1
|
Ng LLH, Chow J, Lau KF. The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochem Soc Trans 2024; 52:2539-2556. [PMID: 39670668 PMCID: PMC11668293 DOI: 10.1042/bst20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.
Collapse
Affiliation(s)
- Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Rodriguez Torres CS, Wicker NB, Puccini de Castro V, Stefinko M, Bennett DC, Bernhardt B, Garcia Montes de Oca M, Jallow S, Flitcroft K, Palalay JJS, Payán Parra OA, Stern YE, Koelle MR, Voisine C, Woods IG, Lo TW, Stern MJ, de la Cova CC. The Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor. Dev Biol 2024; 516:183-195. [PMID: 39173814 PMCID: PMC11488645 DOI: 10.1016/j.ydbio.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In Caenorhabditis elegans, the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by egl-15(n1457), an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of egl-15(n1457) were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed "Clear" that is suppressed by reduction of EGL-15 signaling, a phenotype termed "Suppressor of Clear" (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the clr-1; egl-15(n1457) genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the egl-15(n1457) mutation, loss of either soc-3, the GAB1 ortholog soc-1, or the SHP2 ortholog ptp-2, reduced MPK-1 activation. We generated alleles of soc-3 to test the requirement for the SEM-5-binding motifs, finding that residue Tyr356 is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.
Collapse
Affiliation(s)
| | - Nicole B Wicker
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | - Mariya Stefinko
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | | | | | | | - Sainabou Jallow
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Katelyn Flitcroft
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | | | - Omar A Payán Parra
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Yaakov E Stern
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | | | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Ian G Woods
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, NY, 14850, USA
| | - Michael J Stern
- Department of Biology, Northeastern Illinois University, Chicago, IL, 60625, USA
| | - Claire C de la Cova
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
3
|
Chau DDL, Ng LLH, Zhai Y, Lau KF. Amyloid precursor protein and its interacting proteins in neurodevelopment. Biochem Soc Trans 2023; 51:1647-1659. [PMID: 37387352 PMCID: PMC10629809 DOI: 10.1042/bst20221527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-β peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
5
|
Ogbu SC, Musich PR, Zhang J, Yao ZQ, Howe PH, Jiang Y. The role of disabled-2 (Dab2) in diseases. Gene 2020; 769:145202. [PMID: 33059028 DOI: 10.1016/j.gene.2020.145202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Disabled-2 (Dab2/DOC-2) is a mitogen-responsive adaptor protein required for multiple cellular functions. It is involved in many signaling pathways and plays an integral role in vesicular uptake and trafficking, modulating immune function, protein-protein interactions, cellular homeostasis and differentiation, oncogenesis, and inflammatory processes in organ systems. It contains domains for binding to NPXY motif-containing and SH3 domain-containing adapter proteins, phosphoinositides, glycoprotein 100 (gp100, or megalin), integrins, clathrin, and myosin VI. However, the molecular mechanism(s) of Dab2's biological function still remain to be elucidated. In this review, we provide an extensive up-to-date understanding of the function of Dab2 and its regulation in cardiovascular diseases, immune disorders, tumorigenesis, and central nervous system disorders.
Collapse
Affiliation(s)
- Stella C Ogbu
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Zhi Q Yao
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yong Jiang
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
6
|
Chau DDL, Yung KWY, Chan WWL, An Y, Hao Y, Chan HYE, Ngo JCK, Lau KF. Attenuation of amyloid-β generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35. FASEB J 2019; 33:12019-12035. [PMID: 31373844 DOI: 10.1096/fj.201802825rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aβ to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aβ generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aβ levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aβ production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aβ. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aβ production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aβ generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the β1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aβ production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-β generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kristen Wing-Yu Yung
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William Wai-Lun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Hao
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Yin Edwin Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi-Ki Ngo
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Zhang J, Dubey P, Padarti A, Zhang A, Patel R, Patel V, Cistola D, Badr A. Novel functions of CCM1 delimit the relationship of PTB/PH domains. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1274-1286. [PMID: 28698152 DOI: 10.1016/j.bbapap.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. METHODS By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). RESULTS We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. CONCLUSIONS A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and relationship of PTB, PH and FERM domains has been proposed, which extends the importance of the NPXY-PTB/PH interaction on the CSC signaling and/or other cell receptors with great potential pointing to new therapeutic strategies. GENERAL SIGNIFICANCE The study provides new insight into the structural characteristics of PTB/PH domains, essential structural elements of PTB/PH domain required for NPXY motif-binding, and function and relationship among PTB, PH and FERM domains.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
| | - Pallavi Dubey
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Aileen Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Rinkal Patel
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Vipulkumar Patel
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - David Cistola
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ahmed Badr
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
8
|
Martin-Blanco N, Jiménez Teja D, Bretones G, Borroto A, Caraballo M, Screpanti I, León J, Alarcón B, Canelles M. CD3ε recruits Numb to promote TCR degradation. Int Immunol 2015; 28:127-37. [PMID: 26507128 DOI: 10.1093/intimm/dxv060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/15/2015] [Indexed: 01/05/2023] Open
Abstract
Modulation of TCR signaling upon ligand binding is achieved by changes in the equilibrium between TCR degradation, recycling and synthesis; surprisingly, the molecular mechanism of such an important process is not fully understood. Here, we describe the role of a new player in the mediation of TCR degradation: the endocytic adaptor Numb. Our data show that Numb inhibition leads to abnormal intracellular distribution and defective TCR degradation in mature T lymphocytes. In addition, we find that Numb simultaneously binds to both Cbl and a site within CD3ε that overlaps with the Nck binding site. As a result, Cbl couples specifically to the CD3ε chain to mediate TCR degradation. The present study unveils a novel role of Numb that lies at the heart of TCR signaling initiation and termination.
Collapse
Affiliation(s)
- Nadia Martin-Blanco
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Daniel Jiménez Teja
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain
| | - Gabriel Bretones
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Michael Caraballo
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Javier León
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Matilde Canelles
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain
| |
Collapse
|
9
|
Zeng L, Kuti M, Mujtaba S, Zhou MM. Structural insights into FRS2α PTB domain recognition by neurotrophin receptor TrkB. Proteins 2015; 82:1534-41. [PMID: 24470253 DOI: 10.1002/prot.24523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/27/2013] [Accepted: 01/16/2014] [Indexed: 11/07/2022]
Abstract
The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain.
Collapse
Affiliation(s)
- Lei Zeng
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | | | | | |
Collapse
|
10
|
Yang ZJ, Fu L, Zhang GW, Yang Y, Chen SY, Wang J, Lai SJ. Identification and Association of SNPs in TBC1D1 Gene with Growth Traits in Two Rabbit Breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2013; 26:1529-35. [PMID: 25049738 PMCID: PMC4093812 DOI: 10.5713/ajas.2013.13278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/16/2013] [Accepted: 07/18/2013] [Indexed: 01/12/2023]
Abstract
The TBC1D1 plays a key role in body energy homeostasis by regulating the insulin-stimulated glucose uptake in skeletal muscle. The present study aimed to identify the association between genetic polymorphisms of TBC1D1 and body weight (BW) in rabbits. Among the total of 12 SNPs detected in all 20 exons, only one SNP was non-synonymous (c.214G>A. p.G72R) located in exon 1. c.214G>A was subsequently genotyped among 491 individuals from two rabbit breeds by the high-resolution melting method. Allele A was the predominant allele with frequencies of 0.7780 and 0.6678 in European white rabbit (EWR, n = 205) and New Zealand White rabbit (NZW, n = 286), respectively. The moderate polymorphism information content (0.25 0.05). Our results implied that the c.214G>A of TBC1D1 gene might be one of the candidate loci affecting the trait of 35 d BW in the rabbit.
Collapse
Affiliation(s)
| | | | - Gong-Wei Zhang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130,
China
| | - Yu Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130,
China
| | - Shi-Yi Chen
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130,
China
| | - Jie Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130,
China
| | - Song-Jia Lai
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130,
China
| |
Collapse
|
11
|
Prieto-Echagüe V, Chan PM, Craddock BP, Manser E, Miller WT. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis. PLoS One 2011; 6:e19296. [PMID: 21541291 PMCID: PMC3082566 DOI: 10.1371/journal.pone.0019296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.
