1
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
2
|
Göngrich C, Krapacher FA, Munguba H, Fernández-Suárez D, Andersson A, Hjerling-Leffler J, Ibáñez CF. ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. J Cell Biol 2020; 219:jcb.201905002. [PMID: 31676717 PMCID: PMC7039195 DOI: 10.1083/jcb.201905002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Göngrich et al. show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. They find that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification. Although the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development. Specific losses were observed among distinct subtypes of somatostatin+/Reelin+ double-positive cells, including Hpse+ layer IV cells targeting parvalbumin+ interneurons, leading to quantitative alterations in the inhibitory circuitry of this layer. Activin-mediated ALK4 signaling in MGE cells induced interaction of Smad2 with SATB1, a transcription factor critical for somatostatin interneuron development, and promoted SATB1 nuclear translocation and repositioning within the somatostatin gene promoter. These results indicate that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification.
Collapse
Affiliation(s)
| | | | - Hermany Munguba
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci 2020; 21:ijms21114170. [PMID: 32545257 PMCID: PMC7312888 DOI: 10.3390/ijms21114170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Correspondence: ; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553
| | | | | | | |
Collapse
|
4
|
Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel) 2017; 8:genes8030101. [PMID: 28282933 PMCID: PMC5368705 DOI: 10.3390/genes8030101] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Francisco Juárez-Vicente
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Mario García-Domínguez
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| |
Collapse
|
5
|
Lizio M, Ishizu Y, Itoh M, Lassmann T, Hasegawa A, Kubosaki A, Severin J, Kawaji H, Nakamura Y, Suzuki H, Hayashizaki Y, Carninci P, Forrest ARR. Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet 2015; 6:331. [PMID: 26635867 PMCID: PMC4650373 DOI: 10.3389/fgene.2015.00331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment.
Collapse
Affiliation(s)
- Marina Lizio
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yuri Ishizu
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; Telethon Kids Institute, The University of Western Australia Subiaco, WA, Australia
| | - Akira Hasegawa
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | | | - Jessica Severin
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center Ibaraki, Japan
| | | | - Harukazu Suzuki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Yoshihide Hayashizaki
- RIKEN Center for Life Science Technologies Yokohama, Japan ; RIKEN Preventive Medicine and Diagnosis Innovation Program Yokohama, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Alistair R R Forrest
- RIKEN Center for Life Science Technologies Yokohama, Japan ; Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan ; QEII Medical Centre and Centre for Medical Research, Harry Perkins Institute of Medical Research, The University of Western Australia Nedlands, WA, Australia
| |
Collapse
|
6
|
Wang HM, Dong JH, Li Q, Hu Q, Ning SL, Zheng W, Cui M, Chen TS, Xie X, Sun JP, Yu X. A stress response pathway in mice upregulates somatostatin level and transcription in pancreatic delta cells through Gs and β-arrestin 1. Diabetologia 2014; 57:1899-910. [PMID: 24947582 DOI: 10.1007/s00125-014-3290-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/16/2014] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Somatostatin secretion from islet delta cells plays an important role in regulating islet function and is tightly controlled by environmental changes. Activation of the adrenergic system promoted somatostatin secretion from islet delta cells; however, the role of the adrenergic system in regulating somatostatin content and transcription has not been defined. An imbalance between the somatostatin content and its secretion may cause dysfunctions in the islet delta cells. We have investigated the role of the adrenergic system in the modulation of somatostatin content and transcription in pancreatic delta cells and the detailed underlying mechanisms of this regulation. METHODS The stress hormone adrenaline (epinephrine), specific adrenergic agonists or specific adrenergic antagonists were applied to islets from either wild-type or specific adrenergic receptor knockout mice and pancreatic delta cell lines to investigate their effects on somatostatin content and transcription. The GloSensor assay, quantitative real-time PCR, western blots and the dual luciferase assay were used to monitor the cAMP level, somatostatin expression, activations of kinases and transcriptional factors. Arrb1 knockout mice, specific Creb or Pax6 mutations and specific kinase inhibitors were used to dissect the signalling pathway. RESULTS Adrenaline and isoprenaline increased somatostatin content and transcription through the activation of β1-/β2-adrenergic receptors (β1-/β2ARs). The somatostatin content in β1AR(-/-) /β2AR(-/-) (Adrb1/Adrb2 knockout) mice was 50% lower than in β1AR(+/+)/β2AR (+/+) mice. Two parallel signalling pathways, Gs-cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB) and β-arrestin 1-extracellular signal-related kinase (ERK)-paired box protein 6 (PAX6), cooperatively regulated isoprenaline-induced somatostatin transcription. CONCLUSIONS/INTERPRETATION A stress pathway increased somatostatin content and transcription through β-adrenergic agonism. β-Arrestin1, ERK and PAX6 are important pancreatic delta cell regulators in addition to cAMP, PKA and CREB. Dysfunction of β-adrenergic agonism may impair pancreatic delta cell function.
