1
|
Harding P, Owen N, Eintracht J, Cunha DL, Chan B, Rainger J, Moosajee M. Variant-specific disruption to notch signalling in PAX6 microphthalmia and aniridia patient-derived hiPSC optic cup-like organoids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167869. [PMID: 40280197 DOI: 10.1016/j.bbadis.2025.167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The homeobox-containing transcription factor PAX6 is a key regulator of eye development. Pathogenic heterozygous PAX6 variants lead to variable ocular phenotypes, most commonly haploinsufficiency-induced aniridia. Missense variants are typically associated with milder ocular conditions, although variants in the DNA-binding paired domain which alter target binding lead to severe ocular phenotypes including bilateral microphthalmia, similar to SOX2-anophthalmia syndrome. However, the variant-specific pathway disruption resulting in phenotypic heterogeneity is not well understood. To investigate pathogenic mechanisms of PAX6 variants, transcriptomic and chromatin accessibility analysis was performed on hiPSC derived 3D optic cup-like organoids generated from patients with variants (i) PAX6N124K displaying combined microphthalmia, aniridia and optic nerve coloboma, and (ii) PAX6R261X exhibiting typical aniridia. Total RNA sequencing analysis revealed downregulation of SOX2 in missense PAX6N124K cups compared to both wildtype and PAX6R261X haploinsufficient aniridia controls, along with Notch signalling components and markers of proliferation and differentiation. Transcription factor binding motifs of Notch-related genes were also found to be differentially bound in PAX6N124K cups through ATACseq footprinting analysis. Our analysis of PAX6-related oculopathies using in vitro models reveals disruption to DNA binding perturbs SOX2 and Notch signalling, contributing to severe ocular phenotypes in patients with missense changes in the paired domain. This work reveals a previously unestablished role for PAX6 in SOX2 and Notch signalling regulation during early oculogenesis, as well as illuminating disease mechanisms underlying variant-specific ocular phenotypes and genotype-phenotype correlations. These novel insights can influence clinical care, and provide valuable data on potential therapeutic targets, which can guide future translational research.
Collapse
Affiliation(s)
| | | | | | | | - Brian Chan
- Roslin Institute, University of Edinburgh, EH25 9RG Edinburgh, UK
| | - Joe Rainger
- Roslin Institute, University of Edinburgh, EH25 9RG Edinburgh, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, EC1V 9EL London, UK; Moorfields Eye Hospital NHS Foundation Trust, EC1V 9EL London, UK; Francis Crick Institute, NW1 1AT London, UK.
| |
Collapse
|
2
|
Barabino A, Mellal K, Hamam R, Polosa A, Griffith M, Bouchard JF, Kalevar A, Hanna R, Bernier G. Molecular characterization and sub-retinal transplantation of hypoimmunogenic human retinal sheets in a minipig model of severe photoreceptor degeneration. Development 2024; 151:dev203071. [PMID: 39633598 DOI: 10.1242/dev.203071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Retinal degenerative diseases affect millions of people worldwide, and legal blindness is generally associated with the loss of cone photoreceptors located in the central region of the retina called the macula. Currently, there is no treatment to replace the macula. Addressing this unmet need, we employed control isogenic and hypoimmunogenic induced pluripotent stem cell lines to generate spontaneously polarized retinal sheets (RSs). RSs were enriched in retinal progenitor and cone precursor cells, which could differentiate into mature S- and M/L-cones in long-term cultures. Single-cell RNA-seq analysis showed that RSs recapitulate the ontogeny of the developing human retina. Isolation of neural rosettes for sub-retinal transplantation effectively eliminated unwanted cells such as RPE cells. In a porcine model of chemically induced retinal degeneration, grafts integrated the host retina and formed a new, yet immature, photoreceptor layer. In one transplanted animal, functional and immunohistochemical assays suggest that grafts exhibited responsiveness to light stimuli and established putative synaptic connections with host bipolar neurons. This study underscores the potential and challenges of RSs for clinical applications.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Katia Mellal
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Rimi Hamam
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Anna Polosa
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - May Griffith
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Ananda Kalevar
- Department of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
3
|
McDonnell AF, Plech M, Livesey BJ, Gerasimavicius L, Owen LJ, Hall HN, FitzPatrick DR, Marsh JA, Kudla G. Deep mutational scanning quantifies DNA binding and predicts clinical outcomes of PAX6 variants. Mol Syst Biol 2024; 20:825-844. [PMID: 38849565 PMCID: PMC11219921 DOI: 10.1038/s44320-024-00043-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements. Mutations in DNA-facing residues of the N-terminal subdomain and linker region were most detrimental, as were mutations to prolines and to negatively charged residues. Many variants caused sequence-specific molecular gain-of-function effects, including variants in position 71 that increased binding to the LE9 enhancer but decreased binding to a SELEX-derived binding site. In the absence of antibiotic selection, variants that retained DNA binding slowed yeast growth, likely because such variants perturbed the yeast transcriptome. Benchmarking against known patient variants and applying ACMG/AMP guidelines to variant classification, we obtained supporting-to-moderate evidence that 977 variants are likely pathogenic and 1306 are likely benign. Our analysis shows that most pathogenic mutations in the paired domain of PAX6 can be explained simply by the effects of these mutations on PAX6:DNA association, and establishes Y1H as a generalisable assay for the interpretation of variant effects in transcription factors.
Collapse
Affiliation(s)
- Alexander F McDonnell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Marcin Plech
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Liusaidh J Owen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hildegard Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
4
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
6
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Nuclear Transporter IPO13 Is Central to Efficient Neuronal Differentiation. Cells 2022; 11:cells11121904. [PMID: 35741036 PMCID: PMC9221400 DOI: 10.3390/cells11121904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular transport between the nucleus and cytoplasm of the cell is mediated by the importin superfamily of transport receptors, of which the bidirectional transporter Importin 13 (IPO13) is a unique member, with a critical role in early embryonic development through nuclear transport of key regulators, such as transcription factors Pax6, Pax3, and ARX. Here, we examined the role of IPO13 in neuronal differentiation for the first time, using a mouse embryonic stem cell (ESC) model and a monolayer-based differentiation protocol to compare IPO13−/− to wild type ESCs. Although IPO13−/− ESCs differentiated into neural progenitor cells, as indicated by the expression of dorsal forebrain progenitor markers, reduced expression of progenitor markers Pax6 and Nestin compared to IPO13−/− was evident, concomitant with reduced nuclear localisation/transcriptional function of IPO13 import cargo Pax6. Differentiation of IPO13−/− cells into neurons appeared to be strongly impaired, as evidenced by altered morphology, reduced expression of key neuronal markers, and altered response to the neurotransmitter glutamate. Our findings establish that IPO13 has a key role in ESC neuronal differentiation, in part through the nuclear transport of Pax6.
