1
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Increased oxidative stress, hyperphosphorylation of tau, and dystrophic microglia in the hippocampus of aged Tupaia belangeri. Glia 2020; 68:1775-1793. [PMID: 32096580 DOI: 10.1002/glia.23804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.
Collapse
Affiliation(s)
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | |
Collapse
|
3
|
Gil DW, Wang J, Gu C, Donello JE, Cabrera S, Al-Chaer ED. Role of sympathetic nervous system in rat model of chronic visceral pain. Neurogastroenterol Motil 2016; 28:423-31. [PMID: 26670784 DOI: 10.1111/nmo.12742] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/31/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Changes in central pain modulation have been implicated in generalized pain syndromes such as irritable bowel syndrome (IBS). We have previously demonstrated that reduced descending inhibition unveils a role of sympathoneuronal outflow in decreasing peripheral sensory thresholds, resulting in stress-induced hyperalgesia. We investigated whether sympathetic nervous system (SNS) exacerbation of pain sensation when central pain inhibition is reduced is relevant to chronic pain disorders using a rat colon irritation (CI) model of chronic visceral hypersensitivity with hallmarks of IBS. METHODS Rats were treated to a series of colorectal balloon distensions (CRD) as neonates resulting in visceral and somatic hypersensitivity and altered stool function that persists into adulthood. The visceral sensitivity was assessed by recording electromyographic (EMG) responses to CRD. Somatic sensitivity was assessed by paw withdrawal thresholds to radiant heat. The effects on the hypersensitivity of (i) inhibiting sympathoneuronal outflow with pharmacological and surgical interventions and (ii) enhancing the outflow with water avoidance stress (WAS) were tested. KEY RESULTS The alpha2-adrenergic agonist, clonidine, and the alpha1-adrenergic antagonist, prazosin, reduced the visceral hypersensitivity and WAS enhanced the pain. Chemical sympathectomy with guanethidine and surgical sympathectomy resulted in a loss of the chronic visceral hypersensitivity. CONCLUSIONS & INFERENCES The results support a role of the SNS in driving the chronic visceral and somatic hypersensitivity seen in CI rats. The findings further suggest that treatments that decrease sympathetic outflow or block activation of adrenergic receptors on sensory nerves could be beneficial in the treatment of generalized pain syndromes.
Collapse
Affiliation(s)
| | - J Wang
- University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - C Gu
- University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - E D Al-Chaer
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut (AUB), Beirut, Lebanon.,Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| |
Collapse
|
4
|
Animal models of major depression and their clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:293-310. [PMID: 25891248 DOI: 10.1016/j.pnpbp.2015.04.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/09/2015] [Accepted: 04/12/2015] [Indexed: 12/12/2022]
Abstract
Major depressive disorder is a common, complex, and potentially life-threatening mental disorder that imposes a severe social and economic burden worldwide. Over the years, numerous animal models have been established to elucidate pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Despite these substantial efforts, the animal models available currently are of limited utility for these purposes, probably because none of the models mimics this complex disorder fully. It is presumable that psychiatric illnesses, such as affective disorders, are related to the complexity of the human brain. Here, we summarize the animal models that are used most commonly for depression, and discuss their advantages and limitations. We discuss genetic models, including the recently developed optogenetic tools and the stress models, such as the social stress, chronic mild stress, learned helplessness, and early-life stress paradigms. Moreover, we summarize briefly the olfactory bulbectomy model, as well as models that are based on pharmacological manipulations and disruption of the circadian rhythm. Finally, we highlight common misinterpretations and often-neglected important issues in this field.
Collapse
|
5
|
Abstract
Abstract. For many years, Tupaia (family Tupaiidae), most commonly known as tree shrews, have been studied almost exclusively by zoologists resulting in a controversial debate on their taxonomic status among mammals. Today, tree shrews are placed in the order Scandentia; they are valuable, widely accepted and increasingly used model animals as an alternative to rodents and non-human primates in biomedical research. After a brief description on how tree shrews entered science and their taxonomic odyssey, the present article describes the history of the tree shrew (Tupaia belangeri) colony at the German Primate Center and selected aspects of our work with special emphasis on the psychosocial stress model in these animals.
Collapse
|
6
|
Geisler S, Beindorff N, Cremer M, Hoffmann K, Brenner W, Cumming P, Meyer PT, Langen KJ, Fuchs E, Buchert R. Characterization of [123I]FP-CIT binding to the dopamine transporter in the striatum of tree shrews by quantitativein vitroautoradiography. Synapse 2015; 69:497-504. [DOI: 10.1002/syn.21838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Stefanie Geisler
- Forschungszentrum Jülich GmbH - Institute of Neuroscience and Medicine; Jülich Germany
| | - Nicola Beindorff
- Department of Nuclear Medicine; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Markus Cremer
- Forschungszentrum Jülich GmbH - Institute of Neuroscience and Medicine; Jülich Germany
| | | | - Winfried Brenner
- Department of Nuclear Medicine; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Paul Cumming
- Department of Nuclear Medicine; Friedrich-Alexander University; Erlangen/Nürnberg Germany
- Department of Neuroscience and Pharmacology; University of Copenhagen; Denmark
| | - Philipp T. Meyer
- Department of Nuclear Medicine; University of Freiburg; Freiburg Germany
| | - Karl-Josef Langen
- Forschungszentrum Jülich GmbH - Institute of Neuroscience and Medicine; Jülich Germany
- Department of Nuclear Medicine; University of Aachen; Aachen Germany
| | - Eberhard Fuchs
- German Primate Center; Göttingen Germany
- Department of Neurology; University Medical Center, Georg-August-University Göttingen; Göttingen Germany
| | - Ralph Buchert
- Department of Nuclear Medicine; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
7
|
Specific regulation of ACTH secretion under the influence of low and high ambient temperature—The role of catecholamines and vasopressin. J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2012.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Abstract
Stress is known to activate distinct neuronal circuits in the brain and induce multiple changes on the cellular level, including alterations in neuronal structures. On the basis of clinical observations that stress often precipitates a depressive disease, chronic psychosocial stress serves as an experimental model to evaluate the cellular and molecular alterations associated with the consequences of major depression. Antidepressants are presently believed to exert their primary biochemical effects by readjusting aberrant intrasynaptic concentrations of neurotransmitters, such as serotonin or noradrenaline, suggesting that imbalances viihin the monoaminergic systems contribute to the disorder (monoaminergic hypothesis of depression). Here, we reviev the results that comprise our understanding of stressful experience on cellular processes, with particular focus on the monoaminergic systems and structural changes within brain target areas of monoaminergic neurons.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany
| | | |
Collapse
|
9
|
Rinaman L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 2010; 300:R222-35. [PMID: 20962208 DOI: 10.1152/ajpregu.00556.2010] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Central noradrenergic (NA) signaling is broadly implicated in behavioral and physiological processes related to attention, arousal, motivation, learning and memory, and homeostasis. This review focuses on the A2 cell group of NA neurons, located within the hindbrain dorsal vagal complex (DVC). The intra-DVC location of A2 neurons supports their role in vagal sensory-motor reflex arcs and visceral motor outflow. A2 neurons also are reciprocally connected with multiple brain stem, hypothalamic, and limbic forebrain regions. The extra-DVC connections of A2 neurons provide a route through which emotional and cognitive events can modulate visceral motor outflow and also a route through which interoceptive feedback from the body can impact hypothalamic functions as well as emotional and cognitive processing. This review considers some of the hallmark anatomical and chemical features of A2 neurons, followed by presentation of evidence supporting a role for A2 neurons in modulating food intake, affective behavior, behavioral and physiological stress responses, emotional learning, and drug dependence. Increased knowledge about the organization and function of the A2 cell group and the neural circuits in which A2 neurons participate should contribute to a better understanding of how the brain orchestrates adaptive responses to the various threats and opportunities of life and should further reveal the central underpinnings of stress-related physiological and emotional dysregulation.