Collapse
Affiliation(s)
- Hong-Mei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Glaucoma – Diabetes of the brain: A radical hypothesis about its nature and pathogenesis. Med Hypotheses 2014; 82:535-46. [DOI: 10.1016/j.mehy.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
|
8
|
Hart AW, Mella S, Mendrychowski J, van Heyningen V, Kleinjan DA. The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLoS One 2013; 8:e54173. [PMID: 23326594 PMCID: PMC3543312 DOI: 10.1371/journal.pone.0054173] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Pax6 is a developmental regulator with a crucial role in development of the eye, brain, and olfactory system. Pax6 is also required for correct development of the endocrine pancreas and specification of hormone producing endocrine cell types. Glucagon-producing cells are almost completely lost in Pax6-null embryos, and insulin-expressing beta and somatostatin-expressing delta cells are reduced. While the developmental role of Pax6 is well-established, investigation of a further role for Pax6 in the maintenance of adult pancreatic function is normally precluded due to neonatal lethality of Pax6-null mice. Here a tamoxifen-inducible ubiquitous Cre transgene was used to inactivate Pax6 at 6 months of age in a conditional mouse model to assess the effect of losing Pax6 function in adulthood. The effect on glucose homeostasis and the expression of key islet cell markers was measured. Homozygous Pax6 deletion mice, but not controls, presented with all the symptoms of classical diabetes leading to severe weight loss requiring termination of the experiment five weeks after first tamoxifen administration. Immunohistochemical analysis of the pancreata revealed almost complete loss of Pax6 and much reduced expression of insulin, glucagon, and somatostatin. Several other markers of islet cell function were also affected. Notably, strong upregulation in the number of ghrelin-expressing endocrine cells was observed. These findings demonstrate that Pax6 is essential for adult maintenance of glucose homeostasis and function of the endocrine pancreas.
Collapse
Affiliation(s)
- Alan W. Hart
- Medical Research Council Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastien Mella
- Medical Research Council Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Jacek Mendrychowski
- Medical Research Council Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Medical Research Council Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk A. Kleinjan
- Medical Research Council Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Chen C, Fang R, Chou LC, Lowe AW, Sibley E. PDX1 regulation of FABP1 and novel target genes in human intestinal epithelial Caco-2 cells. Biochem Biophys Res Commun 2012; 423:183-7. [PMID: 22640736 DOI: 10.1016/j.bbrc.2012.05.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
The transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays an essential role in pancreatic development and in maintaining proper islet function via target gene regulation. Few intestinal PDX1 targets, however, have been described. We sought to define novel PDX1-regulated intestinal genes. Caco-2 human intestinal epithelial cells were engineered to overexpress PDX1 and gene expression profiles relative to control cells were assessed. Expression of 80 genes significantly increased while that of 49 genes significantly decreased more than 4-fold following PDX1 overexpression in differentiated Caco-2 cells. Analysis of the differentially regulated genes with known functional annotations revealed genes encoding transcription factors, growth factors, kinases, digestive glycosidases, nutrient transporters, nutrient binding proteins, and structural components. The gene for fatty acid binding protein 1, liver, FABP1, is repressed by PDX1 in Caco-2 cells. PDX1 overexpression in Caco-2 cells also results in repression of promoter activity driven by the 0.6kb FABP1 promoter. PDX1 regulation of promoter activity is consistent with the decrease in FABP1 RNA abundance resulting from PDX1 overexpression and identifies FABP1 as a candidate PDX1 target. PDX1 repression of FABP1, LCT, and SI suggests a role for PDX1 in patterning anterior intestinal development.
Collapse
Affiliation(s)
- Chin Chen
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305-5208, United States
| | | | | | | | | |
Collapse
|
10
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
11
|
Khoo C, Yang J, Weinrott SA, Kaestner KH, Naji A, Schug J, Stoffers DA. Research resource: the pdx1 cistrome of pancreatic islets. Mol Endocrinol 2012; 26:521-33. [PMID: 22322596 DOI: 10.1210/me.2011-1231] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The homeodomain transcription factor pancreas duodenal homeobox 1 (Pdx1, also known as insulin promoter factor 1) is a master regulator of pancreas development, as mice or humans lacking Pdx1 function are a pancreatic. Importantly, heterozygous mutations in Pdx1 cause early and late onset forms of diabetes in humans. Despite these central roles in development and adult β-cell function, we have only rudimentary knowledge of the transcriptome targets of Pdx1 that mediate these phenotypes. Therefore, we performed global location analysis of Pdx1 occupancy in pancreatic islets. We used evolutionary conservation of target genes to identify the most relevant Pdx1 targets by performing chromatin immunoprecipitation sequencing on both human and mouse islets. Remarkably, the conserved target set is highly enriched for genes annotated to function in endocrine system and metabolic disorders, various signaling pathways, and cell survival, providing a molecular explanation for many of the phenotypes resulting from Pdx1 deficiency.
