI: 10.1007/978-1-0716-3890-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.
Collapse
Affiliation(s)
- Naga Suresh Kola
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dhruv Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
Tasset A, Bellamkonda A, Wang W, Pyatnitskiy I, Ward D, Peppas N, Wang H. Overcoming barriers in non-viral gene delivery for neurological applications. NANOSCALE 2022; 14:3698-3719. [PMID: 35195645 PMCID: PMC9036591 DOI: 10.1039/d1nr06939j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gene therapy for neurological disorders has attracted significant interest as a way to reverse or stop various disease pathologies. Typical gene therapies involving the central and peripheral nervous system make use of adeno-associated viral vectors whose questionable safety and limitations in manufacturing has given rise to extensive research into non-viral vectors. While early research studies have demonstrated limited efficacy with these non-viral vectors, investigation into various vector materials and functionalization methods has provided insight into ways to optimize these non-viral vectors to improve desired characteristics such as improved blood-brain barrier transcytosis, improved perfusion in brain region, enhanced cellular uptake and endosomal escape in neural cells, and nuclear transport of genetic material post- intracellular delivery. Using a combination of various strategies to enhance non-viral vectors, research groups have designed multi-functional vectors that have been successfully used in a variety of pre-clinical applications for the treatment of Parkinson's disease, brain cancers, and cellular reprogramming for neuron replacement. While more work is needed in the design of these multi-functional non-viral vectors for neural applications, much of the groundwork has been done and is reviewed here.
Collapse
Affiliation(s)
- Aaron Tasset
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Arjun Bellamkonda
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Wenliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Deidra Ward
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Nicholas Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Farbiak L, Cheng Q, Wei T, Álvarez-Benedicto E, Johnson LT, Lee S, Siegwart DJ. All-In-One Dendrimer-Based Lipid Nanoparticles Enable Precise HDR-Mediated Gene Editing In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006619. [PMID: 34137093 PMCID: PMC10041668 DOI: 10.1002/adma.202006619] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Indexed: 05/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein gene editing is poised to transform the treatment of genetic diseases. However, limited progress has been made toward precise editing of DNA via homology-directed repair (HDR) that requires careful orchestration of complex steps. Herein, dendrimer-based lipid nanoparticles (dLNPs) are engineered to co-encapsulate and deliver multiple components for in vivo HDR correction. BFP/GFP switchable HEK293 cells with a single Y66H amino acid mutation are employed to assess HDR-mediated gene editing following simultaneous, one-pot delivery of Cas9 mRNA, single-guide RNA, and donor DNA. Molar ratios of individual LNP components and weight ratios of the three nucleic acids are systematically optimized to increase HDR efficiency. Using flow cytometry, fluorescence imaging, and DNA sequencing to quantify editing, optimized 4A3-SC8 dLNPs edit >91% of all cells with 56% HDR efficiency in vitro and >20% HDR efficiency in xenograft tumors in vivo. Due to the all-in-one simplicity and high efficacy, the developed dLNPs offer a promising route toward the gene correction of disease-causing mutations.
Collapse
Affiliation(s)
- Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiang Cheng
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tuo Wei
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ester Álvarez-Benedicto
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lindsay T Johnson
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sang Lee
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
5
|
Cheng Q, Wei T, Jia Y, Farbiak L, Zhou K, Zhang S, Wei Y, Zhu H, Siegwart DJ. Dendrimer-Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805308. [PMID: 30368954 DOI: 10.1002/adma.201805308] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
mRNA-mediated protein replacement represents a promising concept for the treatment of liver disorders. Children born with fumarylacetoacetate hydrolase (FAH) mutations suffer from Hepatorenal Tyrosinemia Type 1 (HT-1) resulting in renal dysfunction, liver failure, neurological impairments, and cancer. Protein replacement therapy using FAH mRNA offers tremendous potential to cure HT-1, but is currently hindered by the development of effective mRNA carriers that can function in diseased livers. Structure-guided, rational optimization of 5A2-SC8 mRNA-loaded dendrimer lipid nanoparticles (mDLNPs) increases delivery potency of FAH mRNA, resulting in functional FAH protein and sustained normalization of body weight and liver function in FAH-/- knockout mice. Optimization using luciferase mRNA produces DLNP carriers that are efficacious at mRNA doses as low as 0.05 mg kg-1 in vivo. mDLNPs transfect > 44% of all hepatocytes in the liver, yield high FAH protein levels (0.5 mg kg-1 mRNA), and are well tolerated in a knockout mouse model with compromised liver function. Genetically engineered FAH-/- mice treated with FAH mRNA mDLNPs have statistically equivalent levels of TBIL, ALT, and AST compared to wild type C57BL/6 mice and maintain normal weight throughout the month-long course of treatment. This study provides a framework for the rational optimization of LNPs to improve delivery of mRNA broadly and introduces a specific and viable DLNP carrier with translational potential to treat genetic diseases of the liver.
Collapse
Affiliation(s)
- Qiang Cheng
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tuo Wei
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lukas Farbiak
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yonglong Wei
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
6
|
A simple microsatellite-based method for hazelnut oil DNA analysis. Food Chem 2018; 245:812-819. [DOI: 10.1016/j.foodchem.2017.11.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022]
|
7
|
Schoemig V, Isik E, Martin L, Berensmeier S. Solid liquid liquid extraction of porcine gastric mucins from homogenized animal material. RSC Adv 2017. [DOI: 10.1039/c7ra06594a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With solid liquid liquid extraction as a new capture step for the purification of porcine gastric mucins from crude homogenate, yield and productivity was optimized.
Collapse
Affiliation(s)
- Veronika Schoemig
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Eda Isik
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Lea Martin
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group
- Department of Mechanical Engineering
- Technical University of Munich
- D-85748 Garching
- Germany
| |
Collapse
|
8
|
Wu SY, Chang LT, Peng S, Tsai HC. Calcium-activated gene transfection from DNA/poly(amic acid-co-imide) complexes. Int J Nanomedicine 2015; 10:1637-47. [PMID: 25767385 PMCID: PMC4354692 DOI: 10.2147/ijn.s76502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we synthesized a water-soluble poly(amic acid-co-imide) (PA-I) from ethylenediaminetetraacetic dianhydride (EDTA) and 2,2′-(ethylenedioxy)bis(ethylamine) that possesses comparable transfection efficiency to that of polyethylenimine (PEI), when prepared in combination with divalent calcium cations. The polycondensation of monomers afforded poly(amic acid) (PA) precursors, and subsequent thermal imidization resulted in the formation of PA-I. At a polymer/DNA ratio (indicated by the molar ratio of nitrogen in the polymer to phosphate in DNA) of 40, complete retardation of the DNA band was observed by gel electrophoresis, indicating the strong association of DNA with PA-I. A zeta potential of −22 mV was recorded for the PA-I polymer solution, and no apparent cytotoxicity was observed at concentrations up to 500 μg·mL−1. In the presence of divalent Ca2+, the transfection efficiency of PA-I was higher than that of PA, due to the formation of a copolymer/Ca2+/DNA polyplex and the reduction in negative charge due to thermal cyclization. Interestingly, a synergistic effect of Ca2+ and the synthesized copolymer on DNA transfection was observed. The use of Ca2+ or copolymer alone resulted in unsatisfactory delivery, whereas the formation of three-component polyplexes synergistically increased DNA transfection. Our findings demonstrated that a PA-I/Ca2+/DNA polyplex could serve as a promising candidate for gene delivery.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ; Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Li-Ting Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Sydeny Peng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
9
|
Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails. Bioorg Med Chem Lett 2015; 25:496-503. [DOI: 10.1016/j.bmcl.2014.12.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/24/2014] [Accepted: 12/12/2014] [Indexed: 01/17/2023]
|
10
|
Sieradzki R, Traitel T, Goldbart R, Geresh S, Kost J. Tailoring quaternized starch as a non-viral carrier for gene delivery applications. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rivka Sieradzki
- Department of Biotechnology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Tamar Traitel
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Riki Goldbart
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Shimona Geresh
- Department of Biotechnology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Joseph Kost
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
11
|
The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:412-8. [PMID: 23092705 DOI: 10.1016/j.bbamem.2012.10.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/28/2012] [Accepted: 10/16/2012] [Indexed: 11/21/2022]
Abstract
Gene therapy is expected to treat various incurable diseases including viral infections, autoimmune disorders, and cancers. Cationic lipids (CL) have been used as carriers of therapeutic DNAs for gene therapy because they can form a complex with DNA and such a complex can be incorporated into cells and transport the bound DNA to cytosol. The CL/DNA complexes are called lipoplexes and categorized as a non-viral vector. Lipoplexes are often prepared by adding a neutral phospholipid dioleoylphosphatidylethanolamine (DOPE) to CL in order to enhance transfection. However, the role of DOPE is not fully understood. We synthesized a new CL having an ethylenediamine cationic head group, denoted by DA, and found that addition of DOPE to DA achieved a good efficiency, almost in the similar level of commonly used transfection reagent Lipofectamine 2000 (Invitrogen). The composition of DA:DOPE=1:1 showed the highest efficiency. This lipoplex showed structural transition when pH was changed from 7 to 4, corresponding pH lowering in late endosome, while DOPE itself showed structural transition at more basic pH around 8. The present data showed that the DOPE/DA composition determines the structural transition pH and choosing a suitable pH, i.e., a suitable composition, is essential to increase the transfection efficiency.
