1
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
2
|
Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon 2021; 7:e06854. [PMID: 33981903 PMCID: PMC8082549 DOI: 10.1016/j.heliyon.2021.e06854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2), a family of transcription factor of MADS (minichromosome maintenance 1, agamous, deficiens and serum response factor)-box family needed in the growth and differentiation of a variety of human cells, such as neural, immune, endothelial, and muscles. As per existing literature, MEF2 transcription factors have also been associated with synaptic plasticity, the developmental mechanisms governing memory and learning, and several neurologic conditions, like autism spectrum disorders (ASDs). Recent genomic findings have ascertained a link between MEF2 defects, particularly in the MEF2C isoform and the ASD. In this review, we summarized a concise overview of the general regulation, structure and functional roles of the MEF2C transcription factor. We further outlined the potential role of MEF2C as a risk factor for various neurodevelopmental disorders, such as ASD, MEF2C Haploinsufficiency Syndrome and Fragile X syndrome.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
3
|
Chen ZZ, Niu YY. Stem cell therapy for Parkinson's disease using non-human primate models. Zool Res 2019; 40:349-357. [PMID: 31343853 PMCID: PMC6755115 DOI: 10.24272/j.issn.2095-8137.2019.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapy (SCT) for Parkinson's disease (PD) has received considerable attention in recent years. Non-human primate (NHP) models of PD have played an instrumental role in the safety and efficacy of emerging PD therapies and facilitated the translation of initiatives for human patients. NHP models of PD include primates with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, who are responsive to dopamine replacement therapies, similar to human PD patients. Extensive research in SCT has been conducted to better treat the progressive dopaminergic neurodegeneration that underlies PD. For effective application of SCT in PD, however, a number of basic parameters still need to be tested and optimized in NHP models, including preparation and storage of cells for engraftment, methods of transplantation, choice of target sites, and timelines for recovery. In this review, we discuss the current status of NHP models of PD in stem cell research. We also analyze the advances and remaining challenges for successful clinical translation of SCT for this persistent disease.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500
| | - Yu-Yu Niu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500, China; E-mail:
| |
Collapse
|
4
|
Crittenden JR, Skoulakis EMC, Goldstein ES, Davis RL. Drosophila mef2 is essential for normal mushroom body and wing development. Biol Open 2018; 7:bio.035618. [PMID: 30115617 PMCID: PMC6176937 DOI: 10.1242/bio.035618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruit fly Drosophila, MEF2 is essential for the formation of mushroom bodies in the embryonic brain and for the normal development of wings in the adult. In embryos mutant for mef2, there is a striking reduction in the number of mushroom body neurons and their axon bundles are not detectable. The onset of MEF2 expression in neurons of the mushroom bodies coincides with their formation in the embryo and, in larvae, expression is restricted to post-mitotic neurons. In flies with a mef2 point mutation that disrupts nuclear localization, we find that MEF2 is restricted to a subset of Kenyon cells that project to the α/β, and γ axonal lobes of the mushroom bodies, but not to those forming the α’/β’ lobes. Summary:Drosophila mef2 expression is restricted to subsets of mushroom body neurons, from the time of their differentiation to adulthood, and is essential for mushroom body formation.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, 16672, Greece
| | - Elliott S Goldstein
- School of Life Science, Cellular, Molecular and Bioscience Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
5
|
Zhao Y, Li Y, Ma Y, Wang S, Cheng J, Yang T, Sun Z, Kuang Y, Huang H, Fan K, Gu J. Myocyte enhancer factor 2D promotes tumorigenicity in malignant glioma cells. Tumour Biol 2015; 37:601-10. [PMID: 26234765 DOI: 10.1007/s13277-015-3791-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
The prognosis of patients with malignant glioma is always quite poor, and this poor prognosis is probably due to our incomplete understanding of the molecular mechanisms underlying malignant glioma. It is known that myocyte enhancer factor-2D (MEF2D) plays an oncogenic role in hepatocellular carcinoma and promotes the survival of various types of cells. However, little is known about the expression profile and function of MEF2D in malignant glioma. In this study, we investigated the function and expression of MEF2D in malignant glioma. We found that in malignant glioma, there is an aberrantly high expression of MEF2D, which leads to poor prognosis of malignant glioma. The downregulation of MEF2D suppresses the proliferation of malignant glioma cell lines by inducing delay of S and G2/M phases of cell cycle and promoting apoptosis. Furthermore, the overexpression of MEF2D in astrocytes accelerates cell proliferation by regulating cell cycle progression. Furthermore, a mouse malignant glioma model demonstrated that MEF2D deficiency blocks malignant glioma formation in vivo. We conclude that MEF2D may act as a potential oncogene in malignant glioma and thus serve as a candidate target for malignant glioma therapy.
Collapse
Affiliation(s)
- Youguang Zhao
- Department of Postgraduate, Third Military Medical University, Chongqing, People's Republic of China.,Department of Urology, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Ying Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Yuan Ma
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Songtao Wang
- Section of Scientific Research and Training, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Jingmin Cheng
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Tao Yang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Zhiyong Sun
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Yongqin Kuang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Haidong Huang
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Kexia Fan
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Jianwen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, People's Republic of China. .,The 306th Hospital of PLA, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Al Madhoun AS, Voronova A, Ryan T, Zakariyah A, McIntire C, Gibson L, Shelton M, Ruel M, Skerjanc IS. Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. J Mol Cell Cardiol 2013; 60:164-171. [PMID: 23598283 DOI: 10.1016/j.yjmcc.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Since a previous study (Goldman-Johnson et al., 2008 [4]) has shown that androgens can stimulate increased differentiation of mouse embryonic stem (mES) cells into cardiomyocytes using a genomic pathway, the aim of our study is to elucidate the molecular mechanisms regulating testosterone-enhanced cardiomyogenesis. Testosterone upregulated cardiomyogenic transcription factors, including GATA4, MEF2C, and Nkx2.5, muscle structural proteins, and the pacemaker ion channel HCN4 in a dose-dependent manner, in mES cells and P19 embryonal carcinoma cells. Knock-down of the androgen receptor (AR) or treatment with anti-androgenic compounds inhibited cardiomyogenesis, supporting the requirement of the genomic pathway. Chromatin immunoprecipitation (ChIP) studies showed that testosterone enhanced recruitment of AR to the regulatory regions of MEF2C and HCN4 genes, which was associated with increased histone acetylation. In summary, testosterone upregulated cardiomyogenic transcription factor and HCN4 expression in stem cells. Further, testosterone induced cardiomyogenesis, at least in part, by recruiting the AR receptor to the regulatory regions of the MEF2C and HCN4 genes. These results provide a detailed molecular analysis of the function of testosterone in stem cells and may offer molecular insight into the role of steroids in the heart.
