1
|
Kotsyuba E, Pahlevaniane A, Maslennikov S, Dyachuk V. Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus. BIOLOGY 2024; 13:35. [PMID: 38248466 PMCID: PMC10813508 DOI: 10.3390/biology13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
This article presents recent findings as regards distribution of cells producing serotonin and dopamine in the larval central nervous system at different developmental stages, including four pelagic larval stages (zoea I-IV), a semibenthic postlarval stage glaucothoe (megalopa), benthic juveniles, and adult red king crabs, Paralithodes camtschaticus, made by using immunocytochemistry and confocal laser scanning microscopy. We have shown that the serotonergic and dopaminergic neurons are present long before the onset of metamorphosis. In the red king crab b larval nervous system, the changes become particularly pronounced during the first metamorphosis from zoea IV to glaucothoe, which may be related to the development of the segmental appendages and maturation of motor behaviors in decapods. This work presents the distribution and dynamics of the development of serotonergic and dopaminergic neuronal networks in king crab show, the potential roles of serotonin and dopamine in the modulation of olfactory and visual processing in the early stages of larval development, and also the mechanosensory and chemosensory processing in the glaucothoe stage during settlement and in their transition from a pelagic to benthic lifestyle.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (E.K.); (A.P.); (S.M.)
| |
Collapse
|
2
|
Kotsyuba E, Dyachuk V. Localization of neurons expressing choline acetyltransferase, serotonin and/or FMRFamide in the central nervous system of the decapod shore crab Hemigrapsus sanguineus. Cell Tissue Res 2020; 383:959-977. [PMID: 33237479 DOI: 10.1007/s00441-020-03309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Although it is now established that neurons in crustacea contain multiple transmitter substances, little is know about patterns of expression and co-expression or about the functional effects of such co-transmission. The present study was designed to characterize the distributions and potential colocalization of choline acetyltransferase (ChAT), serotonin (5-HT) and neuropeptide H-Phe-Met-Arg-Phe-NH2 (FMRFamide) in the central nervous system (CNS) of the Asian shore crab, Hemigrapsus sanguineus using immunohistochemical analyses in combination with laser scanning confocal microscopy. ChAT was found to be expressed by small, medium-sized, and large neurons in all regions of the brain and ventral nerve cord (VNC). For the most part, ChAT, FMRFamide, and 5-HT are expressed in different neurons, although some colocalization of ChAT- with FMRFamide- or 5-HT-LIR is observed in small and medium-sized cells, mostly neurons that immunostain only weakly. In the brain, such double immunolabeling is observed primarily in neurons of the protocerebrum and, to a particularly great extent, in local olfactory interneurons of the deutocerebrum. The clusters of neurons in the VNC that stain most intensely for ChAT, FMRFamide, and 5-HT, with colocalization in some cases, are located in the subesophageal ganglia. This colocalization appears to be related to function, since it is present in regions of the CNS characterized by multiple afferent projections and outputs to a variety of functionally related centers involved in various physiological and behavioral processes. Further elucidation of the functional significance of these neurons and of the widespread process of co-transmission in the crustaceans should provide fascinating new insights.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
| |
Collapse
|
3
|
Immunolocalization of Neurotransmitters and Neuromodulators in the Developing Crayfish Brain. Methods Mol Biol 2020; 2047:271-291. [PMID: 31552660 DOI: 10.1007/978-1-4939-9732-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of neurosciences, the crayfish nervous system is an important model for understanding how arthropods process sensory stimuli and generate specific behaviors. Furthermore, crayfish embryos have been important study objects for well over 200 years. Immunohistochemistry against neurotransmitters, neuromodulators, and neurohormones is widely used to analyze the ontogeny of neurons in the emerging brain of several crustacean species and to date represents one of the most powerful approaches to analyze aspects of brain development in this group of organisms. In recent years, the analysis of brain development in crustaceans has gained new momentum by the establishment of the Marmorkrebs Procambarus virginalis (Marbled Crayfish), a parthenogenetic crayfish, as new model system. The embryonic development of marbled crayfish is well characterized and these animals can be easily cultivated in the lab. This chapter describes protocols for immunolocalization of neuroactive substances in the developing crayfish brain.
Collapse
|
4
|
Maurer M, Hladik J, Iliffe TM, Stemme T. Histaminergic interneurons in the ventral nerve cord: assessment of their value for Euarthropod phylogeny. ZOOLOGICAL LETTERS 2019; 5:36. [PMID: 31890274 PMCID: PMC6929356 DOI: 10.1186/s40851-019-0151-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Despite numerous approaches to the resolution of euarthropod phylogeny, mainly based on modern sequence information and traditional external morphology, the resulting hypotheses are often contradictory and leave many questions about euarthropod evolution unanswered. The comparison of developmental and structural aspects of the nervous system has shown to be a valuable contribution to the assessment of current phylogenetic hypotheses. One promising approach for the generation of new character sets is the morphology of transmitter systems and the discovery of individually identifiable neurons, which allow phylogenetic comparisons on the single cell level. In this context, the serotonin transmitter system has been investigated to a considerable degree. Studies to date have yielded important stimuli to our understanding of euarthropod relationships and the evolution of their nervous systems. However, data on other transmitter systems remain fragmented, and their value with respect to phylogenetic questions remains speculative. The biogenic amine histamine is a promising transmitter; a substantial amount of data has been reported in the literature and the homology of some histaminergic neurons has been suggested. Here, we present a comprehensive review of histaminergic neurons in the ventral nerve cord of Euarthropoda. Using immunocytochemical labeling of histamine combined with confocal laser-scanning microscopy, we investigated the transmitter system in phylogenetically relevant taxa, such as Zygentoma, Remipedia, Diplopoda, and Arachnida. By reconstructing ground patterns, we evaluated the significance of this specific character set for euarthropod phylogeny. With this approach, we identified a set of neurons, which can be considered homologous within the respective major taxon. In conclusion, the histaminergic system contains useful information for our understanding of euarthropod phylogeny, supporting the proposed clades Tetraconata and Mandibulata. Furthermore, this character set has considerable potential to help resolve relationships within the major clades at a deeper level of taxonomy, due to the considerable variability in neurite morphology.