Collapse
|
8
|
RYBP regulates Pax6 during in vitro neural differentiation of mouse embryonic stem cells. Sci Rep 2022; 12:2364. [PMID: 35149723 PMCID: PMC8837790 DOI: 10.1038/s41598-022-06228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 12/05/2022] Open
Abstract
We have previously reported that RING1 and YY1 binding protein (RYBP) is important for central nervous system development in mice and that Rybp null mutant (Rybp−/−) mouse embryonic stem (ES) cells form more progenitors and less terminally differentiated neural cells than the wild type cells in vitro. Accelerated progenitor formation coincided with a high level of Pax6 expression in the Rybp−/− neural cultures. Since Pax6 is a retinoic acid (RA) inducible gene, we have analyzed whether altered RA signaling contributes to the accelerated progenitor formation and impaired differentiation ability of the Rybp−/− cells. Results suggested that elevated Pax6 expression was driven by the increased activity of the RA signaling pathway in the Rybp−/− neural cultures. RYBP was able to repress Pax6 through its P1 promoter. The repression was further attenuated when RING1, a core member of ncPRC1s was also present. According to this, RYBP and PAX6 were rarely localized in the same wild type cells during in vitro neural differentiation. These results suggest polycomb dependent regulation of Pax6 by RYBP during in vitro neural differentiation. Our results thus provide novel insights on the dynamic regulation of Pax6 and RA signaling by RYBP during mouse neural development.
Collapse
|
9
|
Autoregulation of Pax6 in neuronal cells is mediated by Pax6(5a), Pax6(ΔPD), SPARC, and p53. Mol Biol Rep 2022; 49:3271-3279. [PMID: 35103896 DOI: 10.1007/s11033-022-07164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pax6, a multifunctional protein and a transcriptional regulator is critical for optimal functioning of neuronal cells. It is known that alternatively spliced Pax6 isoforms and co-expressed interacting proteins mediate cell/tissue specific autoregulation of Pax6, however, underlying mechanism(s) are poorly understood. METHODS AND RESULTS We used Neuro-2a cells to explore the mechanism of autoregulation of Pax6 in neuronal cells whereas NIH/3T3 cells were used as control. We first studied the transcript expression of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD); and the two co-expressed Pax6-interacting partners: SPARC and p53 in normal and overexpressed conditions, through the semi-quantitative RT-PCR. Further, we used the luciferase reporter assay to study the binding and transactivation of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD) to their respective promoters: P0, P1, and Pα; followed by that of the two co-expressed Pax6-interacting partners: SPARC and p53 to the Pax6-P1 promoter. Expression and distribution of Pax6, Pax6(5a) and Pax6(ΔPD), their binding to Pax6-promoters (P0, P1, and Pα) and transactivation were modulated in transfected Neuro-2a cells. CONCLUSION Our results suggest that autoregulation of Pax6 in neuronal cells is driven by a promoter dependent mechanism which is mediated by spliced variants [Pax6(5a) and Pax6(ΔPD)] and interacting proteins (SPARC and p53) of Pax6.
Collapse
|
10
|
Latta L, Figueiredo FC, Ashery-Padan R, Collinson JM, Daniels J, Ferrari S, Szentmáry N, Solá S, Shalom-Feuerstein R, Lako M, Xapelli S, Aberdam D, Lagali N. Pathophysiology of aniridia-associated keratopathy: Developmental aspects and unanswered questions. Ocul Surf 2021; 22:245-266. [PMID: 34520870 DOI: 10.1016/j.jtos.2021.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Aniridia, a rare congenital disease, is often characterized by a progressive, pronounced limbal insufficiency and ocular surface pathology termed aniridia-associated keratopathy (AAK). Due to the characteristics of AAK and its bilateral nature, clinical management is challenging and complicated by the multiple coexisting ocular and systemic morbidities in aniridia. Although it is primarily assumed that AAK originates from a congenital limbal stem cell deficiency, in recent years AAK and its pathogenesis has been questioned in the light of new evidence and a refined understanding of ocular development and the biology of limbal stem cells (LSCs) and their niche. Here, by consolidating and comparing the latest clinical and preclinical evidence, we discuss key unanswered questions regarding ocular developmental aspects crucial to AAK. We also highlight hypotheses on the potential role of LSCs and the ocular surface microenvironment in AAK. The insights thus gained lead to a greater appreciation for the role of developmental and cellular processes in the emergence of AAK. They also highlight areas for future research to enable a deeper understanding of aniridia, and thereby the potential to develop new treatments for this rare but blinding ocular surface disease.
Collapse
Affiliation(s)
- L Latta
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany; Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - F C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - R Ashery-Padan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - J M Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J Daniels
- Cells for Sight, UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - S Ferrari
- The Veneto Eye Bank Foundation, Venice, Italy
| | - N Szentmáry
- Dr. Rolf. M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Saar, Germany
| | - S Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - R Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - M Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - S Xapelli
- Instituto Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D Aberdam
- Centre de Recherche des Cordeliers, INSERM U1138, Team 17, France; Université de Paris, 75006, Paris, France.
| | - N Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
11
|
Grant MK, Bobilev AM, Branch A, Lauderdale JD. Structural and functional consequences of PAX6 mutations in the brain: Implications for aniridia. Brain Res 2021; 1756:147283. [PMID: 33515537 DOI: 10.1016/j.brainres.2021.147283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
The paired-box 6 (PAX6) gene encodes a highly conserved transcription factor essential for the proper development of the eye and brain. Heterozygous loss-of-function mutations in PAX6 are causal for a condition known as aniridia in humans and the Small eye phenotype in mice. Aniridia is characterized by iris hypoplasia and other ocular abnormalities, but recent evidence of neuroanatomical, sensory, and cognitive impairments in this population has emerged, indicating brain-related phenotypes as a prevalent feature of the disorder. Determining the neurophysiological origins of brain-related phenotypes in this disorder presents a substantial challenge, as the majority of extra-ocular traits in aniridia demonstrate a high degree of heterogeneity. Here, we summarize and integrate findings from human and rodent model studies, which have focused on neuroanatomical and functional consequences of PAX6 mutations. We highlight novel findings from PAX6 central nervous system studies in adult mammals, and integrate these findings into what we know about PAX6's role in development of the central nervous system. This review presents the current literature in the field in order to inform clinical application, discusses what is needed in future studies, and highlights PAX6 as a lens through which to understand genetic disorders affecting the human nervous system.
Collapse
Affiliation(s)
- Madison K Grant
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA.
| | - Anastasia M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
12
|
Korecki AJ, Cueva-Vargas JL, Fornes O, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Zhou M, Wasserman WW, Di Polo A, Simpson EM. Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Müller glial, and PAX6 cells. Gene Ther 2021; 28:351-372. [PMID: 33531684 PMCID: PMC8222000 DOI: 10.1038/s41434-021-00227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Small and cell-type restricted promoters are important tools for basic and preclinical research, and clinical delivery of gene therapies. In clinical gene therapy, ophthalmic trials have been leading the field, with over 50% of ocular clinical trials using promoters that restrict expression based on cell type. Here, 19 human DNA MiniPromoters were bioinformatically designed for rAAV, tested by neonatal intravenous delivery in mouse, and successful MiniPromoters went on to be tested by intravitreal, subretinal, intrastromal, and/or intravenous delivery in adult mouse. We present promoter development as an overview for each cell type, but only show results in detail for the recommended MiniPromoters: Ple265 and Ple341 (PCP2) ON bipolar, Ple349 (PDE6H) cone, Ple253 (PITX3) corneal stroma, Ple32 (CLDN5) endothelial cells of the blood-retina barrier, Ple316 (NR2E1) Müller glia, and Ple331 (PAX6) PAX6 positive. Overall, we present a resource of new, redesigned, and improved MiniPromoters for ocular gene therapy that range in size from 784 to 2484 bp, and from weaker, equal, or stronger in strength relative to the ubiquitous control promoter smCBA. All MiniPromoters will be useful for therapies involving small regulatory RNA and DNA, and proteins ranging from 517 to 1084 amino acids, representing 62.9-90.2% of human proteins.
