1
|
Moran AW, Alrammahi M, Daly K, Weatherburn D, Ionescu C, Blanchard A, Shirazi-Beechey SP. Luminal Sweet Sensing and Enteric Nervous System Participate in Regulation of Intestinal Glucose Transporter, GLUT2. Nutrients 2025; 17:1547. [PMID: 40362862 PMCID: PMC12073725 DOI: 10.3390/nu17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Dietary glucose is transported across the intestinal absorptive cell into the systemic circulation by the apically located Na+-dependent glucose transporter 1 (SGLT1, SLC5A1) and basally residing Na+-independent glucose transporter 2 (GLUT2, SLC2A2). Whilst recent experimental evidence has shown that sensing of sweet compounds by the gut-expressed sweet taste receptor T1R2-T1R3 and glucagon-like peptide-2 receptor signalling are components of the pathway controlling SGLT1 expression, little is known about the mechanisms involved in the regulation of GLUT2. In this study, we tested the hypothesis that T1R2-T1R3 and its downstream signalling pathway participate in the regulation of intestinal GLUT2. Methods: We used in vivo and in vitro approaches employing a weaning pig model, a heterologous expression assay, and knockout mice for elucidating the regulation of GLUT2 by luminal sugars. Results: A plant-based sweetener formulation included in piglets' diet led to a marked increase in GLUT2 expression in piglets' intestine, compared to controls. The sweeteners that do not activate pig T1R2-T1R3 failed to upregulate GLUT2. There was a significant increase in GLUT2 expression when the sweetener sucralose, which activates T1R2-T1R3, was included in the drinking water of wild-type mice. However, in knockout mice, in which the genes for the sweet receptor subunit T1R3 and the associated G-protein gustducin were deleted, there was no upregulation of GLUT2 expression in response to sucralose supplementation. There was a notable increase in GLUT2 expression in wild-type mice fed a high-carbohydrate diet compared to when maintained on a low-carbohydrate diet. However, in GLP-2 receptor knockout mice kept on the high-carbohydrate diet, there was no enhancement in GLUT2 expression. Conclusions: The experimental evidence suggests that luminal sweet sensing via T1R2-T1R3 and the enteroendocrine-derived GLP-2 are constituents of the regulatory pathway controlling GLUT2 expression.
Collapse
Affiliation(s)
- Andrew W. Moran
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| | - Miran Alrammahi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Kristian Daly
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| | - Darren Weatherburn
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| | | | | | - Soraya P. Shirazi-Beechey
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| |
Collapse
|
2
|
Blatnik AJ, Sanjeev M, Slivka J, Pastore B, Embree CM, Tang W, Singh G, Burghes AHM. Sm-site containing mRNAs can accept Sm-rings and are downregulated in Spinal Muscular Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617433. [PMID: 39416143 PMCID: PMC11482833 DOI: 10.1101/2024.10.09.617433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sm-ring assembly is important for the biogenesis, stability, and function of uridine-rich small nuclear RNAs (U snRNAs) involved in pre-mRNA splicing and histone pre-mRNA processing. Sm-ring assembly is cytoplasmic and dependent upon the Sm-site sequence and structural motif, ATP, and Survival motor neuron (SMN) protein complex. While RNAs other than U snRNAs were previously shown to associate with Sm proteins, whether this association follows Sm-ring assembly requirements is unknown. We systematically identified Sm-sites within the human and mouse transcriptomes and assessed whether these sites can accept Sm-rings. In addition to snRNAs, Sm-sites are highly prevalent in the 3' untranslated regions of long messenger RNAs. RNA immunoprecipitation experiments confirm that Sm-site containing mRNAs associate with Sm proteins in the cytoplasm. In modified Sm-ring assembly assays, Sm-site containing RNAs, from either bulk polyadenylated RNAs or those transcribed in vitro , specifically associate with Sm proteins in an Sm-site and ATP-dependent manner. In cell and animal models of Spinal Muscular Atrophy (SMA), mRNAs containing Sm-sites are downregulated, suggesting reduced Sm-ring assembly on these mRNAs may contribute to SMA pathogenesis. Together, this study establishes that Sm-site containing mRNAs can accept Sm-rings and identifies a novel mechanism for Sm proteins in regulation of cytoplasmic mRNAs. GRAPHICAL ABSTRACT
Collapse
|
3
|
Ji W, Xu L, Sun X, Xu X, Zhang H, Luo H, Yao B, Zhang W, Su X, Huang H. Exploiting Systematic Engineering of the Expression Cassette as a Powerful Tool to Enhance Heterologous Gene Expression in Trichoderma reesei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5307-5317. [PMID: 38426871 DOI: 10.1021/acs.jafc.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Many endeavors in expressing a heterologous gene in microbial hosts rely on simply placing the gene of interest between a selected pair of promoters and terminator. However, although the expression efficiency could be improved by engineering the host cell, how modifying the expression cassette itself systematically would affect heterologous gene expression remains largely unknown. As the promoter and terminator bear plentiful cis-elements, herein using the Aspergillus niger mannanase with high application value in animal feeds and the eukaryotic filamentous fungus workhorse Trichoderma reesei as a model gene/host, systematic engineering of an expression cassette was investigated to decipher the effect of its mutagenesis on heterologous gene expression. Modifying the promoter, signal peptide, the eukaryotic-specific Kozak sequence, and the 3'-UTR could stepwise improve extracellular mannanase production from 17 U/mL to an ultimate 471 U/mL, representing a 27.7-fold increase in expression. The strategies can be generally applied in improving the production of heterologous proteins in eukaryotic microbial hosts.
Collapse
Affiliation(s)
- Wangli Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Xianhua Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China
| |
Collapse
|
4
|
Wang R, Ganbold M, Ferdousi F, Tominaga K, Isoda H. A Rare Olive Compound Oleacein Improves Lipid and Glucose Metabolism, and Inflammatory Functions: A Comprehensive Whole-Genome Transcriptomics Analysis in Adipocytes Differentiated from Healthy and Diabetic Adipose Stem Cells. Int J Mol Sci 2023; 24:10419. [PMID: 37445596 DOI: 10.3390/ijms241310419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Oleacein (OLE), a rare natural compound found in unfiltered extra virgin olive oil, has been shown to have anti-inflammatory and anti-obesity properties. However, little is known regarding the mechanisms by which OLE influences metabolic processes linked to disease targets, particularly in the context of lipid metabolism. In the present study, we conducted whole-genome DNA microarray analyses in adipocytes differentiated from human adipose-derived stem cells (hASCs) and diabetic hASCs (d-hASCs) to examine the effects of OLE on modulating metabolic pathways. We found that OLE significantly inhibited lipid formation in adipocytes differentiated from both sources. In addition, microarray analysis demonstrated that OLE treatment could significantly downregulate lipid-metabolism-related genes and modulate glucose metabolism in both adipocyte groups. Transcription factor enrichment and protein-protein interaction (PPI) analyses identified potential regulatory gene targets. We also found that OLE treatment enhanced the anti-inflammatory properties in adipocytes. Our study findings suggest that OLE exhibits potential benefits in improving lipid and glucose metabolism, thus holding promise for its application in the management of metabolic disorders.
Collapse
Affiliation(s)
- Rui Wang
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Munkhzul Ganbold
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
5
|
Nishimura K, Fujita Y, Ida S, Yanagimachi T, Ohashi N, Nishi K, Nishida A, Iwasaki Y, Morino K, Ugi S, Nishi E, Andoh A, Maegawa H. Glycaemia and body weight are regulated by sodium-glucose cotransporter 1 (SGLT1) expression via O-GlcNAcylation in the intestine. Mol Metab 2022; 59:101458. [PMID: 35189429 PMCID: PMC8902621 DOI: 10.1016/j.molmet.2022.101458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Methods Results Conclusion Intestine-specific OGT depletion results in weight loss and hypoglycaemia. It reduces SGLT1 expression, resulting in glucose absorption from the gut. OGT knockdown may contribute to diminish glucose-induced incretin secretion. OGT may regulate SGLT1 expression via the cAMP/CREB-dependent pathway. O-GlcNAcylation regulates SGLT1 expression in the intestine and the kidney.