Collapse
Affiliation(s)
- Cynthia Khoo
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Carbe C, Hertzler-Schaefer K, Zhang X. The functional role of the Meis/Prep-binding elements in Pax6 locus during pancreas and eye development. Dev Biol 2012; 363:320-9. [PMID: 22240097 DOI: 10.1016/j.ydbio.2011.12.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 11/09/2011] [Accepted: 12/23/2011] [Indexed: 12/28/2022]
Abstract
Pax6 is an essential transcription factor for lens, lacrimal gland and pancreas development. Previous transgenic analyses have identified several Pax6 regulatory elements, but their functional significance and binding factors remain largely unknown. In this study, we generated two genomic truncations to delete three elements that were previously shown to bind to the Meis/Prep family homeoproteins. One 3.1 kb deletion (Pax6(∆DP/∆DP)) removed two putative pancreatic enhancers and a previously identified ectodermal enhancer, while a 450 bp sub-deletion (Pax6(∆PE/∆PE)) eliminated only the promoter-proximal pancreatic enhancer. Immunohistochemistry and quantitative RT-PCR showed that the Pax6(∆PE/∆PE) pancreata had a significant decrease in Pax6, glucagon, and insulin expression, while no further reductions were observed in the Pax6(∆DP/∆DP) mice, indicating that only the 450 bp region is required for pancreatic development. In contrast, Pax6(∆DP/∆DP), but not Pax6(∆PE/∆PE) mice, developed stunted lacrimal gland and lens hypoplasia which was significantly more severe than that reported when only the ectodermal enhancer was deleted. This result suggested that the ectodermal enhancer must cooperate with its neighboring sequences to regulate the Pax6 ectodermal expression. Finally, we generated conditional knockouts of Prep1 in the lens and pancreas, but surprisingly, did not observe any developmental defects. Together, these results provide functional evidence for the independent and synergistic roles of the Pax6 upstream enhancers, and they suggest the potential redundancy of Meis/Prep protein in Pax6 regulation.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- Binding Sites/physiology
- Blotting, Western
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/physiology
- Eye/embryology
- Eye/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Female
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Lacrimal Apparatus/embryology
- Lacrimal Apparatus/metabolism
- Lens, Crystalline/embryology
- Lens, Crystalline/metabolism
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- PAX6 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Pancreas/embryology
- Pancreas/metabolism
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Christian Carbe
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
13
|
Choi JH, Lee MY, Kim Y, Shim JY, Han SM, Lee KA, Choi YK, Jeon HM, Baek KH. Isolation of genes involved in pancreas regeneration by subtractive hybridization. Biol Chem 2011; 391:1019-29. [PMID: 20536387 DOI: 10.1515/bc.2010.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The deterioration of β cells in the pancreas is a crucial factor in the progression of diabetes mellitus; therefore, the recovery of β cells is of vital importance for effective diabetic therapeutic strategies. Partially pancreatectomized rats have been used for the investigation of pancreatic regeneration. Because it was determined that tissue extract from the partially-dissected pancreas induces pancreatic differentiation in embryonic stem cells, paracrine factors were thought to be involved in the regeneration. In this study, we screened for genes that had higher mRNA levels 2 days after 60%-pancreatectomy. The genes were isolated using subtractive hybridization and DNA sequencing. Twelve genes (adipsin, Aplp2, Clu, Col1a2, Glul, Krt8, Lgmn, LOC299907, LOC502894, Pla2g1b, Reg3α and Xbp1) were identified, and RT-PCR and real-time PCR analyses were performed to validate their expression levels. Among the genes identified, three genes (Glul, Lgmn and Reg3a) were selected for further analyses. Assays revealed that Glul and Reg3α enhance cell growth. Glul, Lgmn and Reg3α change the expression level of islet marker genes, where NEUROD, NKX2.2, PAX4 and PAX6 are up-regulated and somatostatin is down-regulated. Thus, we believe that Glul, Lgmn and Reg3a can serve as novel targets in diabetes mellitus genetic therapy.