Collapse
|
12
|
Capicciotti CJ, Leclère M, Perras FA, Bryce DL, Paulin H, Harden J, Liu Y, Ben RN. Potent inhibition of ice recrystallization by low molecular weight carbohydrate-based surfactants and hydrogelators. Chem Sci 2012. [DOI: 10.1039/c2sc00885h] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
13
|
Fluorescence methods for lipoplex characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2694-705. [DOI: 10.1016/j.bbamem.2011.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 11/24/2022]
|
14
|
Ichikawa H, Navarro RR, Iimura Y, Tatsumi K. Nature of bioavailability of DNA-intercalated polycyclic aromatic hydrocarbons to Sphingomonas sp. CHEMOSPHERE 2010; 80:866-871. [PMID: 20646737 DOI: 10.1016/j.chemosphere.2010.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/21/2010] [Accepted: 05/23/2010] [Indexed: 05/29/2023]
Abstract
The nature of bioavailability of DNA-intercalated PAHs in aqueous solution was investigated. The degradability of different PAHs including anthracene, phenanthrene and pyrene by Sphingomonas sp. was not inhibited even at a high DNA concentration of 2%. The DNA was stable against the PAH-degrader as indicated by the unchanged electrophoresis gel chromatograms after treatment. This shows that a structural change in the polymer is not necessary for the release of PAHs. Partitioning experiments using phenanthrene as a model PAH illustrated the presence of an initial passive uptake by autoclaved cells. Subsequent intracellular degradation became apparent from parallel data with live cells. Phenanthrene transfer from the DNA was diffusion-controlled and the exit of this molecule from their intercalation sites is favored in lieu of the presence of stronger hydrophobic binding sites in the cell membrane.
Collapse
Affiliation(s)
- Hiroyasu Ichikawa
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | | | | | | |
Collapse
|
15
|
Duan Y, Zhang S, Wang B, Yang B, Zhi D. The biological routes of gene delivery mediated by lipid-based non-viral vectors. Expert Opin Drug Deliv 2010; 6:1351-61. [PMID: 19780710 DOI: 10.1517/17425240903287153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cationic lipid/DNA complexes (lipoplexes) represent an attractive alternative to viral vectors for cell transfection in vitro and in vivo but still suffer from relatively low efficiency. Comprehension of the interactions between vectors and DNA as well as cellular pathways and mechanisms in DNA entry into cells and ultimately nuclei will lead to the design of better adapted non-viral vectors for gene therapy applications. Here, some recent developments in the field on the pathways and mechanisms involved in lipoplex-mediated transfection are discussed. The techniques that are widely used to study the mechanism of gene delivery are also discussed.
Collapse
Affiliation(s)
- Yan Duan
- Dalian Nationalities University, College of Life Science, SEAC-ME Key Laboratory of Biotechnology and Bioresources Utilization, Dalian 116600, Liaoning, China
| | | | | | | | | |
Collapse
|
16
|
Tarahovsky YS. Cell transfection by DNA-lipid complexes — Lipoplexes. BIOCHEMISTRY (MOSCOW) 2010; 74:1293-304. [DOI: 10.1134/s0006297909120013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res 2009; 32:639-46. [DOI: 10.1007/s12272-009-1500-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/26/2022]
|
18
|
Callow P, Fragneto G, Cubitt R, Barlow DJ, Lawrence MJ. Interaction of cationic lipid/DNA complexes with model membranes as determined by neutron reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4181-4189. [PMID: 19714835 DOI: 10.1021/la802847h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transfection of cells by DNA for the purposes of gene therapy can be effectively engineered through the use of cationic lipid/DNA "lipoplexes", although the transfection efficiency of these complexes is sensitive to the neutral "helper" lipid included. Here, neutron reflectivity has been used to investigate the role of the helper lipid present during the interaction of these lipoplexes with model membranes composed primarily of zwitterionic lipid 1,2-dimyristoylphosphatidylcholine (DMPC) together with 10 mol % 1,2-dipalmitoylphosphatidylserine (DPPS). Dimethyldioctadecylammonium bromide (DDAB) vesicles were formed with two different helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and cholesterol, and complexed with a 1:1 charge ratio of DNA. The interaction of these complexes with the supported phospholipid bilayer was determined. DOPE-containing lipoplexes were found to interact faster with the model cell membrane than those containing cholesterol, and complexes containing either of the neutral helper lipids were found to interact faster than when DDAB alone was present. The interaction between the lipoplexes and the model membrane was characterized by an exchange of lipid between the membrane and the lipid/DNA aggregates in solution; the deposition of(additional) lipid on the surface of the model cell membrane was not apparent.
Collapse
Affiliation(s)
- P Callow
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
19
|
High transfection efficiency and low toxicity cationic lipids with aminoglycerol–diamine conjugate. Bioorg Med Chem 2009; 17:176-88. [DOI: 10.1016/j.bmc.2008.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 11/21/2022]
|
20
|
Hecker JG, Berger GO, Scarfo KA, Zou S, Nantz MH. A flexible method for the conjugation of aminooxy ligands to preformed complexes of nucleic acids and lipids. ChemMedChem 2008; 3:1356-61. [PMID: 18666266 DOI: 10.1002/cmdc.200800084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Attachment of targeted ligands to nonviral DNA or RNA delivery systems is a promising strategy that seeks to overcome the poor target selectivity generally observed in systemic delivery applications. Several methods have been developed for the conjugation of ligands to lipids or polymers, however, direct conjugation of ligands onto lipid- or polymer-nucleic acid complexes is not as straightforward. Here, we examine an oximation approach to directly label a lipoplex formulation. Specifically, we report the synthesis of a cationic diketo lipid DMDK, and its use as a convenient ligation tool for attachment of aminooxy-functionalized reagents after its complexation with DNA. We demonstrate the feasibility of direct lipoplex labeling by attaching an aminooxy-functionalized fluorescent probe onto pre-formed plasmid DNA-DMDK lipoplexes (luciferase, GFP). The results reveal that DMDK protects DNA from degradation on exposure to either DNase or human cerebral spinal fluid, and that simple mixing of DMDK lipoplexes with the aminooxy probe labels the complexes without sacrificing transfection efficiency. The biocompatibility and selectivity of this method, as well as the ease of bioconjugation, make this labeling approach ideal for biological applications.