Collapse
Affiliation(s)
- Andrea J. Korecki
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jorge L. Cueva-Vargas
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Oriol Fornes
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jessica Agostinone
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Rachelle A. Farkas
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Jack W. Hickmott
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Siu Ling Lam
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Anthony Mathelier
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Michelle Zhou
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Wyeth W. Wasserman
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Elizabeth M. Simpson
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
13
|
Rabiee B, Anwar KN, Shen X, Putra I, Liu M, Jung R, Afsharkhamseh N, Rosenblatt MI, Fishman GA, Liu X, Ghassemi M, Djalilian AR. Gene dosage manipulation alleviates manifestations of hereditary PAX6 haploinsufficiency in mice. Sci Transl Med 2020; 12:eaaz4894. [PMID: 33298563 DOI: 10.1126/scitranslmed.aaz4894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
In autosomal dominant conditions with haploinsufficiency, a single functional allele cannot maintain sufficient dosage for normal function. We hypothesized that pharmacologic induction of the wild-type allele could lead to gene dosage compensation and mitigation of the disease manifestations. The paired box 6 (PAX6) gene is crucial in tissue development and maintenance particularly in eye, brain, and pancreas. Aniridia is a panocular condition with impaired eye development and limited vision due to PAX6 haploinsufficiency. To test our hypothesis, we performed a chemical screen and found mitogen-activated protein kinase kinase (MEK) inhibitors to induce PAX6 expression in normal and mutant corneal cells. Treatment of newborn Pax6-deficient mice (Pax6Sey-Neu/+ ) with topical or systemic MEK inhibitor PD0325901 led to increased corneal PAX6 expression, improved corneal morphology, reduced corneal opacity, and enhanced ocular function. These results suggest that induction of the wild-type allele by drug repurposing is a potential therapeutic strategy for haploinsufficiencies, which is not limited to specific mutations.
Collapse
Affiliation(s)
- Behnam Rabiee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mingna Liu
- Departments of Biology and Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Rebecca Jung
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Neda Afsharkhamseh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL 60608, USA
| | - Xiaorong Liu
- Departments of Biology and Psychology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mahmood Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Mirjalili Mohanna SZ, Hickmott JW, Lam SL, Chiu NY, Lengyell TC, Tam BM, Moritz OL, Simpson EM. Germline CRISPR/Cas9-Mediated Gene Editing Prevents Vision Loss in a Novel Mouse Model of Aniridia. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:478-490. [PMID: 32258211 PMCID: PMC7114625 DOI: 10.1016/j.omtm.2020.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Aniridia is a rare eye disorder, which is caused by mutations in the paired box 6 (PAX6) gene and results in vision loss due to the lack of a long-term vision-saving therapy. One potential approach to treating aniridia is targeted CRISPR-based genome editing. To enable the Pax6 small eye (Sey) mouse model of aniridia, which carries the same mutation found in patients, for preclinical testing of CRISPR-based therapeutic approaches, we endogenously tagged the Sey allele, allowing for the differential detection of protein from each allele. We optimized a correction strategy in vitro then tested it in vivo in the germline of our new mouse to validate the causality of the Sey mutation. The genomic manipulations were analyzed by PCR, as well as by Sanger and next-generation sequencing. The mice were studied by slit lamp imaging, immunohistochemistry, and western blot analyses. We successfully achieved both in vitro and in vivo germline correction of the Sey mutation, with the former resulting in an average 34.8% ± 4.6% SD correction, and the latter in restoration of 3xFLAG-tagged PAX6 expression and normal eyes. Hence, in this study we have created a novel mouse model for aniridia, demonstrated that germline correction of the Sey mutation alone rescues the mutant phenotype, and developed an allele-distinguishing CRISPR-based strategy for aniridia.
Collapse
Affiliation(s)
- Seyedeh Zeinab Mirjalili Mohanna
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nina Y Chiu
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences and Centre for Macular Research, The University of British Columbia, Vancouver, BC, Canada
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences and Centre for Macular Research, The University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Williamson KA, Hall HN, Owen LJ, Livesey BJ, Hanson IM, Adams GGW, Bodek S, Calvas P, Castle B, Clarke M, Deng AT, Edery P, Fisher R, Gillessen-Kaesbach G, Heon E, Hurst J, Josifova D, Lorenz B, McKee S, Meire F, Moore AT, Parker M, Reiff CM, Self J, Tobias ES, Verheij JBGM, Willems M, Williams D, van Heyningen V, Marsh JA, FitzPatrick DR. Recurrent heterozygous PAX6 missense variants cause severe bilateral microphthalmia via predictable effects on DNA-protein interaction. Genet Med 2020; 22:598-609. [PMID: 31700164 PMCID: PMC7056646 DOI: 10.1038/s41436-019-0685-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Most classical aniridia is caused by PAX6 haploinsufficiency. PAX6 missense variants can be hypomorphic or mimic haploinsufficiency. We hypothesized that missense variants also cause previously undescribed disease by altering the affinity and/or specificity of PAX6 genomic interactions. METHODS We screened PAX6 in 372 individuals with bilateral microphthalmia, anophthalmia, or coloboma (MAC) from the Medical Research Council Human Genetics Unit eye malformation cohort (HGUeye) and reviewed data from the Deciphering Developmental Disorders study. We performed cluster analysis on PAX6-associated ocular phenotypes by variant type and molecular modeling of the structural impact of 86 different PAX6 causative missense variants. RESULTS Eight different PAX6 missense variants were identified in 17 individuals (15 families) with MAC, accounting for 4% (15/372) of our cohort. Seven altered the paired domain (p.[Arg26Gln]x1, p.[Gly36Val]x1, p.[Arg38Trp]x2, p.[Arg38Gln]x1, p.[Gly51Arg]x2, p.[Ser54Arg]x2, p.[Asn124Lys]x5) and one the homeodomain (p.[Asn260Tyr]x1). p.Ser54Arg and p.Asn124Lys were exclusively associated with severe bilateral microphthalmia. MAC-associated variants were predicted to alter but not ablate DNA interaction, consistent with the electrophoretic mobility shifts observed using mutant paired domains with well-characterized PAX6-binding sites. We found no strong evidence for novel PAX6-associated extraocular disease. CONCLUSION Altering the affinity and specificity of PAX6-binding genome-wide provides a plausible mechanism for the worse-than-null effects of MAC-associated missense variants.