Collapse
Affiliation(s)
- Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Effect of alpha2A-adrenoceptor C-1291G genotype and maltreatment on hyperactivity and inattention in adolescents. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:219-24. [PMID: 19922756 DOI: 10.1016/j.pnpbp.2009.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/29/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
The C-1291G polymorphism (rs1800544) in the promoter region of the alpha(2A)-adrenoceptor gene (ADRA2A) has been associated with attention deficit and hyperactivity in clinical samples. We have examined the effect of ADRA2A C-1291G on inattentive, hyperactive and aggressive behaviour in a population representative cohort of healthy schoolchildren, and possible interaction of genotype with family relations. Ratings on aggressiveness, motor restlessness and concentration difficulties were obtained from the class teachers by using the Hyperactivity Scale of af Klinteberg, and the teacher-report version of SNAP-IV. The relations in the family were reported by children. Symptom scores, self-reports and genotype data of 429 15-years old children (196 boys, 233 girls) were available for analysis. There was a significant interaction effect of maltreatment and the ADRA2A genotype on behavioural functioning in 15years old boys. Boys with CC genotype and higher score of maltreatment demonstrated more overactive behaviour and concentration difficulties than boys with CC genotype and low maltreatment score. They also had more inattentive symptoms measured by SNAP-IV. Among boys with low maltreatment score, subjects with CC genotype demonstrated less overactivity than G allele carriers. In girls, the G allele carriers did not differ from the CC genotype, but in maltreated girls with GG genotype aggression and inattention symptoms were reduced, and the score of aggressive behaviour was also lower compared to maltreated girls with CC genotype. Our data suggest that family environmental factors may act together with the alpha(2A)-adrenoceptor genotype to increase the expression of hyperactive and inattentive symptoms in adolescents.
Collapse
|
11
|
Chronic cold stress increases excitatory effects of norepinephrine on spontaneous and evoked activity of basolateral amygdala neurons. Int J Neuropsychopharmacol 2009; 12:95-107. [PMID: 18647435 PMCID: PMC2880333 DOI: 10.1017/s1461145708009140] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurons of the amygdala respond to a variety of stressors. The basolateral amygdala (BLA) receives dense norepinephrine (NE) innervation from the locus coeruleus, and stressful and conditioned stimuli cause increases in NE levels within the BLA. Furthermore, chronic stress exposure leads to sensitization of the stress response. The actions of NE in different structures involved in the stress circuit have been shown to play a role in this sensitization response. Here, we examine how chronic cold stress alters NE modulation of spontaneous and evoked activity in the BLA. In controls, NE inhibited spontaneous firing in the majority of BLA neurons, with some neurons showing excitation at lower doses and inhibition at higher doses of NE. NE also decreased the responsiveness of these neurons to electrical stimulation of the entorhinal and sensory association cortices. After chronic cold exposure, NE caused increases in spontaneous activity in a larger proportion of BLA neurons than in controls, and now produced a facilitation of responses evoked by stimulation of entorhinal and sensory association cortical inputs. These studies show that chronic cold exposure leads to an increase in the excitatory effects of NE on BLA neuronal activity, and suggest a mechanism by which organisms may display an enhancement of hormonal, autonomic, and behavioural responses to acute stressful stimuli after chronic stress exposure.
Collapse
|
12
|
Jedema HP, Gold SJ, Gonzalez-Burgos G, Sved AF, Tobe BJ, Wensel T, Grace AA. Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. Eur J Neurosci 2008; 27:2433-43. [PMID: 18461718 DOI: 10.1111/j.1460-9568.2008.06208.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic stress exposure alters the central noradrenergic neurons originating from the locus coeruleus (LC). Previously, we demonstrated that evoked increases in the firing rate of LC neurons and their release of norepinephrine are enhanced following chronic cold exposure. In the present studies, we tested the hypothesis that reduced feedback inhibition of LC neurons might underlie these alterations in LC activity by examining the effect of alpha(2)-autoreceptor stimulation on LC activity in chronically stressed rats using in vivo and in vitro single unit recordings. Given that regulators of G-protein signaling (RGS) proteins can impact the coupling of alpha(2)-autoreceptors to downstream signaling cascades, we also explored the expression of several RGS proteins following chronic stress exposure. We observed that the alpha(2)-autoreceptor-evoked inhibition of LC neurons was reduced and that the expression of RGS7 was increased following chronic stress exposure. Finally, we demonstrated that intracellular administration of RGS7 via patch clamp electrodes mimicked the stress-induced decrease in clonidine-evoked autoreceptor-mediated inhibition. These novel data provide a mechanism to explain how chronic stress-induced alterations in receptor coupling can result in changes in alpha(2)-autoreceptor control of noradrenergic function throughout the central nervous system, potentially leading to alterations in anxiety-related behaviors, and may suggest novel therapeutic targets for the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Hank P Jedema
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bernuci MP, Szawka RE, Helena CVV, Leite CM, Lara HE, Anselmo-Franci JA. Locus coeruleus mediates cold stress-induced polycystic ovary in rats. Endocrinology 2008; 149:2907-16. [PMID: 18308852 DOI: 10.1210/en.2007-1254] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Previous reports about the rat ovary have shown that cold stress promotes ovarian morphological alterations related to a polycystic ovary (PCO) condition through activation of the ovarian sympathetic nerves. Because the noradrenergic nucleus locus coeruleus (LC) is activated by cold stress and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway, this study aimed to evaluate the LC's role in cold stress-induced PCO in rats. Ovarian morphology and endocrine and sympathetic functions were evaluated after 8 wk of chronic intermittent cold stress (4 C, 3 h/d) in rats with or without LC lesion. The effect of acute and chronic cold stress upon the LC neuron activity was confirmed by Fos protein expression in tyrosine hydroxylase-immunoreactive neurons. Cold stress induced the formation of follicular cysts, type III follicles, and follicles with hyperthecosis alongside increased plasma estradiol and testosterone levels, irregular estrous cyclicity, and reduced ovulation. Considering estradiol release in vitro, cold stress potentiated the ovarian response to human chorionic gonadotropin. Ovarian norepinephrine (NE) was not altered after 8 wk of stress. However, LC lesion reduced NE activity in the ovary of cold-stressed rats, but not in controls, and prevented all the cold stress effects evaluated. Cold stress increased the number of Fos/tyrosine hydroxylase-immunoreactive neurons in the LC, but this effect was more pronounced for acute stress as compared with chronic stress. These results show that cold stress promotes PCO in rats, which apparently depends on ovarian NE activity that, under this condition, is regulated by the noradrenergic nucleus LC.
Collapse
Affiliation(s)
- Marcelo P Bernuci
- Departamento de Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900 São Paulo, Brasil
| | | | | | | | | | | |
Collapse
|
14
|
Abumaria N, Ribic A, Anacker C, Fuchs E, Flügge G. Stress upregulates TPH1 but not TPH2 mRNA in the rat dorsal raphe nucleus: identification of two TPH2 mRNA splice variants. Cell Mol Neurobiol 2008; 28:331-42. [PMID: 18197473 PMCID: PMC11515019 DOI: 10.1007/s10571-007-9259-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 12/15/2007] [Indexed: 12/18/2022]
Abstract
Serotonin is implicated in stress-related psychopathologies. Two isoforms of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase, TPH1 and TPH2, are known. We show here that in the rat dorsal raphe nucleus (DRN), the nucleus that contains the highest number of 5-HT neurons in the brain, TPH1 mRNA reveals a low level of expression but is detectable both by quantitative real-time PCR and in situ hybridization whereas in the pineal gland (PiG), TPH1 mRNA is strongly expressed. To examine effects of stress on TPH expression we exposed male Wistar rats to daily restraint stress for 1 week. As shown by quantitative real-time PCR, TPH1 mRNA is 2.5-fold upregulated by the stress in DRN but not in PiG. Using 3'-RACE, we identified two TPH2 mRNA splice variants in the rat DRN which differ in the length of their 3'-untranslated regions (UTRs). TPH2b (with a short 3'-UTR) is the predominant variant in the DRN, whereas TPH2a (with a longer 3'-UTR) shows a low abundance in this nucleus. In the PiG, only TPH2b is detectable revealing a low level of expression. Expression of both TPH2 splice variants is not affected by stress, neither in DRN nor in the PiG. These data indicate that TPH1 in the serotonergic neurons of the DRN might be relevant for stress-induced psychopathologies.