Collapse
Affiliation(s)
- Jong-Ho Choi
- College of Medicine, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen C, Fang R, Davis C, Maravelias C, Sibley E. Pdx1 inactivation restricted to the intestinal epithelium in mice alters duodenal gene expression in enterocytes and enteroendocrine cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1126-37. [PMID: 19808654 PMCID: PMC2850094 DOI: 10.1152/ajpgi.90586.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Null mutant mice lacking the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) are apancreatic and survive only a few days after birth. The role of Pdx1 in regulating intestinal gene expression has therefore yet to be determined in viable mice with normal pancreatic development. We hypothesized that conditional inactivation of Pdx1 restricted to the intestinal epithelium would alter intestinal gene expression and cell differentiation. Pdx1(flox/flox);VilCre mice with intestine-specific Pdx1 inactivation were generated by crossing a transgenic mouse strain expressing Cre recombinase, driven by a mouse villin 1 gene promoter fragment, with a mutant mouse strain homozygous for loxP site-flanked Pdx1. Pdx1 protein is undetectable in all epithelial cells in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Goblet cell number and mRNA abundance for mucin 3 and mucin 13 genes in the proximal small intestine are comparable between Pdx1(flox/flox);VilCre and control mice. Similarly, Paneth cell number and expression of Paneth cell-related genes Defa1, Defcr-rs1, and Mmp7 in the proximal small intestine remain statistically unchanged by Pdx1 inactivation. Although the number of enteroendocrine cells expressing chromogranin A/B, gastric inhibitory polypeptide (Gip), or somatostatin (Sst) is unaffected in the Pdx1(flox/flox);VilCre mice, mRNA abundance for Gip and Sst is significantly reduced in the proximal small intestine. Conditional Pdx1 inactivation attenuates intestinal alkaline phosphatase (IAP) activity in the duodenal epithelium, consistent with an average 91% decrease in expression of the mouse enterocyte IAP gene, alkaline phosphatase 3 (a novel Pdx1 target candidate), in the proximal small intestine following Pdx1 inactivation. We conclude that Pdx1 is necessary for patterning appropriate gene expression in enterocytes and enteroendocrine cells of the proximal small intestine.
Collapse
Affiliation(s)
- Chin Chen
- Stanford Univ. School of Medicine, CA 94305-5208, USA.
| | - Rixun Fang
- 1Division of Pediatric Gastroenterology and
| | - Corrine Davis
- 2Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | | | | |
Collapse
|
15
|
Fujita Y, Chui JWY, King DS, Zhang T, Seufert J, Pownall S, Cheung AT, Kieffer TJ. Pax6 and Pdx1 are required for production of glucose-dependent insulinotropic polypeptide in proglucagon-expressing L cells. Am J Physiol Endocrinol Metab 2008; 295:E648-57. [PMID: 18593849 DOI: 10.1152/ajpendo.90440.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are incretin hormones that play important roles in maintaining glucose homeostasis and are being actively pursued as novel therapeutic agents for diabetes. GIP is produced by dispersed enteroendocrine cells and interestingly at times is coexpressed with GLP-1. We sought to determine the factors that selectively define GIP- vs. GLP-1-expressing cells. We performed comparative immunostaining of Pax6 and Pdx1 in GIP- and GLP-1-secreting cells. We investigated whether Pax6 and Pdx1 activate the human GIP promoter in control IEC-6 cells and GIP-expressing STC-1 cells. EMSA was performed to assess the binding of these transcription factors to the GIP promoter. Pax6 and Pdx1 consistently colocalized in GIP-immunoreactive cells. Cells that coexpress GIP and GLP-1 were Pax6 and Pdx1 positive, whereas cells expressing only GLP-1 were Pax6 positive but did not express Pdx1. GIP promoter activity was enhanced in IEC-6 cells by exogenous Pax6 or Pdx1 and diminished in STC-1 cells by inhibition of endogenous Pax6 or Pdx1 by dominant-negative forms. Promoter truncation analysis revealed a major loss of promoter activity when the sequence between -184 to -145 bp was deleted. EMSA studies indicated that Pax6 and Pdx1 bind to this proximal sequence of the human GIP promoter. Our findings indicate that concomitant expression of Pax6 and Pdx1 is important for GIP expression. Our results also suggest that the presence of Pdx1 defines whether GLP-1-expressing gastrointestinal L cells also coexpress GIP.
Collapse
Affiliation(s)
- Yukihiro Fujita
- Department of Cellular and Physiological Sciences, Univ. of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Visel A, Carson J, Oldekamp J, Warnecke M, Jakubcakova V, Zhou X, Shaw CA, Alvarez-Bolado G, Eichele G. Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet 2007; 3:1867-83. [PMID: 17953485 PMCID: PMC2041993 DOI: 10.1371/journal.pgen.0030178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022] Open
Abstract
Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing ∼1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising >90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades. Signaling pathways drive biological processes with high specificity. Reductionist approaches such as mutagenesis provide one strategy to identity components of pathways. We used high throughput in situ hybridization to systematically map the spatiotemporal expression pattern of ∼1,000 developmental genes in the mouse embryo. The rich information collectively contained in these patterns was captured in annotation tables that were systematically mined using hierarchical clustering, resulting in 12 groups of genes with related expression patterns. We show that this process generates biologically meaningful, high-content information. The expression pattern of developmental master regulator Pax6 is found in a cluster together with that of 81 other genes. The paired DNA binding domain of Pax6 can bind to regulatory sequences in 14 of the 81 genes. We also found that the expression pattern of all these 14 genes is up- or downregulated in Pax6 mutant mice. These results emphasize that determining the expression pattern of many genes in a systematic way followed by an application of integrative tools leads to the identification of novel candidate components of signaling pathways. More generally, when complemented with appropriate data-mining strategies, transcriptome-scale in situ hybridization can be turned into a powerful instrument for systems biology.
