1
|
McLane VD, Lark ARS, Nass SR, Knapp PE, Hauser KF. HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neurosci Lett 2022; 782:136688. [PMID: 35595189 DOI: 10.1016/j.neulet.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.
Collapse
Affiliation(s)
- Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arianna R S Lark
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Johnson MA, Contoreggi NH, Kogan JF, Bryson M, Rubin BR, Gray JD, Kreek MJ, McEwen BS, Milner TA. Chronic stress differentially alters mRNA expression of opioid peptides and receptors in the dorsal hippocampus of female and male rats. J Comp Neurol 2021; 529:2636-2657. [PMID: 33483980 DOI: 10.1002/cne.25115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Chronic immobilization stress (CIS) results in sex-dependent changes in opioid peptide levels and receptor subcellular distributions within the rat dorsal hippocampus, which are paralleled with an inability for males to acquire conditioned place preference (CPP) to oxycodone. Here, RNAScope in situ hybridization was used to determine the expression of hippocampal opioid peptides and receptors in unstressed (US) and CIS estrus female and male adult (∼2.5 months old ) Sprague Dawley rats. In all groups, dentate granule cells expressed PENK and PDYN; additionally, numerous interneurons expressed PENK. OPRD1 and OPRM1 were primarily expressed in interneurons, and to a lesser extent, in pyramidal and granule cells. OPRK1-was expressed in sparsely distributed interneurons. There were few baseline sex differences: US females compared to US males had more PENK-expressing and fewer OPRD1-expressing granule cells and more OPRM1-expressing CA3b interneurons. Several expression differences emerged after CIS. Both CIS females and males compared to their US counterparts had elevated: (1) PENK-expressing dentate granule cells and interneurons in CA1 and CA2/3a; (2) OPRD1 probe number and cell expression in CA1, CA2/3a and CA3b and the dentate gyrus; and (3) OPRK1-expressing interneurons in the dentate hilus. Also, CIS males compared to US males had elevated: (1) PDYN expression in granule cells; (2) OPRD1 probe and interneuron expression in CA2/3a; (3) OPRM1 in granule cells; and (4) OPRK1 interneuron expression in CA2/3a. The sex-specific changes in hippocampal opioid gene expression may impact network properties and synaptic plasticity processes that may contribute to the attenuation of oxycodone CPP in CIS males.
Collapse
Affiliation(s)
- Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Matthew Bryson
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
3
|
Rubin BR, Johnson MA, Berman JM, Goldstein E, Pertsovskaya V, Zhou Y, Contoreggi NH, Dyer AG, Gray JD, Waters EM, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter delta opioid receptor distribution within rat hippocampal CA1 pyramidal cells following behavioral challenges. Neurobiol Stress 2020; 13:100236. [PMID: 33344692 PMCID: PMC7739044 DOI: 10.1016/j.ynstr.2020.100236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Following oxycodone (Oxy) conditioned place preference (CPP), delta opioid receptors (DORs) differentially redistribute in hippocampal CA3 pyramidal cells in female and male rats in a manner that would promote plasticity and opioid-associative learning processes. However, following chronic immobilization stress (CIS), males do not acquire Oxy-CPP and the trafficking of DORs in CA3 pyramidal neurons is attenuated. Here, we examined the subcellular distribution of DORs in CA1 pyramidal cells using electron microscopy in these same cohorts. CPP Saline (Sal)-females compared to Sal-males have more cytoplasmic and total DORs in dendrites and more DOR-labeled spines. Following Oxy-CPP, DORs redistribute from near-plasmalemma pools in dendrites to spines in males. CIS Control females compared to control males have more near-plasmalemmal dendritic DORs. Following CIS, dendritic DORs are elevated in the cytoplasm in females and near-plasmalemma in males. CIS plus CPP CIS Sal-females compared to CIS Sal-males have more DORs on the plasmalemma of dendrites and in spines. After Oxy, the distribution of DORs does not change in either females or males. Conclusion Following Oxy-CPP, DORs within CA1 pyramidal cells remain positioned in naïve female rats to enhance sensitivity to DOR agonists and traffic to dendritic spines in naïve males where they can promote plasticity processes. Following CIS plus behavioral enrichment, DORs are redistributed within CA1 pyramidal cells in females in a manner that could enhance sensitivity to DOR agonists. Conversely, CIS plus behavioral enrichment does not alter DORs in CA1 pyramidal cells in males, which may contribute to their diminished capacity to acquire Oxy-CPP.
Collapse
Affiliation(s)
- Batsheva R. Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Megan A. Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Jared M. Berman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Vera Pertsovskaya
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Andreina G. Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
- Corresponding author. Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RM 307 New York, NY 10065, United States.
| |
Collapse
|
4
|
Ashirova E, Contoreggi NH, Johnson MA, Al-Khayat FJ, Calcano GA, Rubin BR, O'Cinneide EM, Zhang Y, Zhou Y, Gregoire L, McEwen BS, Kreek MJ, Milner TA. Oxycodone injections not paired with conditioned place preference have little effect on the hippocampal opioid system in female and male rats. Synapse 2020; 75:e22182. [PMID: 32654187 DOI: 10.1002/syn.22182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.
Collapse
Affiliation(s)
- Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fatima J Al-Khayat
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Gabriela A Calcano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma M O'Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Lennox Gregoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
5
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
6
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
7
|
Reich B, Zhou Y, Goldstein E, Srivats SS, Contoreggi NH, Kogan JF, McEwen BS, Kreek MJ, Milner TA, Gray JD. Chronic immobilization stress primes the hippocampal opioid system for oxycodone-associated learning in female but not male rats. Synapse 2019; 73:e22088. [PMID: 30632204 PMCID: PMC11548942 DOI: 10.1002/syn.22088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022]
Abstract
In adult female, but not male, Sprague Dawley rats, chronic immobilization stress (CIS) increases mossy fiber (MF) Leu-Enkephalin levels and redistributes delta- and mu-opioid receptors (DORs and MORs) in hippocampal CA3 pyramidal cells and GABAergic interneurons to promote excitation and learning processes following subsequent opioid exposure. Here, we demonstrate that CIS females, but not males, acquire conditioned place preference (CPP) to oxycodone and that CIS "primes" the hippocampal opioid system in females for oxycodone-associated learning. In CA3b, oxycodone-injected (Oxy) CIS females relative to saline-injected (Sal) CIS females exhibited an increase in the cytoplasmic and total densities of DORs in pyramidal cell dendrites so that they were similar to Sal- and Oxy-CIS males. Consistent with our earlier studies, Sal- and Oxy-CIS females but not CIS males had elevated DOR densities in MF-CA3 dendritic spines, which we have previously shown are important for opioid-mediated long-term potentiation. In the dentate gyrus, Oxy-CIS females had more DOR-labeled interneurons than Sal-CIS females. Moreover, Sal- and Oxy-CIS females compared to both groups of CIS males had elevated levels of DORs and MORs in GABAergic interneuron dendrites, suggesting capacity for greater synthesis or storage of these receptors in circuits important for opioid-mediated disinhibition. However, more plasmalemmal MORs were on large parvalbumin-containing dendrites of Oxy-CIS males compared to Sal-CIS males, suggesting a limited ability for increased granule cell disinhibition. These results suggest that low levels of DORs in MF-CA3 synapses and hilar GABAergic interneurons may contribute to the attenuation of oxycodone CPP in males exposed to CIS.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Conditioning, Classical
- Dendrites/metabolism
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Female
- Interneurons/metabolism
- Male
- Oxycodone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Repetition Priming
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Sudarshan S. Srivats
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 - Doha, Qatar
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Joshua F. Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
8
|
Ryan JD, Zhou Y, Contoreggi NH, Bshesh FK, Gray JD, Kogan JF, Ben KT, McEwen BS, Jeanne Kreek M, Milner TA. Sex Differences in the Rat Hippocampal Opioid System After Oxycodone Conditioned Place Preference. Neuroscience 2018; 393:236-257. [PMID: 30316908 PMCID: PMC6246823 DOI: 10.1016/j.neuroscience.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Although opioid addiction has risen dramatically, the role of gender in addiction has been difficult to elucidate. We previously found sex-dependent differences in the hippocampal opioid system of Sprague-Dawley rats that may promote associative learning relevant to drug abuse. The present studies show that although female and male rats acquired conditioned place preference (CPP) to the mu-opioid receptor (MOR) agonist oxycodone (3 mg/kg, I.P.), hippocampal opioid circuits were differentially altered. In CA3, Leu-Enkephalin-containing mossy fibers had elevated levels in oxycodone CPP (Oxy) males comparable to those in females and sprouted in Oxy-females, suggesting different mechanisms for enhancing opioid sensitivity. Electron microscopy revealed that in Oxy-males delta opioid receptors (DORs) redistributed to mossy fiber-CA3 synapses in a manner resembling females that we previously showed is important for opioid-mediated long-term potentiation. Moreover, in Oxy-females DORs redistributed to CA3 pyramidal cell spines, suggesting the potential for enhanced plasticity processes. In Saline-injected (Sal) females, dentate hilar parvalbumin-containing basket interneuron dendrites had fewer MORs, however plasmalemmal and total MORs increased in Oxy-females. In dentate hilar GABAergic dendrites that contain neuropeptide Y, Sal-females compared to Sal-males had higher plasmalemmal DORs, and near-plasmalemmal DORs increased in Oxy-females. This redistribution of MORs and DORs within hilar interneurons in Oxy-females would potentially enhance disinhibition of granule cells via two different circuits. Together, these results indicate that oxycodone CPP induces sex-dependent redistributions of opioid receptors in hippocampal circuits in a manner facilitating opioid-associative learning processes and may help explain the increased susceptibility of females to opioid addiction acquisition and relapse.