Collapse
Affiliation(s)
- Victoria Prieto-Echagüe
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Perry M. Chan
- sGSK group, Neuroscience Research Partnership/A*Star, Singapore, Singapore
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Edward Manser
- sGSK group, Neuroscience Research Partnership/A*Star, Singapore, Singapore
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kaushansky A, Allen JE, Gordus A, Stiffler MA, Karp ES, Chang BH, MacBeath G. Quantifying protein-protein interactions in high throughput using protein domain microarrays. Nat Protoc 2010; 5:773-90. [PMID: 20360771 PMCID: PMC3085283 DOI: 10.1038/nprot.2010.36] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.
Collapse
Affiliation(s)
- Alexis Kaushansky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Q, Chakravarty S, Ghersi D, Zeng L, Plotnikov AN, Sanchez R, Zhou MM. Biochemical profiling of histone binding selectivity of the yeast bromodomain family. PLoS One 2010; 5:e8903. [PMID: 20126658 PMCID: PMC2811197 DOI: 10.1371/journal.pone.0008903] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022] Open
Abstract
Background It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac) is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes. Methodology The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity. Conclusions Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket. Further, while bromodomains exhibit selectivity for different sites in histones, individual interactions are of modest affinity. Finally, electrostatic interactions appear to be a primary determining factor that guides productive association between a bromodomain and a lysine-acetylated histone.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Suvobrata Chakravarty
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dario Ghersi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lei Zeng
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Alexander N. Plotnikov
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Roberto Sanchez
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kawai K, Kitamura SY, Maehira K, Seike JI, Yagisawa H. START-GAP1/DLC1 is localized in focal adhesions through interaction with the PTB domain of tensin2. ACTA ACUST UNITED AC 2009; 50:202-15. [PMID: 19895840 DOI: 10.1016/j.advenzreg.2009.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Katsuhisa Kawai
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo-ken 978-1297, Japan
| | | | | | | | | |
Collapse
|
15
|
Chan LK, Ko FCF, Ng IOL, Yam JWP. Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS One 2009; 4:e5572. [PMID: 19440389 PMCID: PMC2680019 DOI: 10.1371/journal.pone.0005572] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/15/2009] [Indexed: 12/24/2022] Open
Abstract
Background Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism. DLC1 and tensins interact and co-localize to punctate structures at focal adhesions. However, the mechanisms underlying the interaction between DLC1 and various tensins remain controversial. Methodology/Principal Findings We used a co-immunoprecipitation assay to identify a previously undocumented binding site at 375–385 of DLC1 that predominantly interacted with the phosphotyrosine binding (PTB) domain of tensin2. DLC1-tensin2 interaction is completely abolished in a DLC1 mutant lacking this novel PTB binding site (DLC1ΔPTB). However, as demonstrated by immunofluorescence and co-immunoprecipitation, neither the focal adhesion localization nor the interaction with tensin1 and C-terminal tensin-like (cten) were affected. Interestingly, the functional significance of this novel site was exhibited by the partial reduction of the RhoGAP activity, which, in turn, attenuated the growth-suppressive activity of DLC1 upon its removal from DLC1. Conclusions/Significance This study has provided new evidence that DLC1 also interacts with tensin2 in a PTB domain-dependent manner. In addition to properly localizing focal adhesions and preserving RhoGAP activity, DLC1 interaction with tensin2 through this novel focal adhesion binding site contributes to the growth-suppressive activity of DLC1.
Collapse
Affiliation(s)
- Lo-Kong Chan
- Liver Cancer and Hepatitis Research Laboratory and SH Ho Foundation Research Laboratories, Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Frankie Chi Fat Ko
- Liver Cancer and Hepatitis Research Laboratory and SH Ho Foundation Research Laboratories, Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Irene Oi-Lin Ng
- Liver Cancer and Hepatitis Research Laboratory and SH Ho Foundation Research Laboratories, Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Judy Wai Ping Yam
- Liver Cancer and Hepatitis Research Laboratory and SH Ho Foundation Research Laboratories, Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- * E-mail:
| |
Collapse
|
16
|
Francalanci F, Avolio M, De Luca E, Longo D, Menchise V, Guazzi P, Sgrò F, Marino M, Goitre L, Balzac F, Trabalzini L, Retta SF. Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. Exp Cell Res 2009; 315:285-303. [PMID: 18992740 DOI: 10.1016/j.yexcr.2008.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/27/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
KRIT1 is a disease gene responsible for Cerebral Cavernous Malformations (CCM). It encodes for a protein containing distinct protein-protein interaction domains, including three NPXY/F motifs and a FERM domain. Previously, we isolated KRIT1B, an isoform characterized by the alternative splicing of the 15th coding exon and suspected to cause CCM when abnormally expressed. Combining homology modeling and docking methods of protein-structure and ligand binding prediction with the yeast two-hybrid assay of in vivo protein-protein interaction and cellular biology analyses we identified both structural and functional differences between KRIT1A and KRIT1B isoforms. We found that the 15th exon encodes for the distal beta-sheet of the F3/PTB-like subdomain of KRIT1A FERM domain, demonstrating that KRIT1B is devoid of a functional PTB binding pocket. As major functional consequence, KRIT1B is unable to bind Rap1A, while the FERM domain of KRIT1A is even sufficient for this function. Furthermore, we found that a functional PTB subdomain enables the nucleocytoplasmic shuttling of KRIT1A, while its alteration confers a restricted cytoplasmic localization and a dominant negative role to KRIT1B. Importantly, we also demonstrated that KRIT1A, but not KRIT1B, may adopt a closed conformation through an intramolecular interaction involving the third NPXY/F motif at the N-terminus and the PTB subdomain of the FERM domain, and proposed a mechanism whereby an open/closed conformation switch regulates KRIT1A nuclear translocation and interaction with Rap1A in a mutually exclusive manner. As most mutations found in CCM patients affect the KRIT1 FERM domain, the new insights into the structure-function relationship of this domain may constitute a useful framework for understanding molecular mechanisms underlying CCM pathogenesis.
Collapse
Affiliation(s)
- Floriana Francalanci
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, Via Nizza 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Detection of Homo- or Hetero-Association of Doks by Fluorescence Resonance Energy Transfer in Living Cells. Mol Imaging Biol 2008; 11:188-94. [DOI: 10.1007/s11307-008-0189-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 06/24/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
|
18
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
19
|
Mishra SK, Jha A, Steinhauser AL, Kokoza VA, Washabaugh CH, Raikhel AS, Foster WA, Traub LM. Internalization of LDL-receptor superfamily yolk-protein receptors during mosquito oogenesis involves transcriptional regulation of PTB-domain adaptors. J Cell Sci 2008; 121:1264-74. [DOI: 10.1242/jcs.025833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the anautogenous disease vector mosquitoes Anopheles gambiae and Aedes aegypti, egg development is nutritionally controlled. A blood meal permits further maturation of developmentally repressed previtellogenic egg chambers. This entails massive storage of extraovarian yolk precursors by the oocyte, which occurs through a burst of clathrin-mediated endocytosis. Yolk precursors are concentrated at clathrin-coated structures on the oolemma by two endocytic receptors, the vitellogenin and lipophorin receptors. Both these mosquito receptors are members of the low-density-lipoprotein-receptor superfamily that contain FxNPxY-type internalization signals. In mammals, this tyrosine-based signal is not decoded by the endocytic AP-2 adaptor complex directly. Instead, two functionally redundant phosphotyrosine-binding domain adaptors, Disabled 2 and the autosomal recessive hypercholesterolemia protein (ARH) manage the internalization of the FxNPxY sorting signal. Here, we report that a mosquito ARH-like protein, which we designate trephin, possess similar functional properties to the orthologous vertebrate proteins despite engaging AP-2 in an atypical manner, and that mRNA expression in the egg chamber is strongly upregulated shortly following a blood meal. Temporally regulated trephin transcription and translation suggests a mechanism for controlling yolk uptake when vitellogenin and lipophorin receptors are expressed and clathrin coats operate in previtellogenic ovaries.