Collapse
Affiliation(s)
- Axel Visel
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - James Carson
- Biological Monitoring and Modeling Department, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Judit Oldekamp
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Marei Warnecke
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Vladimira Jakubcakova
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Xunlei Zhou
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gonzalo Alvarez-Bolado
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Jørgensen MC, Ahnfelt-Rønne J, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An illustrated review of early pancreas development in the mouse. Endocr Rev 2007; 28:685-705. [PMID: 17881611 DOI: 10.1210/er.2007-0016] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreas morphogenesis and cell differentiation are highly conserved among vertebrates during fetal development. The pancreas develops through simple budlike structures on the primitive gut tube to a highly branched organ containing many specialized cell types. This review presents an overview of key molecular components and important signaling sources illustrated by an extensive three-dimensional (3D) imaging of the developing mouse pancreas at single cell resolution. The 3D documentation covers the time window between embryonic days 8.5 and 14.5 in which all the pancreatic cell types become specified and therefore includes gene expression patterns of pancreatic endocrine hormones, exocrine gene products, and essential transcription factors. The 3D perspective provides valuable insight into how a complex organ like the pancreas is formed and a perception of ventral and dorsal pancreatic growth that is otherwise difficult to uncover. We further discuss how this global analysis of the developing pancreas confirms and extends previous studies, and we envisage that this type of analysis can be instrumental for evaluating mutant phenotypes in the future.
Collapse
Affiliation(s)
- Mette Christine Jørgensen
- Hagedorn Research Institute, Department of Developmental Biology, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | |
Collapse
|
18
|
Gillard GO, Dooley J, Erickson M, Peltonen L, Farr AG. Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3007-15. [PMID: 17312146 DOI: 10.4049/jimmunol.178.5.3007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prevalent view of thymic epithelial differentiation and Aire activity holds that Aire functions in terminally differentiated medullary thymic epithelial cells (MTECs) to derepress the expression of structural tissue-restricted Ags, including pancreatic endocrine hormones. An alternative view of these processes has proposed that Aire functions to regulate the differentiation of immature thymic epithelial cells, thereby affecting tissue-restricted Ag expression and negative selection. In this study, we demonstrate that Aire impacts several aspects of murine MTECs and provide support for this second model. Expression of transcription factors associated with developmental plasticity of progenitor cells, Nanog, Oct4, and Sox2, by MTECs was Aire dependent. Similarly, the transcription factors that regulate pancreatic development and the expression of pancreatic hormones are also expressed by wild-type MTECs in an Aire-dependent manner. The altered transcriptional profiles in Aire-deficient MTECs were accompanied by changes in the organization and composition of the medullary epithelial compartment, including a reduction in the medullary compartment defined by keratin (K) 14 expression, altered patterns of K5 and K8 expression, and more prominent epithelial cysts. These findings implicate Aire in the regulation of MTEC differentiation and the organization of the medullary thymic compartment and are compatible with a role for Aire in thymic epithelium differentiation.
Collapse
Affiliation(s)
- Geoffrey O Gillard
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Hamasaki A, Yamada Y, Kurose T, Ban N, Nagashima K, Takahashi A, Fujimoto S, Shimono D, Fujiwara M, Toyokuni S, Seino Y, Inagaki N. Adult pancreatic islets require differential pax6 gene dosage. Biochem Biophys Res Commun 2007; 353:40-6. [PMID: 17178107 DOI: 10.1016/j.bbrc.2006.11.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 11/20/2022]
Abstract
Pax6, a paired homeodomain transcription factor, plays crucial roles in morphogenesis of eye, central nervous system, and pancreatic islets. Recently, heterozygosity for pax6 mutation has been reported in some individuals with glucose intolerance and aniridia. To investigate the role of pax6 for pancreatic islet function, we examined the pancreatic phenotype of small eye rat strain (rSey(2)) with a point mutation in the pax6 locus resulting in truncated PAX6 proteins. Analyses of the insulin secretory profile of heterozygous rSey(2)/+ revealed that insulin secretion is significantly increased in response to membrane-depolarizing stimuli such as arginine, tolbutamide, and KCl. The processes of insulin granule exocytosis were suggested to be enhanced in rSey(2)/+. On the other hand, pancreatic insulin and glucagon content and islet architecture in rSey(2)/+ showed no significant differences compared to wild-type. These findings indicate differential requirements for pax6 gene dosage in displaying function and maintaining architecture of adult pancreatic islets.