Collapse
Affiliation(s)
- Nashat Abumaria
- Clinical Neurobiology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany.
| | | | | | | | | |
Collapse
|
15
|
Yang JH, Li LH, Shin SY, Lee S, Lee SY, Han SK, Ryu PD. Adrenalectomy potentiates noradrenergic suppression of GABAergic transmission in parvocellular neurosecretory neurons of hypothalamic paraventricular nucleus. J Neurophysiol 2007; 99:514-23. [PMID: 18032568 DOI: 10.1152/jn.00568.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids are known to regulate both the noradrenergic and GABAergic inputs to the paraventricular nucleus (PVN). However, little is known about the effects of glucocorticoids on the interaction of these two input systems. Here we examined the effects of bilateral adrenalectomy (ADX) on the noradrenergic modulation of GABAergic transmission in the type II PVN neurons labeled with a retrograde dye injected into the pituitary stalk. Noradrenaline either reduced or augmented the frequency of spontaneous inhibitory postsynaptic current (sIPSC) without changing the amplitude and decay time constant. These effects were blocked by alpha2A- and alpha(1A/1L)-adrenoceptor antagonists, respectively. ADX increased the proportion of the neurons showing the noradrenergic reduction and the extent of reduction in the IPSC frequency. The ADX-induced changes were reversed by supplementation of ADX rats with corticosterone (10-mg pellet). ADX also potentiated the noradrenergic reduction in the frequency of miniature IPSC and paired-pulse facilitation of evoked IPSC. BRL 44408 (3 microM), a alpha2A-adrenoceptor antagonist, blocked the noradrenergic reduction in ADX rats. Corticotropin-releasing hormone and/or vasopressin transcripts were detected in neurons displaying noradrenergic augmentation or reduction of IPSC frequency. ADX enhanced the proportion of neurons expressing corticotropin-releasing hormone. Collectively, the results suggest that depletion of corticosterone by ADX markedly potentiates the noradrenergic suppression of GABAergic transmission mediated by the alpha2A-adrenoceptors on the GABAergic terminals in the parvocellular neurosecretory PVN neurons. These results may provide a novel synaptic mechanism for the glucocorticoid-induced plasticity in the noradrenergic modulation of neuroendocrine function of the PVN.
Collapse
Affiliation(s)
- Jian Hua Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Wilson CG, Akhter S, Mayer CA, Kc P, Balan KV, Ernsberger P, Haxhiu MA. Allergic lung inflammation affects central noradrenergic control of cholinergic outflow to the airways in ferrets. J Appl Physiol (1985) 2007; 103:2095-104. [PMID: 17872402 DOI: 10.1152/japplphysiol.01182.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain stem noradrenergic cell groups mediating autonomic responses to stress project to airway-related vagal preganglionic neurons (AVPNs). In ferrets, their activation produces withdrawal of cholinergic outflow to the airways via release of norepinephrine and activation of alpha(2A)-adrenergic receptors (alpha(2A)-AR) expressed by AVPNs. In these studies, we examined the effects of allergen exposure of the airway (AE) with ovalbumin on noradrenergic transmission regulating the activity of AVPNs and, consequently, airway smooth muscle tone. Experiments were performed in vehicle control (Con) and AE ferrets. Microperfusion of an alpha(2A)-AR agonist (guanabenz) in close proximity to AVPNs elicited more pronounced effects in Con than AE ferrets, including a decrease in unit activity and reflexly evoked responses of putative AVPN neurons with a corresponding decrease in cholinergic outflow to the airways. Although no differences were found in the extent of noradrenergic innervation of the AVPNs, RT-PCR and Western blot studies demonstrated that AE and repeated exposure to antigen significantly reduced expression of alpha(2A)-ARs at message and protein levels. These findings indicate that, in an animal model of allergic asthma, sensitization and repeated challenges with a specific allergen diminish central inhibitory noradrenergic modulation of AVPNs, possibly via downregulation of alpha(2A)-AR expression by these neurons.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-6010, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Böer U, Alejel T, Beimesche S, Cierny I, Krause D, Knepel W, Flügge G. CRE/CREB-driven up-regulation of gene expression by chronic social stress in CRE-luciferase transgenic mice: reversal by antidepressant treatment. PLoS One 2007; 2:e431. [PMID: 17487276 PMCID: PMC1855984 DOI: 10.1371/journal.pone.0000431] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/13/2007] [Indexed: 12/22/2022] Open
Abstract
Background It has been suggested that stress provokes neuropathological changes and may thus contribute to the precipitation of affective disorders such as depression. Likewise, the pharmacological therapy of depression requires chronic treatment and is thought to induce a positive neuronal adaptation, presumably based on changes in gene transcription. The transcription factor cAMP-responsive element binding protein (CREB) and its binding site (CRE) have been suggested to play a major role in both the development of depression and antidepressive therapy. Methodology/Principle Findings To investigate the impact of stress and antidepressant treatment on CRE/CREB transcriptional activity, we generated a transgenic mouse line in which expression of the luciferase reporter gene is controlled by four copies of CRE. In this transgene, luciferase enzyme activity and protein were detected throughout the brain, e.g., in the hippocampal formation. Chronic social stress significantly increased (by 45 to 120%) CRE/CREB-driven gene expression measured as luciferase activity in several brain regions. This was also reflected by increased CREB-phosphorylation determined by immunoblotting. Treatment of the stressed mice with the antidepressant imipramine normalized luciferase expression to control levels in all brain regions and likewise reduced CREB-phosphorylation. In non-stressed animals, chronic (21 d) but not acute (24 h) treatment with imipramine (2×10 mg/kg/d) reduced luciferase expression in the hippocampus by 40–50%. Conclusions/Significance Our results emphasize a role of CREB in stress-regulated gene expression and support the view that the therapeutic actions of antidepressants are mediated via CRE/CREB-directed transcription.
Collapse
Affiliation(s)
- Ulrike Böer
- Department of Molecular Pharmacology, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Yang JH, Li LH, Lee S, Jo IH, Lee SY, Ryu PD. Effects of adrenalectomy on the excitability of neurosecretory parvocellular neurones in the hypothalamic paraventricular nucleus. J Neuroendocrinol 2007; 19:293-301. [PMID: 17355319 DOI: 10.1111/j.1365-2826.2007.01531.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucocorticoids are well known to inhibit the release of hypophysiotrophic hormones from neurones originating in the paraventricular nucleus (PVN), but the cellular mechanisms of the inhibition are not well understood. Here, we examined the effects of adrenalectomy (ADX) on the spontaneous firing activity in the neurosecretory parvocellular PVN neurones of rat brain slices. The neurones were identified by injecting a retrograde dye into the pituitary stalk and classified according to their electrophysiological properties. The intranuclear distribution, electrophysiological properties, and hypophysiotrophic hormone phenotype of the labelled type II PVN neurones were similar to neurosecretory parvocellular PVN neurones. In the neurones of sham-operated rats under the cell-attached recording mode, we observed three spontaneous activity patterns: tonic regular (24%), tonic irregular (36%), and silent (40%). Noradrenaline (100 microM) induced an excitatory or an inhibitory effect on the spontaneous activity. Noradrenergic excitation was blocked by prazosin (2 microM, alpha(1)-adrenoceptor antagonist), and mimicked by phenylephrine (100 microM, alpha(1)-adrenoceptor agonist), whereas noradrenergic inhibition was blocked by yohimbine (2 microM, alpha(2)-adrenoceptor antagonist) and mimicked by clonidine (50 microM, alpha(2)-adrenoceptor agonist). In the neurones of ADX rats, we found burst firing in 35% of neurones tested and an increase in the frequency of spontaneous firing. The burst firing was not observed in the neurones of the sham-operated rats. ADX caused a 1.7-fold increase in the proportion of neurones showing the noradrenergic excitation. Supplementation of the ADX rats with corticosterone (10 mg pellet) reversed the ADX-induced burst firing, and the potentiation of noradrenergic excitation. In summary, our results show that removal of corticosterone by ADX can elevate the neuronal excitability by increasing the spontaneous firing rate and by potentiating the alpha(1)-adrenoceptor-mediated noradrenergic excitation, and it can facilitate hormone release by inducing burst firing. Our results provide new insight to the cellular mechanisms of the feedback inhibition by glucocorticoids in the neurosecretory parvocellular neurones of the PVN.