Collapse
Affiliation(s)
- James G Hecker
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Koynova R, Wang L, MacDonald RC. Synergy in lipofection by cationic lipid mixtures: superior activity at the gel-liquid crystalline phase transition. J Phys Chem B 2007; 111:7786-95. [PMID: 17571876 PMCID: PMC2532599 DOI: 10.1021/jp071286y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some mixtures of two cationic lipids including phospholipid compounds (O-ethylphosphatidylcholines) as well as common, commercially available cationic lipids, such as dimethylammonium bromides and trimethylammonium propanes, deliver therapeutic DNA considerably more efficiently than do the separate molecules. In an effort to rationalize this widespread "mixture synergism", we examined the phase behavior of the cationic lipid mixtures and constructed their binary phase diagrams. Among a group of more than 50 formulations, the compositions with maximum delivery activity resided unambiguously in the solid-liquid crystalline two-phase region at physiological temperature. Thus, the transfection efficacy of formulations exhibiting solid-liquid crystalline phase coexistence is more than 5 times higher than that of formulations in the gel (solid) phase and over twice that of liquid crystalline formulations; phase coexistence occurring at physiological temperature thus appears to contribute significantly to mixture synergism. This relationship between delivery activity and physical property can be rationalized on the basis of the known consequences of lipid-phase transitions, namely, the accumulation of defects and increased disorder at solid-liquid crystalline phase boundaries. Packing defects at the borders of coexisting solid and liquid crystalline domains, as well as large local density fluctuations, could be responsible for the enhanced fusogenicity of mixtures. This study leads to the important conclusion that manipulating the composition of the lipid carriers so that their phase transition takes place at physiological temperature can enhance their delivery efficacy.
Collapse
Affiliation(s)
- Rumiana Koynova
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
22
|
Non-ionic and cationic micelle nanostructures as drug solubilization vehicles: spectrofluorimetric and electrochemical studies. Colloid Polym Sci 2007. [DOI: 10.1007/s00396-007-1689-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Abstract
Small interference RNA (siRNA) is an important research tool, and also has the potential for clinical application. RNA interference (RNAi) approaches allow degradation of selective mRNA coding for pathogenic or disease-related proteins. RNAi pathway can be taken advantage of by the delivery of chemically synthesized siRNA. To fully attain its potential a sufficient siRNA must be delivered to the cell's cytoplasm. Cellular delivery of polyanions such as siRNA, while a challenging problem, may be addressed by the use of cationic macromolecules, the two major classes being lipids and polymers. In this study we compared two model cationic vectors liposomes (lipoplexes) and polyethelyenimine (PEI) (polyplexes). Complexes of the cationic macromolecules and siRNA did not differ in terms of their cellular uptake as determined by flow cytometry. However, it was demonstrated that the lipoplexes decomplexed more easily than the polyplexes. Differences in the biological activity of the siRNA were observed using commercially available siTOX siRNA. Lipoplexes resulted in dose-dependent siRNA activity; to 76.4 +/- 5.9% cell death was seen 48 hours posttransfection using 80 nmol siTOX. In summary, the selection of delivery vector can have a profound impact on biological activity of siRNA molecules. siRNA decomplexation from the cationic vector might be an important factor in the future development of new vectors.
Collapse
Affiliation(s)
- Preeti Yadava
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
24
|
Wang L, MacDonald RC. Synergistic effect between components of mixtures of cationic amphipaths in transfection of primary endothelial cells. Mol Pharm 2007; 4:615-23. [PMID: 17408283 DOI: 10.1021/mp0601291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To date, the primary approach to improving the transfection properties of cationic lipids has been the synthesis of new kinds of cationic amphipaths. Recently, however, it was found that combining two cationic lipid derivatives having the same head group but tails of different chain lengths can provide another, and often superior, approach to higher transfection efficiency. For example, the combination of medium-chain and long-chain homologues of O-ethylphosphatidylcholine transfected DNA into primary human umbilical artery endothelial cells (HUAECs) more than 30-fold more efficiently than did either compound separately. Here it is reported that this synergism of mixtures is not limited to O-ethylphosphatidylcholine homologues, but is also exhibited by other common cationic amphipathic transfection reagents; for example, combining DC-Chol (3beta-[N',N'-dimethylaminoethane)-carbamol] cholesterol), dimethylditetradecylammonium bromide, or DMTAP (1,2-dimyristoyl-3-trimethylammonium-propane) with EDOPC increased transfection significantly both in the absence and in the presence of serum. Furthermore, combining a poorer transfection agent-dimethyldioctadecylammonium bromide-with dimethylditetradecylammonium bromide increased transfection by about an order of magnitude with a maximum at an intermediate composition. Lack of synergy occurred with some mixtures, such as DMTAP and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), in which case transfection activity was a linear function of composition both in the absence and presence of serum. Although the mechanism of enhanced transfection by mixtures is not fully understood, the existence of a number of optimal mixtures with diverse cationic compounds indicates that attention to mixture formulations can lead to greatly improved transfection by cationic amphipathic carriers.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
25
|
Koynova R, Tarahovsky YS, Wang L, MacDonald RC. Lipoplex formulation of superior efficacy exhibits high surface activity and fusogenicity, and readily releases DNA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:375-86. [PMID: 17156744 PMCID: PMC1861830 DOI: 10.1016/j.bbamem.2006.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/20/2006] [Accepted: 10/26/2006] [Indexed: 11/23/2022]
Abstract
Lipoplexes containing a mixture of cationic phospholipids dioleoylethylphosphatidylcholine (EDOPC) and dilauroylethylphosphatidylcholine (EDLPC) are known to be far more efficient agents in transfection of cultured primary endothelial cells than are lipoplexes containing either lipid alone. The large magnitude of the synergy permits comparison of the physical and physico-chemical properties of lipoplexes that have very different transfection efficiencies, but minor chemical differences. Here we report that the superior transfection efficiency of the EDLPC/EDOPC lipoplexes correlates with higher surface activity, higher affinity to interact and mix with negatively charged membrane-mimicking liposomes, and with considerably more efficient DNA release relative to the EDOPC lipoplexes. Observations on cultured cells agree with the results obtained with model systems; confocal microscopy of transfected human umbilical artery endothelial cells (HUAEC) demonstrated more extensive DNA release into the cytoplasm and nucleoplasm for the EDLPC/EDOPC lipoplexes than for EDOPC lipoplexes; electron microscopy of cells fixed and embedded directly on the culture dish revealed contact of EDLPC/EDOPC lipoplexes with various cellular membranes, including those of the endoplasmic reticulum, mitochondria and nucleus. The sequence of events outlining efficient lipofection is discussed based on the presented data.
Collapse
Affiliation(s)
- Rumiana Koynova
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University 2205 Tech Drive, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
26
|
Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, de Lima MP. Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2006; 2:237-54. [PMID: 16296751 DOI: 10.1517/17425247.2.2.237] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic liposome-DNA complexes (lipoplexes) constitute a potentially viable alternative to viral vectors for the delivery of therapeutic genes. This review will focus on various parameters governing lipoplex biological activity, from their mode of formation to in vivo behaviour. Particular emphasis is given to the mechanism of interaction of lipoplexes with cells, in an attempt to dissect the different barriers that need to be surpassed for efficient gene expression to occur. Aspects related to new trends in the formulation of lipid-based gene delivery systems aiming at overcoming some of their limitations will be covered. Finally, examples illustrating the potential of cationic liposomes in clinical applications will be provided.