Collapse
Affiliation(s)
- Ashraf Said Al Madhoun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res 2012; 40:3329-3347. [PMID: 22199256 PMCID: PMC3333882 DOI: 10.1093/nar/gkr1232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 02/07/2023] Open
Abstract
The transcription factors Gli2 (glioma-associated factor 2), which is a transactivator of Sonic Hedgehog (Shh) signalling, and myocyte enhancer factor 2C (MEF2C) play important roles in the development of embryonic heart muscle and enhance cardiomyogenesis in stem cells. Although the physiological importance of Shh signalling and MEF2 factors in heart development is well known, the mechanistic understanding of their roles is unclear. Here, we demonstrate that Gli2 and MEF2C activated each other's expression while enhancing cardiomyogenesis in differentiating P19 EC cells. Furthermore, dominant-negative mutant proteins of either Gli2 or MEF2C repressed each other's expression, while impairing cardiomyogenesis in P19 EC cells. In addition, chromatin immunoprecipitation (ChIP) revealed association of Gli2 to the Mef2c gene, and of MEF2C to the Gli2 gene in differentiating P19 cells. Finally, co-immunoprecipitation studies showed that Gli2 and MEF2C proteins formed a complex, capable of synergizing on cardiomyogenesis-related promoters containing both Gli- and MEF2-binding elements. We propose a model whereby Gli2 and MEF2C bind each other's regulatory elements, activate each other's expression and form a protein complex that synergistically activates transcription, enhancing cardiac muscle development. This model links Shh signalling to MEF2C function during cardiomyogenesis and offers mechanistic insight into their in vivo functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
8
|
Sekiyama Y, Suzuki H, Tsukahara T. Functional gene expression analysis of tissue-specific isoforms of Mef2c. Cell Mol Neurobiol 2012; 32:129-39. [PMID: 21842419 PMCID: PMC11498492 DOI: 10.1007/s10571-011-9743-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/27/2011] [Indexed: 01/04/2023]
Abstract
Mef2c contains three alternative exons and generates six Mef2c isoforms in mice. Mef2c α1β isoforms are expressed in neuronal tissues, α2 isoforms are expressed in muscle, and α1 isoforms are expressed in many other tissues. The γ region inclusion and skipped isoforms are present in equal amounts in many tissues. In this study, differences in the transcriptional activities of each tissue-specific isoform of Mef2c in neuronal cells were examined. Using an MEF2-responsive reporter, exon β-dependent transactivation was found in neuronal cells, as well as in other cell lines previously described. Microarray analysis was used to examine the transcriptional activities of each Mef2c isoform and to assess differences in endogenous gene expression induced by the different isoforms. The results showed significant gene expression changes due to overexpression of Mef2c isoforms in both an isoforms-dependent and -independent manner.
Collapse
Affiliation(s)
- Yoshiharu Sekiyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
| | - Hitoshi Suzuki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
| |
Collapse
|
9
|
Al Madhoun AS, Mehta V, Li G, Figeys D, Wiper-Bergeron N, Skerjanc IS. Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of MEF2C. EMBO J 2011; 30:2477-2489. [PMID: 21556048 PMCID: PMC3116284 DOI: 10.1038/emboj.2011.153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/19/2011] [Indexed: 12/18/2022] Open
Abstract
The MEF2 factors regulate transcription during cardiac and skeletal myogenesis. MEF2 factors establish skeletal muscle commitment by amplifying and synergizing with MyoD. While phosphorylation is known to regulate MEF2 function, lineage-specific regulation is unknown. Here, we show that phosphorylation of MEF2C on T(80) by skeletal myosin light chain kinase (skMLCK) enhances skeletal and not cardiac myogenesis. A phosphorylation-deficient MEF2C mutant (MEFT80A) enhanced cardiac, but not skeletal myogenesis in P19 stem cells. Further, MEFT80A was deficient in recruitment of p300 to skeletal but not cardiac muscle promoters. In gain-of-function studies, skMLCK upregulated myogenic regulatory factor (MRF) expression, leading to enhanced skeletal myogenesis in P19 cells and more efficient myogenic conversion. In loss-of-function studies, MLCK was essential for efficient MRF expression and subsequent myogenesis in embryonic stem (ES) and P19 cells as well as for proper activation of quiescent satellite cells. Thus, skMLCK regulates MRF expression by controlling the MEF2C-dependent recruitment of histone acetyltransferases to skeletal muscle promoters. This work identifies the first kinase that regulates MyoD and Myf5 expression in ES or satellite cells.