Collapse
Affiliation(s)
- J H Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Karkoulias G, Mastrogianni O, Ilias I, Lymperopoulos A, Taraviras S, Tsopanoglou N, Sitaras N, Flordellis CS. Alpha 2-adrenergic receptors decrease DNA replication and cell proliferation and induce neurite outgrowth in transfected rat pheochromocytoma cells. Ann N Y Acad Sci 2007; 1088:335-45. [PMID: 17192578 DOI: 10.1196/annals.1366.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha 2-adrenergic receptors (alpha(2)-ARs) have a widespread distribution in the central nervous system (CNS) and affect a number of biochemical and behavioral functions, including stimulation of prefrontal cortex (PFC) and cognitive function. In addition to its role as a classical neurotransmitter, norepinephrine (NE) has been recently shown to exert an important influence on the plasticity in areas of the brain where neurogenesis persists in the adult, notably the subgranular zone (SGZ) within the dentate gyrus of the hippocampus and the olfactory bulb (OB). In regulating adult neurogenesis, the noradrenergic system is functionally integrated with chronic stress and depression. Chronic stress, depression, or depletion of NE in vivo suppress, and antidepressant treatments induce hippocampal neurogenesis by down- or upregulating, respectively, cell proliferation. In the present study we show that alpha(2)-AR subtypes promote the differentiation rather than cell proliferation of PC12 cells. It is conceivable that alpha(2)-ARs might contribute neurotrophic actions in vivo synergistically or in permutation with other neurotrophic factors.
Collapse
Affiliation(s)
- G Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras-Rion, GR-26504, Greece
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Landrigan PJ, Trasande L, Thorpe LE, Gwynn C, Lioy PJ, D'Alton ME, Lipkind HS, Swanson J, Wadhwa PD, Clark EB, Rauh VA, Perera FP, Susser E. The National Children's Study: a 21-year prospective study of 100,000 American children. Pediatrics 2006; 118:2173-86. [PMID: 17079592 DOI: 10.1542/peds.2006-0360] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Prospective, multiyear epidemiologic studies have proven to be highly effective in discovering preventable risk factors for chronic disease. Investigations such as the Framingham Heart Study have produced blueprints for disease prevention and saved millions of lives and billions of dollars. To discover preventable environmental risk factors for disease in children, the US Congress directed the National Institute of Child Health and Human Development, through the Children's Health Act of 2000, to conduct the National Children's Study. The National Children's Study is hypothesis-driven and will seek information on environmental risks and individual susceptibility factors for asthma, birth defects, dyslexia, attention-deficit/hyperactivity disorder, autism, schizophrenia, and obesity, as well as for adverse birth outcomes. It will be conducted in a nationally representative, prospective cohort of 100,000 US-born children. Children will be followed from conception to 21 years of age. Environmental exposures (chemical, physical, biological, and psychosocial) will be assessed repeatedly during pregnancy and throughout childhood in children's homes, schools, and communities. Chemical assays will be performed by the Centers for Disease Control and Prevention, and banks of biological and environmental samples will be established for future analyses. Genetic material will be collected on each mother and child and banked to permit study of gene-environment interactions. Recruitment is scheduled to begin in 2007 at 7 Vanguard Sites and will extend to 105 sites across the United States. The National Children's Study will generate multiple satellite studies that explore methodologic issues, etiologic questions, and potential interventions. It will provide training for the next generation of researchers and practitioners in environmental pediatrics and will link to planned and ongoing prospective birth cohort studies in other nations. Data from the National Children's Study will guide development of a comprehensive blueprint for disease prevention in children.
Collapse
Affiliation(s)
- Philip J Landrigan
- Center for Children's Health and the Environment, Department of Community and Preventive Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rölleke U, Flügge G, Plehm S, Schlumbohm C, Armstrong VW, Dressel R, Uchanska-Ziegler B, Ziegler A, Fuchs E, Czéh B, Walter L. Differential expression of major histocompatibility complex class I molecules in the brain of a New World monkey, the common marmoset (Callithrix jacchus). J Neuroimmunol 2006; 176:39-50. [PMID: 16750573 DOI: 10.1016/j.jneuroim.2006.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/06/2006] [Accepted: 04/10/2006] [Indexed: 11/18/2022]
Abstract
It has been supposed that central nervous neurons do not express MHC class I molecules. However, recent studies clearly demonstrated functional MHC class I expression in the rodent brain. In the present study, we have extended these studies and investigated the presence of MHC class I transcripts and proteins in the brain of a non-human primate species, the common marmoset monkey (Callithrix jacchus). Using in-situ hybridization, we found strong expression of MHC class I transcripts in neocortex, hippocampal formation, substantia nigra and nucleus ruber. In-situ hybridization with emulsion autoradiography demonstrated MHC class I mRNA in distinct pyramidal neurons of cortex and hippocampus, in granule neurons of the dentate gyrus, in dopaminergic neurons of substantia nigra and in motor neurons of nucleus ruber. Immunocytochemistry confirmed MHC class I protein expression in these neurons. Two monoclonal antibodies, MRC-Ox18 and HB115, reacted differentially with MHC class I proteins on neuronal and non-neuronal cells, respectively. Interestingly, in marmoset monkeys that were immunosuppressed with FK506 (tacrolimus), expression of neuronal MHC class I proteins, which could be detected with MRC-Ox18, was either very low (neocortex, nucleus ruber, substantia nigra) or absent (hippocampus). In contrast, class I expression in endothelial cells, which was detected by HB115, was not affected by immunosuppression. Our data show that selected neurons in the brain of a non-human primate express MHC class I molecules and that this expression can be modulated by immunosuppression.
Collapse
Affiliation(s)
- Ulrike Rölleke
- Department of Primate Genetics, German Primate Center, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alfonso J, Fernández ME, Cooper B, Flugge G, Frasch AC. The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. Proc Natl Acad Sci U S A 2005; 102:17196-201. [PMID: 16286650 PMCID: PMC1287971 DOI: 10.1073/pnas.0504262102] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 10/05/2005] [Indexed: 12/11/2022] Open
Abstract
Neuronal remodeling is a fundamental process by which the brain responds to environmental influences, e.g., during stress. In the hippocampus, chronic stress causes retraction of dendrites in CA3 pyramidal neurons. We have recently identified the glycoprotein M6a as a stress-responsive gene in the hippocampal formation. This gene is down-regulated in the hippocampus of both socially and physically stressed animals, and this effect can be reversed by antidepressant treatment. In the present work, we analyzed the biological function of the M6a protein. Immunohistochemistry showed that the M6a protein is abundant in all hippocampal subregions, and subcellular analysis in primary hippocampal neurons revealed its presence in membrane protrusions (filopodia/spines). Transfection experiments revealed that M6a overexpression induces neurite formation and increases filopodia density in hippocampal neurons. M6a knockdown with small interference RNA methodology showed that M6a low-expressing neurons display decreased filopodia number and a lower density of synaptophysin clusters. Taken together, our findings indicate that M6a plays an important role in neurite/filopodium outgrowth and synapse formation. Therefore, reduced M6a expression might be responsible for the morphological alterations found in the hippocampus of chronically stressed animals. Potential mechanisms that might explain the biological effects of M6a are discussed.