Collapse
Affiliation(s)
- James D Ryan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States.
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Farah K Bshesh
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 Doha, Qatar
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Konrad T Ben
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
9
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 571] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
10
|
Burtscher J, Schwarzer C. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential. Front Mol Neurosci 2017; 10:245. [PMID: 28824375 PMCID: PMC5545604 DOI: 10.3389/fnmol.2017.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr) as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr) display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human patients. The discovery of DOPr-agonists without proconvulsant potential stimulates the research on the therapeutic use of neuroprotective potential of the enkephalin/DOPr system.
Collapse
Affiliation(s)
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of InnsbruckInnsbruck, Austria
| |
Collapse
|
11
|
Mazid S, Hall BS, Odell SC, Stafford K, Dyer AD, Van Kempen TA, Selegean J, McEwen BS, Waters EM, Milner TA. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiol Stress 2016; 5:37-53. [PMID: 27981195 PMCID: PMC5145913 DOI: 10.1016/j.ynstr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron dendrites one-hour after oxycodone (3 mg/kg, I.P.) administration compared to saline administration in CIS females. These data indicate that DORs redistribute within CA3 pyramidal cells and dentate hilar GABAergic interneurons in a sexually dimorphic manner that would promote activation and drug related learning in males after AIS and in females after CIS. Females have more near-plasmalemmal DORs in pyramidal CA3 dendrites than males. Acute stress in males relocates DORs in CA3 & GABA dendrites to promote activation. Chronic stress in females relocates DORs in GABA dendrites in females to promote activation. Chronic stress in males relocates DORs in GABA dendrites opposite of females. DOR-stress relocation may contribute to sexually dimorphic effects on drug related learning.
Collapse
Affiliation(s)
- Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Baila S Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Shannon C Odell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Khalifa Stafford
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Andreina D Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Jane Selegean
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
12
|
Zangrandi L, Burtscher J, MacKay JP, Colmers WF, Schwarzer C. The G-protein biased partial κ opioid receptor agonist 6'-GNTI blocks hippocampal paroxysmal discharges without inducing aversion. Br J Pharmacol 2016; 173:1756-67. [PMID: 26928671 PMCID: PMC4867738 DOI: 10.1111/bph.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose With a prevalence of 1–2%, epilepsies belong to the most frequent neurological diseases worldwide. Although antiepileptic drugs are available since several decades, the incidence of patients that are refractory to medication is still over 30%. Antiepileptic effects of κ opioid receptor (κ receptor) agonists have been proposed since the 1980s. However, their clinical use was hampered by dysphoric side effects. Recently, G‐protein biased κ receptor agonists were developed, suggesting reduced aversive effects. Experimental Approach We investigated the effects of the κ receptor agonist U‐50488H and the G‐protein biased partial κ receptor agonist 6′‐GNTI in models of acute seizures and drug‐resistant temporal lobe epilepsy and in the conditioned place avoidance (CPA) test. Moreover, we performed slice electrophysiology to understand the functional mechanisms of 6′‐GNTI. Key Results As previously shown for U‐50488H, 6′‐GNTI markedly increased the threshold for pentylenetetrazole‐induced seizures. All treated mice displayed reduced paroxysmal activity in response to U‐50488H (20 mg·kg−1) or 6′‐GNTI (10–30 nmoles) treatment in the mouse model of intra‐hippocampal injection of kainic acid. Single cell recordings on hippocampal pyramidal cells revealed enhanced inhibitory signalling as potential mechanisms causing the reduction of paroxysmal activity. Effects of 6′‐GNTI were blocked in both seizure models by the κ receptor antagonist 5′‐GNTI. Moreover, 6′‐GNTI did not induce CPA, a measure of aversive effects, while U‐50488H did. Conclusions and Implications Our data provide the proof of principle that anticonvulsant/antiseizure and aversive effects of κ receptor activation can be pharmacologically separated in vivo.
Collapse
Affiliation(s)
- Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Burtscher
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - James P MacKay
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - William F Colmers
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Mika J, Popiolek-Barczyk K, Rojewska E, Makuch W, Starowicz K, Przewlocka B. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain. PLoS One 2014; 9:e104420. [PMID: 25105291 PMCID: PMC4126741 DOI: 10.1371/journal.pone.0104420] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/therapeutic use
- Animals
- Anti-Bacterial Agents/administration & dosage
- Anti-Bacterial Agents/therapeutic use
- Cells, Cultured
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/therapeutic use
- Gene Expression Regulation/drug effects
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Minocycline/administration & dosage
- Minocycline/therapeutic use
- Morphine/administration & dosage
- Morphine/therapeutic use
- Neuralgia/drug therapy
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail: (BP); (JM)
| | | | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Starowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- * E-mail: (BP); (JM)
| |
Collapse
|
14
|
Rossner MJ, Tirard M. Thy1.2 driven expression of transgenic His6-SUMO2 in the brain of mice alters a restricted set of genes. Brain Res 2014; 1575:1-11. [DOI: 10.1016/j.brainres.2014.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022]
|
15
|
Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J Neurosci 2013; 33:14567-78. [PMID: 24005307 DOI: 10.1523/jneurosci.0649-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibition is critical for controlling information transfer in the brain. However, the understanding of the plasticity and particular function of different interneuron subtypes is just emerging. Using acute hippocampal slices prepared from adult mice, we report that in area CA2 of the hippocampus, a powerful inhibitory transmission is acting as a gate to prevent CA3 inputs from driving CA2 neurons. Furthermore, this inhibition is highly plastic, and undergoes a long-term depression following high-frequency 10 Hz or theta-burst induction protocols. We describe a novel form of long-term depression at parvalbumin-expressing (PV+) interneuron synapses that is dependent on delta-opioid receptor (DOR) activation. Additionally, PV+ interneuron transmission is persistently depressed by DOR activation in area CA2 but only transiently depressed in area CA1. These results provide evidence for a differential temporal modulation of PV+ synapses between two adjacent cortical circuits, and highlight a new function of PV+ cells in controlling information transfer.
Collapse
|
16
|
Erbs E, Faget L, Scherrer G, Kessler P, Hentsch D, Vonesch JL, Matifas A, Kieffer BL, Massotte D. Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience 2012; 221:203-13. [PMID: 22750239 DOI: 10.1016/j.neuroscience.2012.06.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon's horn and dentate gyrus. These receptors, therefore, most likely participate in the dynamic regulation of hippocampal activity.
Collapse
Affiliation(s)
- E Erbs
- Department of Human Genetics and Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/UdS, 1 Rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rezaï X, Faget L, Bednarek E, Schwab Y, Kieffer BL, Massotte D. Mouse δ opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells. Cell Mol Neurobiol 2012; 32:509-16. [PMID: 22252784 DOI: 10.1007/s10571-011-9791-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/22/2011] [Indexed: 11/28/2022]
Abstract
Delta opioid receptors participate in the control of chronic pain and emotional responses. Recent data have also identified their implication in drug-context associations pointing to a modulatory role on hippocampal activity. We used fluorescent knock-in mice that express a functional delta opioid receptor fused at its carboxy terminus with the green fluorescent protein in place of the native receptor to investigate the receptor neuroanatomical distribution in this structure. Fine mapping of the pyramidal layer was performed in hippocampal acute brain slices and organotypic cultures using fluorescence confocal imaging, co-localization with pre- and postsynaptic markers and correlative light-electron microscopy. The different approaches concurred to identify delta opioid receptors on presynaptic afferents to glutamatergic principal cells. In the latter, only scarce receptors were detected that were confined within the Golgi or vesicular intracellular compartments with no receptor present at the cell surface. In the mouse hippocampus, expression of functional delta opioid receptors is therefore mostly associated with interneurons emphasizing a presynaptic modulatory effect on the pyramidal cell firing rate.