Collapse
Affiliation(s)
- Kimihiro Nishimura
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yukihiro Fujita
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan.
| | - Shogo Ida
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Tsuyoshi Yanagimachi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Natsuko Ohashi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kiyoto Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yasumasa Iwasaki
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Mie 510-029, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan; Institutional Research Office, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
6
|
Liu Y, Li X, Zhang H, Zhang M, Wei Y. HuR up-regulates cell surface PD-L1 via stabilizing CMTM6 transcript in cancer. Oncogene 2021; 40:2230-2242. [PMID: 33649535 PMCID: PMC7994200 DOI: 10.1038/s41388-021-01689-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Despite the well-established role of CMTM6 in the stabilization of cell surface PD-L1 in cancer cells, the mechanisms underlying CMTM6 expression and regulation are still largely unknown. Here we unexpectedly find a strikingly positive correlation between CMTM6 and Hu-Antigen R (HuR) expression in most types of cancer. Mechanistically, we elucidate HuR stabilizes CMTM6 mRNA via direct association with AU-rich elements (AREs) in its 3′UTR and predominantly up-regulates CMTM6, which is readily abolished by HuR-specific inhibitor, MS-444. Phenotypically, we notice abundant cell surface PD-L1 in HuR-high cancer cells, which significantly inhibits immune activation of co-cultured T cells as indicated by IL-2 production. Treatment with MS-444 completely relieves immune suppression imposed by HuR-overexpression and further stimulates immune responses. Ectopic HuR accelerates allograft tumor progression in vivo, which is greatly compromised by simultaneous administration with MS-444. Our study uncovers a novel mechanism in control of CMTM6 and therefore PD-L1 expression, and suggests the potential of combining HuR inhibitor with PD-1/PD-L1 antibodies for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanbin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China. .,BioBox Sciences, Inc, Guangzhou, China.
| | - Xingzhi Li
- Department of urological surgery, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
8
|
Li Z, Agrawal V, Ramratnam M, Sharma RK, D'Auria S, Sincoular A, Jakubiak M, Music ML, Kutschke WJ, Huang XN, Gifford L, Ahmad F. Cardiac sodium-dependent glucose cotransporter 1 is a novel mediator of ischaemia/reperfusion injury. Cardiovasc Res 2020; 115:1646-1658. [PMID: 30715251 DOI: 10.1093/cvr/cvz037] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
AIMS We previously reported that sodium-dependent glucose cotransporter 1 (SGLT1) is highly expressed in cardiomyocytes and is further up-regulated in ischaemia. This study aimed to determine the mechanisms by which SGLT1 contributes to ischaemia/reperfusion (I/R) injury. METHODS AND RESULTS Mice with cardiomyocyte-specific knockdown of SGLT1 (TGSGLT1-DOWN) and wild-type controls were studied. In vivo, the left anterior descending coronary artery was ligated for 30 min and reperfused for 48 h. Ex vivo, isolated perfused hearts were exposed to 20 min no-flow and up to 2 h reperfusion. In vitro, HL-1 cells and isolated adult murine ventricular cardiomyocytes were exposed to 1 h hypoxia and 24 h reoxygenation (H/R). We found that TGSGLT1-DOWN hearts were protected from I/R injury in vivo and ex vivo, with decreased infarct size, necrosis, dysfunction, and oxidative stress. 5'-AMP-activated protein kinase (AMPK) activation increased SGLT1 expression, which was abolished by extracellular signal-related kinase (ERK) inhibition. Co-immunoprecipitation studies showed that ERK, but not AMPK, interacts directly with SGLT1. AMPK activation increased binding of the hepatocyte nuclear factor 1 and specificity protein 1 transcription factors to the SGLT1 gene, and HuR to SGLT1 mRNA. In cells, up-regulation of SGLT1 during H/R was abrogated by AMPK inhibition. Co-immunoprecipitation studies showed that SGLT1 interacts with epidermal growth factor receptor (EGFR), and EGFR interacts with protein kinase C (PKC). SGLT1 overexpression activated PKC and NADPH oxidase 2 (Nox2), which was attenuated by PKC inhibition, EGFR inhibition, and/or disruption of the interaction between EGFR and SGLT1. CONCLUSION During ischaemia, AMPK up-regulates SGLT1 through ERK, and SGLT1 interacts with EGFR, which in turn increases PKC and Nox2 activity and oxidative stress. SGLT1 may represent a novel therapeutic target for mitigating I/R injury.
Collapse
Affiliation(s)
- Zhao Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA
| | - Vineet Agrawal
- Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohun Ramratnam
- Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Cardiology Section, Medical Service, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, William. S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Ravi K Sharma
- Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen D'Auria
- Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail Sincoular
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA
| | - Margurite Jakubiak
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA
| | - Meredith L Music
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA
| | - William J Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA
| | - Xueyin N Huang
- Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsey Gifford
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine and Abboud Cardiovascular Research Center, University of Iowa, 100 Newton Road, 1191D ML, Iowa City, IA, USA.,Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Kreuch D, Keating DJ, Wu T, Horowitz M, Rayner CK, Young RL. Gut Mechanisms Linking Intestinal Sweet Sensing to Glycemic Control. Front Endocrinol (Lausanne) 2018; 9:741. [PMID: 30564198 PMCID: PMC6288399 DOI: 10.3389/fendo.2018.00741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Abstract
Sensing nutrients within the gastrointestinal tract engages the enteroendocrine cell system to signal within the mucosa, to intrinsic and extrinsic nerve pathways, and the circulation. This signaling provides powerful feedback from the intestine to slow the rate of gastric emptying, limit postprandial glycemic excursions, and induce satiation. This review focuses on the intestinal sensing of sweet stimuli (including low-calorie sweeteners), which engage similar G-protein-coupled receptors (GPCRs) to the sweet taste receptors (STRs) of the tongue. It explores the enteroendocrine cell signals deployed upon STR activation that act within and outside the gastrointestinal tract, with a focus on the role of this distinctive pathway in regulating glucose transport function via absorptive enterocytes, and the associated impact on postprandial glycemic responses in animals and humans. The emerging role of diet, including low-calorie sweeteners, in modulating the composition of the gut microbiome and how this may impact glycemic responses of the host, is also discussed, as is recent evidence of a causal role of diet-induced dysbiosis in influencing the gut-brain axis to alter gastric emptying and insulin release. Full knowledge of intestinal STR signaling in humans, and its capacity to engage host and/or microbiome mechanisms that modify glycemic control, holds the potential for improved prevention and management of type 2 diabetes.
Collapse
Affiliation(s)
- Denise Kreuch
- Faculty of Health and Medical Sciences & Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Tongzhi Wu
- Faculty of Health and Medical Sciences & Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Faculty of Health and Medical Sciences & Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher K. Rayner
- Faculty of Health and Medical Sciences & Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard L. Young
- Faculty of Health and Medical Sciences & Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
10
|
Moran AW, Al-Rammahi MA, Batchelor DJ, Bravo DM, Shirazi-Beechey SP. Glucagon-Like Peptide-2 and the Enteric Nervous System Are Components of Cell-Cell Communication Pathway Regulating Intestinal Na +/Glucose Co-transport. Front Nutr 2018; 5:101. [PMID: 30416998 PMCID: PMC6212479 DOI: 10.3389/fnut.2018.00101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
The Na+/glucose cotransporter 1, SGLT1 is the major route for transport of dietary glucose from the lumen of the intestine into absorptive enterocytes. Sensing of dietary sugars and artificial sweeteners by the sweet taste receptor, T1R2-T1R3, expressed in the enteroendocrine L-cell regulates SGLT1 expression in neighboring absorptive enterocytes. However, the mechanism by which sugar sensing by the enteroendocrine cell is communicated to the absorptive enterocytes is not known. Here, we show that glucagon-like peptide-2 (GLP-2) secreted from the enteroendocrine cell in response to luminal sugars regulates SGLT1 mRNA and protein expression in absorptive enterocytes, via the enteric neurons. Glucose and artificial sweeteners induced secretion of GLP-2 from mouse small intestine, which was inhibited by the sweet-taste receptor inhibitor, gurmarin. In wild type mice there was an increase in sugar-induced SGLT1 mRNA and protein abundance that was not observed in GLP-2 receptor knockout mice. GLP-2 receptor is expressed in enteric neurons, and not in absorptive enterocytes ruling out a paracrine effect of GLP-2. Electric field stimulation of the intestine resulted in upregulation of SGLT1 expression that was abolished by the nerve blocking agent tetrodotoxin. We conclude that GLP-2 and the enteric nervous system are components of the enteroendocrine-absorptive enterocyte communication pathway regulating intestinal glucose transport.