Collapse
Affiliation(s)
- Sanjay K. Mishra
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Amie L. Steinhauser
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Vladimir A. Kokoza
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Charles H. Washabaugh
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | - Linton M. Traub
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
20
|
Jin W, Yun C, Jeong J, Park Y, Lee HD, Kim SJ. c-Src is required for tropomyosin receptor kinase C (TrkC)-induced activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. J Biol Chem 2007; 283:1391-1400. [PMID: 17991742 DOI: 10.1074/jbc.m705052200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TrkC mediates many aspects of growth and development in the central nervous system. TrkC is expressed in a variety of non-neuronal tissues as well as human cancers. TrkC overexpression may drive tumorigenesis, invasion, and metastatic capability in cancer cells. However, relatively little is known about whether TrkC activity is also essential to maintain the malignant properties in human tumors. TrkC expression leads to the constitutive activation of two major effector pathways, namely the Ras-MAP kinase (MAPK) mitogenic pathway and the phosphatidylinositol 3-kinase (PI3K)-AKT pathway mediating cell survival. However, it remains unclear how TrkC activates Ras-Erk1/2 and/or PI3K-Akt cascades. Here we define some aspects of the molecular mechanisms regulating TrkC-dependent Ras-Erk1/2 and PI3K/Akt activation. We show that endogenous TrkC associated with c-Src in human and mouse cancer cells which express TrkC. TrkC-c-Src complexes were also detected in primary human breast cancer tissues. Suppression of c-Src by RNA interference in highly metastatic 4T1 mammary cancer cells, which express endogenous TrkC, resulted in markedly decreased expression of cyclin D1 and suppression of activation of Ras-Erk1/2 and PI3K-Akt. Moreover, inhibition of c-Src expression almost completely blocks colony formation of 4T1 cells in soft agar. Furthermore, in c-Src-deficient SYF cells, TrkC failed to activate the PI3K-Atk pathway, but not the Ras-Erk1/2 pathway. Therefore these data indicate that TrkC induces the PI3K-Akt cascade through the activation of c-Src.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Cell Regulation and Carcinogenesis, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea
| | - Chohee Yun
- Department of Pediatrics, Case Western Reserve University, The Ireland Cancer Center, Cleveland, Ohio 44106
| | - Joon Jeong
- Yongdong Severance Hospital, Yonsei University, Kangnam, Seoul 135-720, Korea
| | - Yangho Park
- BRM Institute, Kangnam, Seoul 135-822, Korea
| | - Hy-De Lee
- Yongdong Severance Hospital, Yonsei University, Kangnam, Seoul 135-720, Korea
| | - Seong-Jin Kim
- Laboratory of Cell Regulation and Carcinogenesis, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon 406-840, Korea; Department of Pediatrics, Case Western Reserve University, The Ireland Cancer Center, Cleveland, Ohio 44106.
| |
Collapse
|
21
|
Mameza MG, Lockard JM, Zamora E, Hillefors M, Lavina ZS, Kaplan BB. Characterization of the adaptor protein ARH expression in the brain and ARH molecular interactions. J Neurochem 2007; 103:927-41. [PMID: 17727637 DOI: 10.1111/j.1471-4159.2007.04854.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, pA134 was identified as one of the mRNAs present in the squid giant axon. Comparative sequence analyses revealed that the pA134 gene product manifested significant similarity to the mammalian lipoprotein receptor adaptor protein also known as ARH (autosomal recessive hypercholesterolemia). ARH mRNA and protein displayed very similar pattern of expression throughout the mouse brain. Significant levels of expression were observed in cells with a predominantly neuronal profile in the cerebellum, brainstem, olfactory bulb, hippocampus, and cortex. A yeast two hybrid screen for ARH protein interactions in mouse brain identified the following binders: amyloid precursor-like protein 1, low density lipoprotein receptor-related protein (LRP) 1, LRP8, and GABA receptor-associated protein-like 1. The interactions of ARH with LRP1 and GABA receptor-associated protein-like 1 were subsequently verified by co-immunoprecipitation of the protein complexes from transfected human embryonic kidney cells. The presence of ARH mRNA in axon of primary sympathetic neurons was established by RT-PCR analyses and confirmed by in situ hybridization. Taken together, our data suggest that ARH is a multifunctional protein whose spectrum of function in the brain goes beyond the traditionally known metabolism of lipoproteins, and that ARH may be locally synthesized in the axon.
Collapse
Affiliation(s)
- Marie Germaine Mameza
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Anai T, Nakata E, Koshi Y, Ojida A, Hamachi I. Design of a Hybrid Biosensor for Enhanced Phosphopeptide Recognition Based on a Phosphoprotein Binding Domain Coupled with a Fluorescent Chemosensor. J Am Chem Soc 2007; 129:6232-9. [PMID: 17441721 DOI: 10.1021/ja0693284] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-based fluorescent biosensors with sufficient sensing specificity are useful analytical tools for detection of biologically important substances in complicated biological systems. Here, we present the design of a hybrid biosensor, specific for a bis-phosphorylated peptide, based on a natural phosphoprotein binding domain coupled with an artificial fluorescent chemosensor. The hybrid biosensor consists of a phosphoprotein binding domain, the WW domain, into which has been introduced a fluorescent stilbazole having Zn(II)-dipicolylamine (Dpa) as a phosphate binding motif. It showed strong binding affinity and high sensing selectivity toward a specific bis-phosphorylated peptide in the presence of various phosphate species such as the monophosphorylated peptide, ATP, and others. Detailed fluorescence titration experiments clearly indicate that the binding-induced fluorescence enhancement and the sensing selectivity were achieved by the cooperative action of both binding sites of the hybrid biosensor, i.e., the WW domain and the Zn(II)-Dpa chemosensor unit. Thus, it is clear that the tethered Zn(II)-Dpa-stilbazole unit operated not only as a fluorescence signal transducer, but also as a sub-binding site in the hybrid biosensor. Taking advantage of its selective sensing property, the hybrid biosensor was successfully applied to real-time and label-free fluorescence monitoring of a protein kinase-catalyzed phosphorylation.
Collapse
Affiliation(s)
- Takahiro Anai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
23
|
Smith MJ, Hardy WR, Murphy JM, Jones N, Pawson T. Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Mol Cell Biol 2006; 26:8461-74. [PMID: 16982700 PMCID: PMC1636785 DOI: 10.1128/mcb.01491-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Modular interaction domains that recognize peptide motifs in target proteins can impart selectivity in signaling pathways. Phosphotyrosine binding (PTB) domains are components of cytoplasmic docking proteins that bind cell surface receptors through NPXY motifs. We have employed a library of human proteome-derived NXXY sequences to explore PTB domain specificity and function. SPOTS peptide arrays were used to create a comprehensive matrix of receptor motifs that were probed with a set of 10 diverse PTB domains. This approach confirmed that individual PTB domains have selective and distinct recognition properties and provided a means to explore over 2,500 potential PTB domain-NXXY interactions. The results correlated well with previously known associations between full-length proteins and predicted novel interactions, as well as consensus binding data for specific PTB domains. Using the Ret, MuSK, and ErbB2 receptor tyrosine kinases, we show that interactions of these receptors with PTB domains predicted to bind by the NXXY arrays do occur in cells. Proteome-based peptide arrays can therefore identify networks of receptor interactions with scaffold proteins that may be physiologically relevant.
Collapse
Affiliation(s)
- Matthew J Smith
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
24
|
Stone S, Abkevich V, Russell DL, Riley R, Timms K, Tran T, Trem D, Frank D, Jammulapati S, Neff CD, Iliev D, Gress R, He G, Frech GC, Adams TD, Skolnick MH, Lanchbury JS, Gutin A, Hunt SC, Shattuck D. TBC1D1 is a candidate for a severe obesity gene and evidence for a gene/gene interaction in obesity predisposition. Hum Mol Genet 2006; 15:2709-20. [PMID: 16893906 DOI: 10.1093/hmg/ddl204] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The molecular etiology of obesity predisposition is largely unknown. Here, we present evidence that genetic variation in TBC1D1 confers risk for severe obesity in females. We identified a coding variant (R125W) in TBC1D1 that segregated with the disease in 4p15-14-linked obesity pedigrees. In cases derived from pedigrees with the strongest linkage evidence, the variant was significantly associated with obesity (P=0.000007) and chromosomes carrying R125W accounted for the majority of the evidence that originally linked 4p15-14 with the disease. In addition, by selecting families that segregated R125W with obesity, we were able to generate highly significant linkage evidence for an obesity predisposition locus at 4q34-35. This result provides additional and confirming evidence that R125W affects obesity susceptibility, delimits the location of an obesity gene at 4q34-35 and identifies a gene/gene interaction that influences the risk for obesity predisposition. Finally, although the function of TBC1D1 is unknown, the protein is structurally similar to a known regulator of insulin-mediated Glut4 translocation.