Collapse
Affiliation(s)
- Sérgio Simões
- University of Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Portugal.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang L, Koynova R, Parikh H, MacDonald RC. Transfection activity of binary mixtures of cationic o-substituted phosphatidylcholine derivatives: the hydrophobic core strongly modulates physical properties and DNA delivery efficacy. Biophys J 2006; 91:3692-706. [PMID: 16935955 PMCID: PMC1630455 DOI: 10.1529/biophysj.106.092700] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A combination of two cationic lipid derivatives having the same headgroup but tails of different chain lengths has been shown to have considerably different transfection activity than do the separate molecules. Such findings point to the importance of investigating the hydrophobic portions of cationic amphiphiles. Hence, we have synthesized a variety of cationic phosphatidylcholines with unusual hydrophobic moieties and have evaluated their transfection activity and that of their mixtures with the original molecule of this class, dioleoyl-O-ethylphosphatidylcholine (EDOPC). Four distinct relationships between transfection activity and composition of the mixture (plotted as percent of the new compound added to EDOPC) were found, namely: with a maximum or minimum; with a proportional change; or with essentially no change. Relevant physical properties of the lipoplexes were also examined; specifically, membrane fusion (by fluorescence resonance energy transfer between cationic and anionic lipids) and DNA unbinding (measured as accessibility of DNA to ethidium bromide by electrophoresis and by fluorescence resonance energy transfer between DNA and cationic lipid), both after the addition of negatively charged membrane lipids. Fusibility increased with increasing content of second cationic lipid, regardless of the transfection pattern. However, the extent of DNA unbinding after addition of negatively charged membrane lipids did correlate with extent of transfection. The phase behavior of cationic lipids per se as well as that of their mixtures with membrane lipids revealed structural differences that may account for and support the hypothesis that a membrane lipid-triggered, lamellar-->nonlamellar phase transition that facilitates DNA release is critical to efficient transfection by cationic lipids.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
28
|
Stebelska K, Dubielecka PM, Sikorski AF. The effect of PS content on the ability of natural membranes to fuse with positively charged liposomes and lipoplexes. J Membr Biol 2006; 206:203-14. [PMID: 16456715 DOI: 10.1007/s00232-005-0793-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca(2+), indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.
Collapse
Affiliation(s)
- K Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | | | | |
Collapse
|
29
|
Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MCA, Engberts JBFN, Hoekstra D. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 2005; 11:801-10. [PMID: 15851018 DOI: 10.1016/j.ymthe.2004.12.018] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 12/27/2004] [Indexed: 11/28/2022] Open
Abstract
Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolamine (DOPE) as a helper lipid in cationic lipid-DNA formulations often promotes transfection efficacy. To investigate the significance of DOPE's preference to adopt a hexagonal phase in the mechanism of transfection, the properties and transfection efficiencies of SAINT-2/DOPE lipoplexes were compared to those of lipoplexes containing lamellar-phase-forming dipalmitoylphosphatidylethanolamine (DPPE). After interaction with anionic vesicles, to simulate lipoplex-endosomal membrane interaction, SAINT-2/DOPE lipoplexes show a perfect hexagonal phase, whereas SAINT-2/DPPE lipoplexes form a mixed lamellar-hexagonal phase. The transition to the hexagonal phase is crucial for dissociation of DNA or oligonucleotides (ODN) from the lipoplexes. However, while the efficiencies of nucleic acid release from either complex were similar, SAINT-2/DOPE lipoplexes displayed a two- to threefold higher transfection efficiency or nuclear ODN delivery. Interestingly, rupture of endosomes following a cellular incubation with ODN-containing SAINT-2/DPPE complexes dramatically improved nuclear ODN delivery to a level that was similar to that observed for SAINT-2/DOPE complexes. Our data demonstrate that although hexagonal phase formation in lipoplexes is a prerequisite for nucleic acid release from the complex, it appears highly critical for accomplishing efficient translocation of nucleic acids across the endosomal membrane into the cytosol for transport to the nucleus.
Collapse
Affiliation(s)
- Inge S Zuhorn
- Department of Membrane Cell Biology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Pupo E, Padrón A, Santana E, Sotolongo J, Quintana D, Dueñas S, Duarte C, de la Rosa MC, Hardy E. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J Control Release 2005; 104:379-96. [PMID: 15907587 DOI: 10.1016/j.jconrel.2005.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/07/2005] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
High-pressure homogenization-extrusion (HPHE) is a method that can be used for downsizing large lipid vesicles with commercially available instrumentation (e.g., from Avestin Inc., Canada), which covers a full range of processing capacities from laboratory (0.5-3.5 mL) to large-scale continuous (1-1000 L/h) production. Consequently, the feasibility (at the laboratory scale) of using HPHE for producing DNA-loaded liposomes by the conventional dehydration-rehydration method was explored. HPHE-generated small unilamellar vesicles had a mean size in the range of 27-76 nm depending on the number of processing cycles and lipid (PC:DOPE:DOTAP or PC:DOPE:Ethyl-DOPC, 1:0.5:0.5, mol/mol) formulation. The size could be further regulated by the pore size (50 or 100 nm) of the extrusion membrane. Using plasmids for the V3 loop of HIV-1, and the capsid, E1 and E2 of hepatitis C, entrapment yields of 72-98.2% into dehydrated-rehydrated vesicles (DRV) were obtained over a wide range (0.309-2.5 mg) of DNA quantities. Most of the plasmid DNA was retained by liposomes even in the presence of sodium dodecyl sulfate (from 0.05% to 0.3%) and efficiently protected from nuclease-mediated degradation. Although the encapsulation process slightly decreased (in the range of 42.8-65.7%) the relative abundance of plasmid super coiled isoforms, the transfection efficiency of monkey kidney COS-7 cells with the plasmid DNA extracted from liposomes (9+/-0.4%) was similar to that of the non-treated DNA (8.7+/-0.2%), using the commercial SuperFect(R) Transfection Reagent. Also, it was found that an appreciable loss of lipid mass-either associated with the HPHE or the dehydration-rehydration steps-occurs during the liposome manufacturing process. These results at the bench scale are a useful reference for planning pilot or large-scale manufacture of DNA vaccine-containing liposomes.
Collapse
Affiliation(s)
- Elder Pupo
- Division of Formulation Development, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Braun CS, Fisher MT, Tomalia DA, Koe GS, Koe JG, Middaugh CR. A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes. Biophys J 2005; 88:4146-58. [PMID: 15805171 PMCID: PMC1305645 DOI: 10.1529/biophysj.104.055202] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Stopped-flow circular dichroism and fluorescence spectroscopy are used to characterize the assembly of complexes consisting of plasmid DNA bound to the cationic lipids dimethyldioctadecylammonium bromide and 1, 2-dioleoyl- 3-trimethylammonium-propane and a series of polyamidoamine dendrimers. The kinetics of complexation determined from the stopped-flow circular dichroism measurements suggests complexation occurs within 50 ms. Further analysis, however, was precluded by the presence of mixing (shear) artifacts. Stopped-flow fluorescence employing the high-affinity DNA dyes Hoechst 33258 and YOYO-1 was able to resolve two sequential steps in the assembly of complexes that are assigned to binding/dehydration and condensation events. The rates of each process were determined over the temperature range of 10-50 degrees C and activation energies were determined from the slope of Arrhenius plots. The behavior of polyamidoamine dendrimers can be separated into two classes based on their differing binding modes: generation 2 and the larger generations (G4, G7, and G9). The larger generations have activation energies for binding that follow the trend G4 > G7 > G9. The activation energies for condensation (compaction) of complexes composed of these same dendrimers have the opposite trend G9 > G7 > G4. It is postulated that a balance between a more energetically favorable condensation and less favorable binding may prove beneficial in enhancing gene delivery.