Collapse
Affiliation(s)
- Ashraf Said Al Madhoun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Grace Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Voronova A, Fischer A, Ryan T, Al Madhoun A, Skerjanc IS. Ascl1/Mash1 is a novel target of Gli2 during Gli2-induced neurogenesis in P19 EC cells. PLoS One 2011; 6:e19174. [PMID: 21559470 PMCID: PMC3084770 DOI: 10.1371/journal.pone.0019174] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/29/2011] [Indexed: 12/23/2022] Open
Abstract
The Sonic Hedgehog (Shh) signaling pathway is important for neurogenesis in vivo. Gli transcription factors, effector proteins of the Shh signaling pathway, have neurogenic properties in vivo, which are still poorly understood. To study the molecular basis of neurogenic properties of Gli2, we used a well-established embryonic stem cell model, the P19 embryonal carcinoma (EC) cell line, which can be induced to differentiate into neurons in the presence of retinoic acid (RA). We found that, in the absence of RA, overexpression of Gli2 induced P19 EC cells to differentiate into neurons, but not astrocytes during the first ten days of differentiation. To our knowledge, this is the first indication that the expression of Gli factors can convert EC cells into neurons. Furthermore, Gli2 upregulated expression of the neurogenic basic helix-loop-helix (bHLH) factors, such as NeuroD, Neurog1 and Ascl1/Mash1 in P19 EC cells. Using chromatin immunoprecipitation assays, we showed that Gli2 bound to multiple regulatory regions in the Ascl1 gene, including promoter and enhancer regions during Gli2-induced neurogenesis. In addition, Gli2 activated the Ascl1/Mash1 promoter in vitro. Using the expression of a dominant-negative form of Gli2, fused to the Engrailed repression domain, we observed a reduction in gliogenesis and a significant downregulation of the bHLH factors Ascl1/Mash1, Neurog1 and NeuroD, leading to delayed neurogenesis in P19 EC cells, further supporting the hypothesis that Ascl1/Mash1 is a direct target of Gli2. In summary, Gli2 is sufficient to induce neurogenesis in P19 stem cells at least in part by directly upregulating Ascl1/Mash1. Our results provide mechanistic insight into the neurogenic properties of Gli2 in vitro, and offer novel plausible explanations for its in vivo neurogenic properties.
Collapse
Affiliation(s)
- Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Anna Fischer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Tammy Ryan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ashraf Al Madhoun
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Gianakopoulos PJ, Mehta V, Voronova A, Cao Y, Yao Z, Coutu J, Wang X, Waddington MS, Tapscott SJ, Skerjanc IS. MyoD directly up-regulates premyogenic mesoderm factors during induction of skeletal myogenesis in stem cells. J Biol Chem 2010; 286:2517-25. [PMID: 21078671 DOI: 10.1074/jbc.m110.163709] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gain- and loss-of-function experiments have illustrated that the family of myogenic regulatory factors is necessary and sufficient for the formation of skeletal muscle. Furthermore, MyoD required cellular aggregation to induce myogenesis in P19 embryonal carcinoma stem cells. To determine the mechanism by which stem cells can be directed into skeletal muscle, a time course of P19 cell differentiation was examined in the presence and absence of exogenous MyoD. By quantitative PCR, the first MyoD up-regulated transcripts were the premyogenic mesoderm factors Meox1, Pax7, Six1, and Eya2 on day 4 of differentiation. Subsequently, the myoblast markers myogenin, MEF2C, and Myf5 were up-regulated, leading to skeletal myogenesis. These results were corroborated by Western blot analysis, showing up-regulation of Pax3, Six1, and MEF2C proteins, prior to myogenin protein expression. To determine at what stage a dominant-negative MyoD/EnR mutant could inhibit myogenesis, stable cell lines were created and examined. Interestingly, the premyogenic mesoderm factors, Meox1, Pax3/7, Six1, Eya2, and Foxc1, were down-regulated, and as expected, skeletal myogenesis was abolished. Finally, to identify direct targets of MyoD in this system, chromatin immunoprecipitation experiments were performed. MyoD was observed associated with regulatory regions of Meox1, Pax3/7, Six1, Eya2, and myogenin genes. Taken together, MyoD directs stem cells into the skeletal muscle lineage by binding and activating the expression of premyogenic mesoderm genes, prior to activating myoblast genes.
Collapse
Affiliation(s)
- Peter J Gianakopoulos
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aid-Pavlidis T, Pavlidis P, Timmusk T. Meta-coexpression conservation analysis of microarray data: a "subset" approach provides insight into brain-derived neurotrophic factor regulation. BMC Genomics 2009; 10:420. [PMID: 19737418 PMCID: PMC2748098 DOI: 10.1186/1471-2164-10-420] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
Background Alterations in brain-derived neurotrophic factor (BDNF) gene expression contribute to serious pathologies such as depression, epilepsy, cancer, Alzheimer's, Huntington and Parkinson's disease. Therefore, exploring the mechanisms of BDNF regulation represents a great clinical importance. Studying BDNF expression remains difficult due to its multiple neural activity-dependent and tissue-specific promoters. Thus, microarray data could provide insight into the regulation of this complex gene. Conventional microarray co-expression analysis is usually carried out by merging the datasets or by confirming the re-occurrence of significant correlations across datasets. However, co-expression patterns can be different under various conditions that are represented by subsets in a dataset. Therefore, assessing co-expression by measuring correlation coefficient across merged samples of a dataset or by merging datasets might not capture all correlation patterns. Results In our study, we performed meta-coexpression analysis of publicly available microarray data using BDNF as a "guide-gene" introducing a "subset" approach. The key steps of the analysis included: dividing datasets into subsets with biologically meaningful sample content (e.g. tissue, gender or disease state subsets); analyzing co-expression with the BDNF gene in each subset separately; and confirming co- expression links across subsets. Finally, we analyzed conservation in co-expression with BDNF between human, mouse and rat, and sought for conserved over-represented TFBSs in BDNF and BDNF-correlated genes. Correlated genes discovered in this study regulate nervous system development, and are associated with various types of cancer and neurological disorders. Also, several transcription factor identified here have been reported to regulate BDNF expression in vitro and in vivo. Conclusion The study demonstrates the potential of the "subset" approach in co-expression conservation analysis for studying the regulation of single genes and proposes novel regulators of BDNF gene expression.