Collapse
Affiliation(s)
- Maite Maurer
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Janina Hladik
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas M. Iliffe
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553 USA
| | - Torben Stemme
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
5
|
Hein H, Smyth S, Altamirano X, Scholtz G. Segmentation and limb formation during naupliar development of Tigriopus californicus (Copepoda, Harpacticoida). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 50:43-52. [PMID: 30974153 DOI: 10.1016/j.asd.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Naupliar development in copepods includes the generation of usually five pairs of post-mandibular segments. Since copepod nauplii show no outer body articulation, the only indication of larval segmentation is the expression of limb buds. Yet, in copepods the timing and sequence of limb bud expression in larval development varies to a large degree. In harpacticoid nauplii for instance, the 1st maxillae are formed at an early naupliar stage. By contrast, the four remaining pairs of limb buds frequently appear simultaneously with the last naupliar stage. The complete process of larval segment formation takes place under the body surface and has never been described in detail. To broaden our knowledge of early segmentation in copepods, we here describe the segmentation of the harpacticoid nauplius Tigriopus californicus by analysing the expression of the segment marker Engrailed and uncover the sequential addition of seven post-mandibular segments. The stripe formation and arrangement of labelled cells corresponds largely to those of other crustaceans studied in this respect. Together with a morphological approach using histology, SEM, and 3D-reconstructions based on CLSM we solve the so far controversial identity of the external limb buds in the final naupliar stage. In contrast to previous studies, we can show that all limb pairs from the 1st maxillae to the 3rd thoracopods are formed. Yet, the anlage of the maxilliped (1st thoracopod) remains hidden underneath the cuticle being never externally expressed in the nauplius.
Collapse
Affiliation(s)
- Hendrikje Hein
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115, Berlin, Germany.
| | - Sandra Smyth
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115, Berlin, Germany.
| | - Ximena Altamirano
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115, Berlin, Germany.
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
6
|
Spitzner F, Meth R, Krüger C, Nischik E, Eiler S, Sombke A, Torres G, Harzsch S. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front Zool 2018; 15:27. [PMID: 29989069 PMCID: PMC6035453 DOI: 10.1186/s12983-018-0271-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The life history stages of brachyuran crustaceans include pelagic larvae of the Zoea type which grow by a series of moults from one instar to the next. Zoeae actively feed and possess a wide range of organ systems necessary for autonomously developing in the plankton. They also display a rich behavioural repertoire that allows for responses to variations in environmental key factors such as light, hydrostatic pressure, tidal currents, and temperature. Brachyuran larvae have served as distinguished models in the field of Ecological Developmental Biology fostering our understanding of diverse ecophysiological aspects such as phenotypic plasticity, carry-over effects on life-history traits, and adaptive mechanisms that enhance tolerance to fluctuations in environmental abiotic factors. In order to link such studies to the level of tissues and organs, this report analyses the internal anatomy of laboratory-reared larvae of the European shore crab Carcinus maenas. This species has a native distribution extending across most European waters and has attracted attention because it has invaded five temperate geographic regions outside of its native range and therefore can serve as a model to analyse thermal tolerance of species affected by rising sea temperatures as an effect of climate change. RESULTS Here, we used X-ray micro-computed tomography combined with 3D reconstruction to describe organogenesis in brachyuran larvae. We provide a detailed atlas of the larval internal organization to complement existing descriptions of its external morphology. In a multimethodological approach, we also used cuticular autofluorescence and classical histology to analyse the anatomy of selected organ systems. CONCLUSIONS Much of our fascination for the anatomy of brachyuran larvae stems from the opportunity to observe a complex organism on a single microscopic slide and the realization that the entire decapod crustacean bauplan unfolds from organ anlagen compressed into a miniature organism in the sub-millimetre range. The combination of imaging techniques used in the present study provides novel insights into the bewildering diversity of organ systems that brachyuran larvae possess. Our analysis may serve as a basis for future studies bridging the fields of evolutionary developmental biology and ecological developmental biology.
Collapse
Affiliation(s)
- Franziska Spitzner
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Rebecca Meth
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Christina Krüger
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Emanuel Nischik
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Stefan Eiler
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A/F, 11418 Stockholm, Sweden
| | - Andy Sombke
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| | - Gabriela Torres
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, D-27498 Helgoland, Germany
| | - Steffen Harzsch
- Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Universität Greifswald, D-17498 Greifswald, Germany
| |
Collapse
|
7
|
Sombke A, Stemme T. Serotonergic neurons in the ventral nerve cord of Chilopoda - a mandibulate pattern of individually identifiable neurons. ZOOLOGICAL LETTERS 2017; 3:9. [PMID: 28690866 PMCID: PMC5496589 DOI: 10.1186/s40851-017-0070-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/21/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Given the numerous hypotheses concerning arthropod phylogeny, independent data are needed to supplement knowledge based on traditional external morphology and modern molecular sequence information. One promising approach involves comparisons of the structure and development of the nervous system. Along these lines, the morphology of serotonin-immunoreactive neurons in the ventral nerve cord has been investigated in numerous tetraconate taxa (Crustacea and Hexapoda). It has been shown that these neurons can be identified individually due to their comparably low number, characteristic soma position, and neurite morphology, thus making it possible to establish homologies at the single cell level. Within Chilopoda (centipedes), detailed analyses of major branching patterns of serotonin-immunoreactive neurons are missing, but are crucial for developing meaningful conclusions on the homology of single cells. RESULTS In the present study, we re-investigated the distribution and projection patterns of serotonin-immunoreactive neurons in the ventral nerve cord of three centipede species: Scutigera coleoptrata, Lithobius forficatus, and Scolopendra oraniensis. The centipede serotonergic system in the ventral nerve cord contains defined groups of individually identifiable neurons. An anterior and two posterior immunoreactive neurons per hemiganglion with contralateral projections, a pair of ipsilateral projecting lateral neurons (an autapomorphic character for Chilopoda), as well as a postero-lateral group of an unclear number of cells are present in the ground pattern of Chilopoda. CONCLUSIONS Comparisons to the patterns of serotonin-immunoreactive neurons of tetraconate taxa support the homology of anterior and posterior neurons. Our results thus support a sister group relationship of Myriapoda and Tetraconata and, further, a mandibulate ground pattern of individually identifiable serotonin-immunoreactive neurons in the ventral nerve cord. Medial neurons are not considered to be part of the tetraconate ground pattern, but could favor the 'Miracrustacea hypothesis', uniting Remipedia, Cephalocarida, and Hexapoda.