Collapse
Affiliation(s)
- Andrew W Moran
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Miran A Al-Rammahi
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,Department of Medical Biotechnology, College of Biotechnology, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Daniel J Batchelor
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Soraya P Shirazi-Beechey
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Transcriptomic analysis reveals effects of fucoxanthin on intestinal glucose transport. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
12
|
Wang CW, Su SC, Huang SF, Huang YC, Chan FN, Kuo YH, Hung MW, Lin HC, Chang WL, Chang TC. An Essential Role of cAMP Response Element Binding Protein in Ginsenoside Rg1-Mediated Inhibition of Na+/Glucose Cotransporter 1 Gene Expression. Mol Pharmacol 2015; 88:1072-83. [PMID: 26429938 DOI: 10.1124/mol.114.097352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 09/23/2015] [Indexed: 02/14/2025] Open
Abstract
The Na(+)/glucose cotransporter 1 (SGLT1) is responsible for glucose uptake in intestinal epithelial cells. It has been shown that the intestinal SGLT1 level is significantly increased in diabetic individuals and positively correlated with the pathogenesis of diabetes. The development of targeted therapeutics that can reduce the intestinal SGLT1 expression level is, therefore, important. In this study, we showed that ginsenoside Rg1 effectively decreased intestinal glucose uptake through inhibition of SGLT1 gene expression in vivo and in vitro. Transient transfection analysis of the SGLT1 promoter revealed an essential cAMP response element (CRE) that confers the Rg1-mediated inhibition of SGLT1 gene expression. Chromatin immunoprecipitation assay and targeted CRE-binding protein (CREB) silencing demonstrated that Rg1 reduced the promoter binding of CREB and CREB binding protein associated with an inactivated chromatin status. In addition, further studies showed that the epidermal growth factor receptor (EGFR) signaling pathway also plays an essential role in the inhibitory effect of Rg1; taken together, our study demonstrates the involvement of the EGFR-CREB signaling pathway in the Rg1-mediated downregulation of SGLT1 expression, which offers a potential strategy in the development of antihyperglycemic and antidiabetic treatments.
Collapse
Affiliation(s)
- Chun-Wen Wang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Shih-Chieh Su
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Shu-Fen Huang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Yu-Chuan Huang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Fang-Na Chan
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Yu-Han Kuo
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Mei-Whey Hung
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Hang-Chin Lin
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.)
| | - Wen-Liang Chang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.).
| | - Tsu-Chung Chang
- Graduate Institute of Life Sciences (C.-W.W., T.-C.C.), Department of Biochemistry (S.-C.S., S.-F.H., F.-N.C., Y.-H.K., T.-C.C.), Institute of Preventive Medicine (Y.-C.H.), and School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China (H.-C.L., W.-L.C.); Department of Research and Education, Veteran General Hospital, Taipei, Taiwan, Republic of China (M.-W.H.); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, Republic of China (T.-C.C.); and Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China (T.-C.C.).
| |
Collapse
|
13
|
Cvijanovic N, Feinle-Bisset C, Young RL, Little TJ. Oral and intestinal sweet and fat tasting: impact of receptor polymorphisms and dietary modulation for metabolic disease. Nutr Rev 2015; 73:318-334. [DOI: 10.1093/nutrit/nuu026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
14
|
Wang CW, Chang WL, Huang YC, Chou FC, Chan FN, Su SC, Huang SF, Ko HH, Ko YL, Lin HC, Chang TC. An essential role of cAMP response element-binding protein in epidermal growth factor-mediated induction of sodium/glucose cotransporter 1 gene expression and intestinal glucose uptake. Int J Biochem Cell Biol 2015; 64:239-51. [PMID: 25936754 DOI: 10.1016/j.biocel.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/26/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023]
Abstract
The sodium/glucose cotransporter 1 (SGLT1) is responsible for glucose uptake in intestinal epithelial cells. Its expression is decreased in individuals with intestinal inflammatory disorders and is correlated with the pathogenesis of disease. The aim of this study was to understand the regulatory mechanism of the SGLT1 gene. Using the trinitrobenzene sulfonic acid-induced mouse models of intestinal inflammation, we observed decreased SGLT1 expression in the inflamed intestine was positively correlated with the mucosal level of epidermal growth factor (EGF) and activated CREB. Overexpression of EGF demonstrated that the effect of EGF on intestinal glucose uptake was primarily due to the increased level of SGLT1. We identified an essential cAMP binding element (CRE) confers EGF inducibility in the human SGLT1 gene promoter. ChIP assay further demonstrated the increased binding of CREB and CBP to the SGLT1 gene promoter in EGF-treated cells. In addition, the EGFR- and PI3K-dependent CREB phosphorylations are involved in the EGF-mediated SGLT1 expression. This is the first report to demonstrate that CREB is involved in EGF-mediated transcription regulation of SGLT1 gene in the normal and inflamed intestine, which can provide potential therapeutic applications for intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Chun-Wen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wen-Liang Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yu-Chuan Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Chi Chou
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fang-Na Chan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shih-Chieh Su
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shu-Fen Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hui-Hsuan Ko
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Ling Ko
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hang-Chin Lin
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsu-Chung Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
15
|
Wang CW, Huang YC, Chan FN, Su SC, Kuo YH, Huang SF, Hung MW, Lin HC, Chang WL, Chang TC. A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na(+) /glucose cotransporter 1 gene expression through activation of cAMP response element binding protein. Mol Nutr Food Res 2015; 59:670-84. [PMID: 25600494 DOI: 10.1002/mnfr.201400688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/13/2014] [Accepted: 12/30/2014] [Indexed: 01/21/2023]
Abstract
SCOPE The Na(+) /glucose cotransporter 1 (SGLT1) plays a crucial role in glucose uptake in intestinal epithelial cells (IECs), which has been shown essential in ameliorating intestinal inflammation. Ginseng has historically been used to treat inflammatory disorders. Understanding the regulatory mechanism of ginseng-mediated induction of SGLT1 gene expression in human intestinal cells is therefore important. METHODS AND RESULTS We demonstrate that ginsenoside compound K (CK) enhances SGLT1-mediated glucose uptake in mice and human intestinal Caco-2 cells. Transient transfection analysis using SGLT1 promoter-luciferase reporters demonstrated that the presence of an essential cAMP response element (CRE) is required for CK-mediated induction of SGLT1 gene expression. The ChIP assays indicated that increased CRE-binding protein (CREB) and CREB-binding protein (CBP) binding to the SGLT1 promoter in CK-treated cells is associated with an activated chromatin state. Our result showed that the increased CREB phosphorylation is directly correlated with SGLT1 expression in IECs. Further studies indicated that the epidermal growth factor receptor (EGFR) signaling pathway is involved in the CK-mediated effect. CONCLUSION These findings provide a novel mechanism for the CK-mediated upregulation of SGLT1 expression through EGFR-CREB signaling activation, which could contribute to reducing gut inflammation.
Collapse
Affiliation(s)
- Chun-Wen Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
SPAK-sensitive regulation of glucose transporter SGLT1. J Membr Biol 2014; 247:1191-7. [PMID: 25161031 DOI: 10.1007/s00232-014-9719-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/07/2014] [Indexed: 01/07/2023]
Abstract
The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase SPAK is a powerful regulator of ion transport. The study explored whether SPAK similarly regulates nutrient transporters, such as the Na(+)-coupled glucose transporter SGLT1 (SLC5A1). To this end, SGLT1 was expressed in Xenopus oocytes with or without additional expression of wild-type SPAK, constitutively active (T233E)SPAK, WNK-insensitive (T233A)SPAK or catalytically inactive (D212A)SPAK, and electrogenic glucose transport determined by dual-electrode voltage-clamp experiments. Moreover, Ussing chamber was employed to determine the electrogenic glucose transport in intestine from wild-type mice (spak(wt/wt)) and from gene-targeted mice carrying WNK-insensitive SPAK (spak(tg/tg)). In SGLT1-expressing oocytes, but not in water-injected oocytes, the glucose-dependent current (I(g)) was significantly decreased following coexpression of wild-type SPAK and (T233E)SPAK, but not by coexpression of (T233A)SPAK or (D212A)SPAK. Kinetic analysis revealed that SPAK decreased maximal I(g) without significantly modifying the glucose concentration required for halfmaximal I(g) (K(m)). According to the chemiluminescence experiments, wild-type SPAK but not (D212A)SPAK decreased SGLT1 protein abundance in the cell membrane. Inhibition of SGLT1 insertion by brefeldin A (5 μM) resulted in a decline of I(g), which was similar in the absence and presence of SPAK, suggesting that SPAK did not accelerate the retrieval of SGLT1 protein from the cell membrane but rather down-regulated carrier insertion into the cell membrane. Intestinal electrogenic glucose transport was significantly lower in spak(wt/wt) than in spak(tg/tg) mice. In conclusion, SPAK is a powerful negative regulator of SGLT1 protein abundance in the cell membrane and thus of electrogenic glucose transport.