Collapse
Affiliation(s)
- Tamara Aid-Pavlidis
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 19086 Tallinn, Estonia.
| | | | | |
Collapse
|
13
|
Gohlke JM, Thomas R, Zhang Y, Rosenstein MC, Davis AP, Murphy C, Becker KG, Mattingly CJ, Portier CJ. Genetic and environmental pathways to complex diseases. BMC SYSTEMS BIOLOGY 2009; 3:46. [PMID: 19416532 PMCID: PMC2680807 DOI: 10.1186/1752-0509-3-46] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 05/05/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. RESULTS Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. CONCLUSION Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
Collapse
Affiliation(s)
- Julia M Gohlke
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Reuben Thomas
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yonqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael C Rosenstein
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Allan P Davis
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Cynthia Murphy
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carolyn J Mattingly
- Department of Bioinformatics, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| | - Christopher J Portier
- Environmental Systems Biology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
14
|
Jing XT, Wu HT, Wu Y, Ma X, Liu SH, Wu YR, Ding XF, Peng XZ, Qiang BQ, Yuan JG, Fan WH, Fan M. DIXDC1 promotes retinoic acid-induced neuronal differentiation and inhibits gliogenesis in P19 cells. Cell Mol Neurobiol 2009; 29:55-67. [PMID: 18629627 PMCID: PMC11506024 DOI: 10.1007/s10571-008-9295-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
Human DIXDC1 is a member of Dishevelled-Axin (DIX) domain containing gene family which plays important roles in Wnt signaling and neural development. In this report, we first confirmed that expression of Ccd1, a mouse homologous gene of DIXDC1, was up-regulated in embryonic developing nervous system. Further studies showed that Ccd1 was expressed specifically in neurons and colocalized with early neuronal marker Tuj1. During the aggregation induced by RA and neuronal differentiation of embryonic carcinoma P19 cells, expressions of Ccd1 as well as Wnt-1 and N-cadherin were dramatically increased. Stable overexpression of DIXDC1 in P19 cells promoted the neuronal differentiation. P19 cells overexpressing DIXDC1 but not the control P19 cells could differentiate into Tuj1 positive cells with RA induction for only 2 days. Meanwhile, we also found that overexpression of DIXDC1 facilitated the expression of Wnt1 and bHLHs during aggregation and differentiation, respectively, while inhibited gliogenesis by down-regulating the expression of GFAP in P19 cells. Thus, our finding suggested that DIXDC1 might play an important role during neurogenesis, overexpression of DIXDC1 in embryonic carcinoma P19 cells promoted neuronal differentiation, and inhibited gliogenesis induced by retinoic acid.
Collapse
Affiliation(s)
- Xiao-Tang Jing
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Hai-Tao Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Yan Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xin Ma
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Shu-Hong Liu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Yan-Rui Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xue-Feng Ding
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xiao-Zhong Peng
- State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 People’s Republic of China
| | - Bo-Qin Qiang
- State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 People’s Republic of China
| | - Jian-Gang Yuan
- State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 People’s Republic of China
| | - Wen-Hong Fan
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| |
Collapse
|
15
|
Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci 2008; 28:6557-68. [PMID: 18579729 DOI: 10.1523/jneurosci.0134-08.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-based therapies require a reliable source of cells that can be easily grown, undergo directed differentiation, and remain viable after transplantation. Here, we generated stably transformed murine ES (embryonic stem) cells that express a constitutively active form of myocyte enhancer factor 2C (MEF2CA). MEF2C has been implicated as a calcium-dependent transcription factor that enhances survival and affects synapse formation of neurons as well as differentiation of cardiomyocytes. We now report that expression of MEF2CA, both in vitro and in vivo, under regulation of the nestin enhancer effectively produces "neuronal" progenitor cells that differentiate into a virtually pure population of neurons. Histological, electrophysiological, and behavioral analyses demonstrate that MEF2C-directed neuronal progenitor cells transplanted into a mouse model of cerebral ischemia can successfully differentiate into functioning neurons and ameliorate stroke-induced behavioral deficits.
Collapse
|
16
|
Small-molecule activation of neuronal cell fate. Nat Chem Biol 2008; 4:408-10. [PMID: 18552832 DOI: 10.1038/nchembio.95] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/16/2008] [Indexed: 11/08/2022]
Abstract
We probed an epigenetic regulatory path from small molecule to neuronal gene activation. Isoxazole small molecules triggered robust neuronal differentiation in adult neural stem cells, rapidly signaling to the neuronal genome via Ca(2+) influx. Ca(2+)-activated CaMK phosphorylated and mediated nuclear export of the MEF2 regulator HDAC5, thereby de-repressing neuronal genes. These results provide new tools to explore the epigenetic signaling circuitry specifying neuronal cell fate and new leads for neuro-regenerative drugs.
Collapse
|
17
|
Abstract
Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.
Collapse
Affiliation(s)
- Ralf Janssen
- Institute for Genetics, Evolutionary Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Köln, Germany
| | | |
Collapse
|
18
|
Pinto L, Mader MT, Irmler M, Gentilini M, Santoni F, Drechsel D, Blum R, Stahl R, Bulfone A, Malatesta P, Beckers J, Götz M. Prospective isolation of functionally distinct radial glial subtypes--lineage and transcriptome analysis. Mol Cell Neurosci 2008; 38:15-42. [PMID: 18372191 DOI: 10.1016/j.mcn.2008.01.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/07/2008] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of radial glia as the source of neurons, their heterogeneity in regard to neurogenesis has been described by clonal and time-lapse analysis in vitro. However, the molecular determinants specifying neurogenic radial glia differently from radial glia that mostly self-renew remain ill-defined. Here, we isolated two radial glial subsets that co-exist at mid-neurogenesis in the developing cerebral cortex and their immediate progeny. While one subset generates neurons directly, the other is largely non-neurogenic but also gives rise to Tbr2-positive basal precursors, thereby contributing indirectly to neurogenesis. Isolation of these distinct radial glia subtypes allowed determining interesting differences in their transcriptome. These transcriptomes were also strikingly different from the transcriptome of radial glia isolated at the end of neurogenesis. This analysis therefore identifies, for the first time, the lineage origin of basal progenitors and the molecular differences of this lineage in comparison to directly neurogenic and gliogenic radial glia.