Collapse
Affiliation(s)
- Chad S Braun
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, 66047, USA
| | | | | | | | | | | |
Collapse
|
32
|
Berezhna S, Schaefer S, Heintzmann R, Jahnz M, Boese G, Deniz A, Schwille P. New effects in polynucleotide release from cationic lipid carriers revealed by confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1669:193-207. [PMID: 15893522 DOI: 10.1016/j.bbamem.2005.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
We report on new insights into the mechanisms of short single and double stranded oligonucleotide release from cationic lipid complexes (lipoplexes), used in gene therapy. Specifically, we modeled endosomal membranes using giant unilamellar vesicles and investigated the roles of various individual cellular phospholipids in interaction with lipoplexes. Our approach uses a combination of confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking, revealing several new aspects of the release: (a) phosphatidylserine and phosphatidylethanolamine are equally active in disassembling lipoplexes, while phosphatidylcholine and sphingomyelin are inert; (b) in contrast to earlier findings, phosphatidylethanolamine alone, in the absence of anionic phosphatidylserine triggers extensive release; (c) a double-stranded DNA structure remains well preserved after release; (d) lipoplexes exhibited preferential binding to transient lipid domains, which appear at the onset of lipoplex attachment to originally uniform membranes and vanish after initiation of polynucleotide release. The latter effect is likely related to phosphatidyleserine redistribution in membranes due to lipoplex binding. Real time tracking of single DOTAP/DOPE and DOTAP/DOPC lipoplexes showed that both particles remained compact and associated with membranes up to 1-2 min before fusion, indicating that a more complex mechanism, different from suggested earlier rapid fusion, promotes more efficient transfection by DOTAP/DOPE complexes.
Collapse
Affiliation(s)
- Svitlana Berezhna
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Tarahovsky YS, Koynova R, MacDonald RC. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys J 2005; 87:1054-64. [PMID: 15298910 PMCID: PMC1304446 DOI: 10.1529/biophysj.104.042895] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208 USA
| | | | | |
Collapse
|
34
|
Abstract
Nucleic acid delivery has many applications in basic science, biotechnology, agriculture, and medicine. One of the main applications is DNA or RNA delivery for gene therapy purposes. Gene therapy, an approach for treatment or prevention of diseases associated with defective gene expression, involves the insertion of a therapeutic gene into cells, followed by expression and production of the required proteins. This approach enables replacement of damaged genes or expression inhibition of undesired genes. Following two decades of research, there are two major methods for delivery of genes. The first method, considered the dominant approach, utilizes viral vectors and is generally an efficient tool of transfection. Attempts, however, to resolve drawbacks related with viral vectors (e.g., high risk of mutagenicity, immunogenicity, low production yield, limited gene size, etc.), led to the development of an alternative method, which makes use of non-viral vectors. This review describes non-viral gene delivery vectors, termed "self-assembled" systems, and are based on cationic molecules, which form spontaneous complexes with negatively charged nucleic acids. It introduces the most important cationic polymers used for gene delivery. A transition from in vitro to in vivo gene delivery is also presented, with an emphasis on the obstacles to achieve successful transfection in vivo.
Collapse
Affiliation(s)
- H. Eliyahu
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Jerusalem, Israel
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - Y. Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University – Hadassah Medical School, Jerusalem, Israel
| | - A. J. Domb
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Jerusalem, Israel
| |
Collapse
|
35
|
Madeira C, Fedorov A, Aires-Barros MR, Prieto M, Loura LMS. Photophysical Behavior of a Dimeric Cyanine Dye (BOBO-1) Within Cationic Liposomes. Photochem Photobiol 2005; 81:1450-9. [PMID: 16029081 DOI: 10.1562/2005-03-16-ra-464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study is aimed at establishing optimal conditions for the use of 2,2'-[1,3-propanediylbis[(dimethyliminio)-3,1-propanediyl-1(4H)-pyridinyl-4-ylidenemethy-lidyne]]bis[3-methyl]-tetraiodide (BOBO-1) as a fluorescent probe in the characterization of lipid/DNA complexes (lipoplexes). The fluorescence spectra, anisotropy, fluorescence lifetimes and fluorescence quantum yields of this dimeric cyanine dye in plasmid DNA (2694 base pairs) with and without cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane [DOTAP]), are reported. The photophysical behavior of the dye in the absence of lipid was studied for several dye/DNA ratios using both supercoiled and relaxed plasmid. At dye/DNA ratios (d/b) below 0.01 the fluorescence intensity increases linearly, whereas lifetime and anisotropy values of the dye are constant (tau approximately 2.5 ns and <r> = 0.20). By agarose gel electrophoresis it was verified that up to d/b = 0.01 DNA conformation is not considerably modified, whereas for d/b = 0.05-0.06 a single heavy band appears on the gel. For these and higher dye/DNA ratios the fluorescence intensity, anisotropy and average lifetime values decrease with an increase in BOBO-1 concentration. When cationic liposomes are added to the BOBO-1/DNA complex, an additional effect is noticed: The difference in the environment probed by BOBO-1 bound to DNA leads to a decrease in quantum yield and average lifetime values, and a redshift is apparent in the emission spectrum. For fluorescence measurements including energy transfer (FRET), a d/b ratio of 0.01 seems to be adequate because no considerable change on DNA conformation is detected, a considerable fluorescent signal is still measured after lipoplex formation, and energy migration is not efficient.
Collapse
Affiliation(s)
- Catarina Madeira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Portugal
| | | | | | | | | |
Collapse
|
36
|
Gordon SP, Berezhna S, Scherfeld D, Kahya N, Schwille P. Characterization of interaction between cationic lipid-oligonucleotide complexes and cellular membrane lipids using confocal imaging and fluorescence correlation spectroscopy. Biophys J 2004; 88:305-16. [PMID: 15516528 PMCID: PMC1305008 DOI: 10.1529/biophysj.104.043133] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Complexes formed by cationic liposomes and single-strand oligodeoxynucleotides (CL-ODN) are promising delivery systems for antisense therapy. ODN release from the complexes is an essential step for inhibiting activity of antisense drugs. We applied fluorescence correlation spectroscopy and confocal laser scanning microscopy to monitor CL-ODN complex interaction with membrane lipids leading to ODN release. To model cellular membranes we used giant unilamellar vesicles and investigated the transport of Cy-5-labeled ODNs across DiO-labeled membranes. For the first time, we directly observed that ODN molecules are transferred across the lipid bilayers and are kept inside the giant unilamellar vesicles after release from the carriers. ODN dissociation from the carrier was assessed by comparing diffusion constants of CL-ODN complexes and ODNs before complexation and after release. Freely diffusing Cy-5-labeled ODN (16-nt) has diffusion constant D(ODN) = 1.3 +/- 0.1 x 10(-6) cm2/s. Fluorescence correlation spectroscopy curves for CL-ODN complexes were fitted with two components, which both have significantly slower diffusion in the range of D(CL-ODN) = approximately 1.5 x 10(-8) cm2/s. Released ODN has the mean diffusion constant D = 1.1 +/- 0.2 x 10(-6) cm2/s, which signifies that ODN is dissociated from cationic lipids. In contrast to earlier studies, we report that phosphatidylethanolamine can trigger ODN release from the carrier in the full absence of anionic phosphatidylserine in the target membrane and that phosphatidylethanolamine-mediated release is as extensive as in the case of phosphatidylserine. The presented methodology provides an effective tool for probing a delivery potential of newly created lipid formulations of CL-ODN complexes for optimal design of carriers.