Collapse
Affiliation(s)
- Andy Sombke
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstrasse 23, 17487 Greifswald, Germany
| | - Torben Stemme
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany
- Current address: University of Ulm, Institute for Neurobiology, Helmholtzstraße 10/1, 89081 Ulm, Germany
| |
Collapse
|
8
|
Martin C, Gross V, Hering L, Tepper B, Jahn H, de Sena Oliveira I, Stevenson PA, Mayer G. The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:565-590. [DOI: 10.1007/s00359-017-1186-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
|
9
|
Stemme T, Stern M, Bicker G. Serotonin-containing neurons in basal insects: In search of ground patterns among tetraconata. J Comp Neurol 2017; 525:79-115. [PMID: 27203729 DOI: 10.1002/cne.24043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022]
Abstract
The ventral nerve cord of Tetraconata contains a comparably low number of serotonin-immunoreactive neurons, facilitating individual identification of cells and their characteristic neurite morphology. This offers the rather unique possibility of establishing homologies at the single cell level. Because phylogenetic relationships within Tetraconata are still discussed controversially, comparisons of individually identifiable neurons can help to unravel these issues. Serotonin immunoreactivity has been investigated in numerous tetraconate taxa, leading to reconstructions of hypothetical ground patterns for major lineages. However, detailed descriptions of basal insects are still missing, but are crucial for meaningful evolutionary considerations. We investigated the morphology of individually identifiable serotonin-immunoreactive neurons in the ventral nerve cord of Zygentoma (Thermobia domestica, Lepisma saccharina, Atelura formicaria) and Archaeognatha (Machilis germanica, Dilta hibernica). To improve immunocytochemical resolution, we also performed preincubation experiments with 5-hydroxy-L-tryptophan and serotonin. Additionally, we checked for immunolabeling of tryptophan hydroxylase, an enzyme associated with the synthesis of serotonin. Besides the generally identified groups of anterolateral, medial, and posterolateral neurons within each ganglion of the ventral nerve cord, we identified several other immunoreactive cells, which seem to have no correspondence in other tetraconates. Furthermore, we show that not all immunoreactive neurons produce serotonin, but have the capability for serotonin uptake. Comparisons with the patterns of serotonin-containing neurons in major tetraconate taxa suggest a close phylogenetic relationship of Remipedia, Cephalocarida, and Hexapoda, supporting the Miracrustacea hypothesis. J. Comp. Neurol., 2016. © 2016 Wiley Periodicals, Inc. J. Comp. Neurol. 525:79-115, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Torben Stemme
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173, Hannover, Germany
| | - Michael Stern
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173, Hannover, Germany
| | - Gerd Bicker
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173, Hannover, Germany
| |
Collapse
|
10
|
Aaen SM, Hamre LA, Horsberg TE. A screening of medicinal compounds for their effect on egg strings and nauplii of the salmon louse Lepeophtheirus salmonis (Krøyer). JOURNAL OF FISH DISEASES 2016; 39:1201-1212. [PMID: 27038351 DOI: 10.1111/jfd.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Egg strings and nauplii of the salmon louse Lepeophtheirus salmonis were exposed to a variety of medicinal compounds at 50 mg L(-1) for 30 min in two experiment series. This medicine concentration was selected as a starting point for a screening series. Hatching of egg strings and development to copepodid larvae were monitored in one experiment, and the survival and development of nauplii were monitored in the other. Two compounds, emamectin benzoate and cypermethrin, inhibited hatching effectively. Several compounds affected nauplii, either directly or through inhibiting development to the infective stage. A total of 50 mg L(-1) of azamethiphos, cypermethrin, emamectin benzoate and propoxur was lethal to >70% of the larvae. Diflubenzuron, fenoxycarb, pymetrozine, pyriprole and tebufenozide diminished the ability of nauplii developing to copepodids.