Collapse
Affiliation(s)
- Julieta Alfonso
- Instituto de Investigaciones Biotecnológicas-INTECH Universidad Nacional Gral. San Martín y Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martín, Argentina.
| | | | | | | | | |
Collapse
|
23
|
Haxhiu MA, Rust CF, Brooks C, Kc P. CNS determinants of sleep-related worsening of airway functions: implications for nocturnal asthma. Respir Physiol Neurobiol 2005; 151:1-30. [PMID: 16198640 DOI: 10.1016/j.resp.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 07/22/2005] [Accepted: 07/26/2005] [Indexed: 11/19/2022]
Abstract
This review summarizes the recent neuroanatomical and physiological studies that form the neural basis for the state-dependent changes in airway resistance. Here, we review only the interactions between the brain regions generating quiet (non-rapid eye movement, NREM) and active (rapid eye movement, REM) sleep stages and CNS pathways controlling cholinergic outflow to the airways. During NREM and REM sleep, bronchoconstrictive responses are heightened and conductivity of the airways is lower as compared to the waking state. The decrease in conductivity of the lower airways parallels the sleep-induced decline in the discharge of brainstem monoaminergic cell groups and GABAergic neurons of the ventrolateral periaqueductal midbrain region, all of which provide inhibitory inputs to airway-related vagal preganglionic neurons (AVPNs). Withdrawal of central inhibitory influences to AVPNs results in a shift from inhibitory to excitatory transmission that leads to an increase in airway responsiveness, cholinergic outflow to the lower airways and consequently, bronchoconstriction. In healthy subjects, these changes are clinically unnoticed. However, in patients with bronchial asthma, sleep-related alterations in lung functions are troublesome, causing intensified bronchopulmonary symptoms (nocturnal asthma), frequent arousals, decreased quality of life, and increased mortality. Unquestionably, the studies revealing neural mechanisms that underlie sleep-related alterations of airway function will provide new directions in the treatment and prevention of sleep-induced worsening of airway diseases.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Department of Physiology and Biophysics, Specialized Neuroscience Research Program, Howard University College of Medicine, 520 W. St., NW, Washington, DC 20059, USA.
| | | | | | | |
Collapse
|
24
|
Abrahám H, Czéh B, Fuchs E, Seress L. Mossy cells and different subpopulations of pyramidal neurons are immunoreactive for cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation of non-human primates and tree shrew (Tupaia belangeri). Neuroscience 2005; 136:231-40. [PMID: 16181735 DOI: 10.1016/j.neuroscience.2005.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Revised: 07/02/2005] [Accepted: 07/16/2005] [Indexed: 11/26/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript-immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.
Collapse
Affiliation(s)
- H Abrahám
- Central Electron Microscopic Laboratory, University of Pécs, Faculty of Medicine, Szigeti u. 12, P.O. Box. 99, 7643 Pécs, Hungary
| | | | | | | |
Collapse
|
25
|
Palchaudhuri M, Flügge G. 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tissue Res 2005; 321:159-72. [PMID: 15947971 DOI: 10.1007/s00441-005-1112-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
We studied expression of the 5-HT(1A) receptor in cortical and limbic areas of the brain of the tree shrew. In situ hybridization with a receptor-specific probe and immunocytochemistry with various antibodies was used to identify distinct neurons expressing the receptor. In vitro receptor autoradiography with (3)H-8-OH-DPAT ((3)H-8-hydroxy-2-[di-n-propylamino]tetralin) was performed to visualize receptor-binding sites. In the prefrontal, insular, and occipital cortex, 5-HT(1A) receptor mRNA was expressed in pyramidal neurons of layer 2, whereas (3)H-8-OH-DPAT labeled layers 1 and 2 generating a columnar-like pattern in the prefrontal and occipital cortex. In the striate and ventral occipital cortex, receptor mRNA was present within layers 5 and 6 in pyramidal neurons and Meynert cells. Pyramid-like neurons in the claustrum and anterior olfactory nucleus also expressed the receptor. Principal neurons in hippocampal region CA1 expressed 5-HT(1A) receptor mRNA, and (3)H-8-OH-DPAT labeled both the stratum oriens and stratum radiatum. CA3 pyramidal neurons displayed low 5-HT(1A) receptor expression, whereas granule neurons in the dentate gyrus revealed moderate expression of this receptor. In the amygdala, large pyramid-like neurons in the basal magnocellular nucleus strongly expressed the receptor. Immunocytochemistry with antibodies against parvalbumin, calbindin, and gamma aminobutyric acid (GABA) provided no evidence for 5-HT(1A) receptor expression in GABAergic neurons in cortical and limbic brain areas. Our data agree with previous findings showing that the 5-HT(1A) receptor mediates the modulation of glutamatergic neurons. Expression in the limbic and cortical areas suggested an involvement of 5-HT(1A) receptors in emotional and cognitive processes.
Collapse
|
26
|
Fuchs E. Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 2005; 10:182-90. [PMID: 15744220 DOI: 10.1017/s1092852900010038] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Animal models are invaluable in preclinical research on human psychopathology. Valid animal models to study the pathophysiology of depression and specific biological and behavioral responses to antidepressant drug treatments are of prime interest. In order to improve our knowledge of the causal mechanisms of stress-related disorders such as depression, we need animal models that mirror the situation seen in patients. One promising model is the chronic psychosocial stress paradigm in male tree shrews. Coexistence of two males in visual and olfactory contact leads to a stable dominant/subordinate relationship, with the subordinates showing obvious changes in behavioral, neuroendocrine, and central nervous activity that are similar to the signs and symptoms observed during episodes of depression in patients. To discover whether this model, besides its "face validity" for depression, also has "predictive validity," we treated subordinate animals with the tricyclic antidepressant clomipramine and found a time-dependent recovery of both endocrine function and normal behavior. In contrast, the anxiolytic diazepam was ineffective. Chronic psychosocial stress in male tree shrews significantly decreased hippocampal volume and the proliferation rate of the granule precursor cells in the dentate gyrus. These stress-induced changes can be prevented by treating the animals with clomipramine, tianeptine, or the selective neurokinin receptor antagonist L-760,735. In addition to its apparent face and predictive validity, the tree shrew model also has a "molecular validity" due to the degradation routes of psychotropic compounds and gene sequences of receptors are very similar to those in humans. Although further research is required to validate this model fully, it provides an adequate and interesting non-rodent experimental paradigm for preclinical research on depression.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| |
Collapse
|
27
|
Heilbronner U, van Kampen M, Flügge G. The alpha-2B adrenoceptor in the paraventricular thalamic nucleus is persistently upregulated by chronic psychosocial stress. Cell Mol Neurobiol 2004; 24:815-31. [PMID: 15672682 PMCID: PMC11529960 DOI: 10.1007/s10571-004-6921-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stress has been reported to regulate adrenergic receptors but it is not known whether it has an impact on the alpha-2 adrenoceptor subtype B that is strongly expressed in distinct nuclei of the thalamus. So far little is known about effects of stress on the thalamus. Using the chronic psychosocial stress paradigm in male tree shrews, we analyzed alpha-2B adrenoceptor expression in the paraventricular and the anteroventral nucleus of the thalamus after a six-week period of daily social stress and after a 10-day post-stress recovery period. In situ hybridization with a specific alpha-2B adrenoceptor probe was performed to quantify receptor gene expression in single neurons, and receptor binding was determined by in vitro receptor autoradiography using the radioligand [3H]RX821002. To determine the stress level in the animals, we measured urinary cortisol excretion and body weight. In the neurons of the paraventricular thalamic nucleus, expression of the alpha-2B adrenoceptor transcript was increased after both the six-week chronic-stress period and the post-stress recovery period. Combination of in situ hybridization and immunocytochemistry revealed expression of alpha-2B adrenoceptor transcript in neurons that were stained with an antibody against glutamate but not in neurons immunoreactive for GABA. Alpha-2 adrenoceptor radioligand binding was also increased after both time periods in the paraventricular thalamic nucleus. No significant effects of stress and recovery were observed in the anteroventral thalamic nucleus. Urinary cortisol excretion was increased during the stress period but normalized thereafter. Body weight was reduced during weeks 1 to 3 of stress and then normalized. These data show that long-term chronic psychosocial stress has an impact on alpha-2B adrenoceptor expression in the thalamus and that the effect persists throughout a post-stress recovery period though activity of the hypothalamic pituitary adrenal axis normalizes after stress. Upregulation of the receptor probably alters neurotransmission in the paraventricular thalamic nucleus and may thus influence information transfer to limbic and cortical brain areas.