Collapse
Affiliation(s)
- Akihiro Hamasaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Parton LE, McMillen PJ, Shen Y, Docherty E, Sharpe E, Diraison F, Briscoe CP, Rutter GA. Limited role for SREBP-1c in defective glucose-induced insulin secretion from Zucker diabetic fatty rat islets: a functional and gene profiling analysis. Am J Physiol Endocrinol Metab 2006; 291:E982-94. [PMID: 16772326 DOI: 10.1152/ajpendo.00067.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accumulation of intracellular lipid may contribute to defective insulin secretion in type 2 diabetes. Although Zucker diabetic fatty (ZDF; fa/fa) rat islets are fat-laden and overexpress the lipogenic master gene, sterol regulatory element binding protein 1c (SREBP-1c), the contribution of SREBP-1c to the secretory defects observed in this model remains unclear. Here we compare the gene expression profile of lean control (fa/+) and ZDF rat islets in the absence or presence of dominant-negative SREBP-1c (SREBP-1c DN). ZDF islets displayed elevated basal insulin secretion at 3 mmol/l glucose but a severely depressed response to 17 mmol/l glucose. While SREBP-1c DN reduced basal insulin secretion from ZDF islets, glucose-stimulated insulin secretion was not improved. Of 57 genes differentially regulated in ZDF islets and implicated in glucose metabolism, vesicle trafficking, ion fluxes, and/or exocytosis, 21 were upregulated and 5 were suppressed by SREBP-1c DN. Genes underrepresented in ZDF islets were either unaffected (Glut-2, Kir6.2, Rab3), stimulated (voltage-dependent Ca(2+) channel subunit alpha1D, CPT2, SUR2, rab9, syt13), or inhibited (syntaxin 7, secretogranin-2) by SREBP-1c inhibition. Correspondingly, SREBP-1c DN largely corrected decreases in the expression of the transcription factors Pdx-1 and MafA but did not affect the abnormalities in Pax6, Arx, hepatic nuclear factor-1alpha (HNF1alpha), HNF3beta/Forkhead box-a2 (Foxa2), inducible cyclic AMP early repressor (ICER), or transcription factor 7-like 2 (TCF7L2) expression observed in ZDF islets. We conclude that upregulation of SREBP-1c and mild increases in triglyceride content do not explain defective glucose-stimulated insulin secretion from ZDF rats. However, overexpression of SREBP-1c may contribute to enhanced basal insulin secretion in this model.
Collapse
Affiliation(s)
- Laura E Parton
- Henry Wellcome Signaling Laboratories and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen J, Chen L, Li G, Cheng L, Huang Y, Zhang JX, Fan WW, Lu DR. Amino acid 1-209 is essential for PDX-1-mediated repression of human CMV IE promoter activity. Acta Pharmacol Sin 2006; 27:1495-503. [PMID: 17049127 DOI: 10.1111/j.1745-7254.2006.00420.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To explore the different roles of pancreatic duodenal homeobox factors-1 (PDX-1) domains in PDX-1 mediated repression of human cytomegalovirus immediately early (CMV IE) promoter. METHODS A series of truncated PDX-1 mutants were constructed. The binding of PDX-1 and CMV IE promoter was identified by electrophoretic mobility shift assay (EMSA). The dual-reporter assay was applied to examine the repression activities of PDX-1 mutants on CMV IE promoter. In addition, RNAi technology was used to specifically knock down the endogenous PDX-1 expression. RESULTS The reporter assay indicated that compared to the mock controls (pEGFP-N2), overexpression of PDX-1 resulted in a 41% decrease of CMV IE promoter activity in the 293 cells (P< 0.05) and 43% decrease in HeLa cells (P< 0.05), and the repression levels of various truncated mutants played on CMV IE promoter were different. Specific knock down of the endogenous PDX-1 expression significantly restored the activity of CMV IE promoter. EMSA demonstrated that domain 3 is necessary for nuclear localization and DNA binding activity of PDX-1. However, binding of PDX-1 alone to CMV IE promoter was not sufficient to inhibit its transcriptional activity, and other domains of PDX-1 presented were also required. CONCLUSION Our data suggested that the DNA binding activity of PDX-1 domain 3 and the cooperative binding of PDX-1 domain 1/2 with other proteins were required for PDX-1 mediated repression of CMV IE promoter.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Rowan S, Yue Y, Heaney S, Pan Y, Brendolan A, Selleri L, Maas RL. Pax6 is regulated by Meis and Pbx homeoproteins during pancreatic development. Dev Biol 2006; 300:748-57. [PMID: 17049510 DOI: 10.1016/j.ydbio.2006.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/30/2022]
Abstract
Pancreatic development depends on the transcription factor Pax6, which controls islet cell differentiation and hormone production. To understand the regulation of Pax6 pancreatic expression, we have identified a minimal Pax6 pancreatic enhancer and show that it contains a composite binding site for Meis and Pbx homeoproteins. We further show that Meis proteins are expressed during pancreatic development, and together with Pbx, are able to form a synergistic binding complex on the Pax6 pancreatic enhancer. When tested in transgenic mice, both the Meis and Pbx sites are essential for Pax6 pancreatic enhancer activity, and the composite site can be functionally replaced by a consensus Meis-Pbx sequence. In addition, analysis of Pbx1 and Pbx2 knockout mice demonstrates that, during pancreatic islet formation, Pax6 expression becomes dependent upon Pbx1 and Pbx2 function. As Meis homeoproteins have been previously demonstrated to regulate Pax6 expression during lens development, these results suggest a conserved mechanism of Pax6 regulation by Meis homeoproteins in two different organs.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut St., IB244, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Collombat P, Hecksher-Sørensen J, Serup P, Mansouri A. Specifying pancreatic endocrine cell fates. Mech Dev 2006; 123:501-12. [PMID: 16822656 DOI: 10.1016/j.mod.2006.05.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/18/2006] [Accepted: 05/20/2006] [Indexed: 02/04/2023]
Abstract
Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.