Collapse
Affiliation(s)
- Kathleen A Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - H Nikki Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Liusaidh J Owen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Isabel M Hanson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Simon Bodek
- Department of Clinical Genetics, St Michael's Hospital, Southwell Street, Bristol, UK
| | - Patrick Calvas
- CHU Toulouse, Service de Génétique Médicale, Hôpital Purpan, Toulouse, France
| | - Bruce Castle
- Peninsula Clinical Genetics, Royal Devon and Exeter Hospitals (Heavitree), Exeter, UK
| | - Michael Clarke
- Newcastle Eye Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Alexander T Deng
- Clinical Genetics, Guys and St Thomas NHS Trust, Great Maze Pond, London, UK
| | - Patrick Edery
- Hospices Civils de Lyon, Genetic Department and National HHT Reference Center, Femme-Mère-Enfants Hospital, Bron, France
| | - Richard Fisher
- Teeside Genetics Unit, The James Cook University Hospital, Middlesbrough, UK
| | | | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON, Canada
| | - Jane Hurst
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | - Dragana Josifova
- Clinical Genetics, Guys and St Thomas NHS Trust, Great Maze Pond, London, UK
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Shane McKee
- Northern Ireland Regional Genetics Service (NIRGS), Belfast City Hospital, Belfast, UK
| | - Francoise Meire
- Department of Ophthalmology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | | | - Michael Parker
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Charlotte M Reiff
- Department of Ophthalmology, University of Freiburg, Freiburg, Germany
| | - Jay Self
- University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Edward S Tobias
- Academic Medical Genetics and Pathology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Joke B G M Verheij
- Department of Genetics, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Denise Williams
- Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham, UK
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
17
|
Chaudhary S, Islam Z, Mishra V, Rawat S, Ashraf GM, Kolatkar PR. Sox2: A Regulatory Factor in Tumorigenesis and Metastasis. Curr Protein Pept Sci 2019; 20:495-504. [PMID: 30907312 DOI: 10.2174/1389203720666190325102255] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023]
Abstract
The transcription factor Sox2 plays an important role in various phases of embryonic development, including cell fate and differentiation. These key regulatory functions are facilitated by binding to specific DNA sequences in combination with partner proteins to exert their effects. Recently, overexpression and gene amplification of Sox2 has been associated with tumor aggression and metastasis in various cancer types, including breast, prostate, lung, ovarian and colon cancer. All the different roles for Sox2 involve complicated regulatory networks consisting of protein-protein and protein-nucleic acid interactions. Their involvement in the EMT modulation is possibly enabled by Wnt/ β-catenin and other signaling pathways. There are number of in vivo models which show Sox2 association with increased cancer aggressiveness, resistance to chemo-radiation therapy and decreased survival rate suggesting Sox2 as a therapeutic target. This review will focus on the different roles for Sox2 in metastasis and tumorigenesis. We will also review the mechanism of action underlying the cooperative Sox2- DNA/partner factors binding where Sox2 can be potentially explored for a therapeutic opportunity to treat cancers.
Collapse
Affiliation(s)
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Vijaya Mishra
- RASA Life science Informatics, Pune, Maharashtra, India
| | - Sakshi Rawat
- RASA Life science Informatics, Pune, Maharashtra, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prasanna R Kolatkar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| |
Collapse
|
18
|
Yang SC, Liu JJ, Wang CK, Lin YT, Tsai SY, Chen WJ, Huang WK, Tu PWA, Lin YC, Chang CF, Cheng CL, Lin H, Lai CY, Lin CY, Lee YH, Chiu YC, Hsu CC, Hsu SC, Hsiao M, Schuyler SC, Lu FL, Lu J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB J 2019; 33:10577-10592. [PMID: 31242772 DOI: 10.1096/fj.201800220rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We reveal by high-throughput screening that activating transcription factor 1 (ATF1) is a novel pluripotent regulator in human embryonic stem cells (hESCs). The knockdown of ATF1 expression significantly up-regulated neuroectoderm (NE) genes but not mesoderm, endoderm, and trophectoderm genes. Of note, down-regulation or knockout of ATF1 with short hairpin RNA (shRNA), small interfering RNA (siRNA), or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was sufficient to up-regulate sex-determining region Y-box (SOX)2 and paired box 6 (PAX6) expression under the undifferentiated or differentiated conditions, whereas overexpression of ATF1 suppressed NE differentiation. Endogenous ATF1 was spontaneously down-regulated after d 1-3 of neural induction. By double-knockdown experiments, up-regulation of SOX2 was critical for the increase of PAX6 and SOX1 expression in shRNA targeting Atf1 hESCs. Using the luciferase reporter assay, we identified ATF1 as a negative transcriptional regulator of Sox2 gene expression. A novel function of ATF1 was discovered, and these findings contribute to a broader understanding of the very first steps in regulating NE differentiation in hESCs.-Yang, S.-C., Liu, J.-J., Wang, C.-K., Lin, Y.-T., Tsai, S.-Y., Chen, W.-J., Huang, W.-K., Tu, P.-W. A., Lin, Y.-C., Chang, C.-F., Cheng, C.-L., Lin, H., Lai, C.-Y., Lin, C.-Y., Lee, Y.-H., Chiu, Y.-C., Hsu, C.-C., Hsu, S.-C., Hsiao, M., Schuyler, S. C., Lu, F. L., Lu, J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2.
Collapse
Affiliation(s)
- Shang-Chih Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jan-Jan Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Kai Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Tsen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Wen A Tu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Lun Cheng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ying Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Yu Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,RNAi Core, National Core Facility, Academia Sinica, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
19
|
De Clercq S, Keruzore M, Desmaris E, Pollart C, Assimacopoulos S, Preillon J, Ascenzo S, Matson CK, Lee M, Nan X, Li M, Nakagawa Y, Hochepied T, Zarkower D, Grove EA, Bellefroid EJ. DMRT5 Together with DMRT3 Directly Controls Hippocampus Development and Neocortical Area Map Formation. Cereb Cortex 2019; 28:493-509. [PMID: 28031177 DOI: 10.1093/cercor/bhw384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/16/2016] [Indexed: 11/14/2022] Open
Abstract
Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.
Collapse
Affiliation(s)
- Sarah De Clercq
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Marc Keruzore
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Elodie Desmaris
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Charlotte Pollart
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | | | - Julie Preillon
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Sabrina Ascenzo
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Clinton K Matson
- Department of Genetics, Cell Biology and Development , Minneapolis, MN 55455, USA
| | - Melody Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xinsheng Nan
- School of Medicine and School of Bioscience , Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3XQ, UK
| | - Meng Li
- School of Medicine and School of Bioscience , Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3XQ, UK
| | - Yasushi Nakagawa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| | - David Zarkower
- Department of Genetics, Cell Biology and Development , Minneapolis, MN 55455, USA
| | - Elizabeth A Grove
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Eric J Bellefroid
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| |
Collapse
|
20
|
Epistasis between Pax6 Sey and genetic background reinforces the value of defined hybrid mouse models for therapeutic trials. Gene Ther 2018; 25:524-537. [PMID: 30258099 PMCID: PMC6335240 DOI: 10.1038/s41434-018-0043-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
The small eye (Sey) mouse is a model of PAX6-aniridia syndrome (aniridia). Aniridia, a congenital ocular disorder caused by heterozygous loss-of-function mutations in PAX6, needs new vision saving therapies. However, high phenotypic variability in Sey mice makes development of such therapies challenging. We hypothesize that genetic background is a major source of undesirable variability in Sey mice. Here we performed a systematic quantitative examination of anatomical, histological, and molecular phenotypes on the inbred C57BL/6J, hybrid B6129F1, and inbred 129S1/SvImJ backgrounds. The Sey allele significantly reduced eye weight, corneal thickness, PAX6 mRNA and protein levels, and elevated blood glucose levels. Surprisingly, Pax6Sey/Sey brains had significantly elevated Pax6 transcripts compared to Pax6+/+ embryos. Genetic background significantly influenced 12/24 measurements, with inbred strains introducing severe ocular and blood sugar phenotypes not observed in hybrid mice. Additionally, significant interactions (epistasis) between Pax6 genotype and genetic background were detected in measurements of eye weight, cornea epithelial thickness and cell count, retinal mRNA levels, and blood glucose levels. The number of epistatic interactions was reduced in hybrid mice. In conclusion, severe phenotypes in the unnatural inbred strains reinforce the value of more naturalistic F1 hybrid mice for the development of therapies for aniridia and other disorders.