Collapse
Affiliation(s)
- Luisa Pinto
- Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Institute of Stem Cell Research, Ingolstädter Landstr. 1, 85764 Neuherberg/Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Di Loreto S, Zimmitti V, Sebastiani P, Cervelli C, Falone S, Amicarelli F. Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol 2007; 40:245-57. [PMID: 17869161 DOI: 10.1016/j.biocel.2007.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 01/10/2023]
Abstract
The hippocampus is known to play a crucial role in learning and memory. Recent data from literature show that cognitive problems, common to aged or diabetic patients, may be related to accumulation of toxic alpha-oxoaldehydes such as methylglyoxal. Thus, it is possible that methylglyoxal could be, at least in part, responsible for the impairment of cognitive functions, and the knowledge of the mechanisms through which this compound elicits neuronal toxicity could be useful for the development of possible therapeutic strategies. We previously reported a high susceptibility of hippocampal neurons to methylglyoxal, through an oxidation-dependent mechanism. In the present study, we extend our investigation on the molecular mechanisms which underlie methylglyoxal toxicity, focusing on possible effects on expression and activity of glyoxalases, its main detoxifying enzymes, and glutathione peroxidase, as well as on the levels of reduced glutathione. We also investigate methylglyoxal-induced modulation of brain derived neurotrophic factor and proinflammatory cytokines. Our results show that methylglyoxal causes a dramatic depletion of reduced glutathione and a significant inhibition of both glyoxalase and glutathione peroxidase activities. Furthermore, methylglyoxal treatment seems to affect the expression of inflammatory cytokines and survival factors. In conclusion, our findings suggest that methylglyoxal-induced neurotoxicity occurs through the impairment of detoxification pathway and depletion of reduced glutathione. This, in turn, triggers widespread apoptotic cell death, occurring through the convergence of both mitochondrial and Fas-receptor pathways.
Collapse
Affiliation(s)
- Silvia Di Loreto
- Institute for Organ Transplantation and Immunocytology (ITOI), CNR, P. le Collemaggio, 67100 L'Aquila, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 2006; 18:117-31. [PMID: 17161634 PMCID: PMC1855184 DOI: 10.1016/j.semcdb.2006.11.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A finite number of transcription factors constitute a combinatorial code that orchestrates cardiac development and the specification and differentiation of myocytes. Many, if not all of these same transcription factors are re-employed in the adult heart in response to disease stimuli that promote hypertrophic enlargement and/or dilated cardiomyopathy, as part of the so-called "fetal gene program". This review will discuss the transcription factors that regulate the hypertrophic growth response of the adult heart, with a special emphasis on those regulators that participate in cardiac development.
Collapse
|
21
|
Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 2006; 119:4305-4314. [PMID: 17038545 DOI: 10.1242/jcs.03185] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class II histone deacetylases (HDAC4, HDAC5, HDAC7 and HDAC9) have been shown to interact with myocyte enhancer factors 2 (MEF2s) and play an important role in the repression of cardiac hypertrophy. We examined the role of HDACs during the differentiation of P19 embryonic carcinoma stem cells into cardiomyocytes. Treatment of aggregated P19 cells with the HDAC inhibitor trichostatin A induced the entry of mesodermal cells into the cardiac muscle lineage, shown by the upregulation of transcripts Nkx2-5, MEF2C, GATA4 and cardiac alpha-actin. Furthermore, the overexpression of HDAC4 inhibited cardiomyogenesis, shown by the downregulation of cardiac muscle gene expression. Class II HDAC activity is inhibited through phosphorylation by Ca2+/calmodulin-dependent kinase (CaMK). Expression of an activated CaMKIV in P19 cells upregulated the expression of Nkx2-5, GATA4 and MEF2C, enhanced cardiac muscle development, and activated a MEF2-responsive promoter. Moreover, inhibition of CaMK signaling downregulated GATA4 expression. Finally, P19 cells constitutively expressing a dominant-negative form of MEF2C, capable of binding class II HDACs, underwent cardiomyogenesis more efficiently than control cells, implying the relief of an inhibitor. Our results suggest that HDAC activity regulates the specification of mesoderm cells into cardiomyoblasts by inhibiting the expression of GATA4 and Nkx2-5 in a stem cell model system.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Karamboulas C, Dakubo GD, Liu J, De Repentigny Y, Yutzey K, Wallace VA, Kothary R, Skerjanc IS. Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. J Cell Sci 2006; 119:4315-21. [PMID: 17003108 DOI: 10.1242/jcs.03186] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocyte enhancer factors (MEF2s) bind to muscle-specific promoters and activate transcription. Drosophila Mef2 is essential for Drosophila heart development, however, neither MEF2C nor MEF2B are essential for the early stages of murine cardiomyogenesis. Although Mef2c-null mice were defective in the later stages of heart morphogenesis, differentiation of cardiomyocytes still occurred. Since there are four isoforms of MEF2 factors (MEF2A, MEF2B, MEF2C and MEF2D), the ability of cells to differentiate may have been confounded by genetic redundancy. To eliminate this variable, the effect of a dominant-negative MEF2 mutant (MEF2C/EnR) during cardiomyogenesis was examined in transgenic mice and P19 cells. Targeting the expression of MEF2C/EnR to cardiomyoblasts using an Nkx2-5 enhancer in the P19 system resulted in the loss of both cardiomyocyte development and the expression of GATA4, BMP4, Nkx2-5 and MEF2C. In transiently transgenic mice, MEF2C/EnR expression resulted in embryos that lacked heart structures and exhibited defective differentiation. Our results show that MEF2C, or genes containing MEF2 DNA-binding sites, is required for the efficient differentiation of cardiomyoblasts into cardiomyocytes, suggesting conservation in the role of MEF2 from Drosophila to mammals.