Collapse
Affiliation(s)
- U. Heilbronner
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| | - M. van Kampen
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| | - G. Flügge
- Clinical Neurobiology Laboratory German Primate Center, Kellnerweg 4, 37077 Göttingen Germany
| |
Collapse
|
28
|
Khanbabyan MV, Saakyan NA, Sarkisyan RS, Mushegyan GK. Baseline spike activity of neurons in the locus coeruleus of the rat after lesions to a number of medulla oblongata nuclei. ACTA ACUST UNITED AC 2004; 34:315-9. [PMID: 15341204 DOI: 10.1023/b:neab.0000018738.45797.ff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bilateral lesioning of the presublingual nucleus (nucleus praepositus hypoglossi) of the medulla oblongata induced significant changes in the nature of baseline spine activity in the locus coeruleus. After lesioning, the mean frequency of spike activity of locus coeruleus neurons decreased more than two-fold. The numbers of neurons with train-grouped activity and polymodal neurons increased significantly. Exclusion of the solitary tract nucleus led to an increase in the number of neurons with regular activity and some decrease in the mean discharge frequency in locus coeruleus neurons. These data support the suggestion that the presublingual nucleus plays a significant role in the transmission of afferent influences on the activity of locus coeruleus neurons.
Collapse
Affiliation(s)
- M V Khanbabyan
- Department of Human and Animal Physiology, Armenian Kh Abovyan State Pedagogic University, Erevan, Armenia.
| | | | | | | |
Collapse
|
29
|
Fuchs E, Czéh B, Flügge G. Examining novel concepts of the pathophysiology of depression in the chronic psychosocial stress paradigm in tree shrews. Behav Pharmacol 2004; 15:315-25. [PMID: 15343055 DOI: 10.1097/00008877-200409000-00003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite decades of research on psychiatric disorders, the aetiology and precise biological mechanisms that underlie depressive diseases are still poorly understood. There is increasing evidence that psychiatric disorders not only have a neurochemical basis but are also associated with morphological alterations in central nervous neurons and/or glial cells. Antidepressants may act by restoring structure as well as function of neural networks, meaning that they may, as a fundamental principle, affect neural plasticity underlying normal brain functioning. To examine these novel concepts of the pathophysiology of depression and antidepressant medication we have carried out a series of experiments using the chronic psychosocial stress paradigm in male tree shrews, an animal model with a high validity for the pathophysiology of depressive disorders, in which the animals were treated with the tricyclic antidepressant compound clomipramine. We found that one month of stress reduced cell proliferation in the dentate gyrus, and decreased the total hippocampal volume. Gene transcription analysis revealed that, under these experimental conditions, expression of genes known to be involved in processes of cell differentiation is suppressed. These effects of social conflict on hippocampal cells, including gene transcription, and on the entire hippocampal volume could be counteracted by chronic treatment with the antidepressant clomipramine. Stress also induced a constant hyperactivity of the hypothalamic-pituitary-adrenal axis, and suppressed both motor and marking behaviour. These neuroendocrine and behavioural stress-induced changes were also re-normalized by clomipramine.
Collapse
Affiliation(s)
- E Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | |
Collapse
|
30
|
Yu F, Yu F, Li R, Wang R. Toxic effect of chloromycetin on the ultrastructures of the motor neurons of the Chinese tree shrew (Tupaia belangeri). Can J Physiol Pharmacol 2004; 82:276-81. [PMID: 15181466 DOI: 10.1139/y04-022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper describes the toxic effects of chloromycetin on the motor neurons of the Chinese tree shrew (Tupaia belangeri chinensis) with horse radish peroxidase (HRP) as the labeling enzyme. When chloromycetin was administered orally at 2.5 mg/kg (body weight)/day for 3 days, Chinese tree shrews showed evidence of neurotoxicity. This included damage in cortical motor neuron synapses ending on neurons of the red nucleus and the ultrastructural changes in the mitochondria such as swelling of these organelles and blurring of their cristae. There was an increase of the mitochondrial matrix density and of the thickness of the synaptic membranes. These observations indicate that chloromycetin can lead to ultrastructural change of terminals of the cortical motor axons, and that Chinese tree shrews are sensitive animal model for chloromycetin neurotoxicity.Key words: chloromycetin, red nuclei, motor neuron, ultrastructure, Chinese tree shrew, Tupaia belangeri.
Collapse
Affiliation(s)
- Farong Yu
- School of Life Sciences, Lanzhou University, China
| | | | | | | |
Collapse
|
31
|
Keuker JIH, de Biurrun G, Luiten PGM, Fuchs E. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews. J Comp Neurol 2004; 468:509-17. [PMID: 14689483 DOI: 10.1002/cne.10996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process.
Collapse
Affiliation(s)
- Jeanine I H Keuker
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
32
|
Ruuskanen JO, Xhaard H, Marjamäki A, Salaneck E, Salminen T, Yan YL, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M. Identification of duplicated fourth alpha2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol 2004; 21:14-28. [PMID: 12949138 DOI: 10.1093/molbev/msg224] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The alpha(2)-adrenergic receptors (alpha(2)-ARs) belong to the large family of rhodopsinlike G-protein-coupled receptors that share a common structure of seven transmembrane (TM) alpha-helices. The aims of this study were (1) to determine the number of alpha(2)-AR genes in a teleost fish, the zebrafish (Danio rerio), (2) to study the gene duplication events that generated the alpha(2)-AR subtypes, and (3) to study changes in receptor structure that have occurred since the divergence of the mammalian and fish lineages. Here, we report the cloning and chromosomal mapping of fish orthologs for all three mammalian alpha(2)-ARs. In addition, we identified a fourth alpha(2)-AR subtype with two duplicates in zebrafish. Chromosomal mapping showed that the zebrafish alpha(2)-AR genes are located within conserved chromosomal segments, consistent with the origin of the four alpha(2)-AR subtypes by two rounds of chromosome or block duplication before the divergence of the ray fin fish and tetrapod lineages. Thus, the fourth subtype has apparently been present in the common ancestor of vertebrates but has been deleted or is yet to be identified in mammals. The overall percentage identity between the fish and mammalian orthologs is 53% to 67%, and in the TM regions 80% to 87%. These values are clearly lower than what is observed between mammalian orthologs. Still, all of the residues thought to be important for alpha(2)-adrenergic ligand binding are conserved across species and subtypes, and even the most divergent regions of the fish receptors show clear "molecular fingerprints" typical for orthologs of a given subtype.