Collapse
Affiliation(s)
- Xavier Rezaï
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS/INSERM/UdS, Illkirch, France
| | | | | | | | | | | |
Collapse
|
18
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 PMCID: PMC3141878 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
19
|
Williams TJ, Akama KT, Knudsen MG, McEwen BS, Milner TA. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp Neurol 2011; 230:186-96. [PMID: 21549703 PMCID: PMC3114097 DOI: 10.1016/j.expneurol.2011.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
Stress interacts with addictive processes to increase drug use, drug seeking, and relapse. The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect and likely plays a critical role in the interaction between stress and drug addiction. Our prior studies demonstrate that the stress-related neuropeptide corticotropin-releasing factor (CRF) and the delta-opioid receptor (DOR) colocalize in interneuron populations in the hilus of the dentate gyrus and stratum oriens of CA1 and CA3. While independent ultrastructural studies of DORs and CRF receptors suggest that each receptor is found in CA1 pyramidal cell dendrites and dendritic spines, whether DORs and CRF receptors colocalize in CA1 neuronal profiles has not been investigated. Here, hippocampal sections of adult male and proestrus female Sprague-Dawley rats were processed for dual label pre-embedding immunoelectron microscopy using well-characterized antisera directed against the DOR for immunoperoxidase and against the CRF receptor for immunogold. DOR-immunoreactivity (-ir) was found presynaptically in axons and axon terminals as well as postsynaptically in somata, dendrites and dendritic spines in stratum radiatum of CA1. In contrast, CRF receptor-ir was predominantly found postsynaptically in CA1 somata, dendrites, and dendritic spines. CRF receptor-ir frequently was observed in DOR-labeled dendritic profiles and primarily was found in the cytoplasm rather than at or near the plasma membrane. Quantitative analysis of CRF receptor-ir colocalization with DOR-ir in pyramidal cell dendrites revealed that proestrus females and males show comparable levels of CRF receptor-ir per dendrite and similar cytoplasmic density of CRF receptor-ir. In contrast, proestrus females display an increased number of dual-labeled dendritic profiles and an increased membrane density of CRF receptor-ir in comparison to males. We further examined the functional consequences of CRF receptor-ir colocalization with DOR-ir in the same neuron using the hormone responsive neuronal cell line NG108-15, which endogenously expresses DORs, and assayed intracellular cAMP production in response to CRF receptor and DOR agonists. Results demonstrated that short-term application of DOR agonist SNC80 inhibited CRF-induced cAMP accumulation in NG108-15 cells transfected with the CRF receptor. These studies provide new insights on opioid-stress system interaction in the hippocampus of both males and females and establish potential mechanisms through which DOR activation may influence CRF receptor activity.
Collapse
Affiliation(s)
- Tanya J Williams
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
20
|
Williams TJ, Milner TA. Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons. Neuroscience 2011; 179:9-22. [PMID: 21277946 PMCID: PMC3059386 DOI: 10.1016/j.neuroscience.2011.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/08/2011] [Accepted: 01/20/2011] [Indexed: 01/12/2023]
Abstract
The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect, likely playing a critical role in the interaction between stress and drug addiction. Prior study findings suggest that the stress-related neuropeptide corticotropin releasing factor (CRF) and the delta opioid receptor (DOR) may localize to similar neuronal populations within HF lamina. Here, hippocampal sections of male and cycling female adult Sprague-Dawley rats were processed for immunolabeling using antisera directed against the DOR and CRF peptide, as well as interneuron subtype markers somatostatin or parvalbumin, and analyzed by fluorescence and electron microscopy. Both DOR- and CRF-labeling was observed in interneurons in the CA1, CA3, and dentate hilus. Males and normal cycling females displayed a similar number of CRF immunoreactive neurons co-labeled with DOR and a similar average number of CRF-labeled neurons in the dentate hilus and stratum oriens of CA1 and CA3. In addition, 70% of DOR/CRF dual-labeled neurons in the hilar region co-labeled with somatostatin, suggesting a role for these interneurons in regulating perforant path input to dentate granule cells. Ultrastructural analysis of CRF-labeled axon terminals within the hilar region revealed that proestrus females have a similar number of CRF-labeled axon terminals that contain DORs compared to males but an increased number of CRF-labeled axon terminals without DORs. Taken together, these findings suggest that while DORs are anatomically positioned to modulate CRF immunoreactive interneuron activity and CRF peptide release, their ability to exert such regulatory activity may be compromised in females when estrogen levels are high.
Collapse
Affiliation(s)
- T J Williams
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | |
Collapse
|
21
|
Williams TJ, Torres-Reveron A, Chapleau JD, Milner TA. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. Neurobiol Learn Mem 2011; 95:206-20. [PMID: 21224009 PMCID: PMC3045654 DOI: 10.1016/j.nlm.2011.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that co-labeled with DOR in stratum oriens of CA1 and CA3 when compared to males. Ultrastructural analysis of NPY-labeled axon terminals within stratum radiatum of CA1 revealed that NPY-labeled axon terminals contain DORs that are frequently found at or near the plasma membrane. As no differences were noted by sex or estrous cycle phase, DOR activation on NPY-labeled axon terminals would inhibit GABA release probability equally in males and females. Taken together, these findings suggest that ovarian steroids can impact hippocampal function through direct effects on DOR levels and trafficking in principal cells and broad indirect effects through reductions in DOR-ir in NPY-labeled interneurons, particularly in CA1.
Collapse
Affiliation(s)
- Tanya J Williams
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
22
|
Farhadinasab A, Shahidi S, Najafi A, Komaki A. Role of naloxone as an exogenous opioid receptor antagonist in spatial learning and memory of female rats during the estrous cycle. Brain Res 2009; 1257:65-74. [DOI: 10.1016/j.brainres.2008.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 01/10/2023]
|
23
|
Boutin H, Catherine A, Mackenzie ET, Jauzac P, Dauphin F. Long-term alterations in mu, delta and kappa opioidergic receptors following middle cerebral artery occlusion in mice. Acta Neuropathol 2007; 114:491-500. [PMID: 17676326 DOI: 10.1007/s00401-007-0269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/15/2022]
Abstract
Alterations in the opioidergic system may play a role in the molecular mechanisms underlying neurochemical responses to cerebral ischaemia. The present study aimed to determine the delayed expression of mu, delta and kappa opioid receptors, following 1, 2, 7, and 30 days of middle cerebral artery occlusion (MCAO) in mice. Using quantitative autoradiography, we highlighted significant decreases in mu, delta and kappa opioid receptor expression in ipsilateral cortices from day 1 post-MCAO. Moreover, in contralateral nucleus lateralis thalami pars posterior, ipsi- and contralateral nucleus medialis dorsalis thalami, and ipsilateral substantia nigra, pars reticulata (SNr), kappa receptors were increased; mu receptor densities were decreased in nucleus ventralis thalami, pars posterior (VThP), and SNr. delta-Binding sites were increased in the striatum on day 30 post-MCAO. The alterations in opioid receptors in cortical infarcts were correlated with strong histological damage. Further reductions in opioid receptor densities in cortical infarcts were observed at later time points. In subcortical brain regions, opioid receptor densities were also altered but no histological damage was seen, except in the VThP, in which cell density was increased on day 30. Delayed reductions in opioid receptor densities in the infarct appeared as the continuation of the early processes previously demonstrated. However, changes in subcortical opioid receptor expression may correlate with neuronal alterations in remote brain regions. Changes in opioidergic receptor expression in these regions may be involved in the long-term consequences of stroke and could be used as biomarker of neuronal alteration through the use of imaging techniques in the clinic.
Collapse
MESH Headings
- Animals
- Binding Sites/physiology
- Biomarkers/analysis
- Biomarkers/metabolism
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Brain Infarction/metabolism
- Brain Infarction/pathology
- Brain Infarction/physiopathology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Brain Ischemia/physiopathology
- Disease Models, Animal
- Disease Progression
- Down-Regulation/physiology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Mice
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Opioid Peptides/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Time
- Time Factors
Collapse
|
24
|
Iwata M, Inoue S, Kawaguchi M, Nakamura M, Konishi N, Furuya H. Effects of delta-opioid receptor stimulation and inhibition on hippocampal survival in a rat model of forebrain ischaemia. Br J Anaesth 2007; 99:538-46. [PMID: 17704092 DOI: 10.1093/bja/aem220] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It has been reported that delta-opioid (DOP) receptor agonists may be neuroprotective in the central nervous system. However, the DOP agonist [d-Ala(2), d-Leu(5)]enkephalin (DADLE) does not produce neuroprotection in severe forebrain ischaemia. The aim of this study was to examine the effects of DADLE on hippocampal neurone survival against less severe forebrain ischaemia. METHODS Intraperitoneal injection of DADLE (0 or 16 mg kg(-1)) in male Sprague-Dawley rats was performed 30 min before ischaemia. Severe (10 min), moderate (8 min), or mild (6 min) forebrain ischaemia was produced by bilateral carotid occlusion combined with hypotension (35 mm Hg) under isoflurane (1.5%) anaesthesia. Naltrindole (10 mg kg(-1)) (DOP antagonist) was administered 30 min before DADLE in order to confirm DOP receptor activation in the neuroprotective efficacy of DADLE. Naltrindole alone was also administered 30 min before ischaemia to examine endogenous DOP agonism as a self-protecting mechanism against ischaemia. All animals were evaluated neurologically and histologically after a 1 week recovery period. RESULTS DADLE improved neurone survival in hippocampal CA3 and dentate gyrus (DG) sectors. CA1 neurones were not protected against moderate and mild ischaemia. Naltrindole abolished DADLE neuroprotection in the CA3 and DG after both moderate and mild ischaemia. Interestingly, regardless of co-administration of DADLE, naltrindole significantly worsened neuronal injury in the CA1 region after mild ischaemia. CONCLUSIONS These results suggest that DADLE provides limited neuroprotection to relatively ischaemia-resistant regions but not to selectively vulnerable regions. This was probably mediated by DOP stimulation. Pre-ischaemic treatment with a DOP antagonist, regardless of co-administration of DADLE, worsened neuronal damage at the selectively vulnerable regions only after mild forebrain ischaemia. These data suggest that DOP activation with endogenous DOP ligand may be involved in self-protecting ischaemia-sensitive regions of the brain.