Collapse
|
17
|
Kim MH, Jee JH, Park S, Lee MS, Kim KW, Lee MK. Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J Endocrinol 2014; 220:117-28. [PMID: 24233023 DOI: 10.1530/joe-13-0381] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One aspect of the effects of metformin on glucagon-like peptide (GLP)-1 might be associated with the mechanism by which the cross talk between insulin and Wnt signaling enhances GLP1 secretion, due to the action of metformin as an insulin sensitizer. However, this remains completely unknown. In this study, we have investigated the mechanisms of the action of metformin on cross talk between insulin and Wnt signaling. GLP1 enhancement by meformin was determined in human NCI-H716 intestinal L-cells and hyperglycemic db/db mice treated with metformin (0.25 and 0.5 mM and/or 12.5 mg/kg body weight) for 24 h and 2 months. Metformin increased GLP1 secretion in L-cells and db/db mice. Metformin stimulated the nuclear translocation of β-catenin and TOPflash reporter activity, and gene depletion of β-catenin or enhancement of mutation of transcription factor 7-like 2 binding site offset GLP1. In addition, insulin receptor substrate 2 gene depletion blocked metformin-enhanced β-catenin translocation. These effects were preceded by an increase in glucose utilization and calcium influx, the activation of calcium-dependent protein kinase, and, in turn, the activation of insulin signaling, and the inhibition of glycogen synthase kinase 3β, a potent inhibitor of β-catenin. Furthermore, high blood glucose levels were controlled via GLP1 receptor-dependent insulinotropic pathways in db/db mice, which were evidenced by the increase in GLP1 and insulin levels at 30 min after oral glucose loading and pancreatic insulinotropic gene expression. Our findings indicate that the cooperation between Wnt and its upstream insulin signaling pathways might be a novel and important mechanism underlying the effects of metformin on GLP1 production.
Collapse
Affiliation(s)
- Mi-Hyun Kim
- Division of Endocrinology and Metabolism, Samsung Biomedical Research Institute, 50 Ilwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea Division of Endocrinology and Metabolism, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2+T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in micein vivoby deletion of either gustducin or T1R3 prevented dietary monosaccharide- and artificial sweetener-induced up-regulation of the Na+/glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.
Collapse
|
19
|
Yang C, Albin DM, Wang Z, Stoll B, Lackeyram D, Swanson KC, Yin Y, Tappenden KA, Mine Y, Yada RY, Burrin DG, Fan MZ, Arrese M, Riquelme A. Apical Na+-D-glucose cotransporter 1 (SGLT1) activity and protein abundance are expressed along the jejunal crypt-villus axis in the neonatal pig. Am J Physiol Gastrointest Liver Physiol 2011; 300:G60-70. [PMID: 21030609 PMCID: PMC3025512 DOI: 10.1152/ajpgi.00208.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.
Collapse
Affiliation(s)
- Chengbo Yang
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - David M. Albin
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| | - Zirong Wang
- 3College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China;
| | - Barbara Stoll
- 4Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Dale Lackeyram
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - Kendall C. Swanson
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | - Yulong Yin
- 5Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China; and
| | - Kelly A. Tappenden
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois;
| | - Yoshinori Mine
- 6Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rickey Y. Yada
- 6Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Douglas G. Burrin
- 4Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
| | - Ming Z. Fan
- 1Center for Nutrition Modeling, Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada;
| | | | | |
Collapse
|
20
|
Banerjee SK, Wang DW, Alzamora R, Huang XN, Pastor-Soler NM, Hallows KR, McGaffin KR, Ahmad F. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol 2010; 49:683-92. [PMID: 20600102 PMCID: PMC2932762 DOI: 10.1016/j.yjmcc.2010.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 01/04/2023]
Abstract
Human mutations in the gene PRKAG2 encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) cause a glycogen storage cardiomyopathy. Transgenic mice (TG(T400N)) with the human T400N mutation exhibit inappropriate activation of AMPK and consequent glycogen storage in the heart. Although increased glucose uptake and activation of glycogen synthesis have been documented in PRKAG2 cardiomyopathy, the mechanism of increased glucose uptake has been uncertain. Wildtype (WT), TG(T400N), and TG(alpha2DN) (carrying a dominant negative, kinase dead alpha2 catalytic subunit of AMPK) mice were studied at ages 2-8 weeks. Cardiac mRNA expression of sodium-dependent glucose transporter 1 (SGLT1), but not facilitated-diffusion glucose transporter 1 (GLUT1) or GLUT4, was increased approximately 5- to 7-fold in TG(T400N) mice relative to WT. SGLT1 protein was similarly increased at the cardiac myocyte sarcolemma in TG(T400N) mice. Phlorizin, a specific SGLT1 inhibitor, attenuated cardiac glucose uptake in TG(T400N) mice by approximately 40%, but not in WT mice. Chronic phlorizin treatment reduced cardiac glycogen content by approximately 25% in TG(T400N) mice. AICAR, an AMPK activator, increased cardiac SGLT1 mRNA expression approximately 3-fold in WT mice. Relative to TG(T400N) mice, double transgenic (TG(T400N)/TG(alpha2DN)) mice had decreased ( approximately 50%) cardiac glucose uptake and decreased (approximately 70%) cardiac SGLT1 expression. TG(T400N) hearts had increased binding activity of the transcription factors HNF-1 and Sp1 to the promoter of the gene encoding SGLT1. Our data suggest that upregulation of cardiac SGLT1 is responsible for increased cardiac glucose uptake in the TG(T400N) mouse. Increased AMPK activity leads to upregulation of SGLT1, which in turn mediates increased cardiac glucose uptake.
Collapse
Affiliation(s)
- Sanjay K. Banerjee
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - David W. Wang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rodrigo Alzamora
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xueyin N. Huang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Núria M. Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kenneth R. Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Ferhaan Ahmad
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
21
|
Filatova A, Leyerer M, Gorboulev V, Chintalapati C, Reinders Y, Müller TD, Srinivasan A, Hübner S, Koepsell H. Novel shuttling domain in a regulator (RSC1A1) of transporter SGLT1 steers cell cycle-dependent nuclear location. Traffic 2009; 10:1599-618. [PMID: 19765263 DOI: 10.1111/j.1600-0854.2009.00982.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gene product of RSC1A1, RS1, participates in the regulation of the Na(+)-D-glucose cotransporter SGLT1. RS1 inhibits release of SGLT1 from the trans Golgi network. In subconfluent LLC-PK(1) cells, RS1 migrates into the nucleus and modulates transcription of SGLT1, whereas most confluent cells do not contain RS1 in the nuclei. We showed that confluence-dependent nuclear location of RS1 is because of different phases of the cell cycle and identified a RS1 nuclear shuttling domain (RNS) with an associated protein kinase C (PKC) phosphorylation site (RNS-PKC) that mediates cell cycle-dependent nuclear location. RNS-PKC contains a novel non-conventional nuclear localization signal interacting with importin beta1, a nuclear export signal mediating export via protein CRM1 and a Ca(2+)-dependent calmodulin binding site. PKC and calmodulin compete for binding to RNS-PKC. Mutagenesis experiments and analyses of the phosphorylation status suggest the following sequences of events. Subconfluent cells without and with synchronization to the G2/M phase contain non-phosphorylated RNS-PKC that mediates nuclear import of RS1 but not its export. During confluence or synchronization of subconfluent cells to the G2/M phase, phosphorylation of RNS-PKC mediates rapid nuclear export of RS1.
Collapse
Affiliation(s)
- Alina Filatova
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cherry J, Jones H, Karschner VA, Pekala PH. Post-transcriptional control of CCAAT/enhancer-binding protein beta (C/EBPbeta) expression: formation of a nuclear HuR-C/EBPbeta mRNA complex determines the amount of message reaching the cytosol. J Biol Chem 2008; 283:30812-20. [PMID: 18678862 PMCID: PMC2576548 DOI: 10.1074/jbc.m805659200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Indexed: 12/27/2022] Open
Abstract
In 3T3-L1 cells, HuR is constitutively expressed and prior to induction of differentiation localized predominantly to the nucleus. Within minutes of induction of differentiation, nuclear HuR binds to its target ligand mRNAs, and the complexes appear to move to the cytosol. One ligand mRNA is the CCAAT/enhancer-binding protein beta (C/EBPbeta) message. To examine the function and importance of the HuR-C/EBPbeta interaction, retroviral expression constructs were created in which the HuR binding site was altered by deletion (betadel) or deletion and substitution (betad/s). Expression of these constructs in murine embryonic fibroblasts resulted in significant adipose conversion relative to those cells expressing wild type C/EBPbeta. C/EBPbeta protein content was increased markedly in both betadel and betad/s, which correlated with the acquisition of the adipocyte phenotype. Analysis of the betad/s cell line demonstrated a robust expression of C/EBPalpha coincident with peroxisome proliferator-activated receptor gamma expression. Total C/EBPbeta mRNA accumulation indicated no difference between cells harboring either the wild type C/EBPbeta cDNA or betad/s construct. However, cytosolic C/EBPbeta mRNA in the cells expressing the betad/s construct was maintained at levels between 2- and 7-fold greater than in the cells expressing the wild type construct. Alteration in mRNA half-life was not responsible for the increased accumulation. Mechanistically, these data suggest that HuR binding results in nuclear retention of the C/EBPbeta mRNA and is consistent with HuR control, at least in part, of mRNA processing.