Collapse
Affiliation(s)
- Patrick Collombat
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
24
|
Kim EA, Noh YT, Ryu MJ, Kim HT, Lee SE, Kim CH, Lee C, Kim YH, Choi CY. Phosphorylation and Transactivation of Pax6 by Homeodomain-interacting Protein Kinase 2. J Biol Chem 2006; 281:7489-97. [PMID: 16407227 DOI: 10.1074/jbc.m507227200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pax6 is a transcriptional activator that contains two DNA binding domains and a potent transcription activation domain in the C terminus, which regulates organogenesis of the eye, nose, pancreas, and central nervous system. Homeodomain-interacting protein kinase 2 (HIPK2) interacts with transcription factors, including homeoproteins, and regulates activities of transcription factors. Here we show that HIPK2 phosphorylates the activation domain of Pax6, which augments Pax6 transactivation by enhancing its interaction with p300. Mass spectrometric analysis identified three Pax6 phosphorylation sites as threonines 281, 304, and 373. The substitutions of these threonines with alanines decreased Pax6 transactivation, whereas substitutions to glutamic acids increased transactivation in mimicry of phosphorylation. Furthermore, the knock-down of either endogenous or exogenous HIPK2 expression with HIPK2 shRNA markedly inhibited Pax6 phosphorylation and its transactivating function on proglucagon promoter in cultured cells. These results strongly indicate that HIPK2 is an upstream protein kinase for Pax6 and suggest that it modulates Pax6-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Eun A Kim
- Department of Biological Science, Sungkyunkwan University, 300 Chunchundong, Jangangu, Suwon 440-746, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li WC, Horb ME, Tosh D, Slack JMW. In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev 2005; 122:835-47. [PMID: 15939230 DOI: 10.1016/j.mod.2005.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 02/06/2023]
Abstract
We have characterised the transdifferentiation of human HepG2 (hepatoma) cells to pancreatic cells following introduction of an activated version of the pancreatic transcription factor Pdx1 (XlHbox8-VP16). The following questions are addressed: (1) are all types of pancreatic cells produced? (2) is the requirement for expression of the transgene temporary or permanent? (3) are the transdifferentiated beta-cells responsive to physiological stimuli? The results showed that both pancreatic exocrine cells (by detection of amylase protein), and endocrine cells (by detecting insulin, glucagon and somatostatin proteins) are induced after XlHbox8VP16 transfection. Moreover, the hepatic phenotype becomes suppressed during transdifferentiation of hepatocytes to pancreatic cells. Requirement for the transgene is only temporary and it is no longer required once the pancreatic differentiation program is activated. Finally, we provided results to suggest that the transdifferentiated cells are functional by detecting: (1) functional markers for pancreatic beta-cells including prohormone convertase 1/3 (PC1/3), insulin C-peptide and glucagon-like peptide 1 receptor (GLP-1R), (2) increased insulin mRNA expression after treatment of cells with GLP-1 and betacellulin, physiological stimuli that regulate pancreatic function and (3) elevated insulin secretion after glucose challenge. The transdifferentiation of hepatic to pancreatic cells represents one possible source of beta-cells for human islet transplantation and this study shows that such a transdifferentiation can be achieved in vitro.