Collapse
|
21
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
The Isl1-Lhx3 Complex Promotes Motor Neuron Specification by Activating Transcriptional Pathways that Enhance Its Own Expression and Formation. eNeuro 2017; 4:eN-NWR-0349-16. [PMID: 28451636 PMCID: PMC5394944 DOI: 10.1523/eneuro.0349-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/27/2017] [Accepted: 03/11/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron (MN) progenitor cells rapidly induce high expression of the transcription factors Islet-1 (Isl1), LIM-homeobox 3 (Lhx3), and the transcriptional regulator LMO4, as they differentiate. While these factors are critical for MN specification, the mechanisms regulating their precise temporal and spatial expression patterns are not well characterized. Isl1 and Lhx3 form the Isl1-Lhx3 complex, which induces the transcription of genes critical for MN specification and maturation. Here, we report that Isl1, Lhx3, and Lmo4 are direct target genes of the Isl1-Lhx3 complex. Our results show that specific genomic loci associated with these genes recruit the Isl1-Lhx3 complex to activate the transcription of Isl1, Lhx3, and Lmo4 in embryonic MNs of chick and mouse. These findings support a model in which the Isl1-Lhx3 complex amplifies its own expression through a potent autoregulatory feedback loop and simultaneously enhances the transcription of Lmo4. LMO4 blocks the formation of the V2 interneuron-specifying Lhx3 complex. In developing MNs, this action inhibits the expression of V2 interneuron genes and increases the pool of unbound Lhx3 available to incorporate into the Isl1-Lhx3 complex. Identifying the pathways that regulate the expression of these key factors provides important insights into the genetic strategies utilized to promote MN differentiation and maturation.
Collapse
|
23
|
Kim Y, Lim S, Ha T, Song YH, Sohn YI, Park DJ, Paik SS, Kim-Kaneyama JR, Song MR, Leung A, Levine EM, Kim IB, Goo YS, Lee SH, Kang KH, Kim JW. The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity. eLife 2017; 6. [PMID: 28139974 PMCID: PMC5308899 DOI: 10.7554/elife.21303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI:http://dx.doi.org/10.7554/eLife.21303.001 The retina is a light-sensitive layer of tissue that lines the inside of the eye. This tissue is highly organized and comprises a variety of different nerve cells, including amacrine cells. Together, these cells process incoming light and then trigger electrical signals that travel to the brain, where they are translated into an image. Changes in the nerve cell composition of the retina, or in how the cells connect to each other, can alter the visual information that travels to the brain. The nerve cells of the retina are formed before a young animal opens its eyes for the first time. Proteins called transcription factors – which regulate the expression of genes – tightly control how the retina develops. For example, a transcription factor called Pax6 drives the development of amacrine cells. Several other transcription factors control the production of Pax6 by binding to a section of DNA known as the “α-enhancer”. However, it is not clear how regulating Pax6 production influences the development of specific sets of amacrine cells. Kim et al. reveal that a protein known as Tgfb1i1 interacts with two transcription factors to form a “complex” that binds to the α-enhancer and blocks the production of a particular form of Pax6. In experiments performed in mice, the loss of Tgfb1i1 led to increased production of this form of Pax6, which resulted in the retina containing more of a certain type of amacrine cell that produce a molecule called GABA. Mice lacking Tgfb1i1 show a stronger response to light and are therefore comparable to people who are too sensitive to light. On the other hand, mice with a missing a section of the α-enhancer DNA have fewer amacrine cells releasing GABA and become less sensitive to light and are comparable to people who have difficulty detecting weaker light signals. The findings of Kim et al. suggest that an individual’s sensitivity to light is related, at least in part, to the mixture of amacrine cells found in their retina, which is determined by certain transcription factors that target the α-enhancer. DOI:http://dx.doi.org/10.7554/eLife.21303.002
Collapse
Affiliation(s)
- Yeha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Soyeon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - You-Hyang Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Young-In Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dae-Jin Park
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Mi-Ryoung Song
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Amanda Leung
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, United States
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, United States
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
24
|
Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep 2017; 37:1579-1592. [DOI: 10.3892/or.2017.5411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022] Open
|
25
|
The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genet 2016; 12:e1006441. [PMID: 27918583 PMCID: PMC5137874 DOI: 10.1371/journal.pgen.1006441] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction.
Collapse
|
26
|
Stepp MA, Tadvalkar G, Hakh R, Pal-Ghosh S. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia 2016; 65:851-863. [PMID: 27878997 DOI: 10.1002/glia.23102] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
The eye is innervated by neurons derived from both the central nervous system and peripheral nervous system (PNS). While much is known about retinal neurobiology and phototransduction, less attention has been paid to the innervation of the eye by the PNS and the roles it plays in maintaining a functioning visual system. The ophthalmic branch of the trigeminal ganglion contains somas of neurons that innervate the cornea. These nerves provide sensory functions for the cornea and are referred to as intraepithelial corneal nerves (ICNs) consisting of subbasal nerves and their associated intraepithelial nerve terminals. ICNs project for several millimeters within the corneal epithelium without Schwann cell support. Here, we present evidence for the hypothesis that corneal epithelial cells function as glial cells to support the ICNs. Much of the data supporting this hypothesis is derived from studies of corneal development and the reinnervation of the ICNs in the rodent and rabbit cornea after superficial wounds. Corneal epithelial cells activate in response to injury via mechanisms similar to those induced in Schwann cells during Wallerian Degeneration. Corneal epithelial cells phagocytize distal axon fragments within hours of ICN crush wounds. During aging, the proteins, lipids, and mitochondria within the ICNs become damaged in a process exacerbated by UV light. We propose that ICNs shed their aged and damaged termini and continuously elongate to maintain their density. Available evidence points to new unexpected roles for corneal epithelial cells functioning as surrogate Schwann cells for the ICNs during homeostasis and in response to injury. GLIA 2017;65:851-863.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Raymond Hakh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, George Washington University Medical School, Washington, DC
| |
Collapse
|
27
|
Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 2016; 19:542-53. [PMID: 27021939 DOI: 10.1038/nn.4273] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023]
Abstract
Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
Collapse
|
28
|
Hickmott JW, Chen CY, Arenillas DJ, Korecki AJ, Lam SL, Molday LL, Bonaguro RJ, Zhou M, Chou AY, Mathelier A, Boye SL, Hauswirth WW, Molday RS, Wasserman WW, Simpson EM. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev 2016; 3:16051. [PMID: 27556059 PMCID: PMC4980111 DOI: 10.1038/mtm.2016.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.