Collapse
Affiliation(s)
- Joy Cherry
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
23
|
Targeting of transcripts encoding membrane proteins in polarized epithelia: RNA–protein binding studies of the SGLT1 3′-UTR. Biochem Soc Trans 2008; 36:525-7. [DOI: 10.1042/bst0360525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
mRNA stability, mRNA translation and spatial localization of mRNA species within a cell can be governed by signals in the 3′-UTR (3′-untranslated region). Local translation of proteins is essential for the development of many eukaryotic cell types, such as the Drosophila embryo, where the spatial and temporal localization of bicoid and gurken mRNAs, among others, is required to establish morphogen gradients. More recent studies have suggested that mRNA localization also occurs with transcripts coding for membrane-based or secreted proteins, and that localization at organelles such as the endoplasmic reticulum directs translation more efficiently to specific subdomains, so as to aid correct protein localization. In human epithelial cells, the mRNA coding for SGLT1 (sodium–glucose co-transporter 1), an apical membrane protein, has been shown to be localized apically in polarized cells. However, the nature of the signals and RNA-binding proteins involved are unknown. Ongoing work is aimed at identifying the localization signals in the SGLT1 3′-UTR and the corresponding binding proteins. Using a protein extract from polarized Caco-2 cells, both EMSAs (electrophoretic mobility-shift assays) and UV cross-linking assays have shown that a specific protein complex is formed with the first 300 bases of the 3′-UTR sequence. MFold predictions suggest that this region folds into a complex structure and ongoing studies using a series of strategic deletions are being carried out to identify the precise nature of the motif involved, particularly the role of the sequence or RNA secondary structure, as well as to identify the main proteins present within the complex. Such information will provide details of the post-transcriptional events that lead to apical localization of the SGLT1 transcript and may reveal mechanisms of more fundamental importance in the apical localization of proteins in polarized epithelia.
Collapse
|
24
|
Vernaleken A, Veyhl M, Gorboulev V, Kottra G, Palm D, Burckhardt BC, Burckhardt G, Pipkorn R, Beier N, van Amsterdam C, Koepsell H. Tripeptides of RS1 (RSC1A1) inhibit a monosaccharide-dependent exocytotic pathway of Na+-D-glucose cotransporter SGLT1 with high affinity. J Biol Chem 2007; 282:28501-28513. [PMID: 17686765 DOI: 10.1074/jbc.m705416200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human gene RSC1A1 codes for a 67-kDa protein named RS1 that mediates transcriptional and post-transcriptional regulation of Na(+)-D-glucose cotransporter SGLT1. The post-transcriptional regulation occurs at the trans-Golgi network (TGN). We identified two tripeptides in human RS1 (Gln-Cys-Pro (QCP) and Gln-Ser-Pro (QSP)) that induce posttranscriptional down-regulation of SGLT1 at the TGN leading to 40-50% reduction of SGLT1 in plasma membrane. For effective intracellular concentrations IC(50) values of 2.0 nM (QCP) and 0.16 nm (QSP) were estimated. Down-regulation of SGLT1 by tripeptides was attenuated by intracellular monosaccharides including non-metabolized methyl-alpha-D-glucopyranoside and 2-deoxyglucose. In small intestine post-transcriptional regulation of SGLT1 may contribute to glucose-dependent regulation of liver metabolism and intestinal mobility. QCP and QSP are transported by the H(+)-peptide cotransporter PepT1 that is colocated with SGLT1 in small intestinal enterocytes. Using coexpression of SGLT1 and PepT1 in Xenopus oocytes or polarized Caco-2 cells that contain both transporters we demonstrated that the tripeptides were effective when applied to the extracellular compartment. After a 1-h perfusion of intact rat small intestine with QSP, glucose absorption was reduced by 30%. The data indicate that orally applied tripeptides can be used to down-regulate small intestinal glucose absorption, e.g. in diabetes mellitus.
Collapse
Affiliation(s)
- Alexandra Vernaleken
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | - Maike Veyhl
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | - Valentin Gorboulev
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | - Gabor Kottra
- Department of Food and Nutrition, Technical University Munich, 85350 Freising, Germany
| | - Dieter Palm
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany
| | | | - Gerhard Burckhardt
- Institute of Physiology and Pathophysiology, University Göttingen, 37073 Göttingen, Germany
| | | | - Norbert Beier
- Diabetes Research Department of Merck KGaA, 64293 Darmstadt, Germany
| | | | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
25
|
Veyhl M, Keller T, Gorboulev V, Vernaleken A, Koepsell H. RS1 (RSC1A1) regulates the exocytotic pathway of Na+-d-glucose cotransporter SGLT1. Am J Physiol Renal Physiol 2006; 291:F1213-23. [PMID: 16788146 DOI: 10.1152/ajprenal.00068.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The product of gene RSC1A1, named RS1, participates in transcriptional and posttranscriptional regulation of the sodium-d-glucose cotransporter SGLT1. Using coexpression in oocytes of Xenopus laevis, posttranscriptional inhibition of human SGLT1 (hSGLT1) and some other transporters by human RS1 (hRS1) was demonstrated previously. In the present study, histidine-tagged hRS1 was expressed in oocytes or Sf9 cells and purified using nickel(II)-charged nitrilotriacetic acid-agarose. hRS1 protein was injected into oocytes expressing hSGLT1 or the human organic cation transporter hOCT2, and the effect on hSGLT1-mediated uptake of methyl-α-d-[14C]glucopyranoside ([14C]AMG) or hOCT2-mediated uptake of [14C]tetraethylammonium ([14C]TEA) was measured. Within 30 min after the injection of hRS1 protein, hSGLT1-expressed AMG uptake or hOCT2-expressed TEA uptake was inhibited by ∼50%. Inhibition of AMG uptake was decreased when a dominant negative mutant of dynamin I was coexpressed and increased after stimulation of PKC. Inhibition remained unaltered when endocytosis was inhibited by chlorpromazine, imipramine, or filipin but was prevented when exocytosis was inhibited by botulinum toxin B or when the release of vesicles from the TGN and endosomes was inhibited by brefeldin A. Inhibition of hSGLT1-mediated AMG uptake and hOCT2-mediated TEA uptake by hRS1 protein were decreased at an enhanced intracellular AMG concentration. The data suggest that hRS1 protein exhibits glucose-dependent, short-term inhibition of hSGLT1 and hOCT2 by inhibiting the release of vesicles from the trans-Golgi network.
Collapse
Affiliation(s)
- Maike Veyhl
- Institut für Anatomie und Zellbiologie der Universität Würzburg, Koellikerstr. 6, 97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Misquitta CM, Chen T, Grover AK. Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 2006; 40:329-46. [PMID: 16765440 DOI: 10.1016/j.ceca.2006.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/22/2006] [Accepted: 04/12/2006] [Indexed: 01/14/2023]
Abstract
Specific sequences (cis-acting elements) in the 3'-untranslated region (UTR) of RNA, together with stabilizing and destabilizing proteins (trans-acting factors), determine the mRNA stability, and consequently, the level of expression of several proteins. Such interactions were discovered initially for short-lived mRNAs encoding cytokines and early genes like c-jun and c-myc. However, they may also determine the fate of more stable mRNAs in a tissue and disease-dependent manner. The interactions between the cis-acting elements and the trans-acting factors may also be modulated by Ca(2+) either directly or via a control of the phosphorylation status of the trans-acting factors. We focus initially on the basic concepts in mRNA stability with the trans-acting factors AUF1 (destabilizing) and HuR (stabilizing). Sarco/endoplasmic reticulum Ca(2+) pumps, SERCA2a (cardiac and slow twitch muscles) and SERCA2b (most cells including smooth muscle cells), are pivotal in Ca(2+) mobilization during signal transduction. SERCA2a and SERCA2b proteins are encoded by relatively stable mRNAs that contain cis-acting stability determinants in their 3'-regions. We present several pathways where 3'-UTR mediated mRNA decay is key to Ca(2+) signalling: SERCA2a and beta-adrenergic receptors in heart failure, renin-angiotensin system, and parathyroid hormones. Other examples discussed include cytokines vascular endothelial growth factor, endothelin and endothelial nitric oxide synthase. Roles of Ca(2+) and Ca(2+)-binding proteins in mRNA stability are also discussed. We anticipate that these novel modes of control of protein expression will form an emerging area of research that may explore the central role of Ca(2+) in cell function during development and in disease.