Collapse
Affiliation(s)
- Christina Karamboulas
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem 2006; 281:9152-62. [PMID: 16469744 DOI: 10.1074/jbc.m510217200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac hypertrophy and dilation are mediated by neuroendocrine factors and/or mitogens as well as through internal stretch- and stress-sensitive signaling pathways, which in turn transduce alterations in cardiac gene expression through specific signaling pathways. The transcription factor family known as myocyte enhancer factor 2 (MEF2) has been implicated as a signal-responsive mediator of the cardiac transcriptional program. For example, known hypertrophic signaling pathways that utilize calcineurin, calmodulin-dependent protein kinase, and MAPKs can each affect MEF2 activity. Here we demonstrate that MEF2 transcription factors induced dilated cardiomyopathy and lengthening of myocytes. Specifically, multiple transgenic mouse lines with cardiac-specific overexpression of MEF2A or MEF2C presented with cardiomyopathy at base line or were predisposed to more fulminant disease following pressure overload stimulation. The cardiomyopathic response associated with MEF2A and MEF2C was not further altered by activated calcineurin, suggesting that MEF2 functions independently of calcineurin in this response. In cultured cardiomyocytes, MEF2A, MEF2C, and MEF2-VP16 overexpression induced sarcomeric disorganization and focal elongation. Mechanistically, MEF2A and MEF2C each programmed similar profiles of altered gene expression in the heart that included extracellular matrix remodeling, ion handling, and metabolic genes. Indeed, adenoviral transfection of cultured cardiomyocytes with MEF2A or of myocytes from the hearts of MEF2A transgenic adult mice showed reduced transient outward K(+) currents, consistent with the alterations in gene expression observed in transgenic mice and partially suggesting a proximal mechanism underlying MEF2-dependent cardiomyopathy.
Collapse
Affiliation(s)
- Jian Xu
- Departments of Pharmacology and Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
24
|
Fernando P, Brunette S, Megeney LA. Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 2005; 19:1671-3. [PMID: 16103108 DOI: 10.1096/fj.04-2981fje] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Caspase proteases have become the focal point for the development and application of anti-apoptotic therapies in a variety of central nervous system diseases. However, this approach is based on the premise that caspase function is limited to invoking cell death signals. Here, we show that caspase-3 activity is elevated in nonapoptotic differentiating neuronal cell populations. Moreover, peptide inhibition of protease activity effectively inhibits the differentiation process in a cultured neurosphere model. These results implicate caspase-3 activation as a conserved feature of neuronal differentiation and suggest that targeted inhibition of this protease in neural cell populations may have unintended consequences.
Collapse
Affiliation(s)
- Pasan Fernando
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
25
|
Abstract
Sonic Hedgehog (Shh) is a critical signaling factor for a variety of developmental pathways during embryogenesis, including the specification of left-right asymmetry in the heart. Mice that lack Hedgehog signaling show a delay in the induction of cardiomyogenesis, as indicated by a delayed expression of Nkx2-5. To further examine a role for Shh in cardiomyogenesis, clonal populations of P19 cells that stably express Shh, termed P19(Shh) cells, were isolated. In monolayer P19(Shh) cultures the Shh pathway was functional as shown by the up-regulation of Ptc1 and Gli1 expression, but no cardiac muscle markers were activated. However, Shh expression induced cardiomyogenesis following cellular aggregation, resulting in the expression of factors expressed in cardiac muscle including GATA-4, MEF2C, and Nkx2-5. Furthermore, aggregated P19 cell lines expressing Gli2 or Meox1 also up-regulated the expression of cardiac muscle factors, leading to cardiomyogenesis. Meox1 up-regulated the expression of Gli1 and Gli2 and, thus, can modify the Shh signaling pathway. Finally, Shh, Gli2, and Meox1 all up-regulated BMP-4 expression, implying that activation of the Hedgehog pathway can regulate bone morphogenetic protein signals. Taken together, we propose a model in which Shh, functioning via Gli1/2, can specify mesodermal cells into the cardiac muscle lineage.
Collapse
Affiliation(s)
- Peter J Gianakopoulos
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
26
|
Abstract
The myocyte enhancer factor 2 (MEF2) transcription factors were originally identified, as their family name implies, on the basis of their role in muscle differentiation. Expression of the four MEF2 proteins, however, is not restricted to contractile tissue. While it has been known for more than a decade that MEF2s are abundantly expressed in neurons, their contributions to the development and function of the nervous system are only now being elucidated. Interestingly, the emerging mechanisms regulating MEF2 in neurons have significant parallels with the regulatory mechanisms in muscle, despite the quite distinct identities of these two electrically excitable tissues. The goal of this chapter is to provide an introduction to those regulatory mechanisms and their consequences for brain development. As such, we first provide an overview of MEF2 itself and its expression within the central nervous system. The second part of this chapter describes the signaling molecules that regulate MEF2 transcriptional activity and their contributions to MEF2 function. The third part of this chapter discusses the role of MEF2 proteins in the developing nervous system and compares the analogous functions of this protein family in muscle and brain.
Collapse
Affiliation(s)
- Aryaman K Shalizi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
27
|
Leysen I, Van der Gucht E, Eysel UT, Huybrechts R, Vandesande F, Arckens L. Time-dependent changes in the expression of the MEF2 transcription factor family during topographic map reorganization in mammalian visual cortex. Eur J Neurosci 2004; 20:769-80. [PMID: 15255987 DOI: 10.1111/j.1460-9568.2004.03535.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Removal of retinal input from a restricted region of adult mammalian visual cortex leads to a substantial reorganization of the retinotopy within the lesion projection zone (LPZ) of primary visual cortex (area 17). Little is known about the molecular mechanisms underlying such cortical plasticity. We investigated whether small but homonymous central retinal lesions induced differences in gene expression patterns between central area 17, the LPZ, vs. peripheral area 17 of the adult cat. Systematic differential mRNA display screening revealed higher levels for the mRNA encoding the transcription factor MEF2A in the LPZ. Semi-quantitative PCR confirmed this dependency of mef2A mRNA expression on visual eccentricity in area 17 of animals with retinal lesions in contrast to normal animals. Western blotting experiments extended these data to the protein level and to two other members of the MEF2 transcription factor family, i.e. MEF2C and MEF2D. Quantitative analysis of the Western blotting experiments further revealed a post-lesion survival time-dependent change in expression for all three MEF2 family members. The lesion effect was maximal at 3 days and 1 month post-lesion, but only minor at 2 weeks post-lesion. Interestingly, complete removal of retinal input from area 17 by surgery did not significantly alter the expression of the MEF2 transcription factors, excluding a definite correlation between neuronal activity and MEF2A expression levels. MEF2A immunocytochemistry confirmed both qualitatively and quantitatively the Western blotting observations in all animal models. Together, our findings identified a brain plasticity-related expression pattern for the MEF2 transcription factor family in adult mammalian neocortex.