Collapse
Affiliation(s)
- Jori O Ruuskanen
- Department of Pharmacology and Clinical Pharmacology, Turku Graduate School of Biomedical Sciences, University of Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Featherby T, Lawrence AJ. Chronic cold stress regulates ascending noradrenergic pathways. Neuroscience 2004; 127:949-60. [PMID: 15312907 DOI: 10.1016/j.neuroscience.2004.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2004] [Indexed: 12/15/2022]
Abstract
Chronic exposure to cold in rats alters the activity of locus coeruleus (LC) neurons. In this study we aimed to examine the cellular effect of cold stress on catecholamine neurons, and determine whether this is specific to the LC compared with other catecholamine cell groups. Male Sprague-Dawley rats were subjected to 21 days of isolation under ambient conditions, chronic cold exposure at 5 degrees C, or after chronic cold followed by return to ambient temperature for 7 or 14 days. In the LC, chronic cold exposure significantly reduced tyrosine hydroxylase (TH) mRNA expression by approximately 45% compared with control rats, and remained significantly reduced (approximately 36%) after return to ambient conditions for 7 days; however, expression returned to normal after 14 days' recovery. There were no significant changes in TH mRNA in the substantia nigra or ventral tegmental area. Chronic cold increased expression of alpha2A adrenoceptor mRNA in the LC (approximately 27%). There were decreases in alpha2A expression in the nucleus tractus solitarius; however, this was seen only in rats returned to ambient conditions for 7 days. Additionally, alpha2A mRNA in the caudal ventrolateral medulla (A1 region) increased following cold exposure (approximately 84%) compared with controls. Binding of [125I]iodoclonidine to alpha2-like protein increased in the olfactory bulbs but decreased in the medial amygdala following cold exposure. Collectively, these data indicate robust effects of cold on central catecholamine neurons, not necessarily specific to the LC.
Collapse
Affiliation(s)
- T Featherby
- Department of Pharmacology, Monash University, Clayton, Australia
| | | |
Collapse
|
34
|
Abstract
Different types of stressors are known to activate distinct neuronal circuits in the brain. Acute physiological stimuli that are life threatening and require immediate reactions lead to a rapid stimulation of brainstem and hypothalamus to activate efferent visceral pathways. In contrast, psychological stressors activate higher-order brain structures for further interpretations of the perceived endangerment. Common to the later multimodal stressors is that they need cortical processing and, depending on previous experience or ongoing activation, the information is assembled within limbic circuits connecting, e.g., the hippocampus, amygdala and prefrontal cortex to induce neuroendocrine and behavioral responses. In view of the fact that stressful life events often contribute to the etiology of psychopathologies such as depressive episodes, several animal models have been developed to study central nervous mechanisms that are induced by stress. The present review summarizes observations made in the tree shrew chronic psychosocial stress paradigm with particular focus on neurotransmitter systems and structural changes in limbic brain regions.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany.
| | | |
Collapse
|
35
|
Keuker JIH, Rochford CDP, Witter MP, Fuchs E. A cytoarchitectonic study of the hippocampal formation of the tree shrew (Tupaia belangeri). J Chem Neuroanat 2003; 26:1-15. [PMID: 12954527 DOI: 10.1016/s0891-0618(03)00030-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tree shrews constitute an interesting animal model to study the impact of stress or aging on the hippocampal formation, a brain structure known to be affected under such environmental or internal influences. To perform detailed investigations of the hippocampal formation, adequate knowledge of its anatomy should be present. Until now, the hippocampal formation of the tree shrew has not yet been studied extensively. The main objective of this study, therefore, was to describe the subfield boundaries in various levels of the dorsoventral hippocampal axis of the tree shrew (Tupaia belangeri) in detail. The secondary aim was to clarify whether a separate CA2 field can actually be distinguished in the tree shrew hippocampus, a fact that was denied in former reports. In addition, we aimed at investigating whether or not a CA4 subfield can be identified in the tree shrew's hippocampus. The immunocytochemical distribution of microtubule-associated protein 2 and the calcium-binding proteins, parvalbumin and calbindin, and the characteristics of Nissl staining in adjacent sections were compared. Because of the rather dorsoventral orientation of the long hippocampal axis in tree shrews, staining patterns were analyzed mainly in horizontal sections. The subiculum and the hippocampal CA1 and CA3 areas were easily identified. Moreover, we were able to demonstrate the existence of a distinct CA2 subfield in the tree shrew's Ammon's horn, contrary to previous reports. However, our results indicate that a CA4 field in the tree shrew hippocampal formation cannot be identified with the methods that we used. Therefore, supposed CA4 pyramidal neurons should be included into the CA3 field.
Collapse
Affiliation(s)
- Jeanine I H Keuker
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, Göttingen 37077, Germany.
| | | | | | | |
Collapse
|
36
|
Cao J, Yang EB, Su JJ, Li Y, Chow P. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol 2003; 32:123-30. [PMID: 12823622 DOI: 10.1034/j.1600-0684.2003.00022.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The tree shrews are non-rodent, primate-like, small animals. There is increasing interest in using them to establish animal models for medical and biological research. This review focuses on the use of the tree shrews in in vivo studies on viral hepatitis, hepatocellular carcinoma (HCC), myopia, and psychosocial stress. Because of the susceptibility of the tree shrews (Tupaia belangeri) and their hepatocytes to infection with human hepatitis B virus (HBV) in vivo and in vitro, these animals have been used to establish human hepatitis virus-induced hepatitis and human HBV- and aflatoxin B1-associated HCC models. As these animals are phylogenetically close to primates in evolution and have a well-developed visual system and color vision in some species, they have been utilized to establish myopia models. Because dramatic behavioral, physiological, and neuroendocrine changes in subordinate male tree shrews are similar to those observed in depressed human patients, the tree shrews have been successfully employed to experimentally study psychosocial stress. However, the tree shrews holds significant promise as research models and great use could be made of these animals in biomedical research.
Collapse
Affiliation(s)
- J Cao
- Department of Pathology, Guangxi Cancer Institute, Guangxi Medical University, Nanning, China
| | | | | | | | | |
Collapse
|
37
|
Haxhiu MA, Kc P, Neziri B, Yamamoto BK, Ferguson DG, Massari VJ. Catecholaminergic microcircuitry controlling the output of airway-related vagal preganglionic neurons. J Appl Physiol (1985) 2003; 94:1999-2009. [PMID: 12514167 DOI: 10.1152/japplphysiol.01066.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we have investigated the ultrastructure and function of the catecholaminergic circuitry modulating the output of airway-related vagal preganglionic neurons (AVPNs) in ferrets. Immunoelectron microscopy was employed to characterize the nature of catecholaminergic innervation of AVPN at the ultrastructural level. In addition, immunofluorescence was used to examine the expression of the alpha(2A)-adrenergic receptor (alpha(2A)-AR) on AVPNs, and norepinephrine release within the rostral nucleus ambiguous (rNA) was measured by using microdialysis. Physiological experiments were performed to determine the effects of stimulation of the noradrenergic locus coeruleus (LC) cell group on airway smooth muscle tone. The results showed that 1) catecholaminergic nerve endings terminate in the vicinity of identified AVPNs but very rarely form axosomatic or axodendritic synapses with the AVPNs that innervate the extrathoracic trachea; 2) AVPNs express the alpha(2A)-AR; 3) LC stimulation-induced norepinephrine release within the rNA region was associated with airway smooth muscle relaxation; and 4) blockade of alpha(2A)-AR on AVPNs diminished the inhibitory effects of LC stimulation on airway smooth muscle tone. It is concluded that a noradrenergic circuit originating within the LC is involved in the regulation of AVPN activity within the rNA, and stimulation of the LC dilates the airways by the release of norepinephrine and activation of alpha(2A)-AR expressed by AVPNs, mainly via volume transmission.