Collapse
MESH Headings
- Animals
- Brain Ischemia/pathology
- Brain Ischemia/prevention & control
- Cell Survival/drug effects
- Drug Evaluation, Preclinical
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalin, Leucine-2-Alanine/therapeutic use
- Hippocampus/drug effects
- Hippocampus/pathology
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/drug effects
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Prosencephalon/blood supply
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
Collapse
Affiliation(s)
- M Iwata
- Department of Anesthesiology, Nara Medical University, 840 Shijo-cho Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Houser CR. Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. PROGRESS IN BRAIN RESEARCH 2007; 163:217-32. [PMID: 17765721 DOI: 10.1016/s0079-6123(07)63013-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interneurons of the dentate gyrus are a diverse group of neurons that use GABA as their primary neurotransmitter. Morphological studies of these neurons have been challenging since no single neuroanatomical method provides a complete view of these interneurons. However, through the integration of findings obtained from multiple methods, an interesting picture of this complex group of neurons is emerging, and this review focuses on studies in rats and mice. In situ hybridization of mRNAs for the two isoforms of the GABA synthesizing enzyme, glutamate decarboxylase (GAD65 and GAD67), demonstrates the abundance of GABA neurons in the dentate gyrus and their high concentration in the hilus and along the base of the granule cell layer. Likewise, immunohistochemical studies, particularly of GAD65, demonstrate the rich fields of GABA terminals not only around the somata of granule cells but also in the dendritic regions of the molecular layer. This broad group of GABA neurons and their terminals can be subdivided according to their morphological characteristics, including the distribution of their axonal plexus, and their neurochemical identity. Intracellular labeling of single interneurons has been instrumental in demonstrating the extensiveness of their axonal plexus and the relatively specific spatial distribution of their axonal fields. These findings have led to the broad classification of interneurons into those that terminate primarily at perisomatic regions and those that innervate the dendrites of granule cells. The interneurons also can be classified according to their neuropeptide and calcium-binding protein content. These and other molecules contribute to the rich diversity of dentate interneurons and may provide opportunities for selectively regulating specific groups of GABA neurons in the dentate gyrus in order to enhance their function or protect vulnerable neurons from damage.
Collapse
Affiliation(s)
- Carolyn R Houser
- Department of Neurobiology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Abstract
Opiate drugs alter cognitive performance and influence hippocampal excitability, including long-term potentiation (LTP) and seizure activity. The dentate gyrus (DG) contains two major opioid peptides, enkephalins and dynorphins, which have opposing effects on excitability. Enkephalins preferentially bind to delta- and mu-opioid receptors (DORs and MORs) while dynorphins preferentially bind to kappa-opioid receptors (KORs). Opioid receptors can also be activated by exogenous opiate drugs such as the MOR agonist morphine. Enkephalins are contained in the mossy fiber pathway, in the lateral perforant path (PP) and in scattered GABAergic interneurons. MORs and DORs are predominantly in distinct subpopulations of GABAergic interneurons known to inhibit granule cells, and are present at low levels within granule cells. MOR and DOR agonists increase excitability and facilitate LTP in the molecular layer. Anatomical and physiological evidence is consistent with somatodendritic and axon terminal targeting of both MORs and DORs. Dynorphins are in the granule cells, most abundantly in mossy fibers but also in dendrites. KORs have been localized to granule cell mossy fibers, supramammillary afferents to granule cells, and PP terminals. KOR agonists, including endogenous dynorphins, diminish the induction of LTP. Recent evidence indicates that opiates and opioids also modulate other processes in the hippocampal formation, including adult neurogenesis, the actions of gonadal hormones, and development of neonatal transmitter systems.
Collapse
Affiliation(s)
- Carrie T Drake
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill-Cornell Medical College, 411 East 69th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
27
|
Alvira-Botero MX, Garzón M. Cellular and subcellular distributions of delta opioid receptor activation sites in the ventral oral pontine tegmentum of the cat. Brain Res 2006; 1123:101-11. [PMID: 17045971 DOI: 10.1016/j.brainres.2006.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
The ventral division of the reticular oral pontine nucleus (vRPO) is a pontine tegmentum region critically involved in REM sleep generation. Previous reports of morphine microinjections in the cat pontine tegmentum have shown that opioid receptor activation in this region modulates REM sleep. Even though opiate administration has marked effects on sleep-wake cycle architecture, the distribution of opioid receptors in vRPO has only been partially described. Using an antiserum directed against delta opioid receptor (DOR), to which morphine binds, in the present study, we use (1) light microscopy to determine DOR cellular distribution in the rostral pontine tegmentum and (2) electron microscopy to determine DOR subcellular distribution in the cat vRPO. In the dorsal pons, DOR immunoreactivity was evenly distributed throughout the neuropil of the reticular formation and was particularly intense in the parabrachial nuclei and locus coeruleus; the ventral and central areas of the RPO and locus coeruleus complex were especially rich in DOR-labeled somata. Within the vRPO, DOR was localized mainly in the cytoplasm and on plasma membranes of medium to large dendrites (47.8% of DOR-labeled profiles), which received both symmetric and asymmetric synaptic contacts mainly from non-labeled (82% of total inputs) axon terminals. Less frequently, DOR was distributed presynaptically in axon terminals (19% of DOR-labeled profiles). Our results suggest that DOR activation in vRPO regulates REM sleep occurrence by modulating postsynaptic responses to both excitatory and inhibitory afferents. DOR activation in vRPO could have, however, an additional role in direct modulation of neurotransmitter release from axon terminals.
Collapse
Affiliation(s)
- Maria Ximena Alvira-Botero
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | | |
Collapse
|
28
|
Gray AC, Coupar IM, White PJ. Comparison of opioid receptor distributions in the rat central nervous system. Life Sci 2006; 79:674-85. [PMID: 16546223 DOI: 10.1016/j.lfs.2006.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.
Collapse
MESH Headings
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Brain Chemistry
- Central Nervous System/metabolism
- Female
- Immunohistochemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neuropeptides/chemistry
- Neuropeptides/immunology
- Rats
- Rats, Wistar
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Andrew C Gray
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Pde, Parkville, VIC 3052, Melbourne, Australia
| | | | | |
Collapse
|
29
|
Drake CT, Milner TA. Mu opioid receptors are extensively co-localized with parvalbumin, but not somatostatin, in the dentate gyrus. Neurosci Lett 2006; 403:176-80. [PMID: 16716508 DOI: 10.1016/j.neulet.2006.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 01/13/2023]
Abstract
In the rat dentate gyrus, mu opioid receptor (MOR) agonists disinhibit principal cells, promoting excitation, but whether MOR protein is differentially distributed to interneuron subtypes is unknown. Here, the distribution of MOR immunoreactivity was semi-quantitatively examined in neurochemically identified interneurons using fluorescence microscopy. We find that MOR- and parvalbumin-immunoreactivities are frequently co-localized, while MOR- and somatostatin-immunoreactivities are less commonly co-localized. This suggests that MORs are most frequently on interneurons specialized to inhibit granule cell output, and are on a limited number of interneurons that inhibit granule cell distal dendrites.
Collapse
Affiliation(s)
- Carrie T Drake
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
30
|
Phansuwan-Pujito P, Ebadi M, Govitrapong P. Immunocytochemical Characterization of Delta-Opioid and Mu-Opioid Receptor Protein in the Bovine Pineal Gland. Cells Tissues Organs 2006; 182:48-56. [PMID: 16651829 DOI: 10.1159/000091718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2005] [Indexed: 11/19/2022] Open
Abstract
Opioidergic innervation has been identified in the mammalian pineal gland. Recently, opioid receptors in bovine pineal glands have been characterized; the activation of these receptors leads to the stimulation of melatonin synthesis. In this study, the precise localization of opioid receptors in bovine pineal glands was determined by an immunohistochemical technique using antibodies raised against delta-opioid and mu-opioid receptors. Immunoreactivity of these two receptors was present at a moderate level in pinealocytes. A double-labeling study has shown that delta-opioid receptors are localized predominantly with mu-opioid receptors in the same pinealocytes. These immunopositive pinealocytes are often located in a group; however, some of them are dispersed individually. In addition, both types of receptors were found in glial cells and processes. A small number of delta-receptor-immunoreactive nerve fibers were observed in the perivascular space and intraparenchyma of the pineal gland. Mu-opioid receptor immunoreactivity was found in a number of nerve fibers throughout the gland, and in terminal-like dots on pinealocytes. There was immunocolocalization between delta-opioid receptors or mu-opioid receptors and leu-enkephalin in some nerve fibers. The results of this study indicate that the modulatory effect of the opioid system on melatonin secretion in pineal glands might act via opioid receptors on pinealocytes, whereas receptors located on nerve fibers might modulate the release of opioid peptides.