Collapse
Affiliation(s)
- Christine M Misquitta
- Banting and Best Department of Medical Research, 10th floor Donnelly CCBR, University of Toronto, 160 College Street, Toronto, Ont., Canada M5S 3E1
| | | | | |
Collapse
|
27
|
Walker J, Jijon H, Diaz H, Salehi P, Churchill T, Madsen K. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochem J 2005; 385:485-91. [PMID: 15367103 PMCID: PMC1134720 DOI: 10.1042/bj20040694] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AMPK (AMP-activated protein kinase) is a key sensor of energy status within the cell. Activated by an increase in the AMP/ATP ratio, AMPK acts to limit cellular energy depletion by down-regulating selective ATP-dependent processes. The purpose of the present study was to determine the role of AMPK in regulating intestinal glucose transport. [3H]3-O-methyl glucose fluxes were measured in murine jejunum in the presence and absence of the AMPK activators AICAR (5-aminoimidazole-4-carboxamide riboside) and metformin and the p38 inhibitor, SB203580. To differentiate between a sodium-coupled (SGLT1) and diffusive (GLUT2) route of entry, fluxes were measured in the presence of the SGLT1 and GLUT2 inhibitors phloridzin and phloretin. Glucose transporter mRNA levels were measured by reverse transcriptase-PCR, and localization by Western blotting. Surface-expressed GLUT2 was assessed by luminal biotinylation. Activation of p38 mitogen-activated protein kinase was analysed by Western blotting. We found that treatment of jejunal tissue with AICAR resulted in enhanced net glucose uptake and was associated with phosphorylation of p38 mitogen-activated protein kinase. Inhibition of p38 abrogated the stimulation of AICAR-stimulated glucose uptake. Phloretin abolished the AICAR-mediated increase in glucose flux, whereas phloridzin had no effect, suggesting the involvement of GLUT2. In addition, AICAR decreased total protein levels of SGLT1, concurrently increasing levels of GLUT2 in the brush-border membrane. The anti-diabetic drug metformin, a known activator of AMPK, also induced the localization of GLUT2 to the luminal surface. We conclude that the activation of AMPK results in an up-regulation of non-energy requiring glucose uptake by GLUT2 and a concurrent down-regulation of sodium-dependent glucose transport.
Collapse
Affiliation(s)
- John Walker
- *Division of Gastroenterology, University of Alberta, 6146 Dentistry Pharmacy Building, Edmonton, Alberta, Canada T6G 2C2
| | - Humberto B. Jijon
- *Division of Gastroenterology, University of Alberta, 6146 Dentistry Pharmacy Building, Edmonton, Alberta, Canada T6G 2C2
| | - Hugo Diaz
- *Division of Gastroenterology, University of Alberta, 6146 Dentistry Pharmacy Building, Edmonton, Alberta, Canada T6G 2C2
| | - Payam Salehi
- †Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2C2
| | - Thomas Churchill
- †Department of Surgery, University of Alberta, Edmonton, Alberta, Canada T6G 2C2
| | - Karen L. Madsen
- *Division of Gastroenterology, University of Alberta, 6146 Dentistry Pharmacy Building, Edmonton, Alberta, Canada T6G 2C2
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
SPENCE JP, LIANG T, HABEGGER K, CARR LG. Effect of polymorphism on expression of the neuropeptide Y gene in inbred alcohol-preferring and -nonpreferring rats. Neuroscience 2005; 131:871-6. [PMID: 15749341 PMCID: PMC4455873 DOI: 10.1016/j.neuroscience.2004.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2004] [Indexed: 11/22/2022]
Abstract
Using animal models of alcoholism, previous studies suggest that neuropeptide Y (NPY) may be implicated in alcohol preference and consumption due to its role in the modulation of feeding and anxiety. Quantitative trait loci (QTL) analysis previously identified an interval on rat chromosome 4 that is highly associated with alcohol preference and consumption using an F2 population derived from inbred alcohol-preferring (iP) and -nonpreferring (iNP) rats. NPY mapped to the peak of this QTL region and was prioritized as a candidate gene for alcohol-seeking behavior in the iP and iNP rats. In order to identify a potential mechanism for reduced NPY protein levels documented in the iP rat, genetic and molecular components that influence NPY expression were analyzed between iP and iNP rats. Comparing the iP rat to the iNP rat, quantitative real-time polymerase chain reaction detected significantly decreased levels of NPY mRNA expression in the iP rat in the six brain regions tested: nucleus accumbens, frontal cortex, amygdala, hippocampus, caudate-putamen, and hypothalamus. In addition, the functional significance of three previously identified polymorphisms was assessed using in vitro expression analysis. The polymorphism defined by microsatellite marker D4Mit7 in iP rats reduced luciferase reporter gene expression in SK-N-SH neuroblastoma cells. These results suggest that differential expression of the NPY gene resulting from the D4mit7 marker polymorphism may contribute to reduced levels of NPY in discrete brain regions in the iP rats.
Collapse
Affiliation(s)
| | | | | | - L. G. CARR
- Corresponding author. Tel: +-317-274-0152; fax: +1-317-274-2695. (L. G. Carr)
| |
Collapse
|
29
|
Liang T, Habegger K, Spence JP, Foroud T, Ellison JA, Lumeng L, Li TK, Carr LG. Glutathione S-transferase 8-8 expression is lower in alcohol-preferring than in alcohol-nonpreferring rats. Alcohol Clin Exp Res 2005; 28:1622-8. [PMID: 15547447 PMCID: PMC4455766 DOI: 10.1097/01.alc.0000145686.79141.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A primary focus of alcohol research is to provide novel targets for alcohol treatment by identifying genes that predispose individuals to drink alcohol. Animal models of alcoholism developed by selective breeding are invaluable tools to elucidate both the genetic nature and the underlying biological mechanisms that contribute to alcohol dependence. These selected lines (high alcohol preferring and low alcohol preferring) display phenotypic and genetic differences that can be studied to further our understanding of alcohol preference and related genetic traits. By combining molecular techniques, genetic and physiological factors that underlie the cause of alcoholism can be identified. METHODS Total gene expression analysis was used to identify genes that are differentially expressed in specific brain regions between alcohol-naive, inbred alcohol-preferring (iP) and -nonpreferring (iNP) rats. Quantitative reverse transcriptase-polymerase chain reaction, in situ hybridization, Western blot, and sequence analysis were used to further characterize rat glutathione S-transferase 8-8 (rGST 8-8). RESULTS Lower expression of rGST 8-8 mRNA was observed in discrete brain regions of iP compared with iNP animals, and these expression differences were confirmed. To determine additional expression patterns of rGST 8-8, we used in situ hybridization. Rat GST 8-8 was highly expressed in hippocampus, the choroid plexus of the dorsal third ventricle and the lateral ventricle, and ependymal cells along the dorsal third ventricle and the third ventricle. Western blot analysis showed that rGST 8-8 protein levels were lower in the hippocampus and the amygdala of iP compared with iNP. A silent single-nucleotide polymorphism in the coding region and three single-nucleotide polymorphisms in the 3'-UTR were identified in the rGST 8-8 cDNA. CONCLUSION There is regional variation of rGST 8-8 expression in the brain, at both the mRNA and protein level, and the iP strain has lower innate rGST 8-8 levels than the iNP strain in discrete brain regions.
Collapse
Affiliation(s)
- Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, 975 W. Walnut Street, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Meisner NC, Hackermüller J, Uhl V, Aszódi A, Jaritz M, Auer M. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochem 2005; 5:1432-47. [PMID: 15457527 DOI: 10.1002/cbic.200400219] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Approximately 3 000 genes are regulated in a time-, tissue-, and stimulus-dependent manner by degradation or stabilization of their mRNAs. The process is mediated by interaction of AU-rich elements (AREs) in the mRNA's 3'-untranslated regions with trans-acting factors. AU-rich element-controlled genes of fundamentally different functional relevance depend for their activation on one positive regulator, HuR. Here we present a methodology to exploit this central regulatory process for specific manipulation of AU-rich element-controlled gene expression at the mRNA level. With a combination of single-molecule spectroscopy, computational biology, and molecular and cellular biochemistry, we show that mRNA recognition by HuR is dependent on the presentation of the sequence motif NNUUNNUUU in single-stranded conformation. The presentation of the HuR binding site in the mRNA secondary structure appears to act analogously to a regulatory on/off switch that specifically controls HuR access to mRNAs in cis. Based on this finding we present a methodology for manipulating ARE mRNA levels by actuating this conformational switch specifically in a target mRNA. Computationally designed oligonucleotides (openers) enhance the NNUUNNUUU accessibility by rearranging the mRNA conformation. Thereby they increase in vitro and endogenous HuR-mRNA complex formation which leads to specific mRNA stabilization (as demonstrated for TNFalpha and IL-2, respectively). Induced HuR binding both inside and outside the AU-rich element promotes functional IL-2 mRNA stabilization. This opener-induced mRNA stabilization mimics the endogenous IL-2 response to CD28 stimulation in human primary T-cells. We therefore propose that controlled modulation of the AU-rich element conformation by mRNA openers or closers allows message stabilization or destabilization in cis to be specifically triggered. The described methodology might provide a means for studying distinct pathways in a complex cellular network at the node of mRNA stability control. It allows ARE gene expression to be potentially silenced or boosted. This will be of particular value for drug-target validation, allowing the diseased phenotype to ameliorate or deteriorate. Finally, the mRNA openers provide a rational starting point for target-specific mRNA stability assays to screen for low-molecular-weight compounds acting as inhibitors or activators of an mRNA structure rearrangement.