Collapse
Affiliation(s)
- Sean Patrick Gordon
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Svitlana Berezhna
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Dag Scherfeld
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Nicoletta Kahya
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Petra Schwille
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
37
|
Patel MM, Zeles MG, Manning MC, Randolph TW, Anchordoquy TJ. Degradation kinetics of high molecular weight poly(L-lactide) microspheres and release mechanism of lipid:DNA complexes. J Pharm Sci 2004; 93:2573-84. [PMID: 15349967 DOI: 10.1002/jps.20176] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Plasmid DNA encoding the green lantern protein was ion-paired with 1,2-dioleoyl, 3-trimethylammonium propane (DOTAP) at a (+/-) charge ratio of (1:1) to form a hydrophobic ion-pair (HIP) complex using the Bligh and Dyer method, and transferred into methylene chloride. Precipitation with a compressed antisolvent (PCA) was then employed to encapsulate plasmid DNA into poly(L-lactide) (PLLA) microspheres. The hydrophobicity of DOTAP:DNA complexes allowed consistently high encapsulation efficiencies (>70%) to be achieved. Release of the DOTAP:DNA complex from PLLA microspheres exhibited minimal burst and a short (ca. 1 week) lag phase, followed by sustained release over a 20 week period. Release kinetics were consistent with a simple Fickian diffusion model. No correlation was identified between release rate of soluble poly(L-lactide) species (< or =10 lactate units) from PLLA and the DNA release kinetics. Only approximately 12% of the polymer was degraded into soluble poly(L-lactide) over the time frame where approximately 90% of the plasmid load had been released.
Collapse
Affiliation(s)
- Mayank M Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Box C238, 4200 E. Ninth Avenue, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
38
|
Madeira C, Loura LMS, Aires-Barros MR, Fedorov A, Prieto M. Characterization of DNA/lipid complexes by fluorescence resonance energy transfer. Biophys J 2004; 85:3106-19. [PMID: 14581211 PMCID: PMC1303587 DOI: 10.1016/s0006-3495(03)74729-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is a potential method for the characterization of DNA-cationic lipid complexes (lipoplexes). In this work, we used FRET models assuming a multilamellar lipoplex arrangement. The application of these models allows the determination of the distance between the fluorescent intercalator on the DNA and a membrane dye on the lipid, and/or the evaluation of encapsulation efficiencies of this liposomal vehicle. The experiments were carried out in 1,2-dioleoyl-3-trimethylammonium-propane/pUC19 complexes with different charge ratios. We used 2-(3-(diphenylhexatrienyl)propanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and 2-(4,4-difluoro-5-octyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY-PC) as membrane dyes, and ethidium bromide (EtBr) and BOBO-1 as DNA intercalators. In cationic complexes (charge ratios (+/-) >or= 2), we verified that BOBO-1 remains bound to DNA, and FRET occurs to the membrane dye. This was also confirmed by anisotropy and lifetime measurements. In complexes with all DNA bound to the lipid (charge ratio (+/-) = 4), we determined 27 A as the distance between the donor and acceptor planes (half the repeat distance for a multilamellar arrangement). In complexes with DNA unbound to the lipids (charge ratio (+/-) = 0.5 and 2), we calculated the encapsulation efficiencies. The presented FRET methodology is, to our knowledge, the first procedure allowing quantification of lipid-DNA contact.
Collapse
Affiliation(s)
- Catarina Madeira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
39
|
Lian T, Ho RJY. Design and Characterization of a Novel Lipid‐DNA Complex that Resists Serum‐induced Destabilization. J Pharm Sci 2003; 92:2373-85. [PMID: 14603483 DOI: 10.1002/jps.10515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ineffectiveness of cationic lipids to enhance DNA transfection has been attributed to serum-mediated dissociation and perhaps complement activation of lipid-DNA complexes. To overcome these problems, we have developed a novel lipid-DNA complex that greatly reduces serum-mediated dissociation. The complexes were prepared by mixing cationic liposomes containing 1,2-dioleoyl-3-trimethylammonium-propane and dioleoylphosphatidyl-ethanolamine and DNA in ethanolic (20% v/v ethanol) solution containing 5% sucrose followed by dehydration via rotating evaporation. Upon hydration in H(2)O, the lipid-DNA complexes [ethanol-dried lipid-DNA (EDL) complexes] were formed. The complexes exhibit a low positive zeta potential and enhanced transfection efficiency in contrast to the suppressed efficiency detected with admixed lipid-DNA complexes in the presence of serum across several cell lines. This result may be attributed to the inability of serum to dissociate DNA from lipids in EDL complexes. Using displacement of ethidium bromide intercalation analysis, we found that in serum, only 50% of DNA was exposed in the EDL complexes, compared with 100% in the admixed lipid-DNA complexes. The EDL complexes also showed increased resistance to DNase digestion in the presence of negatively charged lipid, while reducing complement activation in serum. The EDL complexes may improve the transfection activity of lipid-DNA complexes in serum and, perhaps, in vivo.
Collapse
Affiliation(s)
- Tianshun Lian
- Department of Pharmaceutics, University of Washington, Box 357610 H272 Health Sciences Building, Seattle, Washington 98195, USA
| | | |
Collapse
|
40
|
Harvie P, Dutzar B, Galbraith T, Cudmore S, O'Mahony D, Anklesaria P, Paul R. Targeting of Lipid-Protamine-DNA (LPD) Lipopolyplexes Using RGD Motifs. J Liposome Res 2003; 13:231-47. [PMID: 14670229 DOI: 10.1081/lpr-120026389] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incorporation of pegylated lipid into Lipid-Protamine-DNA (LPD-PEG) lipopolyplexes causes a decrease of their in vitro transfection activity. This can be partially attributed to a reduction in particle binding to cells. To restore particle binding and specifically target LPD formulations to tumor cells, the lipid-peptide conjugate DSPE-PEG5K-succinyl-ACDCRGDCFCG-COOH (DSPE-PEG5K-RGD-4C) was generated and incorporated into LPD formulations (LPD-PEG-RGD). LPD-PEG-RGD was characterized with respect to its biophysical and biological properties. The Incorporation of DSPE-PEG5K-RGD-4C ligands into LPD formulations results in a 5 and a 15 fold increase in the LPD-PEG-RGD binding and uptake, respectively, over an LPD-PEG formulation. Enhancement of binding and uptake resulted in a 100 fold enhancement of transfection activity. Moreover, this transfection enhancement was specific to cells expressing appropriate integrin receptors (MDA-MB-231). Huh7 cells, known for their low level of alphavbeta3 and alphavbeta5 integrin expression, failed to show RGD mediated transfection enhancement. This transfection enhancement can be abolished in a competitive manner using free RGD peptide, but not an RGE control peptide. Results demonstrated RGD mediated enhanced LPD-PEG cell binding and transfection in cells expressing the integrin receptor. These formulations provide the basis for effective, targeted, systemic gene delivery.
Collapse
Affiliation(s)
- Pierrot Harvie
- Targeted Genetics Corporation, Seattle, Washington 98101, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Wiethoff CM, Gill ML, Koe GS, Koe JG, Middaugh CR. A fluorescence study of the structure and accessibility of plasmid DNA condensed with cationic gene delivery vehicles. J Pharm Sci 2003; 92:1272-85. [PMID: 12761816 DOI: 10.1002/jps.10391] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cationic lipids 1,2-dioleoyl-3-trimethylammonium-propane and dimethyldioctadecylammonium bromide, with or without the helper lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or cholesterol, and the cationic polymer polyethyleneimine, were compared for their ability to displace fluorescent dyes from DNA. Differences in displacement of the intercalating dyes ethidium bromide and ethidium homodimer correlate with their relative affinities with DNA, with the extent of ethidium homodimer displacement significantly less. Differences in ethidium homodimer and ethidium bromide displacement as a function of the ratio of polycation to DNA and the charge density of the polycation suggest a greater sensitivity of the former to topological changes in condensed DNA. Marked differences in the ability of these cationic delivery systems to displace the minor groove binding dyes 4',6-diamidino-2-phenylindole and Hoechst 33258 upon interaction with DNA are also apparent, with the majority of Hoechst 33258 remaining bound to DNA. Changes in the spectral properties of Hoechst 33258 were further used to characterize polycation-induced changes in solvent accessibility of the DNA minor groove. Taken together, these studies demonstrate differences in the interaction of various cationic lipids and polyethyleneimine in terms of regional displacement of dyes, polycation-induced structural changes in DNA, as well as polycation-mediated changes in solvent accessibility of the minor groove. The relevance of these studies to current models of the structure and assembly of polycation/DNA complexes are discussed.