Collapse
|
31
|
Jacobsen KX, Höistad M, Staines WA, Fuxe K. The distribution of dopamine D1 receptor and μ-opioid receptor 1 receptor immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: Relationships to tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 2006; 141:2007-18. [PMID: 16820264 DOI: 10.1016/j.neuroscience.2006.05.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/25/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Mismatches between dopamine innervation and dopamine D1 receptor (D1) distribution have previously been demonstrated in the intercalated cell masses of the rat amygdala. Here the distribution of enkephalin and beta-endorphin immunoreactive (IR) nerve terminals with respect to their mu-opioid receptors is examined in the intercalated cell masses, along with a further immunohistochemical analysis of the dopamine/D1 mismatches. A similar analysis is also made within the extended amygdala. A spatial mismatch in distribution patterns was found between the mu-opioid receptor-1 immunoreactivity and enkephalin IR in the main intercalated island of the amygdala. Discrete cell patches of dopamine D1 receptor and mu-opioid receptor-1 IR were also identified in a distinct region of the extended amygdala, the interstitial nucleus of the posterior limb of the anterior commissure, medial division (IPACM), which displayed sparse tyrosine hydroxylase or enkephalin/beta-endorphin IR nerve terminals. Furthermore, distinct regions of the main intercalated island that showed dopamine/D1 receptor matches (the rostral and rostrolateral parts) were associated with strong dopamine and cyclic AMP regulated phosphoprotein, 32 kDa-IR in several D1 IR neuronal cell bodies and dendrites, whereas this was not the case for the dopamine/D1 mismatch areas (the rostromedial and caudal parts) of the main intercalated island. The lack of correlation between the terminal/receptor distribution patterns suggests a role for volume transmission for mu-opioid receptor- and dopamine D1 receptor-mediated transmission in distinct regions of the amygdala and extended amygdala. This may have implications for amygdaloid function, where slow long lasting responses may develop as a result of volume transmission operating in opioid peptide and dopaminergic communication.
Collapse
Affiliation(s)
- K X Jacobsen
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smythe Road, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | |
Collapse
|
32
|
Gray AC, Coupar IM, White PJ. Comparison of opioid receptor distributions in the rat ileum. Life Sci 2005; 78:1610-6. [PMID: 16289621 DOI: 10.1016/j.lfs.2005.07.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Accepted: 07/26/2005] [Indexed: 11/20/2022]
Abstract
The cellular expression patterns of mu-, delta- and kappa-opioid receptors in the rat ileum were examined using fluorescence immunohistochemistry. Double-labelling was used to examine cellular receptor co-localisation as a pre-requisite for intracellular molecular interactions, such as heterodimerisation. Tissues were stained as whole-mount preparations. Strong, broadly distributed immunoreactivity (ir) was observed for each receptor in the myenteric and submucous plexuses. Although intracellular mu- and delta-ir patterns differed in ganglion neurons, mu/delta co-expression was extensive in these cells. mu/delta co-expression was also observed in interstitial cells, which were diffusely distributed in submucous plexus preparations but generally located adjacent to myenteric plexus structures. Punctate kappa-ir was seen broadly in nerve fibres in both plexuses, suggesting localisation in varicosities. Neuronal mu/kappa co-localisation was not apparent, although kappa-ir fibres were often apposed against mu-ir cells. mu/kappa co-localisation was detected in interstitial cells in submucous plexus preparations. Similarities in mu and delta expression patterns might reflect similar functional properties previously detected for these receptors. This study indicates that the rat gastrointestinal tract might provide a useful tool for the future study of molecular interactions between opioid receptor types.
Collapse
Affiliation(s)
- A C Gray
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Pde, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
33
|
Boutin H, Jauzac P, MacKenzie ET, Dauphin F. Potential use of early alterations in mu and delta opioid receptors as a predictive index for delayed brain ischemic damage. Neurobiol Dis 2003; 13:63-73. [PMID: 12758068 DOI: 10.1016/s0969-9961(03)00033-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We previously reported differential alterations of the mu, delta, and kappa opioid receptors following permanent middle cerebral artery occlusion. The present work studied the evolution of opioid receptor types following transient focal cerebral ischemia (tMCAO), as well as the putative predictive potential of early neurochemical alterations on the delayed ischemic damage. delta receptors were significantly decreased as early as 6 h post tMCAO (-22% approximately -57% vs. sham group), followed by a decrease in the mu binding site density at 24 h post tMCAO (-18% approximately -65%), in infarcted and penumbral cortices. Finally, early decreases in cortical opioid mu and delta receptor densities were found to significantly correlate (P < 0.001, r(2) = 0.48 and 0.75, respectively) with the occurrence of delayed histological damage. The high correlation between decreases in mu and delta receptor densities at 6 h post tMCAO and the histological damage that occurred at 24 h post tMCAO suggests that these early neurochemical alterations could be used as predictive markers of delayed ischemic damage.
Collapse
MESH Headings
- Animals
- Autoradiography
- Binding, Competitive
- Brain/blood supply
- Brain/pathology
- Brain/physiopathology
- Brain Ischemia/etiology
- Brain Ischemia/pathology
- Brain Ischemia/physiopathology
- Cerebral Infarction/etiology
- Cerebral Infarction/pathology
- Cerebral Infarction/physiopathology
- Disease Progression
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/physiopathology
- Ischemic Attack, Transient/complications
- Ischemic Attack, Transient/physiopathology
- Ligands
- Mice
- Predictive Value of Tests
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Reperfusion Injury/etiology
- Reperfusion Injury/pathology
- Time Factors
Collapse
Affiliation(s)
- Hervé Boutin
- Université de Caen, CNRS UMR 6551, Boulevard H. Becquerel, BP 5229 14074, Caen Cedex, France
| | | | | | | |
Collapse
|
34
|
Csaba Z, Simon A, Helboe L, Epelbaum J, Dournaud P. Neurochemical characterization of receptor-expressing cell populations by in vivo agonist-induced internalization: insights from the somatostatin sst2A receptor. J Comp Neurol 2002; 454:192-9. [PMID: 12412143 DOI: 10.1002/cne.10430] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Characterization of both neurochemical phenotype of G protein-coupled receptor (GPCR)-expressing cells and receptor compartmentalization is a prerequisite for the elucidation of receptor functions in the central nervous system. However, it is often prevented by the diffuse and homogeneous distribution of receptor immunoreactivity. This is particularly true for the somatostatin (SRIF) sst2A receptor, which is largely distributed in the mammalian brain. By using this receptor as a model, we investigated whether receptor internalization, a biochemical property shared by numerous GPCRs, would reveal sst2A-expressing cell populations in the rat dorsolateral septum (LSD), a region in which SRIF might play an important modulatory role. Thirty minutes to 1 hour after intracerebroventricular injection of the sst2A receptor agonist octreotide, numerous sst2A-immunoreactive neurons and processes became apparent due to intracytoplasmic accumulation of intensely stained granules. Double-immunolabeling experiments with synaptophysin and MAP2 provided evidence that internalized sst2A receptors are predominantly localized in the somatodendritic compartment. Revealing sst2A receptor-expressing cell bodies permitted to analyze their neurotransmitter content. Quantitative analysis demonstrated an extensive overlap (approximately 85%) between SRIF- and sst2A-expressing neuronal populations. Additionally, numerous SRIF-immunoreactive axon-like terminals were found in close apposition with sst2A-positive cell bodies and dendrites. Taken together, these data suggest that the sst2A receptor is predominantly expressed in LSD neurons as a postsynaptic autoreceptor, thus providing novel neuroanatomic clues to elucidate SRIF neurotransmission in this region. More generally, in vivo agonist-induced internalization appears as a rapid and powerful tool for the neurochemical characterization of GPCR-expressing cell populations in the mammalian brain.
Collapse
Affiliation(s)
- Zsolt Csaba
- INSERM U549, IFR Broca-Sainte Anne, Centre Paul Broca, 75014 Paris, France
| | | | | | | | | |
Collapse
|
35
|
Drake CT, Chang PC, Harris JA, Milner TA. Neurons with mu opioid receptors interact indirectly with enkephalin-containing neurons in the rat dentate gyrus. Exp Neurol 2002; 176:254-61. [PMID: 12093103 DOI: 10.1006/exnr.2002.7948] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the dentate gyrus, mu opioid receptors (MORs) and their enkephalin agonists have overlapping distributions and influence excitability and plasticity. Released endogenous enkephalins can activate at least some of these MORs; however, whether these interactions involve synaptically associated profiles or more distant associations and whether some subcellular compartments (e.g., terminals or dendrites) are more likely to be targeted than others are not known. To elucidate the relationships between potential sites of enkephalin release and MORs, MOR1 and leucine-enkephalin (LE) immunoreactivities were localized in the hilus by electron microscopy, using immunoperoxidase and immunogold markers. Of the 573 MOR-immunoreactive (ir) profiles analyzed, most were axons and terminals (51 and 30%, respectively), and fewer were dendrites (12%), glia (3%), or unclassifiable (4%). Most MOR-ir profiles resembled interneuron processes, while most LE-ir terminals resembled mossy fibers. One third of MOR-ir profiles were within 3 microm and approximately half were within 4 microm of the nearest LE-ir profile. In contrast, few (3%) MOR-ir profiles contacted LE-ir profiles; only 16% of these contacts included observable synapses, and very few profiles (0.5%) colocalized MOR and LE immunoreactivity. MOR-ir axons, terminals, and dendrites were not distributed differently relative to LE-ir profiles. These results suggest that activation of hilar MORs by LE usually involves short-range volume transmission and that dendritic MORs are as likely as axonal and terminal MORs to be activated by released LE. However, the greater abundance of MOR-ir axons and terminals compared to dendrites indicates that presynaptic profiles are a more prominent target for enkephalins and exogenous MOR agonists such as morphine.