Collapse
Affiliation(s)
- Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chih-yu Chen
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Cvekl A, Callaerts P. PAX6: 25th anniversary and more to learn. Exp Eye Res 2016; 156:10-21. [PMID: 27126352 DOI: 10.1016/j.exer.2016.04.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA-binding transcription factor PAX6 was cloned 25 years ago by multiple teams pursuing identification of human and mouse eye disease causing genes, cloning vertebrate homologues of pattern-forming regulatory genes identified in Drosophila, or abundant eye-specific transcripts. Since its discovery in 1991, genetic, cellular, molecular and evolutionary studies on Pax6 mushroomed in the mid 1990s leading to the transformative thinking regarding the genetic program orchestrating both early and late stages of eye morphogenesis as well as the origin and evolution of diverse visual systems. Since Pax6 is also expressed outside of the eye, namely in the central nervous system and pancreas, a number of important insights into the development and function of these organs have been amassed. In most recent years, genome-wide technologies utilizing massively parallel DNA sequencing have begun to provide unbiased insights into the regulatory hierarchies of specification, determination and differentiation of ocular cells and neurogenesis in general. This review is focused on major advancements in studies on mammalian eye development driven by studies of Pax6 genes in model organisms and future challenges to harness the technology-driven opportunities to reconstruct, step-by-step, the transition from naïve ectoderm, neuroepithelium and periocular mesenchyme/neural crest cells into the three-dimensional architecture of the eye.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; The Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, K.U. Leuven, VIB, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Bery A, Mérot Y, Rétaux S. Genes expressed in mouse cortical progenitors are enriched in Pax, Lhx, and Sox transcription factor putative binding sites. Brain Res 2015; 1633:37-51. [PMID: 26721689 DOI: 10.1016/j.brainres.2015.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022]
Abstract
Considerable progress has been made in the understanding of molecular and cellular mechanisms controlling the development of the mammalian cortex. The proliferative and neurogenic properties of cortical progenitors located in the ventricular germinal zone start being understood. Little is known however on the cis-regulatory control that finely tunes gene expression in these progenitors. Here, we undertook an in silico-based approach to address this question, followed by some functional validation. Using the Eurexpress database, we established a list of 30 genes specifically expressed in the cortical germinal zone, we selected mouse/human conserved non-coding elements (CNEs) around these genes and we performed motif-enrichment search in these CNEs. We found an over-representation of motifs corresponding to binding sites for Pax, Sox, and Lhx transcription factors, often found as pairs and located within 100bp windows. A small subset of CNEs (n=7) was tested for enhancer activity, by ex-vivo and in utero electroporation assays. Two showed strong enhancer activity in the germinal zone progenitors. Mutagenesis experiments on a selected CNE showed the functional importance of the Pax, Sox, and Lhx TFBS for conferring enhancer activity to the CNE. Overall, from a cis-regulatory viewpoint, our data suggest an input from Pax, Sox and Lhx transcription factors to orchestrate corticogenesis. These results are discussed with regards to the known functional roles of Pax6, Sox2 and Lhx2 in cortical development.
Collapse
Affiliation(s)
- Amandine Bery
- DECA Group, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, 91198 Gif-sur-Yvette, France.
| | - Yohann Mérot
- DECA Group, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, 91198 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- DECA Group, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Gao J, Li P, Zhang W, Wang Z, Wang X, Zhang Q. Molecular Cloning, Promoter Analysis and Expression Profiles of the sox3 Gene in Japanese Flounder, Paralichthys olivaceus. Int J Mol Sci 2015; 16:27931-44. [PMID: 26610486 PMCID: PMC4661933 DOI: 10.3390/ijms161126079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022] Open
Abstract
Sox3, which belongs to the SoxB1 subgroup, plays major roles in neural and gonadal development. In the present study, Japanese flounder Paralichthys olivaceus sox3 gene (Posox3) and its promoter sequence were isolated and characterized. The deduced PoSox3 protein contained 298 amino acids with a characteristic HMG-box domain. Alignment and phylogenetic analyses indicated that PoSox3 shares highly identical sequence with Sox3 homologues from different species. The promoter region of Posox3 has many potential transcription factor (TF) binding sites. The expression profiles of Posox3 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR (qRT-PCR). Posox3 mRNA was maternally inherited, and maintained at a considerably high expression level between the blastula stage and the hatching stage during embryonic development. Posox3 was abundantly expressed in the adult brain and showed sexually dimorphic expression pattern. In situ hybridization (ISH) was carried out to investigate the cellular distribution of Posox3 in the ovary, and results showed the uniform distribution of Posox3 throughout the cytoplasm of oogonia and stage I–III oocytes. These results indicate that Posox3 has potentially vital roles in embryonic and neural development and may be involved in the oogenesis process. Our work provides a fundamental understanding of the structure and potential functions of Sox3 in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Peizhen Li
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
32
|
Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, Severin J, Kawaji H, Nakamura Y, Suzuki H, Hayashizaki Y, Carninci P, Forrest ARR. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet 2015; 6:331. [PMID: 26635867 PMCID: PMC4650373 DOI: 10.3389/fgene.2015.00331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment.
Collapse
Affiliation(s)
- Marina Lizio
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yuri Ishizu
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; Telethon Kids Institute, The University of Western Australia Subiaco, WA, Australia
| | - Akira Hasegawa
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | | | - Jessica Severin
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center Ibaraki, Japan
| | | | - Harukazu Suzuki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Alistair R R Forrest
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia Nedlands, WA, Australia
| |
Collapse
|
33
|
|
34
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
35
|
Song B, Bian Q, Shao CH, Liu AA, Jing W, Liu R, Zhang YJ, Zhou YQ, Li G, Jin G. Sox2 function as a negative regulator to control HAMP expression. Biol Res 2015; 48:23. [PMID: 25943891 PMCID: PMC4440282 DOI: 10.1186/s40659-015-0013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/16/2015] [Indexed: 11/24/2022] Open
Abstract
Background Hepcidin, encoding by HAMP gene, is the pivotal regulator of iron metabolism, controlling the systemic absorption and transportation of irons from intracellular stores. Abnormal levels of HAMP expression alter plasma iron parameters and lead to iron metabolism disorders. Therefore, it is an important goal to understand the mechanisms controlling HAMP gene expression. Results Overexpression of Sox2 decrease basal expression of HAMP or induced by IL-6 or BMP-2, whereas, knockdown of Sox2 can increase HAMP expression, furthermore, two potential Sox2-binding sites were identified within the human HAMP promoter. Indeed, luciferase experiments demonstrated that deletion of any Sox2-binding site impaired the negative regulation of Sox2 on HAMP promoter transcriptional activity in basal conditions. ChIP experiments showed that Sox2 could directly bind to these sites. Finally, we verified the role of Sox2 to negatively regulate HAMP expression in human primary hepatocytes. Conclusion We found that Sox2 as a novel factor to bind with HAMP promoter to negatively regulate HAMP expression, which may be further implicated as a therapeutic option for the amelioration of HAMP-overexpression-related diseases, including iron deficiency anemia. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0013-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Song
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Qi Bian
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Cheng-Hao Shao
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - An-An Liu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Wei Jing
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Rui Liu
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Yi-Jie Zhang
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Ying-Qi Zhou
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Gang Li
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
36
|
Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 2015; 9:70. [PMID: 25805971 PMCID: PMC4354436 DOI: 10.3389/fncel.2015.00070] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development.