Collapse
Affiliation(s)
- S M Aaen
- NMBU School of Veterinary Science, Sea Lice Research Centre, Oslo, Norway
| | - L A Hamre
- University of Bergen, Sea Lice Research Centre, Bergen, Norway
| | - T E Horsberg
- NMBU School of Veterinary Science, Sea Lice Research Centre, Oslo, Norway
| |
Collapse
|
11
|
Brenneis G, Scholtz G. Serotonin-immunoreactivity in the ventral nerve cord of Pycnogonida--support for individually identifiable neurons as ancestral feature of the arthropod nervous system. BMC Evol Biol 2015; 15:136. [PMID: 26156705 PMCID: PMC4496856 DOI: 10.1186/s12862-015-0422-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The arthropod ventral nerve cord features a comparably low number of serotonin-immunoreactive neurons, occurring in segmentally repeated arrays. In different crustaceans and hexapods, these neurons have been individually identified and even inter-specifically homologized, based on their soma positions and neurite morphologies. Stereotypic sets of serotonin-immunoreactive neurons are also present in myriapods, whereas in the investigated chelicerates segmental neuron clusters with higher and variable cell numbers have been reported. This led to the suggestion that individually identifiable serotonin-immunoreactive neurons are an apomorphic feature of the Mandibulata. To test the validity of this neurophylogenetic hypothesis, we studied serotonin-immunoreactivity in three species of Pycnogonida (sea spiders). This group of marine arthropods is nowadays most plausibly resolved as sister group to all other extant chelicerates, rendering its investigation crucial for a reliable reconstruction of arthropod nervous system evolution. RESULTS In all three investigated pycnogonids, the ventral walking leg ganglia contain different types of serotonin-immunoreactive neurons, the somata of which occurring mostly singly or in pairs within the ganglionic cortex. Several of these neurons are readily and consistently identifiable due to their stereotypic soma position and characteristic neurite morphology. They can be clearly homologized across different ganglia and different specimens as well as across the three species. Based on these homologous neurons, we reconstruct for their last common ancestor (presumably the pycnogonid stem species) a minimal repertoire of at least seven identified serotonin-immunoreactive neurons per hemiganglion. Beyond that, each studied species features specific pattern variations, which include also some neurons that were not reliably labeled in all specimens. CONCLUSIONS Our results unequivocally demonstrate the presence of individually identifiable serotonin-immunoreactive neurons in the pycnogonid ventral nerve cord. Accordingly, the validity of this neuroanatomical feature as apomorphy of Mandibulata is questioned and we suggest it to be ancestral for arthropods instead. The pronounced disparities between the segmental pattern in pycnogonids and the one of studied euchelicerates call for denser sampling within the latter taxon. By contrast, overall similarities between the pycnogonid and myriapod patterns may be indicative of single cell homologies in these two taxa. This notion awaits further substantiation from future studies.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, 10115, Berlin, Germany.
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
12
|
Shigeno S, Ragsdale CW. The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 2015; 523:1297-317. [DOI: 10.1002/cne.23755] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/23/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Shuichi Shigeno
- Department of Marine Biodiversity Research; Japan Agency for Marine-Earth Science and Technology; Yokosuka 237-0061 Japan
- Department of Neurobiology; The University of Chicago; Chicago Illinois 60637
| | - Clifton W. Ragsdale
- Department of Neurobiology; The University of Chicago; Chicago Illinois 60637
| |
Collapse
|
13
|
Development of the nervous system in Cephalocarida (Crustacea): early neuronal differentiation and successive patterning. ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-014-0248-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Stegner ME, Brenneis G, Richter S. The ventral nerve cord in Cephalocarida (Crustacea): New insights into the ground pattern of Tetraconata. J Morphol 2013; 275:269-94. [DOI: 10.1002/jmor.20213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Martin E.J. Stegner
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| | - Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universitätsplatz 2; 18055 Rostock Mecklenburg-Vorpommern Germany
| |
Collapse
|
15
|
Zieger E, Bräunig P, Harzsch S. A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the marbled crayfish and the migratory locust: evidence for a homologous protocerebral group of neurons. ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:507-520. [PMID: 24067539 DOI: 10.1016/j.asd.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
It is well established that the brains of adult malacostracan crustaceans and winged insects display distinct homologies down to the level of single neuropils such as the central complex and the optic neuropils. We wanted to know if developing insect and crustacean brains also share similarities and therefore have explored how neurotransmitter systems arise during arthropod embryogenesis. Previously, Sintoni et al. (2007) had already reported a homology of an individually identified cluster of neurons in the embryonic crayfish and insect brain, the secondary head spot cells that express the Engrailed protein. In the present study, we have documented the ontogeny of the serotonergic system in embryonic brains of the Marbled Crayfish in comparison to Migratory Locust embryos using immunohistochemical methods combined with confocal laser-scan microscopy. In both species, we found a cluster of early emerging serotonin-immunoreactive neurons in the protocerebrum with neurites that cross to the contralateral brain hemisphere in a characteristic commissure suggesting a homology of this cell cluster. Our study is a first step towards a phylogenetic analysis of neurotransmitter system development and shows that, as for the ventral nerve cord, traits related to neurogenesis in the brain can provide valuable hints for resolving the much debated question of arthropod phylogeny.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Ernst Moritz Arndt Universität Greifswald, Fachbereich Biologie, Zoologisches Institut und Museum, AG Cytology und Evolutionsbiologie, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - Peter Bräunig
- Unit for "Developmental Biology and Morphology of Animals", Institute for Biology II, RWTH Aachen University, Lukasstr. 1, D-52070 Aachen, Germany
| | - Steffen Harzsch
- Ernst Moritz Arndt Universität Greifswald, Fachbereich Biologie, Zoologisches Institut und Museum, AG Cytology und Evolutionsbiologie, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
16
|
Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 2013; 13:119. [PMID: 23758940 PMCID: PMC3687579 DOI: 10.1186/1471-2148-13-119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. Results The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. Conclusions The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal’s trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda.