Collapse
Affiliation(s)
- C T Drake
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, New York 10021, USA
| | | | | | | |
Collapse
|
36
|
Milner TA, Drake CT, Aicher SA. C1 adrenergic neurons are contacted by presynaptic profiles containing DELTA-opioid receptor immunoreactivity. Neuroscience 2002; 110:691-701. [PMID: 11934476 DOI: 10.1016/s0306-4522(01)00487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ligands of the delta-opioid receptor tonically influence sympathetic outflow. Some of the actions of delta-opioid receptor agonists may be mediated through C1 adrenergic neurons in the rostral ventrolateral medulla. The goal of this study was to determine whether C1 adrenergic neurons or their afferents contain delta-opioid receptors. Single sections through the rostral ventrolateral medulla were labeled for delta-opioid receptor using the immunoperoxidase method and the epinephrine synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT) using the immunogold method, and examined at the light and electron microscopic level. Few ( approximately 5% of 903) profiles dually labeled for PNMT and delta-opioid receptor were detected; most of these were dendrites with diameters < 1.5 microm. delta-Opioid receptor immunoreactivity was affiliated with multivesicular bodies in dually labeled perikarya, whereas delta-opioid receptor immunoperoxidase labeling appeared as isolated clusters within both singly and dually labeled dendrites. The majority ( approximately 83% of 338) of delta-opioid receptor-immunoreactive profiles were axons and axon terminals. delta-Opioid receptor-immunoreactive terminals averaged 0.75 microm in diameter, contained numerous large dense-core vesicles and usually formed appositions or asymmetric (excitatory-type) synapses with their targets. The majority (>50% of 250) of delta-opioid receptor-immunoreactive axons and axon terminals contacted PNMT-immunoreactive profiles. Most of the contacts formed by delta-opioid receptor-immunoreactive profiles ( approximately 75% of 132) were on single-labeled PNMT-immunoreactive dendrites with diameters <1.5 microm. The prominent localization of delta-opioid receptors to dense-core vesicle-rich presynaptic profiles suggests that delta-opioid receptor activation by endogenous or exogenous agonists may modulate neuropeptide release. Furthermore, the presence of delta-opioid receptors on axon terminals that form excitatory-type synapses with PNMT-immunoreactive dendrites suggests that delta-opioid receptor ligands may modulate afferent activity to C1 adrenergic neurons. The observation that some PNMT-immunoreactive neurons contain delta-opioid receptor immunoreactivity associated with multivesicular bodies and other intracellular organelles suggests that some C1 adrenergic neurons may present, endocytose and/or recycle delta-opioid receptors.
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
37
|
Zhang J, Gibney GT, Zhao P, Xia Y. Neuroprotective role of delta-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 2002; 282:C1225-34. [PMID: 11997236 DOI: 10.1152/ajpcell.00226.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that delta-opioid receptor (DOR) activation protects cortical neurons against glutamate-induced injury. Because glutamate is a mediator of hypoxic injury in neurons, we hypothesized that DOR is involved in neuroprotection during O2 deprivation and that its activation/inhibition may alter neuronal susceptibility to hypoxic stress. In this work, we tested the effect of opioid receptor activation and inhibition on cultured cortical neurons in hypoxia (1% O2). Cell injury was assessed by lactate dehydrogenase release, morphology-based quantification, and live/dead staining. Our results show that 1) immature neurons (days 4 and 6) were not significantly injured by hypoxia until 72 h of exposure, whereas day 8 neurons were injured after only 24-h hypoxia; 2) DOR inhibition (naltrindole) caused neuronal injury in both day 4 and day 8 normoxic cultures and further augmented hypoxic injury in these neurons; 3) DOR activation ([D-Ala2,D-Leu5]enkephalin) reduced neuronal injury in day 8 cultures after 24 h of normoxic or hypoxic exposure and attenuated naltrindole-induced injury with prolonged exposure; and 4) mu- or kappa-opioid receptor inhibition (beta-funaltrexamine or nor-binaltorphimine) had little effect on neurons in either normoxic or hypoxic conditions. Collectively, these data suggest that DOR plays a crucial role in neuroprotection in normoxic and hypoxic environments.
Collapse
MESH Headings
- Animals
- Cell Count
- Cell Differentiation/physiology
- Cell Hypoxia/physiology
- Cell Survival/physiology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Enkephalin, Leucine-2-Alanine/pharmacology
- Hypoxia, Brain/metabolism
- L-Lactate Dehydrogenase/metabolism
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Time Factors
Collapse
Affiliation(s)
- Junhui Zhang
- Department of Pediatrics, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
38
|
Holmes MM, Galea LAM. Defensive behavior and hippocampal cell proliferation: Differential modulation by naltrexone during stress. Behav Neurosci 2002. [DOI: 10.1037/0735-7044.116.1.160] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Cahill CM, McClellan KA, Morinville A, Hoffert C, Hubatsch D, O'Donnell D, Beaudet A. Immunohistochemical distribution of delta opioid receptors in the rat central nervous system: evidence for somatodendritic labeling and antigen-specific cellular compartmentalization. J Comp Neurol 2001; 440:65-84. [PMID: 11745608 DOI: 10.1002/cne.1370] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many studies have reported on the distribution of delta opioid receptors (delta OR) in the mammalian central nervous system (CNS) by using a variety of techniques. However, no general consensus has emerged with regards to the localization of this receptor due to inconsistencies in the immunohistochemical literature. In the present study, we analyzed the cellular and subcellular distribution of immunoreactive delta OR in the rat CNS using two different antibodies (directed against a sequence in the C-terminus or N-terminus of the rat delta OR). By using Western blotting, these two antibodies recognized similar forms of the delta OR in COS-7 cells transfected with this receptor, but distinct forms in membranes from the rat spinal cord. By using light microscopic immunohistochemistry, both antibodies recognized identical populations of nerve cell bodies throughout the CNS; the distribution of these cell bodies conformed to that of delta OR mRNA-expressing cells detected by in situ hybridization. However, whereas the C-terminus-directed antibody recognized predominantly perikarya and proximal dendrites, the N-terminus-directed antibody also labeled extensively dendritic and terminal arbors. Furthermore, by using electron microscopy, the two antibodies were found not only to label differentially somatodendritic versus axonal compartments, but also plasma membrane versus cytoplasmic ones, suggesting that distinct immunological forms of the receptor are being targeted preferentially to different cellular and subcellular domains.
Collapse
Affiliation(s)
- C M Cahill
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
40
|
Krug M, Brödemann R, Wagner M. Simultaneous activation and opioid modulation of long-term potentiation in the dentate gyrus and the hippocampal CA3 region after stimulation of the perforant pathway in freely moving rats. Brain Res 2001; 913:68-77. [PMID: 11532248 DOI: 10.1016/s0006-8993(01)02401-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent investigations indicate monosynaptic activation by the perforant pathway (pp) of the dentate gyrus and the CA3 region. While short-term potentiation and long-term potentiation (LTP) and its opioid modulation are frequently described for the dentate gyrus, data for the CA3 region are rare. Therefore, evoked potentials and opioid modulation of LTP were directly compared in both target regions of the pp. Male Wistar rats were chronically implanted with a bipolar stimulation electrode in the pp (angular bundle) and two recording electrodes in the dorsal dentate gyrus and the CA3 region. Stimulation of the pp in the freely behaving animals induced short-latency evoked potentials in both target structures which were compared with respect to waveform, latency, amplitude and signs of short- and long-term neuronal plasticity. The short-latency potential in the CA3 region seemed to be a monosynaptic potential which displayed LTP sensitive to the N-methyl-D-aspartate receptor antagonist, MK 801, and depotentiating stimulation. After application of specific opioid antagonists at the mu-, delta- and kappa-opioid receptor subtypes, naloxone, funaltrexamine, naltrindole and binaltorphimine, different effects on induction and maintenance of LTP of the population spike were found both within the dentate gyrus and between the dentate gyrus and the CA3 region. The results show marked diminution of LTP in the dentate gyrus only for naloxone and naltrindole and only small, if any, effects of naloxone on LTP in the CA3 region. Thus, neuronal plasticity in the direct perforant pathway input to the CA3 region seems not to be under such substantial opioidergic control. LTP would be inducible in that region even when LTP in the input formation, the dentate gyrus, and transsynaptic LTP via the mossy fibres are blocked.