Collapse
Affiliation(s)
- Steven Stone
- Myriad Genetics, Inc., Salt City, UT 84108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Remaut H, Waksman G. Protein-protein interaction through beta-strand addition. Trends Biochem Sci 2006; 31:436-44. [PMID: 16828554 DOI: 10.1016/j.tibs.2006.06.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/30/2006] [Accepted: 06/22/2006] [Indexed: 02/05/2023]
Abstract
Protein-protein interactions have essential roles at almost every level of organization and communication in living cells. During complex formation, proteins can interact via covalent, surface-surface or peptide-surface contacts. Many protein complexes are now known to involve the binding of linear motifs in one of the binding partners. An emerging mechanism of such non-covalent peptide-surface interaction involves the donation or addition of a beta strand in the ligand to a beta sheet or a beta strand in the receptor. Such 'beta-strand addition' contacts can dictate or modulate binding specificity and affinity, or can be used in more promiscuous protein-protein contacts. Three main classes of beta-strand addition can be distinguished: beta-sheet augmentation; beta-strand insertion and fold complementation; and beta-strand zippering. A survey of protein-protein complexes in the protein data bank identifies beta-strand additions in many important metabolic pathways. Targeting these interactions might, thus, provide novel routes for rational drug design.
Collapse
Affiliation(s)
- Han Remaut
- Institute of Structural Molecular Biology, School of Crystallography, Birkbeck College, University College London, London, WC1E 7HX, UK
| | | |
Collapse
|
26
|
Ojida A, Inoue MA, Mito-oka Y, Tsutsumi H, Sada K, Hamachi I. Effective disruption of phosphoprotein-protein surface interaction using Zn(II) dipicolylamine-based artificial receptors via two-point interaction. J Am Chem Soc 2006; 128:2052-8. [PMID: 16464107 DOI: 10.1021/ja056585k] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is ubiquitously involved in living cells, and it is one of the key events controlling protein-protein surface interactions, which are essential in signal transduction cascades. We now report that the small molecular receptors bearing binuclear Zn(II)-Dpa can strongly bind to a bis-phosphorylated peptide in a cross-linking manner under neutral aqueous conditions when the distance between the two Zn(II) centers can appropriately fit in that of the two phosphate groups of the phosphorylated peptide. The binding property was quantitatively determined by ITC (isothermal titration calorimetry), induced CD (circular dichroism), and NMR. On the basis of these findings, we demonstrated that these types of small molecules were able to effectively disrupt the phosphoprotein-protein interaction in a phosphorylated CTD peptide and the Pin1 WW domain, a phosphoprotein binding domain, at a micromolar level. The strategy based on a small molecular disruptor that directly interacts with phosphoprotein is unique and should be promising in developing a designer inhibitor for phosphoprotein-protein interaction.
Collapse
Affiliation(s)
- Akio Ojida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Kong X, Wang X, Misra S, Qin J. Structural basis for the phosphorylation-regulated focal adhesion targeting of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma) by talin. J Mol Biol 2006; 359:47-54. [PMID: 16616931 DOI: 10.1016/j.jmb.2006.02.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 11/26/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key lipid messenger that regulates myriad diverse cellular signaling pathways. To ensure specificity in disparate cellular events, PIP2 must be localized to specific sub-cellular sites. At PIP2-regulated focal adhesion (FA) sites, such localization is in part mediated via the recruitment and activation of PIP2-producing enzyme, type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma), by a phosphotyrosine binding (PTB) domain of talin. Transient phosphorylation of PIPKIgamma at Y644 regulates the interaction and efficient FA targeting of PIPKIgamma; however, the underlying structural basis remains elusive. We have determined the NMR structure of talin-1 PTB in complex with the Y644-phosphorylated PIPKIgamma fragment (WVpYSPLH). As compared to canonical PTB domains that typically recognize the NPXpY turn motif from a variety of signaling proteins, our structure displays an unusual non-NPXpY-based recognition mode for talin-1 PTB where K(357)RW in beta5 strand forms an antiparallel beta-sheet with the VpYS of PIPKIgamma. A specific electrostatic triad between K357/R358 of talin-1 PTB and the pY644 of PIPKIgamma was observed, which is consistent with the mutagenesis and isothermal calorimetry data. Combined with previous in vivo data, our results provide a framework for understanding how phosphorylation of Y644 in PIPKIgamma promotes its specific interaction with talin-1, leading to efficient local synthesis of PIP2 and dynamic regulation of integrin-mediated FA assembly.
Collapse
Affiliation(s)
- Xiangming Kong
- Structural Biology Program, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland State University, OH 44195, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Embryonic dorsal closure (DC) in Drosophila is a series of morphogenetic movements involving the bilateral dorsal movement of the epidermis (cell stretching) and dorsal suturing of the leading edge (LE) cells to enclose the viscera. The Syk family tyrosine kinase Shark plays a crucial role in this Jun amino-terminal kinase (JNK)-dependent process, where it acts upstream of JNK in LE cells. Using a yeast two-hybrid screen, the unique Drosophila homolog of the downstream of kinase (Dok) family, Ddok,was identified by its ability to bind Shark SH2 domains in a tyrosine phosphorylation-dependent fashion. In cultured S2 embryonic cells, Ddok tyrosine phosphorylation is Src dependent; Shark associates with Ddok and Ddok localizes at the cell cortex, together with a portion of the Shark protein. The embryonic expression pattern of Ddok resembles the expression pattern of Shark. Ddok loss-of-function mutant (DdokPG155)germ-line clones possess DC defects, including the loss of JNK-dependent expression of dpp mRNA in LE cells, and decreased epidermal F-actin staining and LE actin cable formation. Epistatic analysis indicates that Ddok functions upstream of shark to activate JNK signaling during DC. Consistent with these observations, Ddok mutant embryos exhibit decreased levels of tyrosine phosphorylated Shark at the cell periphery of LE and epidermal cells. As there are six mammalian Dok family members that exhibit some functional redundancy, analysis of the regulation of DC by Ddok is expected to provide novel insights into the function of the Dok adapter proteins.
Collapse
Affiliation(s)
- Romi Biswas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
29
|
Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 2005; 439:168-74. [PMID: 16273093 DOI: 10.1038/nature04177] [Citation(s) in RCA: 551] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 08/30/2005] [Indexed: 11/09/2022]
Abstract
Although epidermal growth factor receptor (EGFR; also called ErbB1) and its relatives initiate one of the most well-studied signalling networks, there is not yet a genome-wide view of even the earliest step in this pathway: recruitment of proteins to the activated receptors. Here we use protein microarrays comprising virtually every Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain encoded in the human genome to measure the equilibrium dissociation constant of each domain for 61 peptides representing physiological sites of tyrosine phosphorylation on the four ErbB receptors. This involved 77,592 independent biochemical measurements and provided a quantitative protein interaction network that reveals many new interactions, including ones that fall outside of our current view of domain selectivity. By slicing through the network at different affinity thresholds, we found surprising differences between the receptors. Most notably, EGFR and ErbB2 become markedly more promiscuous as the threshold is lowered, whereas ErbB3 does not. Because EGFR and ErbB2 are overexpressed in many human cancers, our results suggest that the extent to which promiscuity changes with protein concentration may contribute to the oncogenic potential of receptor tyrosine kinases, and perhaps other signalling proteins as well.