Collapse
Affiliation(s)
- Inge Leysen
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Naamsesstraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Hamada-Kanazawa M, Ishikawa K, Nomoto K, Uozumi T, Kawai Y, Narahara M, Miyake M. Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett 2004; 560:192-8. [PMID: 14988021 DOI: 10.1016/s0014-5793(04)00086-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 09/05/2003] [Indexed: 11/24/2022]
Abstract
The Sox6 gene is a member of the Sox gene family that encodes transcription factors. Previous studies have suggested that Sox6 plays an important role in the development of the central nervous system. Aggregation of embryonic carcinoma P19 cells with retinoic acid (RA) results in the development of neurons, glia and fibroblast-like cells. In this report, we have shown that Sox6 mRNA increased rapidly in P19 cells during RA induction and then decreased during the differentiation of P19 into neuronal cells. To explore the possible roles of Sox6 during this process, stably Sox6-overexpressing P19 cell lines (P19[Sox6]) were established. These P19[Sox6] had acquired both characteristics of the wild-type P19 induced by RA. First, P19[Sox6] cells showed a marked cellular aggregation in the absence of RA. Second, P19[Sox6] could differentiate into microtubule-associated protein 2 (MAP2)-expressing neuronal cells in the absence of RA. Sox6 expression could cause the activation of endogenous genes including the neuronal transcription factor Mash-1, the neuronal development-related gene Wnt-1, the neuron-specific cell adhesion molecule N-cadherin, and the neuron-specific protein MAP2, resulting in neurogenesis. Moreover, E-cadherin, a major cell adhesion molecule of wild-type P19, was strongly induced by Sox6, resulting in cellular aggregation without RA. Thus Sox6 may play a critical role in cellular aggregation and neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Michiko Hamada-Kanazawa
- Faculty of Pharmaceutical Sciences, Kobe-Gakuin University, Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Petropoulos H, Gianakopoulos PJ, Ridgeway AG, Skerjanc IS. Disruption of Meox or Gli activity ablates skeletal myogenesis in P19 cells. J Biol Chem 2004; 279:23874-81. [PMID: 15039437 DOI: 10.1074/jbc.m312612200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gli2 and Meox1 are transcription factors that are expressed in the developing somite and play roles in the commitment of cells to the skeletal muscle lineage. To further define their roles in regulating myogenesis, the function of wild type and dominant-negative forms of Gli2 and Meox1 were examined in the context of differentiating P19 stem cells. We found that Gli2 overexpression up-regulated transcript levels of Meox1 and, conversely, Meox1 overexpression resulted in the upregulation of Gli2 transcripts. Furthermore, dominant-negative forms of either Meox1 or Gli2 disrupted the ability of P19 cells to commit to the muscle lineage and to properly express either Gli2 or Meox1, respectively. Finally, Pax3 transcripts were induced by Gli2 overexpression and lost in the presence of either mutants Meox1 or Gli2. Taken together, these results support the existence of a regulatory loop between Gli2, Meox1, and Pax3 that is essential for specification of mesodermal cells into the muscle lineage.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Northern
- Cell Differentiation
- Cell Line
- Cell Line, Tumor
- Cell Lineage
- Cells, Cultured
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Dominant
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Kruppel-Like Transcription Factors
- Mesoderm/metabolism
- Mice
- Mice, Inbred C3H
- Microscopy, Fluorescence
- Models, Biological
- Muscle Proteins/metabolism
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscles/metabolism
- Mutation
- Myogenic Regulatory Factor 5
- Myogenin/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors
- Phenotype
- Plasmids/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Trans-Activators
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Up-Regulation
- Zinc Finger Protein Gli2
Collapse
Affiliation(s)
- Helen Petropoulos
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
30
|
Friday BB, Mitchell PO, Kegley KM, Pavlath GK. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 2003; 71:217-27. [PMID: 12694204 DOI: 10.1046/j.1432-0436.2003.710303.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal muscle differentiation is characterized by withdrawal from the cell cycle, expression of muscle specific genes, fusion into multinucleated cells, and assembly of the contractile apparatus. Although many of the key regulatory elements have been identified, the factors that initiate the differentiation process are not well understood. The calcium-dependent phosphatase calcineurin plays an important regulatory role early in myogenesis, but the downstream effectors of calcineurin in differentiation are not known. Here, we show that calcium and calcineurin regulate expression of the myogenin gene at the level of transcription. The myogenin promoter contains two essential elements; an E-box and an A/T rich element that bind MRF and MEF2 transcription factors, respectively. Both of these elements are responsive to calcium and calcineurin. In differentiating myoblasts, MyoD is the major MRF protein that binds to the myogenin promoter E-box. Calcineurin activates MyoD indirectly by decreasing the expression of the Id inhibitory proteins, probably by down-regulating Egr-1 expression, an upstream activator of Id transcription. These results demonstrate that calcineurin regulates skeletal muscle differentiation by activating MEF2 and MyoD transcription factors leading to the induction of myogenin expression.
Collapse
Affiliation(s)
- Bret B Friday
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Building, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
31
|
Okamoto SI, Li Z, Ju C, Scholzke MN, Mathews E, Cui J, Salvesen GS, Bossy-Wetzel E, Lipton SA. Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proc Natl Acad Sci U S A 2002; 99:3974-9. [PMID: 11904443 PMCID: PMC122633 DOI: 10.1073/pnas.022036399] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myocyte enhancer factor-2 (MEF2) transcription factors are activated by p38 mitogen-activated protein kinase during neuronal and myogenic differentiation. Recent work has shown that stimulation of this pathway is antiapoptotic during development but proapoptotic in mature neurons exposed to excitotoxic or other stress. We now report that excitotoxic (N-methyl-D-aspartate) insults to mature cerebrocortical neurons activate caspase-3, -7, in turn cleaving MEF2A, C, and D isoforms. MEF2 cleavage fragments containing a truncated transactivation domain but preserved DNA-binding domain block MEF2 transcriptional activity via dominant interference. Transfection of constitutively active MEF2 (MEF2C-CA) rescues MEF2 transcriptional activity after N-methyl-D-aspartate insult and prevents neuronal apoptosis. Conversely, dominant-interfering MEF2 abrogates neuroprotection by MEF2C-CA. These results define a pathway to excitotoxic neuronal stress/apoptosis via caspase-catalyzed cleavage of MEF2. Additionally, we show that similar MEF2 cleavage fragments are generated in vivo during focal stroke damage. Hence, this pathway appears to have pathophysiological relevance in vivo.