Collapse
Affiliation(s)
- M Krug
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
41
|
Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors. J Neurosci 2001. [PMID: 11312309 DOI: 10.1523/jneurosci.21-09-03242.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activation of delta-opioid receptors (DORs) in the caudate-putamen nucleus (CPN) produces regionally distinct changes in motor functions, many of which are also influenced by opioids active at micro-opioid receptors (MORs). These actions most likely occur in MOR-enriched patch compartments in the CPN. To determine the functional sites for DOR activation and potential interactions involving MOR in these regions, immunoperoxidase and immunogold-silver labeling methods were applied reversibly for the ultrastructural localization of DOR and MOR in single rat brain sections containing patches of the CPN. DOR immunoreactivity was commonly seen within the cytoplasm of spiny and aspiny neurons, many of which also expressed MOR. In dendrites and spines, DOR labeling was preferentially localized to membranes of the smooth endoplasmic reticulum and spine apparatus, whereas MOR showed a prominent plasmalemmal distribution. DOR- and/or MOR-labeled spines received asymmetric, excitatory synapses, some of which showed notable perforations, suggesting the involvement of these receptors in activity-dependent synaptic plasticity. DORs were more frequently detected than were MORs within axon terminals that formed either asymmetric synapses with spine heads or symmetric synapses with spine necks. Our results suggest that in striatal patches, DORs, often in cooperation with MORs, play a direct modulatory role in controlling the postsynaptic excitability of spines, whereas presynaptic neurotransmitter release onto spines is mainly influenced by DOR activation. In comparison with MOR, the prevalent association of DOR with cytoplasmic organelles that are involved in intracellular trafficking of cell surface proteins suggests major differences in availability of these receptors to extracellular opioids.
Collapse
|
42
|
Barker-Gibb AL, Dougherty KD, Einheber S, Drake CT, Milner TA. Hippocampal tyrosine kinase A receptors are restricted primarily to presynaptic vesicle clusters. J Comp Neurol 2001; 430:182-99. [PMID: 11135255 DOI: 10.1002/1096-9861(20010205)430:2<182::aid-cne1024>3.0.co;2-q] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult septohippocampal cholinergic neurons are dependent on trophic support for normal functioning and survival; these effects are largely mediated by the tyrosine kinase A receptor (TrkA), which binds its ligand, nerve growth factor (NGF), with high affinity. To determine the subcellular localization of TrkA within septohippocampal terminal fields, two rabbit polyclonal antisera to the extracellular domain of TrkA were localized immunocytochemically in rat dentate gyrus by light and electron microscopy. By light microscopy, TrkA immunoreactivity was found mostly in fine, varicose fibers primarily in the hilus and, to a lesser extent, in the granule cell and molecular layers. By electron microscopy, the central and infragranular regions of the hilus contained the highest densities of TrkA-immunoreactive profiles. Most TrkA-labeled profiles were axons (31% of 3,473), axon terminals (20%), and glia (38%); fewer were dendrites (6%), dendritic spines (5%), and granule cell and interneuron somata (<1%). TrkA immunolabeling in axons and axon terminals was discrete, often concentrated in patches of small synaptic vesicles that were adjacent to somatic and dendritic profiles. TrkA-labeled terminals formed both asymmetric and symmetric synapses, primarily with dendritic shafts and spines. TrkA-immunoreactive glial profiles frequently apposed terminals contacting dendritic spines. The findings that presynaptic profiles contain TrkA immunolabeling in sites of vesicle accumulation suggest that NGF binding to TrkA may influence transmitter release. The presence of TrkA immunoreactivity in somata, dendrites, and glia further suggests that cells within the dentate gyrus may take up NGF.
Collapse
Affiliation(s)
- A L Barker-Gibb
- Department of Psychiatry and Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
43
|
Milner TA, Drake CT. Ultrastructural evidence for presynaptic mu opioid receptor modulation of synaptic plasticity in NMDA-receptor-containing dendrites in the dentate gyrus. Brain Res Bull 2001; 54:131-40. [PMID: 11275401 DOI: 10.1016/s0361-9230(00)00415-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Physiological studies have demonstrated that long-term potentiation (LTP) induction in N-methyl-D-aspartate (NMDA) receptor containing dentate granule cells following lateral perforant path stimulation is opioid dependent, involving mu-opioid receptors (MORs) on gamma-aminobutyric acid (GABA)-ergic neurons. To determine the cellular relationships of MORs to postsynaptic NMDA receptor-containing dendrites, immunoreactivity (-I) against MOR and the NMDA receptor subunit 1 (NMDAR1) was examined in the outer molecular layer of the dentate gyrus using electron microscopy. MOR-I was predominantly in axons and axon terminals. NMDAR1-I was almost exclusively in spiny dendrites, but was also in a few terminals. Using immunogold particles to localize precisely NMDAR1, one-third of the NMDAR1-I was detected on the dendritic plasmalemma; in dendritic spines plasmalemmal immunogold particles were near synaptic densities. Many MOR-labeled axons and terminals contacted NMDAR1-labeled dendrites. MOR-labeled terminals formed symmetric (inhibitory-type) synapses on NMDAR1-labeled dendritic shafts or nonsynaptically contacted NMDAR1-labeled shafts and spines. MOR-labeled axons often abutted NMDAR1-containing dendritic spines which received asymmetric (excitatory-type) synapses from unlabeled terminals. Occasionally, MOR-labeled terminals and dendrites were apposed to NMDAR1-containing terminals. These results provide anatomical evidence that endogenous enkephalins or exogenous opioid agonists could inhibit GABAergic terminals that modulate granule cell dendrites, thus boosting depolarizing events in granule cells and facilitating the activation of NMDA receptors located on their dendrites.
Collapse
MESH Headings
- Animals
- Dendrites/chemistry
- Dendrites/ultrastructure
- Dentate Gyrus/chemistry
- Dentate Gyrus/ultrastructure
- Interneurons/chemistry
- Interneurons/ultrastructure
- Male
- Microscopy, Electron
- Neuronal Plasticity
- Presynaptic Terminals/chemistry
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/ultrastructure
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/ultrastructure
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
44
|
Mikkelsen JD, Karle J, Madsen TM. Intrahippocampal infusion of antisense oligodeoxynucleotide to the GABA(A) receptor gamma2 subunit enhances neuropeptide Y gene expression. Brain Res Bull 2001; 54:91-9. [PMID: 11226718 DOI: 10.1016/s0361-9230(00)00446-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of hippocampal treatment with a phosphorothioate oligodeoxynucleotide (ODN) antisense to the gamma-aminobutyric acid (GABA)A receptor gamma2 subunit on neuropeptide Y (NPY) were studied. Adult male Wistar rats were treated with unilateral intrahippocampal infusion of gamma2 subunit antisense ODN for 5 days. Rats infused with mismatch ODN and naïve rats served as controls. Brain sections were analysed for levels of NPY mRNA by in situ hybridisation, NPY-immunoreactivity (NPY-ir) by means of immunocytochemistry, and specific NPY binding sites by in vitro receptor autoradiography. Following infusion of antisense ODN, a marked increase in cytoplasmic NPY-ir was observed in hilar neurones of the fascia dentata. Further, intense NPY-ir was visualised in the mossy fibres and in cell bodies of the entorhinal cortex and throughout the neocortex. High levels of NPY mRNA were detected in the same cortical areas of antisense treated rats. A very large increase was observed in the piriform and parietal areas. NPY gene expression also occurred in the granular cell layer, in which no NPY mRNA could be detected in normal animals. The level and distribution of cells displaying high levels of NPY mRNA differed among animals, perhaps as a result of the distinct anatomical location of ODN infusion. Finally, hippocampal levels of NPY specific binding increased, suggesting that NPY neurotransmission is markedly increased. These findings are reminiscent of reported changes in the expression of NPY mRNA and immunoreactivity in conditions of increased neuronal excitation and support the usefulness of the present animal model for the study of epileptic phenomena.
Collapse
|
45
|
Boutin H, Dauphin F, Jauzac P, MacKenzie ET. Exofocal alterations in opioidergic receptor densities following focal cerebral ischemia in the mouse. Exp Neurol 2000; 164:314-21. [PMID: 10915570 DOI: 10.1006/exnr.2000.7400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous studies of our group, we have reported differential alterations in opioidergic receptor subtypes densities in infarcted and periinfarcted brain tissue following middle cerebral artery occlusion (MCAO) in mice. Other studies have also described subcortical alterations consecutive to focal cortical ischemia. For a better understanding of ischemic processes in exofocal areas, we have investigated the evolution of opioidergic receptors following focal cortical ischemia through the quantification of relative binding densities, B(max) and K(d) values for the mu, delta, and kappa subtypes. Our results demonstrate that opioid receptor subtypes exhibit adaptations at distance from the ischemic core, mainly in the striatum, the thalamus, and the substantia nigra. Indeed, mu and delta B(max) values were increased in ventral thalamic nuclei, while kappa relative binding densities were transiently increased in nucleus medialis dorsalis and nucleus lateralis, pars posterior. Moreover, the B(max) of mu and delta receptors were transiently decreased at 6 h post-MCAO in ipsi- and contralateral patches and matrices of the striatum. Conversely, the mu B(max) values were increased in ipsi- and contralateral substantia nigra, pars compacta, and pars reticulata, 24 h following MCAO. In contralateral substantia nigra, pars compacta, kappa B(max) was found to be decreased at 24 h post-MCAO. These alterations could reflect neuronal dysfunction in exofocal brain structures, consecutively to the degeneration of defined neuroanatomical pathways. Our study indicates that opioidergic receptors could be used as markers of the neuronal reorganization that take place in subcortical areas following an ischemic insult of the brain cortex.