Collapse
Affiliation(s)
- Nicole-Claudia Meisner
- Novartis Institutes for Biomedical Research Vienna, Discovery Technologies, Innovative Screening Technologies, Brunnerstrasse 59, 1235 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
31
|
Osswald C, Baumgarten K, Stümpel F, Gorboulev V, Akimjanova M, Knobeloch KP, Horak I, Kluge R, Joost HG, Koepsell H. Mice without the regulator gene Rsc1A1 exhibit increased Na+-D-glucose cotransport in small intestine and develop obesity. Mol Cell Biol 2005; 25:78-87. [PMID: 15601832 PMCID: PMC538757 DOI: 10.1128/mcb.25.1.78-87.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of the intronless single copy gene RSC1A1, named RS1, is an intracellular 617-amino-acid protein that is involved in the regulation of the Na(+)-d-glucose cotransporter SGLT1. We generated and characterized RS1 knockout (RS1(-/-) mice. In the small intestines of RS1(-/-) mice, the SGLT1 protein was up-regulated sevenfold compared to that of wild-type mice but was not changed in the kidneys. The up-regulation of SGLT1 was posttranscriptional. Small intestinal d-glucose uptake measured in jointly perfused small bowel and liver was increased twofold compared to that of the wild-type, with increased peak concentrations of d-glucose in the portal vein. At birth, the weights of RS1(-/-) and wild-type mice were similar. At the age of 3 months, male RS1(-/-) mice had 5% higher weights and 15% higher food intakes, whereas their energy expenditures and serum leptin concentrations were similar to those of wild-type mice. At the age of 5 months, male and female RS1(-/-) mice were obese, with 30% increased body weight, 80% increased total fat, and 30% increased serum cholesterol. At this age, serum leptin was increased, whereas food intake was the same as for wild-type mice. The data suggest that the removal of RS1 leads to leptin-independent up-regulation of food intake, which causes obesity.
Collapse
MESH Headings
- Animals
- Biological Transport
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cholesterol/blood
- Cloning, Molecular
- Enzyme-Linked Immunosorbent Assay
- Female
- Glucose/metabolism
- Glucose Transporter Type 2
- Insulin/metabolism
- Intestinal Mucosa/metabolism
- Intestine, Small/metabolism
- Introns
- Leptin/metabolism
- Male
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Models, Genetic
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Monosaccharide Transport Proteins/physiology
- Obesity/genetics
- Phenotype
- Polymerase Chain Reaction
- RNA Processing, Post-Transcriptional
- Sex Factors
- Sodium/metabolism
- Sodium-Glucose Transporter 1
- Time Factors
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Christina Osswald
- Institute of Anatomy and Cell Biology, Bavarian Julius-Maximilians-University, Koellikerstrasse 6, 97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jae Han H, Yeong Park J, Jung Lee Y, Taub M. Epidermal growth factor inhibits14C-?-methyl-d-glucopyranoside uptake in renal proximal tubule cells: Involvement of PLC/PKC, p44/42 MAPK, and cPLA2. J Cell Physiol 2004; 199:206-16. [PMID: 15040003 DOI: 10.1002/jcp.10438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effect of EGF on (14)C-alpha-methyl-D-glucopyranoside (alpha-MG) uptake and its related signaling pathways were examined in primary cultured rabbit renal proximal tubule cells (PTCs). Epidermal growth factor (EGF) (50 ng/ml) was found to inhibit alpha-MG uptake, a distinctive proximal tubule marker. The EGF effect was blocked by AG1478 (an EGF receptor antagonist) or genistein and herbimycin (tyrosine kinase inhibitors), respectively. In addition, the EGF-induced inhibition of alpha-MG uptake was blocked by neomycin and U73122 (phospholipase C inhibitors) as well as staurosporine, H-7, and bisindolylmaleimide I (protein kinase C inhibitors). EGF was also observed to increase inositol phosphate formation. Furthermore, both the EGF-induced inhibition of alpha-MG uptake and increase of arachidonic acid (AA) release were blocked by AACOCF(3) (a cytosolic phospholipase A(2) inhibitor), indomethacin (a cyclooxygenase inhibitor), and econazole (a cytochrome P-450 epoxygenase inhibitor). We examined the involvement of mitogen-activated protein kinases (MAPKs) in mediating the effect of EGF on alpha-MG uptake. Indeed, EGF increased phosphorylation of p44/p42 MAPK and the EGF-induced inhibition of alpha-MG uptake as well as the stimulatory effect of EGF on AA release was blocked by PD 98059 (a p44/42 MAPK inhibitor), suggesting a causal relationship. However, inhibitors of PKC also prevented the EGF-induced increase of AA release. In conclusion, EGF partially inhibited alpha-MG uptake via PLC/PKC, p44/42 MAPK, and PLA(2) signaling pathways.
Collapse
Affiliation(s)
- Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University, Gwangju, Korea.
| | | | | | | |
Collapse
|
33
|
Regulation of vasopressin gene expression by cAMP and glucocorticoids in parvocellular neurons of the paraventricular nucleus in rat hypothalamic organotypic cultures. J Neurosci 2003. [PMID: 14614081 DOI: 10.1523/jneurosci.23-32-10231.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Arginine vasopressin (AVP) in the parvocellular neurons of the paraventricular nucleus (PVN) is known to play an important role in the hypothalamo-pituitary-adrenal axis. In the present study, we examined how cAMP and glucocorticoids regulate AVP gene expression in the parvocellular neurons of the PVN in rat hypothalamic organotypic cultures with in situ hybridization. AVP heteronuclear (hn) RNA, an indicator for gene transcription, was induced in the PVN with incubation of forskolin as reported previously, and AVP mRNA was increased by forskolin in the presence of the gene transcription inhibitor 5,6-dichloro-1-D-ribofuranosylbenzimidazole (DRB). These data indicate that cAMP could increase not only gene transcription but also mRNA stability. Dexamethasone treatment, in contrast, significantly decreased AVP mRNA expression levels in the PVN, but this inhibitory action was abolished in the presence of DRB or the sodium channel blocker tetrodotoxin (TTX). However, when the hypothalamic slices were treated with forskolin, dexamethasone decreased AVP mRNA expression even in the presence of DRB and/or TTX. Furthermore, AVP hnRNA expression induced by forskolin was attenuated by dexamethasone treatment in the presence of TTX. These data indicate that dexamethasone could act on AVP cells independently of action potentials to decrease mRNA stability and to suppress AVP gene transcription during stimulation by cAMP. Thus, it was demonstrated that: (1) cAMP upregulates AVP gene transcriptionally and post-transcriptionally, (2) the mode of action of glucocorticoids was dependent on whether the cells were stimulated by cAMP, and (3) the interactions between cAMP and glucocorticoids encompass both gene transcription and mRNA stability.
Collapse
|
34
|
McMullen MR, Cocuzzi E, Hatzoglou M, Nagy LE. Chronic ethanol exposure increases the binding of HuR to the TNFalpha 3'-untranslated region in macrophages. J Biol Chem 2003; 278:38333-41. [PMID: 12876290 PMCID: PMC1959409 DOI: 10.1074/jbc.m304566200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tumor necrosis factor alpha (TNFalpha) expression is a key mediator of ethanol-induced liver disease. Increased lipopolysaccharide (LPS)-stimulated TNFalpha expression in macrophages after chronic ethanol feeding is associated with a stabilization of TNFalpha mRNA (Kishore, R., McMullen, M. R., and Nagy, L. E. (2001) J. Biol. Chem. 276, 41930-41937). Here we show that the 3'-UTR of murine TNFalpha mRNA was sufficient to mediate increased LPS-stimulated expression of a luciferase reporter in RAW 264.7 macrophages after chronic ethanol exposure. Further, we show that HuR, a nuclear/cytoplasmic shuttling protein, which binds to TNFalpha mRNA, is required for increased expression of TNFalpha after chronic ethanol. In Kupffer cells, HuR was primarily localized to the nucleus and then translocated to the cytosol in response to LPS in both pair- and ethanol-fed rats. After chronic ethanol feeding, HuR quantity in the cytosol was greater, both at baseline and in response to LPS, compared with pair-fed controls. Using RNA gel shift assays, we found that LPS treatment increased HuR binding to the 65-nucleotide A + U-rich element of the TNFalpha 3'-UTR by 2-fold over baseline in Kupffer cells from pair-fed rats. After chronic ethanol feeding, HuR binding to the TNFalpha A + U-rich element was increased by more than 5-fold at baseline and in response to LPS, compared with pair-fed controls. Down-regulation of HuR expression by RNA interference prevented the chronic ethanol-induced increase in expression of luciferase reporters containing the TNFalpha 3'-UTR. Taken together, these data demonstrate that increased binding of HuR to the TNFalpha 3'-UTR contributes to increased LPS-stimulated TNFalpha expression in macrophages after chronic ethanol exposure.