Collapse
Affiliation(s)
- Richard B Jones
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
30
|
Sousa AD, Cheney RE. Myosin-X: a molecular motor at the cell's fingertips. Trends Cell Biol 2005; 15:533-9. [PMID: 16140532 DOI: 10.1016/j.tcb.2005.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Research in several areas, including unconventional myosins and deafness genes, has converged recently on a group of myosins whose tails contain myosin tail homology 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains. Although these 'MyTH-FERM' myosins are not present in yeast and plants, they are present in slime molds, worms, flies and mammals, where they mediate interactions between the cytoskeleton and the plasma membrane. The most broadly distributed MyTH-FERM myosin in vertebrate cells appears to be myosin-X (Myo10). This myosin can act as a link to integrins and microtubules, stimulate the formation of filopodia and undergo a novel form of motility within filopodia.
Collapse
Affiliation(s)
- Aurea D Sousa
- Medical Biomolecular Research Building, Department of Cell and Molecular Physiology, CB #7545, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
31
|
Knop M, Miller KJ, Mazza M, Feng D, Weber M, Keränen S, Jäntti J. Molecular interactions position Mso1p, a novel PTB domain homologue, in the interface of the exocyst complex and the exocytic SNARE machinery in yeast. Mol Biol Cell 2005; 16:4543-56. [PMID: 16030256 PMCID: PMC1237063 DOI: 10.1091/mbc.e05-03-0243] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this study, we have analyzed the association of the Sec1p interacting protein Mso1p with the membrane fusion machinery in yeast. We show that Mso1p is essential for vesicle fusion during prospore membrane formation. Green fluorescent protein-tagged Mso1p localizes to the sites of exocytosis and at the site of prospore membrane formation. In vivo and in vitro experiments identified a short amino-terminal sequence in Mso1p that mediates its interaction with Sec1p and is needed for vesicle fusion. A point mutation, T47A, within the Sec1p-binding domain abolishes Mso1p functionality in vivo, and mso1T47A mutant cells display specific genetic interactions with sec1 mutants. Mso1p coimmunoprecipitates with Sec1p, Sso1/2p, Snc1/2p, Sec9p, and the exocyst complex subunit Sec15p. In sec4-8 and SEC4I133 mutant cells, association of Mso1p with Sso1/2p, Snc1/2p, and Sec9p is affected, whereas interaction with Sec1p persists. Furthermore, in SEC4I133 cells the dominant negative Sec4I133p coimmunoprecipitates with Mso1p-Sec1p complex. Finally, we identify Mso1p as a homologue of the PTB binding domain of the mammalian Sec1p binding Mint proteins. These results position Mso1p in the interface of the exocyst complex, Sec4p, and the SNARE machinery, and reveal a novel layer of molecular conservation in the exocytosis machinery.
Collapse
|
32
|
Geyer JP, Döker R, Kremer W, Zhao X, Kuhlmann J, Kalbitzer HR. Solution structure of the Ran-binding domain 2 of RanBP2 and its interaction with the C terminus of Ran. J Mol Biol 2005; 348:711-25. [PMID: 15826666 DOI: 10.1016/j.jmb.2005.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/15/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
The termination of export processes from the nucleus to the cytoplasm in higher eukaryotes is mediated by binding of the small GTPase Ran as part of the export complexes to the Ran-binding domains (RanBD) of Ran-binding protein 2 (RanBP2) of the nuclear pore complex. So far, the structures of the first RanBD of RanBP2 and of RanBP1 in complexes with Ran have been known from X-ray crystallographic studies. Here we report the NMR solution structure of the uncomplexed second RanBD of RanBP2. The structure shows a pleckstrin homology (PH) fold featuring two almost orthogonal beta-sheets consisting of three and four strands and an alpha-helix sitting on top. This is in contrast to the RanBD in the crystal structure complexes in which one beta-strand is missing. That is probably due to the binding of the C-terminal alpha-helix of Ran to the RanBD in these complexes. To analyze the interaction between RanBD2 and the C terminus of Ran, NMR-titration studies with peptides comprising the six or 28 C-terminal residues of Ran were performed. While the six-residue peptide alone does not bind to RanBD2 in a specific manner, the 28-residue peptide, including the entire C-terminal helix of Ran, binds to RanBD2 in a manner analogous to the crystal structures. By solving the solution structure of the 28mer peptide alone, we confirmed that it adopts a stable alpha-helical structure like in native Ran and therefore serves as a valid model of the Ran C terminus. These results support current models that assume recognition of the transport complexes by the RanBDs through the Ran C terminus that is exposed in these complexes.
Collapse
Affiliation(s)
- J Peter Geyer
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 2005; 1:2005.0008. [PMID: 16729043 PMCID: PMC1681463 DOI: 10.1038/msb4100012] [Citation(s) in RCA: 404] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 04/04/2005] [Indexed: 12/15/2022] Open
Abstract
Interactions between short modified peptide motifs and modular protein domains are central events in cell signal-transduction. We determined interaction partners to all cytosolic tyrosine residues of the four members of the ErbB-receptor family in an unbiased fashion by quantitative proteomics using pull-down experiments with pairs of phosphorylated and nonphosphorylated synthetic peptides. Each receptor had characteristic preferences for interacting proteins and most interaction partners had multiple binding sites on each receptor. EGFR and ErbB4 had several docking sites for Grb2, while ErbB3 was characterized by six binding sites for PI3K. We identified STAT5 as a direct binding partner to EGFR and ErbB4 and discovered new recognition motifs for Shc and STAT5. The overall pattern of interaction partners of EGFR and ErbB4 suggests similar roles during signaling through their respective ligands. Phosphorylation kinetics of several tyrosine resides was measured by mass spectrometry and correlated with interaction partner preference. Our results demonstrate that system-wide mapping of peptide-protein interactions sites is possible, and suggest shared and unique roles of ErbB-receptor family members in downstream signaling.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark
| | - Lei Deng
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark
| | - Matthias Mann
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, Center for Experimental Bioinformatics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. Tel: +45 6550 2364; Fax: +45 6593 3929; E-mail:
| |
Collapse
|
34
|
Balla T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 2005; 118:2093-104. [PMID: 15890985 DOI: 10.1242/jcs.02387] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inositol lipids have emerged as universal lipid regulators of protein signaling complexes in defined membrane compartments. The number of protein modules that are known to recognise these membrane lipids is rapidly increasing. Pleckstrin homology domains, FYVE domains, PX domains, ENTH domains, CALM domains, PDZ domains, PTB domains and FERM domains are all inositide-recognition modules. The latest additions to this list are members of the clathrin adaptor protein and arrestin families. Initially, inositol lipids were believed to recruit signaling molecules to specific membrane compartments, but many of the domains clearly do not possess high enough affinity to act alone as localisation signals. Another important notion is that some (and probably most) of these protein modules also have protein binding partners, and their protein- and lipid-binding activities might influence one another through allosteric mechanisms. Comparison of the structural features of these domains not only reveals a high degree of conservation of their lipid interaction sites but also highlights their evolutionary link to protein modules known for protein-protein interactions. Protein-protein interactions involving lipid-binding domains could serve as the basis for phosphoinositide-induced conformational regulation of target proteins at biological membranes. Therefore, these modules function as crucially important signal integrators, which explains their involvement in a broad range of regulatory functions in eukaryotic cells.