Collapse
Affiliation(s)
- Shu-ichi Okamoto
- Center for Neuroscience and Aging, Apoptosis and Cell Death Research Program, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Janson CG, Chen Y, Li Y, Leifer D. Functional regulatory regions of human transcription factor MEF2C. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:70-82. [PMID: 11744164 DOI: 10.1016/s0169-328x(01)00187-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocyte enhancer-binding factor 2C (MEF2C), a transcription factor expressed at high levels in muscle and brain, is implicated in the terminal differentiation and post-mitotic survival of neurons. In this study MEF2C deletion mutants and naturally-occurring isoforms were transfected into COS and P19 cells with two different reporter genes, to test the relative transcriptional activities of the MEF2C constructs. Deletion of parts of the carboxy terminus, in particular amino acids 387-473, enhanced transcriptional activation. A region rich in serine, threonine, proline, and tyrosine from amino acids 312-367 was sufficient to activate transcription at low levels when coupled to amino acids 1-86, which contain the DNA-binding (MADS/MEF) domain of MEF2C, but also depended on amino acids 87-311 for full effect. A construct with amino acids 312-350 missing showed significantly less transcriptional activation than proteins containing this sequence. MEF2C constructs were uniformly localized to the cell nucleus by immunostaining with an antibody to the constant N-terminal region of MEF2C. Western blot and gel shift studies of extracts from transfected cells and from in vitro transcription/translation suggest that variation in the amount of protein expressed or in DNA-binding properties does not account for observed differences in transcriptional activation. This structural information may be useful for elucidating the mechanisms of MEF2C in interacting with other factors to regulate target genes.
Collapse
Affiliation(s)
- C G Janson
- Yale University School of Medicine, Department of Neurology, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
33
|
Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J Neurosci 2001. [PMID: 11517243 DOI: 10.1523/jneurosci.21-17-06544.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins are important regulators of gene expression during the development of skeletal, cardiac, and smooth muscle. MEF2 proteins are also present in brain and recently have been implicated in neuronal survival and differentiation. In this study we examined the cellular mechanisms regulating the activity of MEF2s during apoptosis of cultured cerebellar granule neurons, an established in vitro model for studying depolarization-dependent neuronal survival. All four MEF2 isoforms (A, B, C, and D) were detected by immunoblot analysis in cerebellar granule neurons. Endogenous MEF2A and MEF2D, but not MEF2B or MEF2C, were phosphorylated with the induction of apoptosis. The putative sites that were phosphorylated during apoptosis are functionally distinct from those previously reported to enhance MEF2 transcription. The increased phosphorylation of MEF2A and MEF2D was followed by decreased DNA binding, reduced transcriptional activity, and caspase-dependent cleavage to fragments containing N-terminal DNA binding domains and C-terminal transactivation domains. Expression of the highly homologous N terminus of MEF2A (1-131 amino acids) antagonized the transcriptional activity and prosurvival effects of a constitutively active mutant of MEF2D (MEF2D-VP16). We conclude that MEF2A and MEF2D are prosurvival factors with high transcriptional activity in postmitotic cerebellar granule neurons. When these neurons are induced to undergo apoptosis by lowering extracellular potassium, MEF2A and MEF2D are phosphorylated, followed by decreased DNA binding and cleavage by a caspase-sensitive pathway to N-terminal fragments lacking the transactivation domains. The degradation of MEF2D and MEF2A and the generation of MEF2 fragments that have the potential to act as dominant-inactive transcription factors lead to apoptotic cell death.
Collapse
|
34
|
Ridgeway AG, Skerjanc IS. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J Biol Chem 2001; 276:19033-9. [PMID: 11262400 DOI: 10.1074/jbc.m011491200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pax3 is a paired box transcription factor expressed during somitogenesis that has been implicated in initiating the expression of the myogenic regulatory factors during myogenesis. We find that Pax3 is necessary and sufficient to induce myogenesis in pluripotent stem cells. Pax3 induced the expression of the transcription factor Six1, its cofactor Eya2, and the transcription factor Mox1 prior to inducing the expression of MyoD and myogenin. Overexpression of a dominant negative Pax3, engineered by fusing the active transcriptional repression domain of mouse EN-2 in place of the Pax3 transcriptional activation domain, completely abolished skeletal myogenesis without inhibiting cardiogenesis. Expression of the dominant negative Pax3 resulted in a loss of expression of Six1, Eya2, and endogenous Pax3 as well as a down-regulation in the expression of Mox1. No effect was found on the expression of Gli2. These results indicate that Pax3 activity is essential for skeletal muscle development, the expression of Six1 and Eya2, and is involved in regulating its own expression. In summary, the combined approach of expressing both a wild type and dominant negative transcription factor in stem cells has identified a cascade of transcriptional events controlled by Pax3 that are necessary and sufficient for skeletal myogenesis.
Collapse
MESH Headings
- Blotting, Northern
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Down-Regulation
- Gene Expression Regulation, Developmental
- Genes, Dominant
- Homeodomain Proteins/biosynthesis
- Humans
- Intracellular Signaling Peptides and Proteins
- Models, Biological
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Muscles/cytology
- Muscles/metabolism
- MyoD Protein/biosynthesis
- Myogenin/biosynthesis
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidases
- Nuclear Proteins
- PAX3 Transcription Factor
- Paired Box Transcription Factors
- Plasmids/metabolism
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases
- Recombinant Fusion Proteins/metabolism
- Stem Cells/metabolism
- Trans-Activators/biosynthesis
- Transcription Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- A G Ridgeway
- Department of Biochemistry, Medical Sciences Building, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|