Collapse
Affiliation(s)
- Christopher M Wiethoff
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
42
|
Wong FMP, Harvie P, Zhang YP, Ramsay EC, Bally MB. Phosphatidylethanolamine mediated destabilization of lipid-based pDNA delivery systems. Int J Pharm 2003; 255:117-27. [PMID: 12672608 DOI: 10.1016/s0378-5173(03)00051-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously reported the development of lipid-DNA particles (LDPs) formed, via a hydrophobic cationic lipid-DNA complex intermediate, when detergent-solubilized cationic lipids are mixed with DNA. This study investigates the influence of zwitterionic co-lipid headgroups on the formation and stability of this intermediate and the subsequent DNA protection and transfection properties afforded by the resultant LDPs. We report that inclusion of diacylphosphatidylethanolamines (diacylPE), but not diacylphosphatidylcholines (diacylPC), as co-lipids destabilizes and prevents the formation of the cationic lipid-DNA intermediate to an extent dependent on the concentration of diacylPE and its acyl chain characteristics. DNA formulated in LDPs containing cationic:zwitterionic lipids at a 1:1 ratio is not readily accessible to the intercalating fluorescent dye, TO-PRO-1. At a lipid ratio 1:4, diacylPC LDPs are associated with significantly greater TO-PRO-1 fluorescence than equivalent diacylPE formulations, a result believed to reflect lipid-dependent penetration of TO-PRO-1 through the supramolecular LDP assembly, rather than condensation and protection of the DNA per se. Transfection studies utilizing the in vitro murine B16/BL6 melanoma cell line and the in vivo intraperitoneal B16/BL6 mouse tumor model demonstrated that only diacylPE LDPs mediated gene transfer. This was found not to be a consequence of differences in DNA delivery or cell toxicity.
Collapse
Affiliation(s)
- F M P Wong
- Department of Advanced Therapeutics, British Columbia Cancer Agency, 601 West 10th Ave., Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
43
|
Hristova NI, Angelova MI, Tsoneva I. An experimental approach for direct observation of the interaction of polyanions with sphingosine-containing giant vesicles. Bioelectrochemistry 2002; 58:65-73. [PMID: 12401572 DOI: 10.1016/s1567-5394(02)00124-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new approach for direct optical microscopy observation of polyanion interactions with bilayers of giant cationic liposomes (GUVs) was suggested. Polyanions as DNA, dextran sulfate (DS), heparin (H) and polyacrylic acids (PA) were locally delivered by a micropipette to a part of a giant unilamellar vesicle membrane. The phenomena were directly observed under optical microscope. GUVs, about 100 micro m in diameter, formed of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine (Sph), were prepared by electroformation. The effects of water-soluble molecules with high negative linear charge density as dextran sulfate (DS), heparin (H) polyacrylic acids (PA) and adenosine-5'-triphosphoric acid (ATP) were compared with those of DNAs. The resulting membrane topology transformations were monitored in phase contrast, while the DNA distribution was followed in fluorescence. DNA-induced endocytosis-like membrane morphology transformation due to the DNA/lipid membrane local interactions was observed. The DS, H and PA induced membrane topology transformations similar to those of the DNAs, while ATP did not cause any detectable ones. The endocytosis mechanism involves the formation of ordered domains in the GUV membrane where some surface and charge asymmetries between the two membrane monolayers were created. The sizes of created polyanionic/cationic membrane domains depend on the form, length and elasticity of the adsorbed highly charged molecules. Endosome-including capacities of polyanionic molecules depend heavily on the high linear negative charge at a certain length. An original method for direct studying of the DNA/membrane interactions in autoadaptable giant liposome system imitating biological membrane interactions was forwarded. The model observations could also help for understanding events associated with cationic liposome/DNA complex formation in gene transfer processes.
Collapse
Affiliation(s)
- N I Hristova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl.21, 1113, Sofia, Bulgaria
| | | | | |
Collapse
|
44
|
Zhdanov RI, Podobed OV, Vlassov VV. Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy. Bioelectrochemistry 2002; 58:53-64. [PMID: 12401571 DOI: 10.1016/s1567-5394(02)00132-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cationic lipid-mediated gene transfer and delivery still attract great attention of many gene therapy laboratories. From the point of view of the most important characteristics of lipoplex particles, e.g. its charge and size, we reviewed recent studies available. In general, the paper deals with non-viral systems of gene transfer into eukaryotic cell based on various lipids. Having usually less efficiency in gene transfer, lipid-based gene transfer vehicles (lipoplexes/genosomes) are characterized with certain advantages even over viral ones: they are less toxic and immunogenic, could be targetable and are easy for large-scale production, a size of transferred DNA being quite high. Conditions of DNA condensation during interactions with lipids are described. Results of the studies of mechanism of DNA-lipid complex interactions with the cell membrane and their transport into the nucleus are summarized. Dependence of efficiency of gene transfer on lipoplex structure and physical-chemical properties is reviewed. Advantages and disadvantages of different macromolecule complexes from the point of view of transfection efficiency, possibility of use in vivo, cytotoxicity and targeted gene transfer in certain organs and tissues are also discussed. Results of transfection of different cells using neutral, anion and cation liposomes are reviewed. The conclusion reached was that efficiency and specificity of gene transfer may grow considerably when mixed macromolecule lipid systems including polycations and glycolipids are used.
Collapse
Affiliation(s)
- R I Zhdanov
- V N Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10, Pogodinskaya Street, 119832, Moscow, Russian Federation.
| | | | | |
Collapse
|
45
|
Zuhorn IS, Oberle V, Visser WH, Engberts JBFN, Bakowsky U, Polushkin E, Hoekstra D. Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency. Biophys J 2002; 83:2096-108. [PMID: 12324427 PMCID: PMC1302298 DOI: 10.1016/s0006-3495(02)73970-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cationic lipids are widely used for gene transfection, but their mechanism of action is still poorly understood. To improve this knowledge, a structure-function study was carried out with two pyridinium-based lipid analogs with identical headgroups but differing in alkyl chain (un)saturation, i.e., SAINT-2 (diC18:1) and SAINT-5 (diC18:0). Although both amphiphiles display transfection activity per se, DOPE strongly promotes SAINT-2-mediated transfection, but not that of SAINT-5, despite the fact that DOPE effectively facilitates plasmid dissociation from either lipoplex. This difference appears to correlate with membrane stiffness, dictated by the cationic lipid packing in the donor liposomes, which governs the kinetics of lipid recruitment by the plasmid upon lipoplex assembly. Because of its interaction with the relatively rigid SAINT-5 membranes, the plasmid becomes inappropriately condensed, which results in formation of structurally deformed lipoplexes. This structural deformation does not affect its cellular uptake but, rather, hampers plasmid translocation across endosomal and/or nuclear membranes. This is inferred from the observation that both lipoplexes effectively translocate much smaller oligonucleotides into cells. In fact, SAINT-5/DOPE-mediated transfection is greatly improved when, before lipoplex assembly, the plasmid is stabilized by condensation with polylysine. The results emphasize a role of the structural shape of the plasmid in gaining cytosolic/nuclear access. Moreover, it has been proposed that such a translocation is promoted when the lipoplex adopts the hexagonal phase, and data are presented that demonstrate that the lamellar SAINT-5/DOPE lipoplex adopts such a phase after its interaction with acidic phospholipid-containing membranes.