Collapse
Affiliation(s)
- Tamas Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Zhou Y, Zhang J, King ML. Polarized distribution of mRNAs encoding a putative LDL receptor adaptor protein, xARH (autosomal recessive hypercholesterolemia) in Xenopus oocytes. Mech Dev 2005; 121:1249-58. [PMID: 15327785 DOI: 10.1016/j.mod.2004.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 04/30/2004] [Accepted: 05/14/2004] [Indexed: 10/26/2022]
Abstract
The Xenopus homologue of hARH (human autosomal recessive hypercholesterolemia) was identified in a screen for vegetally localized RNAs. xARH contains a N-terminal phosphotyrosine binding (PTB) domain that is 91% identical to that of the human gene, a domain previously shown to bind the LDL receptor family members. Maternal xARH, unlike hARH, is present as two transcripts that differ in their 3' UTRs. The large transcript, xARH-alpha, primarily localizes to the oocyte vegetal cortex. The small transcript, xARH-beta, is not localized. During embryogenesis, xARH RNA is found redistributed in a perinuclear pattern. Similar to hARH, xARH is found in the adult liver, but at low levels compared to oocytes. Downstream of the PTB domain is a conserved clathrin box and a C terminal region 50% identical to that of hARH. Previous in vitro studies from this lab have shown xARH can bind the LDLR as well as the vitellogenin (VTG) receptor. We find that injection of the C terminal region missing the PTB domain significantly reduces the internalization of VTG in early stage oocytes, an event that requires the VTG receptor. The data strongly suggest that xARH encodes an adaptor protein that functions in the essential receptor-mediated endocytosis of nutrients during oogenesis. Because xARH protein is found uniformly distributed along the animal/vegetal axis in oocytes, we propose that the localization of xARH-alpha to the vegetal cortex while xARH-beta remains unlocalized, facilitates the uniform distribution of the protein in this extraordinarily large cell.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA
| | | | | |
Collapse
|
36
|
Robinson KN, Manto K, Buchsbaum RJ, MacDonald JIS, Meakin SO. Neurotrophin-dependent tyrosine phosphorylation of Ras guanine-releasing factor 1 and associated neurite outgrowth is dependent on the HIKE domain of TrkA. J Biol Chem 2004; 280:225-35. [PMID: 15513915 DOI: 10.1074/jbc.m410454200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras guanine-releasing factor 1 (RasGrf1), a guanine nucleotide exchange factor for members of the Ras and Rho family of GTPases, is highly expressed in the brain. It is regulated by two separate mechanisms, calcium regulation through interaction with its calcium/calmodulin-binding IQ domain and serine and tyrosine phosphorylation. RasGrf1 is activated downstream of G-protein-coupled receptors and the non-receptor tyrosine kinases, Src and Ack1. Previously, we demonstrated a novel interaction between the intracellular domain of the nerve growth factor-regulated TrkA receptor tyrosine kinase and an N-terminal fragment of RasGrf1. We now show that RasGrf1 is phosphorylated and interacts with TrkA, -B, and -C in co-transfection studies. This interaction and phosphorylation of RasGrf1 is dependent on the HIKE domain of TrkA (a region shown to interact with pleckstrin homology domains) but not on any of the phosphotyrosine residues that act as docking sites for intracellular signaling molecules such as Shc and FRS-2. The PH1 domain alone of RasGrf1 is sufficient for phosphorylation by the TrkA receptor. A potential role for Trk activation of RasGrf1 is suggested through transfection studies in PC12 cells in which RasGrf1 significantly increases neurite outgrowth at low doses of neurotrophin stimulation. Notably, this neurite outgrowth is dependent on an intact HIKE domain, as nnr5-S10 cells expressing a TrkA HIKE domain mutant do not exhibit potentiated neurite outgrowth in the presence of RasGrf1. These studies identify RasGrf1 as a novel target of neurotrophin activation and suggest an additional pathway whereby neurotrophin-stimulated neurite outgrowth may be regulated.
Collapse
Affiliation(s)
- Kim N Robinson
- Laboratory of Neural Signaling, The Robarts Research Institute, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
37
|
Zhang Y, Yan Z, Farooq A, Liu X, Lu C, Zhou MM, He C. Molecular Basis of Distinct Interactions Between Dok1 PTB Domain and Tyrosine-phosphorylated EGF Receptor. J Mol Biol 2004; 343:1147-55. [PMID: 15476828 DOI: 10.1016/j.jmb.2004.08.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/26/2004] [Accepted: 08/16/2004] [Indexed: 11/28/2022]
Abstract
Phosphotyrosine binding (PTB) domains of the adaptor proteins Doks (downstream of tyrosine kinases) play an important role in regulating signal transduction of cell-surface receptors in cell growth, proliferation and differentiation; however, ligand specificity of the Dok PTB domains has until now remained elusive. In this study, we have investigated the molecular basis of specific association between the Dok1 PTB domain and the tyrosine-phosphorylated EGFR. Using yeast two-hybrid and biochemical binding assays, we show that only the PTB domain from Dok1 but not Dok4 or Dok5 can selectively bind to two known tyrosine phosphorylation sites at Y1086 and Y1148 in EGFR. Our structure-based mutational analyses define the molecular determinants for the two distinct Dok1 PTB domain/EGFR interactions and provide the structural understanding of the specific interactions between EGFR and PTB domains in the divergent Dok homologues.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Castagnoli L, Costantini A, Dall'Armi C, Gonfloni S, Montecchi-Palazzi L, Panni S, Paoluzi S, Santonico E, Cesareni G. Selectivity and promiscuity in the interaction network mediated by protein recognition modules. FEBS Lett 2004; 567:74-9. [PMID: 15165896 DOI: 10.1016/j.febslet.2004.03.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 01/29/2023]
Abstract
A substantial fraction of protein interactions in the cell is mediated by families of protein modules binding to relatively short linear peptides. Many of these interactions have a high dissociation constant and are therefore suitable for supporting the formation of dynamic complexes that are assembled and disassembled during signal transduction. Extensive work in the past decade has shown that, although member domains within a family have some degree of intrinsic peptide recognition specificity, the derived interaction networks display substantial promiscuity. We review here recent advances in the methods for deriving the portion of the protein network mediated by these domain families and discuss how specific biological outputs could emerge in vivo despite the observed promiscuity in peptide recognition in vitro.
Collapse
Affiliation(s)
- Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gervais V, Lamour V, Jawhari A, Frindel F, Wasielewski E, Dubaele S, Egly JM, Thierry JC, Kieffer B, Poterszman A. TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol 2004; 11:616-22. [PMID: 15195146 DOI: 10.1038/nsmb782] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/26/2004] [Indexed: 11/09/2022]
Abstract
The human general transcription factor TFIIH is involved in both transcription and DNA repair. We have identified a structural domain in the core subunit of TFIIH, p62, which is absolutely required for DNA repair activity through the nucleotide excision repair pathway. Using coimmunoprecipitation experiments, we showed that this activity involves the interaction between the N-terminal domain of p62 and the 3' endonuclease XPG, a major component of the nucleotide excision repair machinery. Furthermore, we reconstituted a functional TFIIH particle with a mutant of p62 lacking the N-terminal domain, showing that this domain is not required for assembly of the TFIIH complex and basal transcription. We solved its three-dimensional structure and found an unpredicted pleckstrin homology and phosphotyrosine binding (PH/PTB) domain, uncovering a new class of activity for this fold.
Collapse
Affiliation(s)
- Virginie Gervais
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Michaely P, Li WP, Anderson RGW, Cohen JC, Hobbs HH. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits. J Biol Chem 2004; 279:34023-31. [PMID: 15166224 DOI: 10.1074/jbc.m405242200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARH is an adaptor protein required for efficient endocytosis of low density lipoprotein (LDL) receptors (LDLRs) in selected tissues. Individuals lacking ARH (ARH-/-) have severe hypercholesterolemia due to impaired hepatic clearance of LDL. Immortalized lymphocytes, but not fibroblasts, from ARH-deficient subjects fail to internalize LDL. To further define the role of ARH in LDLR function, we compared the subcellular distribution of the LDLR in lymphocytes from normal and ARH-/- subjects. In normal lymphocytes LDLRs were predominantly located in intracellular compartments, whereas in ARH-/- cells the receptors were almost exclusively on the plasma membrane. Biochemical assays and quantification of LDLR by electron microscopy indicated that ARH-/- lymphocytes had >20-fold more LDLR on the cell surface and a approximately 27-fold excess of LDLR outside of coated pits. The accumulation of LDLR on the cell surface was not due to failure of receptors to localize in coated pits since the number of LDLRs in coated pits was similar in ARH-/- and normal cells. Despite the dramatic increase in cell surface receptors, LDL binding was only 2-fold higher in the ARH-/- lymphocytes. These findings indicate that ARH is required not only for internalization of the LDL.LDLR complex but also for efficient binding of LDL to the receptor and suggest that ARH stabilizes the associations of the receptor with LDL and with the invaginating portion of the budding pit, thereby increasing the efficiency of LDL internalization.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/physiology
- Cell Line, Transformed
- Cell Membrane/chemistry
- Coated Pits, Cell-Membrane/chemistry
- Coated Pits, Cell-Membrane/metabolism
- Endocytosis
- Fluorescent Antibody Technique
- Humans
- Hypercholesterolemia/blood
- Immunohistochemistry
- Iodine Radioisotopes
- Lipoproteins, LDL/blood
- Lymphocytes/ultrastructure
- Microscopy, Electron
- Receptors, LDL/analysis
- Receptors, LDL/blood
Collapse
Affiliation(s)
- Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
41
|
King GD, Scott Turner R. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp Neurol 2004; 185:208-19. [PMID: 14736502 DOI: 10.1016/j.expneurol.2003.10.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cytoplasmic C-terminus of APP plays critical roles in its cellular trafficking and delivery to proteases. Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the X11, Fe65, and c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families, bind specifically to the absolutely conserved -YENPTY- motif in the APP C-terminus to regulate its trafficking and processing. Compounds that modulate APP-adaptor protein interactions may inhibit Abeta generation by specifically targeting the substrate (APP) instead of the enzyme (beta- or gamma-secretase). Genetic polymorphisms in (or near) adaptor proteins may influence risk of sporadic AD by interacting with APP in vivo to modulate its trafficking and processing to Abeta.