Collapse
Affiliation(s)
- H Boutin
- CNRS UMR 6551, Centre CYCERON, University of Caen, Boulevard H. Becquerel, Caen Cedex, 14074, France
| | | | | | | |
Collapse
|
46
|
Milner TA, Shah P, Pierce JP. beta-adrenergic receptors primarily are located on the dendrites of granule cells and interneurons but also are found on astrocytes and a few presynaptic profiles in the rat dentate gyrus. Synapse 2000; 36:178-93. [PMID: 10819898 DOI: 10.1002/(sici)1098-2396(20000601)36:3<178::aid-syn3>3.0.co;2-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the rat dentate gyrus, beta-adrenergic receptor (beta-AR) activation is thought to be important in mediating the effects of norepinephrine (NE). beta-AR-immunoreactivity (beta-AR-I) was localized in this study by light and electron microscopy in the rat dentate gyrus by using two previously characterized antibodies to the beta-AR. By light microscopy, dense beta-AR-I was observed in the somata of granule cells and a few hilar interneurons. Diffuse and slightly granular beta-AR-I was found in all laminae, although it was most noticeable in the molecular layer. Ultrastructurally, the cytoplasm of granule cell and interneuronal perikarya (some of which contained parvalbumin immunoreactivity) contained beta-AR-I. beta-AR-I was associated primarily with the endoplasmic reticula; however, a few patches were observed near the plasmalemma. Quantitative analysis revealed that the greatest proportion of beta-AR-labeled profiles was found in the molecular layer. The majority of beta-AR-labeled profiles were either dendritic or astrocytic. In dendritic profiles, beta-AR-I was prominent near postsynaptic densities in large dendrites, many of which originated from granule cell somata. Moreover, some beta-AR-I was found in dendritic spines, sometimes affiliated with the spine apparati. Astrocytic profiles with beta-AR-I were commonly found next to unlabeled terminals which formed asymmetric (excitatory-type) synapses with dendritic spines. Additionally, beta-AR-I was observed in a few unmyelinated axons and axon terminals, many of which formed synapses with dendritic spines. Dual-labeling studies revealed that axons and axon terminals containing tyrosine hydroxylase (TH), the catecholamine synthesizing enzyme, often were near both neuronal and glial profiles containing beta-AR-I. These studies demonstrate that hippocampal beta-AR-I is localized: 1) principally in postsynaptic sites on granule cells and a few interneurons (some of which were basket cells); and 2) in glial processes. These observations add further support to the contention that beta-AR-activation modulates synaptic function through disparate pathways: directly, at either postsynaptic densities or presynaptic processes, or indirectly, through adjacent glial processes.
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
47
|
Matthies H, Schroeder H, Becker A, Loh H, Höllt V, Krug M. Lack of expression of long-term potentiation in the dentate gyrus but not in the CA1 region of the hippocampus of mu-opioid receptor-deficient mice. Neuropharmacology 2000; 39:952-60. [PMID: 10727705 DOI: 10.1016/s0028-3908(99)00203-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The possible involvement of the mu-opioid receptor subtype in mechanisms of long-term potentiation (LTP) of the lateral perforant pathway to the dentate gyrus neurons, as well as of the Schaffer collateral-commissural input of CA1 neurons, was investigated using mu-opioid receptor-deficient mutant mice. In transversal hippocampal slices from mice lacking the mu-opioid receptor (MOR) only a short potentiation in the dentate gyrus after tetanization of the lateral perforant pathway was found. In contrast, the loss of the mu-opioid receptor in the CA1 region did not affect the potentiation of the field potentials induced by tetanization of the Schaffer collaterals. In parallel experiments, the application of 10 microM of the selective MOR-antagonist, funaltrexamine, decreased LTP in the dentate gyrus of wild-type mice but again did not alter the potentiation of the field potentials in the CA1. The loss of MOR-binding in the hippocampus was accompanied by a reduction in D2-binding sites indicating a possible compensatory role of the dopaminergic system. The D1- and glutamate binding was not affected. These observations confirm earlier results with pharmacological blockade of opioid receptors in the dentate gyrus and demonstrate an essential role of MOR activation for the generation of LTP in the dentate gyrus of the mouse but not necessarily in the CA1 region.
Collapse
Affiliation(s)
- H Matthies
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Pierce JP, Kurucz OS, Milner TA. Morphometry of a peptidergic transmitter system: dynorphin B-like immunoreactivity in the rat hippocampal mossy fiber pathway before and after seizures. Hippocampus 1999; 9:255-76. [PMID: 10401641 DOI: 10.1002/(sici)1098-1063(1999)9:3<255::aid-hipo6>3.0.co;2-s] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the morphometry of classical transmitter systems has been extensively studied, relatively little quantitative information is available on the subcellular distribution of peptidergic dense core vesicles (DCVs) within axonal arbors and terminals, and how distribution patterns change in response to neural activity. This study used correlated quantitative light and electron microscopic immunohistochemistry to examine dynorphin B-like immunoreactivity (dyn B-LI) in the rat hippocampal mossy fiber pathway before and after seizures. Forty-eight hours after seizures induced by two pentylenetetrazol injections, light microscopic dyn B-LI was decreased dorsally and increased ventrally. Ultrastructural examination indicated that, in the hilus of the dentate gyrus, these alterations resulted from changes that were almost entirely restricted to the profiles of the large mossy-like terminals formed by mossy fiber collaterals (which primarily contact spines), compared to the profiles of the smaller, less-convoluted terminals found on the same collaterals (which primarily contact aspiny dendritic shafts). Dorsally, mossy terminal profile labeled DCV (/DCV) density dropped substantially, while ventrally, both mossy terminal profile perimeter and /DCV density increased. In all terminal profile examined, /DCVs also were closely associated with the plasma membrane. Following seizures, there was a reorientation of /DCVs along the inner surface of mossy terminal profile membranes, in relation to the types of profiles adjacent to the membrane: in both the dorsal and ventral hilus, significantly fewer /DCVs were observed at sites apposed to dendrites, and significantly more were observed at sites apposed to spines. Thus, after seizures, changes specific to: (1) the dorsoventral level of the hippocampal formation, (2) the type of terminal, and (3) the type of profile in apposition to the portion of the terminal membrane examined were all observed. An explanation of these complex, interdependent alterations will probably require evoking multiple interrelated mechanisms, including selective prodynorphin synthesis, transport, and release.
Collapse
Affiliation(s)
- J P Pierce
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
49
|
Boutin H, Dauphin F, MacKenzie ET, Jauzac P. Differential time-course decreases in nonselective, mu-, delta-, and kappa-opioid receptors after focal cerebral ischemia in mice. Stroke 1999; 30:1271-7; discussion 1278. [PMID: 10356111 DOI: 10.1161/01.str.30.6.1271] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Neuroprotection studies have demonstrated the involvement of opioids in ischemia, and we have previously demonstrated alterations in Bmax of opioidergic receptors after 2 post-MCAO time points in mice. METHODS In the present study, we have investigated in a detailed manner the postischemic time course of variations in [3H]diprenorphine (nonselective), [3H]DAMGO (mu), [3H]DADLE (delta), and [3H]U69593 (kappa) relative binding densities after focal cerebral ischemia (0 to 48 hours) in mice. RESULTS In frontoparietal cortices, our results demonstrate decreases in (1) delta receptor densities at 1 to 3 hours after MCAO, (2) mu and nonselective binding sites at 6 to 12 hours after MCAO, and (3) kappa receptor densities between 6 and 24 hours after MCAO. In the rostral part of the infarct border zone, a decrease in delta-receptors was found concomitant with the extension of the infarct core; conversely, the decrease in delta-receptors appeared before (6 to 12 hours) macroscopic histological damage, which occurred between 12 hours and 24 hours after MCAO in the caudal part of this area. In this frontier, mu- and especially kappa-binding sites were decreased later (12 to 48 hours after MCAO). CONCLUSIONS These differential alterations in opioidergic receptors could be due to the selective sublocalization of receptors, postsynaptically on cortical interneurons for mu- and delta-receptors versus presynaptically on cortical afferent pathways for the kappa subtype. Further, our results suggest that delta- and mu-opioidergic receptors could be markers of infarct extension and neuronal death; the study of [3H]diprenorphine and selective binding sites argues in favor of the use of receptor-specific ligands. Finally, the relative preservation of kappa-receptors might be correlated with the neuroprotective role of kappa-agonists, as previously reported.
Collapse
Affiliation(s)
- H Boutin
- University of Caen, CNRS UMR 6551, Centre CYCERON, Caen, France
| | | | | | | |
Collapse
|
50
|
Milner TA, Lee A, Aicher SA, Rosin DL. Hippocampal ?2A-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980808)395:3<310::aid-cne4>3.0.co;2-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|