Collapse
Affiliation(s)
- Martine N Manuel
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - Da Mi
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - John O Mason
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| | - David J Price
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
37
|
Narasimhan K, Pillay S, Huang YH, Jayabal S, Udayasuryan B, Veerapandian V, Kolatkar P, Cojocaru V, Pervushin K, Jauch R. DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors. Nucleic Acids Res 2015; 43:1513-28. [PMID: 25578969 PMCID: PMC4330359 DOI: 10.1093/nar/gku1390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sox2 and Pax6 are transcription factors that direct cell fate decision during neurogenesis, yet the mechanism behind how they cooperate on enhancer DNA elements and regulate gene expression is unclear. By systematically interrogating Sox2 and Pax6 interaction on minimal enhancer elements, we found that cooperative DNA recognition relies on combinatorial nucleotide switches and precisely spaced, but cryptic composite DNA motifs. Surprisingly, all tested Sox and Pax paralogs have the capacity to cooperate on such enhancer elements. NMR and molecular modeling reveal very few direct protein-protein interactions between Sox2 and Pax6, suggesting that cooperative binding is mediated by allosteric interactions propagating through DNA structure. Furthermore, we detected and validated several novel sites in the human genome targeted cooperatively by Sox2 and Pax6. Collectively, we demonstrate that Sox-Pax partnerships have the potential to substantially alter DNA target specificities and likely enable the pleiotropic and context-specific action of these cell-lineage specifiers.
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shubhadra Pillay
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Yong-Heng Huang
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Sriram Jayabal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Barath Udayasuryan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Veeramohan Veerapandian
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672, Singapore University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China
| | - Prasanna Kolatkar
- Qatar Biomedical Research Institute, Qatar Foundation, PO Box 5825, Doha, Qatar
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Konstantin Pervushin
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Ralf Jauch
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672, Singapore
| |
Collapse
|
38
|
Cvekl A, Ashery-Padan R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014; 141:4432-47. [PMID: 25406393 PMCID: PMC4302924 DOI: 10.1242/dev.107953] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ocular lens is a model system for understanding important aspects of embryonic development, such as cell specification and the spatiotemporally controlled formation of a three-dimensional structure. The lens, which is characterized by transparency, refraction and elasticity, is composed of a bulk mass of fiber cells attached to a sheet of lens epithelium. Although lens induction has been studied for over 100 years, recent findings have revealed a myriad of extracellular signaling pathways and gene regulatory networks, integrated and executed by the transcription factor Pax6, that are required for lens formation in vertebrates. This Review summarizes recent progress in the field, emphasizing the interplay between the diverse regulatory mechanisms employed to form lens progenitor and precursor cells and highlighting novel opportunities to fill gaps in our understanding of lens tissue morphogenesis.
Collapse
Affiliation(s)
- Aleš Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
39
|
Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 2014; 6:305-311. [PMID: 25126380 PMCID: PMC4131272 DOI: 10.4252/wjsc.v6.i3.305] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/07/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
Sex determining region Y-box 2 (Sox2), a member of the SoxB1 transcription factor family, is an important transcriptional regulator in pluripotent stem cells (PSCs). Together with octamer-binding transcription factor 4 and Nanog, they co-operatively control gene expression in PSCs and maintain their pluripotency. Furthermore, Sox2 plays an essential role in somatic cell reprogramming, reversing the epigenetic configuration of differentiated cells back to a pluripotent embryonic state. In addition to its role in regulation of pluripotency, Sox2 is also a critical factor for directing the differentiation of PSCs to neural progenitors and for maintaining the properties of neural progenitor stem cells. Here, we review recent findings concerning the involvement of Sox2 in pluripotency, somatic cell reprogramming and neural differentiation as well as the molecular mechanisms underlying these roles.
Collapse
|
40
|
Yamamoto S, De D, Hidaka K, Kim KK, Endo M, Sugiyama H. Single molecule visualization and characterization of Sox2-Pax6 complex formation on a regulatory DNA element using a DNA origami frame. NANO LETTERS 2014; 14:2286-2292. [PMID: 24660747 DOI: 10.1021/nl4044949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the use of atomic force microscopy (AFM) to study Sox2-Pax6 complex formation on the regulatory DNA element at a single molecule level. Using an origami DNA scaffold containing two DNA strands with different levels of tensile force, we confirmed that DNA bending is necessary for Sox2 binding. We also demonstrated that two transcription factors bind cooperatively by observing the increased occupancy of Sox2-Pax6 on the DNA element compared to that of Sox2 alone.
Collapse
Affiliation(s)
- Seigi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Silymarin induces expression of pancreatic Nkx6.1 transcription factor and β-cells neogenesis in a pancreatectomy model. Molecules 2014; 19:4654-68. [PMID: 24739928 PMCID: PMC6271357 DOI: 10.3390/molecules19044654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
A physio-pathological feature of diabetes mellitus is a significant reduction of β-pancreatic cells. The growth, differentiation and function maintenance of these cells is directed by transcription factors. Nkx6.1 is a key transcription factor for the differentiation, neogenesis and maintenance of β-pancreatic cells. We reported that silymarin restores normal morphology and endocrine function of damaged pancreatic tissue after alloxan-induced diabetes mellitus in rats. The aim of this study was to analyze the effect of silymarin on Nkx6.1 transcription factor expression and its consequence in β cells neogenesis. Sixty male Wistar rats were partially pancreatectomized and divided into twelve groups. Six groups were treated with silymarin (200 mg/Kg p.o) for periods of 3, 7, 14, 21, 42 and 63 days. Additionally, an unpancreatectomized control group was used. Nkx6.1 and insulin gene expression were assessed by RT-PCR assay in total pancreatic RNA. β-Cell neogenesis was determined by immunoperoxidase assay. Silymarin treated group showed an increase of Nkx6.1 and insulin genic expression. In this group, there was an increment of β-cell neogenesis in comparison to pancreatectomized untreated group. Silymarin treatment produced a rise in serum insulin and serum glucose normalization. These results suggest that silymarin may improve the reduction of β pancreatic cells observed in diabetes mellitus.
Collapse
|
42
|
Abedin MJ, Nguyen A, Jiang N, Perry CE, Shelton JM, Watson DK, Ferdous A. Fli1 acts downstream of Etv2 to govern cell survival and vascular homeostasis via positive autoregulation. Circ Res 2014; 114:1690-9. [PMID: 24727028 DOI: 10.1161/circresaha.1134303145] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Cardiovascular health depends on proper development and integrity of blood vessels. Ets variant 2 (Etv2), a member of the E26 transforming-specific family of transcription factors, is essential to initiate a transcriptional program leading to vascular morphogenesis in early mouse embryos. However, endothelial expression of the Etv2 gene ceases at midgestation; therefore, vascular development past this stage must continue independent of Etv2. OBJECTIVE To identify molecular mechanisms underlying transcriptional regulation of vascular morphogenesis and homeostasis in the absence of Etv2. METHODS AND RESULTS Using loss- and gain-of-function strategies and a series of molecular techniques, we identify Friend leukemia integration 1 (Fli1), another E26 transforming-specific family transcription factor, as a downstream target of Etv2. We demonstrate that Etv2 binds to conserved Ets-binding sites within the promoter region of the Fli1 gene and governs Fli1 expression. Importantly, in the absence of Etv2 at midgestation, binding of Etv2 at Ets-binding sites in the Fli1 promoter is replaced by Fli1 protein itself, sustaining expression of Fli1 as well as selective Etv2-regulated endothelial genes to promote endothelial cell survival and vascular integrity. Consistent with this, we report that Fli1 binds to the conserved Ets-binding sites within promoter and enhancer regions of other Etv2-regulated endothelial genes, including Tie2, to control their expression at and beyond midgestation. CONCLUSIONS We have identified a novel positive feed-forward regulatory loop in which Etv2 activates expression of genes involved in vasculogenesis, including Fli1. Once the program is activated in early embryos, Fli1 then takes over to sustain the process in the absence of Etv2.