Collapse
|
17
|
Serotonin-immunoreactive neurons in scorpion pectine neuropils: similarities to insect and crustacean primary olfactory centres? ZOOLOGY 2012; 115:151-9. [PMID: 22445574 DOI: 10.1016/j.zool.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
The pectines of scorpions are a single pair of mechano- and chemosensory appendages located ventrally behind the most posterior pair of walking legs. They are used for probing the substrate in behaviours such as prey tracking and courtship. The sensory afferents on the pectines supply large segmental neuropils with a conspicuous glomerular structure. The pectine neuropils thus bear similarities to insect and crustacean deutocerebral chemosensory centres associated with the antennae, but they also possess idiosyncratic features. One characteristic property of many insect and decapod crustacean olfactory neuropils is their innervation by single, or very few, large serotonergic (inter-) neurons. This feature, among others, has been proposed to support homology of the olfactory lobes in the two arthropod groups. A possible serotonergic innervation of the scorpion pectine neuropils has not yet been studied, despite its apparent diagnostic and functional importance. We thus examined serotonin-immunoreactivity in the pectine neuropils of Androctonus australis and Pandinus imperator. Both scorpion species yielded similar results. The periphery of the neuropil and the matrix between the glomeruli are supplied by a dense network of serotonin-immunoreactive (5-HT-ir) arborisations and varicosities, while the glomeruli themselves are mostly free of 5-HT-ir fibres. The 5-HT-ir supply of the pectine neuropils has two origins. The first is a pair of neurons on each body side, up to 30 μm in diameter and thus slightly larger than the surrounding somata. These cell bodies are and associated with the neuromeres of the genital and pectine segments. The situation is reminiscent of the 5-HT supply of insect and crustacean olfactory and antennal neuropils. The second 5-HT innervation of the pectine neuropils is from a group of some 10-20 ipsilateral neuronal somata of slightly smaller size (15-20 μm). These are part of a much larger 5-HT-ir group comprising 70-90 somata. The whole group is located more anteriorly than the single soma mentioned above, and associated with the neuromere of the last (4th) walking leg. When compared to data from other arthropods, our findings may suggest that glomerular organisation is an ancestral feature of primary chemosensory centres innervated by arthropod appendages. This idea needs further scrutiny, although supporting evidence may have been overlooked previously, due to the small size of chemosensory neuropils in walking legs and in reduced segmental appendages.
Collapse
|
18
|
Whitington PM, Mayer G. The origins of the arthropod nervous system: insights from the Onychophora. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:193-209. [PMID: 21315833 DOI: 10.1016/j.asd.2011.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/17/2011] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans.
Collapse
Affiliation(s)
- Paul M Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
19
|
Fritsch M, Richter S. The formation of the nervous system during larval development in Triops cancriformis (Bosc) (crustacea, Branchiopoda): An immunohistochemical survey. J Morphol 2010; 271:1457-81. [DOI: 10.1002/jmor.10892] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Brenneis G, Richter S. Architecture of the nervous system in mystacocarida (Arthropoda, crustacea)--an immunohistochemical study and 3D reconstruction. J Morphol 2010; 271:169-89. [PMID: 19708064 DOI: 10.1002/jmor.10789] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mystacocarida is a species-poor group of minute crustaceans with unclear phylogenetic affinities. Previous studies have highlighted the putative "primitiveness" of several mystacocarid features, including the architecture of the nervous system. Recent studies on arthropod neuroarchitecture have provided a wealth of characters valuable for phylogenetic reconstructions. To permit and facilitate comparison with these data, we used immunohistochemical labeling (against acetylated alpha-tubulin, serotonin and FMRFamide) on the mystacocarid Derocheilocaris remanei, analyzing it with confocal laser-scanning microscopy and 3D reconstruction. The mystacocarid brain is fairly elongated, exhibiting a complicated stereotypic arrangement of neurite bundles. However, none of the applied markers provided evidence of structured neuropils such as a central body or olfactory glomeruli. A completely fused subesophageal ganglion is not present, all segmental soma clusters of the respective neuromeres still being delimitable. The distinct mandibular commissure comprises neurite bundles from more anterior regions, leading us to propose that it may have fused with an ancestral posterior tritocerebral commissure. The postcephalic ventral nervous system displays a typical ladder-like structure with separated ganglia which bears some resemblance to larval stages in other crustaceans. Ganglia and commissures are also present in the first three limbless "abdominal" segments, which casts doubt on the notion of a clear-cut distinction between thorax and abdomen. An unpaired longitudinal median neurite bundle is present and discussed as a potential tetraconate autapomorphy. Additionally, a paired latero-longitudinal neurite bundle extends along the trunk. It is connected to the intersegmental nerves and most likely fulfils neurohemal functions. We report the complete absence of serotonin-ir neurons in the ventral nervous system, which is a unique condition in arthropods and herein interpreted as a derived character.