Collapse
Affiliation(s)
- Gwendalyn D King
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
42
|
Lannon CL, Martin MJ, Tognon CE, Jin W, Kim SJ, Sorensen PHB. A highly conserved NTRK3 C-terminal sequence in the ETV6-NTRK3 oncoprotein binds the phosphotyrosine binding domain of insulin receptor substrate-1: an essential interaction for transformation. J Biol Chem 2004; 279:6225-34. [PMID: 14668342 DOI: 10.1074/jbc.m307388200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor tyrosine kinases are integral components of cellular signaling pathways and are frequently deregulated in malignancies. The NTRK family of neurotrophin receptors mediate neuronal cell survival and differentiation, but altered NTRK signaling has also been implicated in oncogenesis. The ETV6-NTRK3 (EN) gene fusion occurs in human pediatric spindle cell sarcomas and secretory breast carcinoma, and encodes the oligomerization domain of the ETV6 transcription factor fused to the protein-tyrosine kinase domain of NTRK3. The EN protein functions as a constitutively active protein-tyrosine kinase with potent transforming activity in multiple cell lineages, and EN constitutively activates both the Ras-MAPK and phosphatidylinositol 3-kinase-Akt pathways. EN transformation is associated with constitutive tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). Further, IRS-1 functions as the adaptor protein linking EN to downstream signaling pathways. However, the exact nature of the EN-IRS-1 interaction remains unknown. We now demonstrate that EN specifically binds the phosphotyrosine binding domain of IRS-1 via an interaction at the C terminus of EN. An EN mutant lacking the C-terminal 19 amino acids does not bind IRS-1 and lacks transforming ability. Moreover, expression of an IRS-1 polypeptide containing the phosphotyrosine binding domain acts in a dominant negative manner to inhibit EN transformation, and overexpression of IRS-1 potentiates EN transforming activity. These findings indicate that EN.IRS-1 complex formation through the NTRK3 C terminus is essential for EN transformation.
Collapse
MESH Headings
- Agar/pharmacology
- Amino Acid Sequence
- Animals
- Binding Sites
- Cell Differentiation
- Cell Line
- Cell Line, Tumor
- Cell Survival
- Cell Transformation, Neoplastic
- Conserved Sequence
- DNA, Complementary/metabolism
- DNA-Binding Proteins/chemistry
- Enzyme Activation
- Fibroblasts/metabolism
- Genes, Dominant
- Genetic Vectors
- Humans
- Insulin Receptor Substrate Proteins
- Mice
- Mice, Nude
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- NIH 3T3 Cells
- Neurons/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/metabolism
- Phosphotyrosine/chemistry
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-ets
- Receptor, trkC/chemistry
- Repressor Proteins/chemistry
- Retroviridae/genetics
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Tyrosine/chemistry
- Tyrosine/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Chris L Lannon
- Department of Pathology, British Columbia Research Institute for Children's and Women's Health and the University of British Columbia, Vancouver, British Columbia V5Z4H4, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
In contrast to vertebrates, the fruit fly Drosophila melanogaster contains only a small number of regulator of G-protein signaling (RGS) domain genes. This article reviews current knowledge on these genes. Although the fruit fly is particularly amenable to genetic analysis and manipulation, not much is known about the functions and mechanisms of action. The best-studied RGS gene in Drosophila is loco, a member of the D/R12 subfamily. The four different protein isoforms all contain RGS, GoLoco, and RBD domains. This article describes the identification and functional analyses of loco in the Drosophila system and discusses some mechanistic models that may underlie loco function.
Collapse
Affiliation(s)
- Sebastian Granderath
- International Graduate School in Genetics and Functional Genomics, University of Cologne, Köln, Germany
| | | |
Collapse
|
44
|
Abstract
Exogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions are inducible by upstream signaling events, in which case one of the two binding surfaces may be created by a posttranslational modification. Here, we discuss two protein networks. One, the EH-network, is based on the Eps15 homology (EH) domain, which binds to peptides containing the sequence Asp-Pro-Phe (NPF). The other, which we define as the monoubiquitin (mUb) network, relies on monoubiquitination, which is emerging as an important posttranslational modification that regulates protein function. Both networks were initially implicated in the control of plasma membrane receptor endocytosis and in the regulation of intracellular trafficking routes. The ramifications of these two networks, however, appear to extend into many other aspects of cell physiology as well, such as transcriptional regulation, actin cytoskeleton remodeling, and DNA repair. The focus of this review is to integrate available knowledge of the EH- and mUb networks with predictions of genetic and physical interactions stemming from functional genomics approaches.
Collapse
Affiliation(s)
- Simona Polo
- Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | |
Collapse
|
45
|
Zhou Y, Zhang J, King ML. Xenopus autosomal recessive hypercholesterolemia protein couples lipoprotein receptors with the AP-2 complex in oocytes and embryos and is required for vitellogenesis. J Biol Chem 2003; 278:44584-92. [PMID: 12944396 DOI: 10.1074/jbc.m308870200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARH is required for normal endocytosis of the low density lipoprotein (LDL) receptor in liver and mutations within this gene cause autosomal recessive hypercholesterolemia in humans. xARH is a localized maternal RNA in Xenopus with an unknown function in oogenesis and embryogenesis. Like ARH, xARH contains a highly conserved phosphotyrosine binding domain and a clathrin box. To address the function of xARH, we examined its expression pattern in development and used pull-down experiments to assess interactions between xARH, lipoprotein receptors and proteins in embryo extracts. xARH was detected concentrated at the cell periphery as well as in the perinuclear region of oocytes and embryos. In pull-down experiments, the xARH phosphotyrosine binding domain interacted with the LDL and vitellogenin receptors found in Xenopus oocytes and embryos. Mutations within the receptor internalization signal specifically abolished this interaction. The xARH C-terminal region pulled-down several proteins from embryo extracts including alpha- and beta-adaptins, subunits of the AP-2 endocytic complex. Mutations within either of the two Dvarphi(F/W) motifs found in xARH abolished binding to alpha- and beta-adaptins. Expression of a dominant negative mutant of xARH missing the clathrin box and one functional Dvarphi(F/W) motif severely inhibited endocytosis of vitellogenin in cultured oocytes. The data indicate that xARH acts as an adaptor protein linking LDL and vitellogenin receptors directly with the AP-2 complex. In oocytes, we propose that xARH mediates the uptake of lipoproteins from the blood for storage in endosomes and later use in the embryo. Our findings point to an evolutionarily conserved function for ARH in lipoprotein uptake.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
46
|
Soutar AK, Naoumova RP, Traub LM. Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 2003; 23:1963-70. [PMID: 12958046 DOI: 10.1161/01.atv.0000094410.66558.9a] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent characterization of a rare genetic defect causing autosomal recessive hypercholesterolemia (ARH) has provided new insights into the underlying mechanism of clathrin-mediated internalization of the LDL receptor. Mutations in ARH on chromosome 1p35-36.1 prevent normal internalization of the LDL receptor by cultured lymphocytes and monocyte-derived macrophages but not by skin fibroblasts. In affected cells, LDL receptor protein accumulates at the cell surface; this also occurs in the livers of recombinant mice lacking ARH, thereby providing an explanation for the failure of clearance of LDL from the plasma in subjects lacking ARH. The approximately 50 known affected individuals are mostly of Sardinian or Middle Eastern origin. The clinical phenotype of ARH is similar to that of classic homozygous familial hypercholesterolemia caused by defects in the LDL receptor gene, but it is more variable, generally less severe, and more responsive to lipid-lowering therapy. Structural features of the ARH protein and its capacity to interact simultaneously with the internalization sequence of the LDL receptor, plasma membrane phospholipids, and the clathrin endocytic machinery suggest how ARH can play a pivotal role in gathering the LDL receptor into forming endocytic carrier vesicles.