Collapse
Affiliation(s)
- Md J Abedin
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Annie Nguyen
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Nan Jiang
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Cameron E Perry
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - John M Shelton
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Dennis K Watson
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Anwarul Ferdous
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.).
| |
Collapse
|
43
|
Computational analysis of transcriptional circuitries in human embryonic stem cells reveals multiple and independent networks. BIOMED RESEARCH INTERNATIONAL 2014; 2014:725780. [PMID: 24511543 PMCID: PMC3910540 DOI: 10.1155/2014/725780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 11/17/2022]
Abstract
It has been known that three core transcription factors (TFs), NANOG, OCT4, and SOX2, collaborate to form a transcriptional circuitry to regulate pluripotency and self-renewal of human embryonic stem (ES) cells. Similarly, MYC also plays an important role in regulating pluripotency and self-renewal of human ES cells. However, the precise mechanism by which the transcriptional regulatory networks control the activity of ES cells remains unclear. In this study, we reanalyzed an extended core network, which includes the set of genes that are cobound by the three core TFs and additional TFs that also bind to these cobound genes. Our results show that beyond the core transcriptional network, additional transcriptional networks are potentially important in the regulation of the fate of human ES cells. Several gene families that encode TFs play a key role in the transcriptional circuitry of ES cells. We also demonstrate that MYC acts independently of the core module in the regulation of the fate of human ES cells, consistent with the established argument. We find that TP53 is a key connecting molecule between the core-centered and MYC-centered modules. This study provides additional insights into the underlying regulatory mechanisms involved in the fate determination of human ES cells.
Collapse
|
44
|
Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, Oliver PL, Ponting CP. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J 2014; 33:296-311. [PMID: 24488179 PMCID: PMC3983687 DOI: 10.1002/embj.201386225] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome-wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate-conserved and central nervous system-expressed lncRNA transcribed from a locus upstream of the gene encoding the PAX6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neural differentiation. Paupar acts in a transcript-dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with PAX6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large-scale transcriptional programmes.
Collapse
Affiliation(s)
- Keith W Vance
- MRC Functional Genomics Unit, University of Oxford, Oxford UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
46
|
Differential BMP signaling controls formation and differentiation of multipotent preplacodal ectoderm progenitors from human embryonic stem cells. Dev Biol 2013; 379:208-20. [PMID: 23643939 DOI: 10.1016/j.ydbio.2013.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 01/08/2023]
Abstract
Sensory and endoneurocrine tissues as diverse as the lens, the olfactory epithelium, the inner ear, the cranial sensory ganglia, and the anterior pituitary arise from a common pool of progenitors in the preplacodal ectoderm (PPE). Around late gastrulation, the PPE forms at the border surrounding the anterior neural plate, and expresses a unique set of evolutionarily conserved transcription regulators including Six1, Eya 1 and Eya2. Here, we describe the first report to generate and characterize the SIX1(+) PPE cells from human embryonic stem (ES) cells by adherent differentiation. Before forming PPE cells, differentiating cultures first expressed the non-neural ectoderm specific transcriptional factors TFAP2A, GATA2, GATA3, DLX3, and DLX5, which are crucial in establishing the PPE competence. We demonstrated that bone morphogenetic protein (BMP) activity plays a transient but essential role in inducing expression of these PPE competence factors and eventually the PPE cells. Interestingly, we found that attenuating BMP signaling after establishing the competence state induces anterior placode precursors. By manipulating BMP and hedgehog signaling pathways, we further differentiate these precursors into restricted lineages including the lens placode and the oral ectoderm (pituitary precursor) cells. Finally, we also show that sensory neurons can be generated from human PPE cells, demonstrating the multipotency of the human ES-derived PPE cells.
Collapse
|
47
|
Carbe C, Garg A, Cai Z, Li H, Powers A, Zhang X. An allelic series at the paired box gene 6 (Pax6) locus reveals the functional specificity of Pax genes. J Biol Chem 2013; 288:12130-41. [PMID: 23515312 DOI: 10.1074/jbc.m112.436865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The advent of the ocular and nervous system in metazoan evolution coincides with the diversification of a single ancestral paired box (Pax) gene into Pax6, Pax6(5a), and Pax2. To investigate the role of these Pax genes in neural development, we have generated an allelic series of knock-in models at the Pax6 locus. We showed that although Pax6(5a) and Pax2 could not replace Pax6 for its autoregulation in lens induction or for neural differentiation in retina, Pax6(5a) was sufficient for corneal-lenticular detachment. In brain development, cell proliferation in the cerebral cortex and dorsoventral patterning of the telencephalon and neural tube were partially rescued in either knock-in mutant. Contrary to the previous belief, our genetic studies showed that the Pax6 isoform Pax6(5a) could potentially play a role in neuronal differentiation in brain development. Importantly, Pax2 showed greater rescue efficiency than Pax6(5a) in the telencephalon even though the latter was identical to Pax6 outside the paired domain. In studying Ngn2, a Pax6 direct target gene in telencephalon, we showed that the level of Ngn2 expression correlated with the in vitro binding of Pax2, Pax6, and Pax6(5a) paired domain on its enhancer. Our results show that Pax6 is uniquely required for eye development, but in brain development, Pax6 can be functionally substituted by related Pax family genes that share a similar paired domain binding specificity.
Collapse
Affiliation(s)
- Christian Carbe
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
48
|
Liebau S, Mahaddalkar PU, Kestler HA, Illing A, Seufferlein T, Kleger A. A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells Dev 2013; 22:695-706. [DOI: 10.1089/scd.2012.0461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Stefan Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Pallavi U. Mahaddalkar
- Department on Stem Cell Aging, Institute of Molecular Medicine and Max Planck Research Group, Ulm University, Ulm, Germany
| | - Hans A. Kestler
- Research Group of Bioinformatics and Systems Biology, Institute of Neural Information Processing, Ulm University, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
49
|
Ocular surface development and gene expression. J Ophthalmol 2013; 2013:103947. [PMID: 23533700 PMCID: PMC3595720 DOI: 10.1155/2013/103947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023] Open
Abstract
The ocular surface-a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film-plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.
Collapse
|
50
|
Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain. PLoS One 2013; 8:e54507. [PMID: 23342162 PMCID: PMC3544819 DOI: 10.1371/journal.pone.0054507] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023] Open
Abstract
Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, β- and δ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip) were performed using three distinct sources of chromatin (lens, forebrain and β-cells). ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133) of these promoter regions were shared between at least two (three) distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6+/− lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6−/− lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6 interacts preferentially with promoter regions in a tissue-specific fashion. Nevertheless, nearly 20% of the regions identified are accessible to Pax6 in multiple tissues.
Collapse
|