Collapse
Affiliation(s)
- Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften/Allgemeine und Spezielle Zoologie, Universitätsplatz 2, 18055 Rostock, Germany
| | | |
Collapse
|
21
|
Vázquez-Acevedo N, Reyes-Colón D, Ruíz-Rodríguez EA, Rivera NM, Rosenthal J, Kohn AB, Moroz LL, Sosa MA. Cloning and immunoreactivity of the 5-HT 1Mac and 5-HT 2Mac receptors in the central nervous system of the freshwater prawn Macrobrachium rosenbergii. J Comp Neurol 2009; 513:399-416. [PMID: 19184976 PMCID: PMC2719784 DOI: 10.1002/cne.21979] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biogenic amines are implicated in several mental disorders, many of which involve social interactions. Simple model systems, such as crustaceans, are often more amenable than vertebrates for studying mechanisms underlying behaviors. Although various cellular responses of biogenic amines have been characterized in crustaceans, the mechanisms linking these molecules to behavior remain largely unknown. Observed effects of serotonin receptor agonists and antagonists in abdomen posture, escape responses, and fighting have led to the suggestion that biogenic amine receptors may play a role in modulating interactive behaviors. As a first step in understanding this potential role of such receptors, we have cloned and fully sequenced two serotonin receptors, 5-HT(1Mac) and 5-HT(2Mac), from the CNS of the freshwater prawn Macrobrachium rosenbergii and have mapped their CNS immunohistochemical distribution. 5-HT(1Mac) was found primarily on the membranes of subsets of cells in all CNS ganglia, in fibers that traverse all CNS regions, and in the cytoplasm of a small number of cells in the brain and circum- and subesophageal ganglia (SEG), most of which also appear to contain dopamine. The pattern of 5-HT(2Mac) immunoreactivity was found to differ significantly; it was found mostly in the central neuropil area of all ganglia, in glomeruli of the brain's olfactory lobes, and in the cytoplasm of a small number of neurons in the SEG, thoracic, and some abdominal ganglia. The observed differences in terms of localization, distribution within cells, and intensity of immunoreactive staining throughout the prawn's CNS suggest that these receptors are likely to play different roles.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies
- Blotting, Western
- Central Nervous System/metabolism
- Conserved Sequence
- Dopamine/metabolism
- Evolution, Molecular
- Immunohistochemistry
- Male
- Molecular Sequence Data
- Palaemonidae/genetics
- Palaemonidae/metabolism
- Phylogeny
- Receptors, Serotonin, 5-HT1/genetics
- Receptors, Serotonin, 5-HT1/metabolism
- Receptors, Serotonin, 5-HT2/genetics
- Receptors, Serotonin, 5-HT2/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Nietzell Vázquez-Acevedo
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
| | - Dalynés Reyes-Colón
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
| | - Eduardo A. Ruíz-Rodríguez
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
- Department of Social Sciences, Cayey Campus, University of Puerto Rico, Cayey, Puerto Rico 00736 USA
| | - Nilsa M. Rivera
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
| | - Joshua Rosenthal
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
| | - Andrea B. Kohn
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, St. Augustine, Florida 32080 USA
| | - Leonid L. Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, St. Augustine, Florida 32080 USA
| | - María A. Sosa
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936 USA
| |
Collapse
|
22
|
Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. ZOOLOGY 2009; 112:48-68. [PMID: 18835145 DOI: 10.1016/j.zool.2008.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/13/2008] [Accepted: 04/13/2008] [Indexed: 11/23/2022]
|
23
|
Engrailed-like immunoreactivity in the embryonic ventral nerve cord of the Marbled Crayfish (Marmorkrebs). INVERTEBRATE NEUROSCIENCE 2008; 8:177-97. [PMID: 19005710 DOI: 10.1007/s10158-008-0081-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
The homeobox transcription factor Engrailed is involved in controlling segmentation during arthropod germ band formation but also in establishing individual neuronal identities during later embryogenesis. In Crustacea, most studies analysing the expression of Engrailed so far have focussed on its function as segment polarity gene. In continuation to these previous studies, we analysed the neuronal expression of the Engrailed protein by immunohistochemistry in the embryonic nerve cord of a parthenogenetic crustacean, the Marbled Crayfish (Marmorkrebs). We paid particular attention to the individual identification of Engrailed expressing putative neuroblasts in the crayfish embryos. Engrailed positive cells in the neuroectoderm were counted, measured and mapped from 38 to 65% of embryonic development. That way, several Engrailed positive putative neuroblasts and putative neurons were identified. Our findings are compared with earlier studies on Engrailed expression during germ band formation in Crustacea. Recent data on neurogenesis in an amphipod crustacean have provided compelling evidence for the homology of several identified neuroblasts between this amphipod and insects. The present report may serve as a basis to explore the question if during crustacean neurogenesis additional communalities with insects exist.
Collapse
|
24
|
Rieger V, Harzsch S. Embryonic development of the histaminergic system in the ventral nerve cord of the Marbled Crayfish (Marmorkrebs). Tissue Cell 2007; 40:113-26. [PMID: 18067933 DOI: 10.1016/j.tice.2007.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 11/27/2022]
Abstract
The embryonic development of neurotransmitter systems in crustaceans so far is poorly understood. Therefore, in the current study we monitored the ontogeny of histamine-immunoreactive neurons in the ventral nerve cord of the Marbled Crayfish, an emerging crustacean model system for developmental studies. The first histaminergic neurons arise around 60% of embryonic development, well after the primordial axonal scaffold of the ventral nerve cord has been established. This suggests that histaminergic neurons do not serve as pioneer neurons but that their axons follow well established axonal tracts. The developmental sequence of the different types of histaminergic neurons is charted in this study. The analysis of the histaminergic structures is also extended into adult specimens, showing a persistence of embryonic histaminergic neurons into adulthood. Our data are compared to the pattern of histaminergic neurons in other crustaceans and discussed with regard to our knowledge on other aspects of neurogenesis in Crustacea. Furthermore, the possible role of histaminergic neurons as characters in evolutionary considerations is evaluated.
Collapse
Affiliation(s)
- V Rieger
- Universität Ulm, Fakultät für Naturwissenschaften, Institut für Neurobiologie, D-89081 Ulm, Germany
| | | |
Collapse
|
25
|
Sintoni S, Fabritius-Vilpoux K, Harzsch S. The engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev Genes Evol 2007; 217:791-9. [PMID: 17960420 DOI: 10.1007/s00427-007-0189-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Hexapoda have been traditionally seen as the closest relatives of the Myriapoda (Tracheata hypothesis) but molecular studies have challenged this hypothesis and rather have suggested a close relationship of hexapods and crustaceans (Tetraconata hypothesis). In this new debate, data on the structure and development of the arthropod nervous system contribute important new data ("neurophylogeny"). Neurophylogenetic studies have already provided several examples for individually identifiably neurons in the ventral nerve cord that are homologous between insects and crustaceans. In the present report, we have analysed the emergence of Engrailed-expressing cells in the embryonic brain of a parthenogenetic crayfish, the marbled crayfish (Marmorkrebs), and have compared our findings to the pattern previously reported from insects. Our data suggest that a group of six Engrailed-expressing neurons in the optic anlagen, the so-called secondary head spot cells can be homologised between crayfish and the grasshopper. In the grasshopper, these cells are supposed to be involved in establishing the primary axon scaffold of the brain. Our data provide the first example for a cluster of brain neurons that can be homologised between insects and crustaceans and show that even at the level of certain cell groups, brain structures are evolutionary conserved in these two groups.