Collapse
Affiliation(s)
- Anne K Soutar
- MRC Clinical Sciences Centre, Hammersmith Hospital, Faculty of Medicine, Imperial College, London, UK.
| | | | | |
Collapse
|
47
|
Nagai M, Meerloo T, Takeda T, Farquhar MG. The adaptor protein ARH escorts megalin to and through endosomes. Mol Biol Cell 2003; 14:4984-96. [PMID: 14528014 PMCID: PMC284800 DOI: 10.1091/mbc.e03-06-0385] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.
Collapse
Affiliation(s)
- Masaaki Nagai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
48
|
Nanjundan M, Sun J, Zhao J, Zhou Q, Sims PJ, Wiedmer T. Plasma membrane phospholipid scramblase 1 promotes EGF-dependent activation of c-Src through the epidermal growth factor receptor. J Biol Chem 2003; 278:37413-8. [PMID: 12871937 DOI: 10.1074/jbc.m306182200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phospholipid scramblase (PLSCR1) is a multiply palmitoylated, calcium-binding endofacial membrane protein proposed to mediate transbilayer movement of plasma membrane phospholipids. PLSCR1 is a component of membrane lipid rafts and has been shown to both physically and functionally interact with activated epidermal growth factor (EGF) receptors and other raft-associated cell surface receptors. Cell stimulation by EGF results in Tyr phosphorylation of PLSCR1, its association with both Shc and EGF receptors, and rapid cycling of PLSCR1 between plasma membrane and endosomal compartments. We now report evidence that upon EGF stimulation, PLSCR1 is phosphorylated by c-Src, within the tandem repeat sequence 68VYNQPVYNQP77. The in vivo interaction between PLSCR1 and Shc requires the Src-mediated phosphorylation on tyrosines 69 and 74. In in vitro pull down studies, phosphorylated PLSCR1 was found to bind directly to Shc through the phosphotyrosine binding domain. Consistent with the potential role of PLSCR1 in growth factor signaling pathways, granulocyte precursors derived from mice deficient in PLSCR1 show impaired proliferation and maturation under cytokine stimulation. Using PLSCR1-/- embryonic fibroblasts and kidney epithelial cells, we now demonstrate that deletion of PLSCR1 from the plasma membrane reduces the activation of c-Src by EGF, implying that PLSCR1 normally facilitates receptor-dependent activation of this kinase. We propose that PLSCR1, through its interaction with Shc, promotes Src kinase activation through the EGF receptor.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Yun M, Keshvara L, Park CG, Zhang YM, Dickerson JB, Zheng J, Rock CO, Curran T, Park HW. Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J Biol Chem 2003; 278:36572-81. [PMID: 12826668 DOI: 10.1074/jbc.m304384200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Disabled (Dab) 1 and 2 are mammalian homologues of Drosophila DAB. Dab1 is a key cytoplasmic mediator in Reelin signaling that controls cell positioning in the developing central nervous system, whereas Dab2 is an adapter protein that plays a role in endocytosis. DAB family proteins possess an amino-terminal DAB homology (DH) domain that is similar to the phosphotyrosine binding/phosphotyrosine interaction (PTB/PI) domain. We have solved the structures of the DH domains of Dab2 (Dab2-DH) and Dab1 (Dab1-DH) in three different ligand forms, ligand-free Dab2-DH, the binary complex of Dab2-DH with the Asn-Pro-X-Tyr (NPXY) peptide of amyloid precursor protein (APP), and the ternary complex of Dab1-DH with the APP peptide and inositol 1,4,5-trisphosphate (Ins-1,4,5-P3, the head group of phosphatidylinositol-4,5-diphosphate (PtdIns-4,5-P2)). The similarity of these structures suggests that the rigid Dab DH domain maintains two independent pockets for binding of the APP/lipoprotein receptors and phosphoinositides. Mutagenesis confirmed the structural determinants specific for the NPXY sequence and PtdIns-4,5-P2 binding. NMR spectroscopy confirmed that the DH domain binds to Ins-1,4,5-P3 independent of the NPXY peptides. These findings suggest that simultaneous interaction of the rigid DH domain with the NPXY sequence and PtdIns-4,5-P2 plays a role in the attachment of Dab proteins to the APP/lipoprotein receptors and phosphoinositide-rich membranes.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/chemistry
- Adaptor Proteins, Vesicular Transport/metabolism
- Amyloid beta-Protein Precursor/chemistry
- Animals
- Apoptosis Regulatory Proteins
- Binding Sites
- Cell Membrane/metabolism
- Crystallography, X-Ray
- DNA, Complementary/metabolism
- Genes, Tumor Suppressor
- Inositol 1,4,5-Trisphosphate/chemistry
- Ligands
- Magnetic Resonance Spectroscopy
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Peptides/chemistry
- Phosphatidylinositol 4,5-Diphosphate/chemistry
- Phospholipids/chemistry
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- Reelin Protein
- Signal Transduction
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Mikyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jones C, Hammer RE, Li WP, Cohen JC, Hobbs HH, Herz J. Normal sorting but defective endocytosis of the low density lipoprotein receptor in mice with autosomal recessive hypercholesterolemia. J Biol Chem 2003; 278:29024-30. [PMID: 12746448 DOI: 10.1074/jbc.m304855200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autosomal recessive hypercholesterolemia (ARH) is a genetic form of hypercholesterolemia that clinically resembles familial hypercholesterolemia (FH). As in FH, the rate of clearance of circulating low density lipoprotein (LDL) by the LDL receptor (LDLR) in the liver is markedly reduced in ARH. Unlike FH, LDL uptake in cultured fibroblasts from ARH patients is normal or only slightly impaired. The gene defective in ARH encodes a putative adaptor protein that has been implicated in linking the LDLR to the endocytic machinery. To determine the role of ARH in the liver, ARH-deficient mice were developed. Plasma levels of LDL-cholesterol were elevated in the chow-fed Arh-/- mice (83 +/- 8 mg/dl versus 68 +/- 8 mg/dl) but were lower than those of mice expressing no LDLR (Ldlr-/-) (197 +/- 8 mg/dl). Cholesterol feeding elevated plasma cholesterol levels in both strains. The fractional clearance rate of radiolabeled LDL was reduced to similar levels in the Arh-/- and Ldlr-/- mice, whereas the rate of removal of alpha2-macroglobulin by the LDLR-related protein, which also interacts with ARH, was unchanged. Immunolocalization studies revealed that a much greater proportion of immunodetectable LDLR, but not LDLR-related protein, was present on the sinusoidal surface of hepatocytes in the Arh-/- mice. Taken together, these results are consistent with ARH playing a critical and specific role in LDLR endocytosis in the liver.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Centrifugation, Density Gradient
- Cholesterol/blood
- Cholesterol, Dietary/administration & dosage
- Cholesterol, LDL/blood
- Endocytosis/genetics
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hyperlipoproteinemia Type II/genetics
- Iodine Radioisotopes
- Lipoproteins, LDL/blood
- Liver/chemistry
- Liver/metabolism
- Liver/ultrastructure
- Metabolic Clearance Rate
- Mice
- Mice, Knockout
- Receptors, LDL/analysis
- Receptors, LDL/genetics
- Receptors, LDL/physiology
Collapse
Affiliation(s)
- Christopher Jones
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | | | | | | | |
Collapse
|