Collapse
Affiliation(s)
- Musa A Haxhiu
- Departments of Physiology and Biophysics and Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Flügge G, van Kampen M, Meyer H, Fuchs E. Alpha2A and alpha2C-adrenoceptor regulation in the brain: alpha2A changes persist after chronic stress. Eur J Neurosci 2003; 17:917-28. [PMID: 12653968 DOI: 10.1046/j.1460-9568.2003.02510.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stress-induced activation of the central nervous noradrenergic system has been suspected to induce depressive disorders. As episodes of depression often occur some time after a stress experience we investigated whether stress-induced changes in the alpha2-adrenoceptor (alpha2-AR) system persist throughout a post-stress recovery period. Brains of male tree shrews were analysed after 44 days of chronic psychosocial stress and after a subsequent 10-day recovery period. Expression of RNA for alpha2A and alpha2C-adrenoceptors was quantified by in situ hybridization, and receptor binding was determined by in vitro receptor autoradiography. Activities of the sympathetic nervous system and of the hypothalamo-pituitary-adrenal axis were increased during chronic stress but normalized during recovery. Alpha2A-AR RNA in the glutamatergic neurons of the lateral reticular nucleus was elevated significantly after stress and after recovery (by 29% and 17%). In the dorsal motor nucleus of the vagus, subtype A expression was enhanced after recovery (by 33%). In the locus coeruleus, subtype A autoreceptor expression was not changed significantly. Subtype C expression in the caudate nucleus and putamen was elevated by stress (by 5 and 4%, respectively) but normalized during recovery. Quantification of 3H-RX821002 binding revealed receptor upregulation during stress and/or recovery. Our data therefore show: (i) that chronic psychosocial stress differentially regulates expression of alpha2-adrenoceptor subtypes A and C; (ii) that subtype A heteroreceptor expression is persistently upregulated whereas (iii), subtype C upregulation is only transient. The present findings coincide with post mortem studies in depressed patients revealing upregulation of alpha2A-ARs.
Collapse
Affiliation(s)
- G Flügge
- Department of Neurobiology, German Primate Centre, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
39
|
Jansen ASP, Schmidt ED, Voorn P, Tilders FJH. Substance induced plasticity in noradrenergic innervation of the paraventricular hypothalamic nucleus. Eur J Neurosci 2003; 17:298-306. [PMID: 12542666 DOI: 10.1046/j.1460-9568.2003.02453.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single administration of the cytokine interleukin-1 alpha (IL-1), or the psychostimulant amphetamine, enhanced adrenocorticotropin hormone and corticosterone responses to a stress challenge weeks later. This long-lasting hypothalamic-pituitary-adrenal (HPA)-sensitization is paralleled by an increase in electrically evoked release of noradrenaline in the paraventricular hypothalamic nucleus (PVN). We hypothesized that these functional changes may be associated with morphological plasticity of noradrenergic projections to the PVN, a parameter that shows high reproducibility. Specific alterations in relative (nor)adrenergic innervation density were studied by using dopamine-alpha-hydroxylase (DBH) as a marker. An image analysis system was used to detect changes in the relative DBH innervation density of the PVN. Groups of adult male rats were given IL-1 (10 microg/kg i.p.), amphetamine (5 mg/kg i.p.), or saline. Three weeks later, IL-1 and amphetamine primed rats showed enhanced adrenocorticotropin hormone and corticosterone responses to an amphetamine challenge. In another set of experiments, the relative DBH innervation density was measured in different PVN subnuclei at four rostro-caudal levels. Single administration of either IL-1 or amphetamine causes three weeks later a selective decrease in relative DBH innervation density in those subnuclei of the PVN that contain high numbers of corticotrophin-releasing hormone (CRH) producing neurons: the dorsal parvocellular and medial parvocellular PVN. We conclude that (1) long-lasting sensitization induced by single exposure to IL-1 and amphetamine induces specific pattern of neuroplastic changes in (nor)adrenergic innervation in the PVN and (2) reduction of relative DBH innervation density in CRH-rich areas is associated with paradoxical increase of electrically evoked release of (nor)adrenaline.
Collapse
Affiliation(s)
- Arthur S P Jansen
- Department of Medical Pharmacology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Zarrindast MR, Hadi M, Homayoun H, Postami P, Shafaghi B, Khavandgar S. The role of alpha-adrenoceptors in the amnestic effect of intracerebroventricular dexamethasone. Pharmacol Res 2002; 46:339-44. [PMID: 12361696 DOI: 10.1016/s1043661802001482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Corticosteroids exert dual enhancing or impairing effects on cognitive functions. While their memory-enhancing effects have been well investigated, the mechanisms involved in their amnestic effects are not completely understood. Thus, we examined the role of alpha-adrenoceptors on dexamethasone-induced amnesia using step-through passive avoidance test in rat. Intracerebroventricular (i.c.v.) injection of dexamethasone (5 and 10 microg per rat) decreased the retention latencies. Likewise, intraperitoneal administration of alpha(2)-adrenoceptor agonist clonidine (0.1-0.3 mg kg(-1)) but not alpha(2)-adrenoceptor antagonist yohimbine (0.5-2 mg kg(-1)) decreased the retention latency. Yohimbine pre-treatment decreased the amnestic effects of dexamethasone or dexamethasone plus clonidine. On the other hand, intraperitoneal administration of alpha(1)-adrenoceptor agonist phenylephrine (0.5-2 mg kg(-1)) per se increased, while prazosin at 2 mg kg(-1) decreased the retention latency. Administration of phenylephrine before dexamethasone completely reversed the amnestic effect of the latter, while prozosin did not affect dexamethasone-induced amnesia. These data suggest that dexamethasone may induce its amnestic effect through activation of alpha(2)-adrenoceptors, leading to decreased alpha(1)-adrenergic activity.
Collapse
Affiliation(s)
- Mohammad Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
41
|
Fuchs E, Flügge G. Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 2002; 73:247-58. [PMID: 12076743 DOI: 10.1016/s0091-3057(02)00795-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Social stress is known to be involved in the etiology of central nervous disorders such as depression. In recent years, animal models have been developed that use chronic stress to induce neuroendocrine and central nervous changes that might be similar to those occurring in the course of the development of depressive disorders. The present review gives a summary of observations made in the tree shrew chronic social stress model. During periods of daily social stress, male tree shrews develop symptoms that are known from many depressed patients such as persistent hyperactivities of both the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system, disturbances in sleeping patterns, and reduced motor activity. Moreover, various physiological parameters indicate an acceleration of the over all metabolic rate in socially stressed tree shrews. Some of these parameters can be renormalized by antidepressants thus supporting the view of the tree shrew social stress paradigm as model for major depression. In the brains of socially stressed animals, monoamine receptors show dynamic changes that reflect adaptation to the persistent monoaminergic hyperactivity during periods of chronic stress. In addition to the changes in neurotransmitter systems, there are structural changes in neurons, e.g., retraction of the dendrites of hippocampal pyramidal neurons. Together, these processes are suggested as a cause of behavioral alterations that can be counteracted by antidepressants in this naturalistic social stress model.
Collapse
Affiliation(s)
- Eberhard Fuchs
- Division of Neurobiology, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | |
Collapse
|
42
|
Buffington CT, Teng B, Somogyi GT. Norepinephrine Content And Adrenoceptor Function In The Bladder Of Cats With Feline Interstitial Cystitis. J Urol 2002. [DOI: 10.1016/s0022-5347(05)65253-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C.A. Tony Buffington
- From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, and Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bunyen Teng
- From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, and Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George T. Somogyi
- From the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, Ohio, and Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Norepinephrine Content And Adrenoceptor Function In The Bladder Of Cats With Feline Interstitial Cystitis. J Urol 2002. [DOI: 10.1097/00005392-200204000-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|