Collapse
Affiliation(s)
- Silvia Sintoni
- Fakultät für Naturwissenschaften, Institut für Neurobiologie and Sektion Biosystematische Dokumentation, Universität Ulm, 89081 Ulm, Germany
| | | | | |
Collapse
|
26
|
Mayer G, Harzsch S. Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evol Biol 2007; 7:118. [PMID: 17629937 PMCID: PMC1933538 DOI: 10.1186/1471-2148-7-118] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/15/2007] [Indexed: 11/10/2022] Open
Abstract
Background Onychophora (velvet worms) represent the most basal arthropod group and play a pivotal role in the current discussion on the evolution of nervous systems and segmentation in arthropods. Although there is a wealth of information on the immunolocalization of serotonin (5-hydroxytryptamine, 5-HT) in various euarthropods, as yet no comparable localization data are available for Onychophora. In order to understand how the onychophoran nervous system compares to that of other arthropods, we studied the distribution of serotonin-like immunoreactive neurons and histological characteristics of ventral nerve cords in Metaperipatus blainvillei (Onychophora, Peripatopsidae) and Epiperipatus biolleyi (Onychophora, Peripatidae). Results We demonstrate that paired leg nerves are the only segmental structures associated with the onychophoran nerve cord. Although the median commissures and peripheral nerves show a repeated pattern, their arrangement is independent from body segments characterized by the position of legs and associated structures. Moreover, the somata of serotonin-like immunoreactive neurons do not show any ordered arrangement in both species studied but are instead scattered throughout the entire length of each nerve cord. We observed neither a serially iterated nor a bilaterally symmetric pattern, which is in contrast to the strictly segmental arrangement of serotonergic neurons in other arthropods. Conclusion Our histological findings and immunolocalization experiments highlight the medullary organization of the onychophoran nerve cord and argue against segmental ganglia of the typical euarthropodan type being an ancestral feature of Onychophora. These results contradict a priori assumptions of segmental ganglia being an ancestral feature of arthropods and, thus, weaken the traditional Articulata hypothesis, which proposes a sistergroup relationship of Annelida and Arthropoda.
Collapse
Affiliation(s)
- Georg Mayer
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia
| | - Steffen Harzsch
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
27
|
Santhoshi S, Sugumar V, Munuswamy N. Localization of Serotonin Neuropiles in the Brain and Thoracic Ganglia of the Indian White Shrimp,Fenneropenaeus indicus: Phylogenetic Comparisons and Implications for Arthropod Relationships. Microsc Res Tech 2007. [DOI: 10.1002/jemt.20468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Katz PS. Evolution and development of neural circuits in invertebrates. Curr Opin Neurobiol 2006; 17:59-64. [PMID: 17174546 DOI: 10.1016/j.conb.2006.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/07/2006] [Indexed: 01/06/2023]
Abstract
Developmental mechanisms can shed light on how evolutionary diversity has arisen. Invertebrate nervous systems offer a wealth of diverse structures and functions from which to relate development to evolution. Individual homologous neurons have been shown to have distinct roles in species with different behaviors. In addition, specific neurons have been lost or gained in some phylogenetic lineages. The ability to address the neural basis of behavior at the cellular level in invertebrates has facilitated discoveries showing that species-specific behavior can arise from differences in synaptic strength, in neuronal structure and in neuromodulation. The mechanisms involved in the development of neural circuits lead to these differences across species.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
29
|
Harzsch S, Müller CHG, Wolf H. From variable to constant cell numbers: cellular characteristics of the arthropod nervous system argue against a sister-group relationship of Chelicerata and "Myriapoda" but favour the Mandibulata concept. Dev Genes Evol 2005; 215:53-68. [PMID: 15592874 DOI: 10.1007/s00427-004-0451-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 11/05/2004] [Indexed: 11/25/2022]
Abstract
In the new debate on arthropod phylogeny, structure and development of the nervous system provide important arguments. The architecture of the brain of Hexapoda, Crustacea and Chelicerata in recent years has been thoroughly compared against an evolutionary background. However, comparative aspects of the nervous systems in these taxa at the cellular level have been examined in only a few studies. This review sets out to summarize these aspects and to analyse the existing data with respect to the concept of individually identifiable neurons. In particular, mechanisms of neurogenesis, the morphology of serotonergic interneurons, the number of motoneurons, and cellular features and development of the lateral eyes are discussed. We conclude that in comparison to the Mandibulata, in Chelicerata the numbers of neurons in the different classes examined are much higher and in many cases are not fixed but variable. The cell numbers in Mandibulata are lower and the majority of neurons are individually identifiable. The characters explored in this review are mapped onto an existing phylogram, as derived from brain architecture in which the Hexapoda are an in-group of the Crustacea, and there is not any conflict of the current data with such a phylogenetic position of the Hexapoda. Nevertheless, these characters argue against a sister-group relationship of "Myriapoda" and Chelicerata as has been recently suggested in several molecular studies, but instead provide strong evidence in favour of the Mandibulata concept.