Collapse
Affiliation(s)
- Megan R. McMullen
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106-4906
| | - Enzo Cocuzzi
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106-4906
| | - Maria Hatzoglou
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106-4906
| | - Laura E. Nagy
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106-4906
| |
Collapse
|
35
|
Gouyon F, Onesto C, Dalet V, Pages G, Leturque A, Brot-Laroche E. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2. Biochem J 2003; 375:167-74. [PMID: 12820898 PMCID: PMC1223656 DOI: 10.1042/bj20030661] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 06/10/2003] [Accepted: 06/23/2003] [Indexed: 11/17/2022]
Abstract
In intestinal cells, levels of the fructose transporter GLUT5 are increased by glucose and to a greater extent by fructose. We investigated the mechanism by which fructose increases GLUT5 expression. In Caco-2 cells, fructose and glucose increased activity of the -2500/+41 GLUT5 promoter to the same extent. cAMP also activated the GLUT5 promoter. However, if a protein kinase A inhibitor was used to block cAMP signalling, extensive GLUT5 mRNA degradation was observed, with no change in basal transcription levels demonstrating the involvement of cAMP in GLUT5 mRNA stability. Indeed, the half-life of GLUT5 mRNA was correlated ( R2=0.9913) with cellular cAMP levels. Fructose increased cAMP concentration more than glucose, accounting for the stronger effect of fructose when compared with that of glucose on GLUT5 production. We identified several complexes between GLUT5 3'-UTR RNA (where UTR stands for untranslated region) and cytosolic proteins that might participate in mRNA processing. Strong binding of a 140 kDa complex I was observed in sugar-deprived cells, with levels of binding lower in the presence of fructose and glucose by factors of 12 and 6 respectively. This may account for differences in the effects of fructose and glucose. In contrast, the amounts of two complexes of 96 and 48 kDa increased equally after stimulation with either glucose or fructose. Finally, PABP (polyadenylated-binding protein)-interacting protein 2, a destabilizing partner of PABP, was identified as a component of GLUT5 3'-UTR RNA-protein complexes. We conclude that the post-transcriptional regulation of GLUT5 by fructose involves increases in mRNA stability mediated by the cAMP pathway and Paip2 (PABP-interacting protein 2) binding.
Collapse
Affiliation(s)
- Florence Gouyon
- Institut National de la Santé et de la Recherche Médicale U505, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
36
|
Liang T, Spence J, Liu L, Strother WN, Chang HW, Ellison JA, Lumeng L, Li TK, Foroud T, Carr LG. alpha-Synuclein maps to a quantitative trait locus for alcohol preference and is differentially expressed in alcohol-preferring and -nonpreferring rats. Proc Natl Acad Sci U S A 2003; 100:4690-5. [PMID: 12665621 PMCID: PMC153617 DOI: 10.1073/pnas.0737182100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Total gene expression analysis (TOGA) was used to identify genes that are differentially expressed in brain regions between the alcohol-naive, inbred alcohol-preferring (iP), and -nonpreferring (iNP) rats. alpha-Synuclein, expressed at >2-fold higher levels in the hippocampus of the iP than the iNP rat, was prioritized for further study. In situ hybridization was used to determine specific brain regions and cells expressing alpha-synuclein in the iP and iNP rats. Similar to alpha-synuclein mRNA levels, protein levels in the hippocampus were higher in iP rats than iNP rats. Higher protein levels were also observed in the caudate putamen of iP rats compared with iNP rats. Sequence analysis identified two single nucleotide polymorphisms in the 3' UTR of the cDNA. The polymorphism was used to map the gene, by using recombination-based methods, to chromosome 4, within a quantitative trait locus for alcohol consumption that was identified in the iP and iNP rats. A nucleotide exchange in the iNP 3' UTR reduced expression of the luciferase reporter gene in SK-N-SH neuroblastoma cells. These results suggest that differential expression of the alpha-synuclein gene may contribute to alcohol preference in the iP rats.
Collapse
Affiliation(s)
- Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wein G, Rössler M, Klug R, Herget T. The 3'-UTR of the mRNA coding for the major protein kinase C substrate MARCKS contains a novel CU-rich element interacting with the mRNA stabilizing factors HuD and HuR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:350-65. [PMID: 12605686 DOI: 10.1046/j.1432-1033.2003.03396.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the major protein kinase C substrate MARCKS (myristoylated alanine-rich C kinase substrate) is controlled by the stability of its mRNA. While the MARCKS mRNA is long living in quiescent fibroblasts (t1/2 = 14 h), its half-life time is drastically reduced (t1/2 = 2 h) in cells treated with phorbol esters to activate protein kinase C (PKC) or treated with growth factors. In a first step to study the underlying mechanism we identified both a cis-element on the MARCKS mRNA and the corresponding trans-acting factors. Fusing the complete 3'-UTR or specific regions of the 3'-UTR of the MARCKS gene to a luciferase reporter gene caused a drastic decrease in luciferase expression to as low as 5-10% of controls. This down-regulation was a result of destabilization of the chimeric transcript as shown by RNA run-off and Northern blot-assays. By RNase/EMSA and UV-cross-linking experiments, we identified a stretch of 52 nucleotides [(CUUU)11(U)8] in the 3'-UTR of the MARCKS mRNA specifically recognized by two RNA-binding proteins, HuD and HuR. These trans-acting factors are members of the ELAV gene family and bind the MARCKS CU-rich sequence with high affinity. Overexpression of HuD and HuR in murine fibroblasts caused a striking stabilization of the endogenous MARCKS mRNA even under conditions when the MARCKS mRNA is normally actively degraded, i.e. after treating cells with phorbol ester. These data imply, that the identified CU-rich cis-element of the MARCKS 3'-UTR is involved in conferring instability to mRNAs and that members of the ELAV gene family oppose this effect. Based on its structural and functional properties, the (CUUU)11(U)8 sequence described here can be grouped into class III of AU-rich elements.
Collapse
Affiliation(s)
- Georg Wein
- Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Yaman I, Fernandez J, Sarkar B, Schneider RJ, Snider MD, Nagy LE, Hatzoglou M. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem 2002; 277:41539-46. [PMID: 12196519 PMCID: PMC1959406 DOI: 10.1074/jbc.m204850200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene increases during nutritional stress as part of the adaptive response to starvation. Amino acid limitation induces coordinate increases in stability and translation of the cat-1 mRNA, at a time when global protein synthesis decreases. It is shown here that increased cat-1 mRNA stability requires an 11 nucleotide AU-rich element within the distal 217 bases of the 3'-untranslated region. When this 217-nucleotide nutrient sensor AU-rich element (NS-ARE) is present in a chimeric mRNA it confers mRNA stabilization during amino acid starvation. HuR is a member of the ELAV family of RNA-binding proteins that has been implicated in regulating the stability of ARE-containing mRNAs. We show here that the cytoplasmic concentration of HuR increases during amino acid starvation, at a time when total cellular HuR levels decrease. In addition, RNA gel shift experiments in vitro demonstrated that HuR binds to the NS-ARE and binding was dependent on the 11 residue AU-rich element. Moreover, HuR binding to the NS-ARE in extracts from amino acid-starved cells increased in parallel with the accumulation of cytoplasmic HuR. It is proposed that an adaptive response of cells to nutritional stress results in increased mRNA stability mediated by HuR binding to the NS-ARE.
Collapse
Affiliation(s)
- Ibrahim Yaman
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - James Fernandez
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - Bedabrata Sarkar
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Martin D. Snider
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - Maria Hatzoglou
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| |
Collapse
|
39
|
Hollams EM, Giles KM, Thomson AM, Leedman PJ. MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002; 27:957-80. [PMID: 12462398 DOI: 10.1023/a:1020992418511] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulation of gene expression is essential for the homeostasis of an organism, playing a pivotal role in cellular proliferation, differentiation, and response to specific stimuli. Multiple studies over the last two decades have demonstrated that the modulation of mRNA stability plays an important role in regulating gene expression. The stability of a given mRNA transcript is determined by the presence of sequences within an mRNA known as cis-elements, which can be bound by trans-acting RNA-binding proteins to inhibit or enhance mRNA decay. These cis-trans interactions are subject to a control by a wide variety of factors including hypoxia, hormones, and cytokines. In this review, we describe mRNA biosynthesis and degradation, and detail the cis-elements and RNA-binding proteins known to affect mRNA turnover. We present recent examples in which dysregulation of mRNA stability has been associated with human diseases including cancer, inflammatory disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Elysia M Hollams
- Laboratory for Cancer Medicine and University Department of Medicine, Western Australian Institute for Medical Research and University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|