Collapse
Affiliation(s)
- Inge S Zuhorn
- Department of Membrane Cell Biology, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Ferrari ME, Rusalov D, Enas J, Wheeler CJ. Synergy between cationic lipid and co-lipid determines the macroscopic structure and transfection activity of lipoplexes. Nucleic Acids Res 2002; 30:1808-16. [PMID: 11937635 PMCID: PMC113211 DOI: 10.1093/nar/30.8.1808] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The large number of cytofectin and co-lipid combinations currently used for lipoplex-mediated gene delivery reflects the fact that the optimal cytofectin/co-lipid combination varies with the application. The effects of structural changes in both cytofectin and co-lipid were systematically examined to identify structure-activity relationships. Specifically, alkyl chain length, degree of unsaturation and the head group to which the alkyl side chain was attached were examined to determine their effect on lipoplex structure and biological activity. The macroscopic lipoplex structure was assessed using a dye-binding assay and the biological activity was examined using in vitro transfection in three diverse cell lines. Lipoplexes were formulated in three different vehicles currently in use for in vivo delivery of naked plasmid DNA (pDNA) and lipoplex formulations. The changes in dye accessibility were consistent with structural changes in the lipoplex, which correlated with alterations in the formulation. In contrast, transfection activity of different lipoplexes was cell type and vehicle dependent and did not correlate with dye accessibility. Overall, the results show a correlation between transfection and enhanced membrane fluidity in both the lipoplex and cellular membranes.
Collapse
Affiliation(s)
- Marilyn E Ferrari
- Department of Chemistry, Vical Incorporated, 9373 Towne Centre Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
47
|
Zuhorn IS, Visser WH, Bakowsky U, Engberts JBFN, Hoekstra D. Interference of serum with lipoplex-cell interaction: modulation of intracellular processing. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1560:25-36. [PMID: 11958773 DOI: 10.1016/s0005-2736(01)00448-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the mechanism of lipoplex-mediated transfection, employing a dialkyl pyridinium surfactant (SAINT-2), and using serum as a modulator of complex stability and processing. Particle size and stability determine lipoplex internalization, the kinetics of intracellular processing, and transfection efficiency. Clustered SAINT-2 lipoplexes are obtained in the absence of serum (-FBS lipoplexes), but not in its presence (+FBS lipoplexes), or when serum was present during lipoplex formation [FBS], conditions that mimic potential penetration of serum proteins. The topology of DNA in [FBS] lipoplexes shifts from a supercoiled, as in -FBS lipoplexes, to a predominantly open-circular conformation, and is more prone to digestion by DNase. Consistently, atomic force microscopy revealed complexes with tubular extensions, reflecting DNA that protrudes from the lipoplex surface. Interestingly, the internalization of [FBS] lipoplexes is approximately three-fold higher than that of -FBS and +FBS lipoplexes, yet their transfection efficiency is approximately five-fold lower. Moreover, in contrast to -FBS and +FBS complexes, [FBS] complexes were rapidly processed into the late endosomal/lysosomal degradation pathway. Intriguingly, transfection by [FBS] complexes is greatly improved by osmotic rupture of endocytic compartments. Our data imply that constraints in size and morphology govern the complex' ability to interact with and perturb cellular membranes, required for gene release. By extrapolation, we propose that serum may regulate these parameters in an amphiphile-dependent manner, by complex 'penetration' and modulation of DNA conformation.
Collapse
Affiliation(s)
- Inge S Zuhorn
- University of Groningen, Department of Membrane Cell Biology, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Banerjee R, Mahidhar YV, Chaudhuri A, Gopal V, Rao NM. Design, synthesis, and transfection biology of novel cationic glycolipids for use in liposomal gene delivery. J Med Chem 2001; 44:4176-85. [PMID: 11708919 DOI: 10.1021/jm000466s] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular structure of the cationic lipids used in gene transfection strongly influences their transfection efficiency. High transfection efficiencies of non-glycerol-based simple monocationic transfection lipids with hydroxyethyl headgroups recently reported by us (Banerjee et al. J. Med. Chem. 1999, 42, 4292-4299) are consistent with the earlier observations that the presence of hydroxyl functionalities in the headgroup region of a cationic lipid contributes favorably in liposomal gene delivery. Using simple sugar molecules as the source of multiple hydroxyl functionalities in the headgroup region of the transfection lipids, we have synthesized four novel simple monocationic transfection lipids, namely, 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-xylitol (1), 1-deoxy-1-[methyl(ditetradecyl)ammonio]-D-arabinitol (2), 1-deoxy-1-[dihexadecyl(methyl)ammonio]-D-arabinitol (3) and 1-deoxy-1-[methyl(dioctadecyl)ammonio]-D-arabinitol (4), containing hydrophobic aliphatic tails and the hydrophilic arabinosyl or xylose sugar groups linked directly to the positively charged nitrogen atom. Syntheses, chemical characterizations, and the transfection biology of these novel transfection lipids 1-4 are described in this paper. Lipid 1, the xylosyl derivative, showed maximum transfection on COS-1 cells. All the lipids showed transfection with cholesterol as colipid and not with dioleoylphosphatidylethanolamine (DOPE). Radioactive quantitation of free and complexed DNA combined with ethidium bromide exclusion measurements suggest that though nearly 70% of the DNA exists as complexed DNA, the DNA may not have condensed as was observed with other cationic lipids. Presence of additional (more than two) hydroxyl functionalities in the headgroup of the cationic lipids appears to have improved the transfection efficiency and made these lipids less cytotoxic compared to two-hydroxyl derivatives.
Collapse
Affiliation(s)
- R Banerjee
- Centre for Cellular & Molecular Biology, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
49
|
Wong M, Kong S, Dragowska WH, Bally MB. Oxazole yellow homodimer YOYO-1-labeled DNA: a fluorescent complex that can be used to assess structural changes in DNA following formation and cellular delivery of cationic lipid DNA complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1527:61-72. [PMID: 11420144 DOI: 10.1016/s0304-4165(01)00149-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To improve transfection efficiency following delivery of plasmid expression vectors using lipid-based carriers, it is crucial to define structural characteristics of the lipid/DNA complexes that optimize transgene expression. Due to its strong affinity for DNA and high quantum yield, the fluorescent DNA intercalator YOYO-1 was used as a tool to assess changes in DNA that occur following lipid binding and cell delivery. In this study, the stability of the dye/DNA complex following binding of poly-L-lysine or monocationic lipids is characterized. More than 98% of the fluorescence measured for a defined DNA/YOYO-1 complex was lost when DNA was condensed using poly-L-lysine. This loss in fluorescence could be attributed to displacement of bound dye. In contrast, more than 30% of the fluorescence of the dye-labeled DNA was retained after formation of cationic lipid/DNA complexes. Significantly, the results illustrate differences in structural changes cationic lipids and PLL exert on plasmid DNA. The fluorescent lipid/DNA complex was used to assess DNA delivery to murine B16/BL6 cells in vitro. An assay relying on fluorescence resonance energy transfer between bound YOYO-1 and propidium iodide was used to distinguish between DNA attached to the cell surface and internalized DNA.
Collapse
Affiliation(s)
- M Wong
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
50
|
Pedroso de Lima MC, Simões S, Pires P, Faneca H, Düzgüneş N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 2001; 47:277-94. [PMID: 11311996 DOI: 10.1016/s0169-409x(01)00110-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Great expectations from the application of gene therapy approaches to human disease have been impaired by the unsatisfactory clinical progress observed. Among others, the use of an efficient carrier for nucleic acid-based medicines is considered to be a determinant factor for the successful application of this promising therapeutic strategy. The drawbacks associated with the use of viral vectors, namely those related with safety problems, have prompted investigators to develop alternative methods for gene delivery, cationic lipid-based systems being the most representative. This review focuses on the various parameters that are considered to be crucial to optimize the use of cationic lipid-DNA complexes for gene therapy purposes. Particular emphasis is devoted to the analysis of the different stages involved in the transfection process, from the biophysical aspects underlying the formation of the complexes to the different biological barriers that need to be surpassed for gene expression to occur.
Collapse
Affiliation(s)
- M C Pedroso de Lima
- Department of Biochemistry, University of Coimbra, 3000 codex, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|