Collapse
Affiliation(s)
- Steffen Harzsch
- Sektion Biosystematische Dokumentation und Abteilung Neurobiologie, Fakultät für Naturwissenschaften, Universität Ulm, Albert-Einstein-Strasse 11, 89081, Ulm, Germany.
| | | | | |
Collapse
|
30
|
Harzsch S. Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 2004; 259:198-213. [PMID: 14755751 DOI: 10.1002/jmor.10178] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phylogenetic relationships within the Arthropoda have been discussed controversially for more than a century. Comparative studies on structure and development of the nervous system have contributed important arguments to this discussion. Arthropods have individually identifiable neurons that can be used as characters in phylogenetic studies. In the present report, the arrangement of serotonin-immunoreactive neurons in the ventral nerve cord was examined in seven representatives of the Chelicerata, Chilopoda, and Diplopoda. The goal of this analysis was to determine whether number, arrangement, and axonal morphology of the serotonergic neurons in these groups are similar to the pattern found in representatives of the Hexapoda and Crustacea, as explored in a previous study. The results indicate that the pattern in the seven species examined here does not correspond to that present in the Hexapoda and Crustacea. In particular, the pattern in Chilopoda and Diplopoda is clearly different from that of the Hexapoda. The hexapodan pattern most closely resembles that of the Crustacea. These findings are discussed with regard to recent reports on the mechanisms of neurogenesis in these taxa. Furthermore, the proposed ground patterns of the various groups are reconstructed and the characters are plotted on two competing hypotheses of arthropod phylogeny, the traditional Tracheata hypothesis and an alternative hypothesis derived from molecular and recent morphological data, the Tetraconata concept. The data discussed in this article moderately support the Tetraconata hypothesis.
Collapse
Affiliation(s)
- Steffen Harzsch
- Sektion Biosystematische Dokumentation and Abteilung Neurobiologie, Universität Ulm, Helmholtzstrasse 20, D-89081 Ulm, Germany.
| |
Collapse
|
31
|
Sosa MA, Spitzer N, Edwards DH, Baro DJ. A crustacean serotonin receptor: Cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn. J Comp Neurol 2004; 473:526-37. [PMID: 15116388 DOI: 10.1002/cne.20092] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serotonin (5-HT) is involved in regulating important aspects of behavior and a variety of systemic physiological functions in both vertebrates and invertebrates. These functions are mediated through binding to 5-HT receptors, of which approximately 13 have been characterized in mammals. In crustaceans, important model systems for the study of the neural basis of behaviors, 5-HT is also linked with higher-order behaviors, associated with different 5-HT receptors that have been identified at the physiological and pharmacological levels. However, no crustacean 5-HT receptors have been identified at the molecular level. We have cloned a putative 5-HT(1) receptor (5-HT(1crust)) from crayfish, prawn, and spiny lobster and have raised antibodies that recognize this protein in all three organisms. 5-HT(1crust) immunoreactivity (5-HT(1crust)ir) was observed surrounding the somata of specific groups of neurons and as punctate staining within the neuropil in all thoracic ganglia of crayfish and prawn. In the crayfish, 5-HT(1crust)ir was also found in boutons surrounding the first and second nerves of each ganglion and on the 5-HT cells of T1-4. In the prawn, 5-HT(1crust)ir was also found in axons that project across the ganglia and along the connectives. We found examples of colocalization of 5-HT(1crust) with 5-HT, consistent with the short-term modulatory role of 5-HT, as well as cases of serotonergic staining in the absence of a 5-HT(1crust) signal, which might imply that other 5-HT receptors are found at these locations. We also observed receptors that did not possess counterpart 5-HT staining, suggesting that these may also mediate long-term neurohormonal functions of serotonin.
Collapse
Affiliation(s)
- María A Sosa
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico 00901.
| | | | | | | |
Collapse
|
32
|
Harzsch S. Ontogeny of the ventral nerve cord in malacostracan crustaceans: a common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? ARTHROPOD STRUCTURE & DEVELOPMENT 2003; 32:17-37. [PMID: 18088994 DOI: 10.1016/s1467-8039(03)00008-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 03/24/2003] [Indexed: 05/25/2023]
Abstract
This review sets out to summarize our current knowledge on the structural layout of the embryonic ventral nerve cord in decapod crustaceans and its development from stem cell to the mature structure. In Decapoda, neuronal stem cells, the neuroblasts, mostly originate from ectodermal stem cells, the ectoteloblast, via a defined lineage. The neuroblasts undergo repeated asymmetric division and generate ganglion mother cells. The ganglion mother cells later divide again to give birth to ganglion cells (neurons) and there is increasing evidence now that ganglion mother cells divide again not only once but repeatedly. Various other aspects of neuroblast proliferation such as their temporal patterns of mitotic activity and spatial arrangement as well as the relation of neurogenesis to the development of the segmental appendages and maturation of motor behaviors are described. The link between cell lineage and cell differentiation in Decapoda so far has only been established for the midline neuroblast. However, there are several other identified early differentiating neurons, the outgrowing neurites of which pioneer the axonal scaffold within the neuromeres of the ventral nerve cord. The maturation of identified neurons as examined by immunohistochemistry against their neurotransmitters or engrailed, is briefly described. These processes are compared to other Arthropoda (including Onychophora, Chelicerata, Diplopoda and Hexapoda) in order to shed light on variations and conserved motifs of the theme 'neurogenesis'. The question of a 'common plan for neuronal development' in the ventral nerve cords of Hexapoda and Crustacea is critically evaluated and the possibility of homologous neurons arising through divergent developmental pathways is discussed.
Collapse
Affiliation(s)
- Steffen Harzsch
- Universität Ulm, Fakultät für Naturwissenschaften, Sektion Biosystematische Dokumentation und Abteilung Neurobiologie, Helmholtzstrasse 20, 89081 Ulm, Germany
| |
Collapse
|