Collapse
Affiliation(s)
- Wan-Chun Li
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
26
|
Low MJ. Clinical endocrinology and metabolism. The somatostatin neuroendocrine system: physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract Res Clin Endocrinol Metab 2004; 18:607-22. [PMID: 15533778 DOI: 10.1016/j.beem.2004.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatostatin is produced in enteroendocrine D cells and intrinsic neurons of the stomach, intestines and pancreas. Its physiologic actions are mediated primarily by somatostatin receptors type 2 and 5, and include the inhibition of secretion of most endocrine and exocrine factors. Diseases directly attributable to somatostatin excess or deficiency are rare, although there is a complex pathogenic relationship between persistent Helicobacter pylori infection and reduced somatostatin in chronic gastritis. Abundant somatostatin receptors on many neoplastic and inflammatory cells are the basis for sensitive in vivo imaging with radiolabeled somatostatin analogs and provide a therapeutic target. Current indications for somatostatin therapy include hormone-expressing neuroendocrine tumors, intractable diarrhea and variceal bleeding secondary to portal hypertension. Exciting advances are being made in the development of high-affinity nonpeptide analogs with receptor-subtype selectivity and increased bioavailability. Somatostatin analogs coupled to high-energy radionuclides show promise as novel cytotoxic agents for certain metastatic tumors.
Collapse
Affiliation(s)
- Malcolm J Low
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
27
|
Heller RS, Stoffers DA, Liu A, Schedl A, Crenshaw EB, Madsen OD, Serup P. The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Dev Biol 2004; 268:123-34. [PMID: 15031110 DOI: 10.1016/j.ydbio.2003.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/03/2003] [Accepted: 12/04/2003] [Indexed: 12/21/2022]
Abstract
Brain 4 (Brn4/Pou3f4) and Pax6 are POU-homeodomain and paired-homeodomain transcription factors, respectively, that are expressed in the brain and the glucagon-expressing cells in the pancreas. Brn4 expression begins at embryonic day 10 in the pancreas, just before pax6 and both appear in the glucagon immunoreactive cells. At a later time point, E19, no Brn4 co-localization is observed with insulin or somatostatin but a rare pancreatic polypeptide (PP)-producing cell can be found, while Pax6 is found in all endocrine cells. These data suggest that brn4 is the only alpha-cell specific transcription factor yet identified; therefore, we sought to analyze alpha-cell development and function in mice with a targeted disruption of the brn4 gene. In homozygous brn4(-/-) mice, pancreatic bud formation, glucagon cell numbers and physiological measurements all appear normal. Examination of other transcription factors found in the glucagon cells showed normal Pax6 and Nkx2.2 immunoreactivity, suggesting that Brn4 does not regulate these transcription factors. Pax6 mutant mice (pax6(Sey/Sey)), with a natural inactivating mutation in pax6, have few endocrine cells but normal numbers of Brn4 and Nkx2.2 cells. The pancreatic phenotype of the pax6 mutants can be rescued with a YAC clone containing the human Pax6 gene.
Collapse
Affiliation(s)
- R Scott Heller
- Department of Developmental Biology, Hagedorn Research Institute, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Many transcription factors are critical for ensuring proper embryonic development of the endocrine pancreas and normal islet function. The transcription factor pancreatic duodenal homeobox 1 (PDX-1) is uniformly expressed in early pancreatic buds of embryos as well as the beta and delta cells of the islets of Langerhans. PDX-1 has also been found in dispersed endocrine cells of the duodenum in adults and plays a key role in pancreas formation. It has been reported that null mutation of PDX-1 in mice results in a failure of the pancreatic bud to expand; thus, the mice die 2-3 days after birth from hyperglycemia and dehydration. Heterozygous PDX-1 mice developed a pancreas but were diabetic. It has been shown that PDX-1 is required for maintaining the pancreatic islet functions by activating gene transcriptions including insulin, somatostatin (SST), islet amyloid polypeptide, glucose transporter type 2, and glucokinase. PDX-1 serves a dual role in pancreatic development. It initially contributes to pancreatic formation during embryogenesis and subsequently regulates the pancreatic islet cell physiology in mature islet cells. Understanding the underlying molecular mechanisms of pancreas formation, especially the function of PDX-1, may contribute to the enhanced treatment and prevention of debilitating diseases such as diabetes, insulinomas, and pancreatic carcinomas.
Collapse
Affiliation(s)
- Satoshi Ashizawa
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
29
|
|
30
|
Ritz-Laser B, Gauthier BR, Estreicher A, Mamin A, Brun T, Ris F, Salmon P, Halban PA, Trono D, Philippe J. Ectopic expression of the beta-cell specific transcription factor Pdx1 inhibits glucagon gene transcription. Diabetologia 2003; 46:810-21. [PMID: 12783165 DOI: 10.1007/s00125-003-1115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Revised: 03/14/2003] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS The transcription factor Pdx1 is required for the development and differentiation of all pancreatic cells. Beta-cell specific inactivation of Pdx1 in developing or adult mice leads to an increase in glucagon-expressing cells, suggesting that absence of Pdx1could favour glucagon gene expression by a default mechanism. METHOD We investigated the inhibitory role of Pdx1 on glucagon gene expression in vitro. The glucagonoma cell line InR1G9 was transduced with a Pdx1-encoding lentiviral vector and insulin and glucagon mRNA levels were analysed by northern blot and real-time PCR. To understand the mechanism by which Pdx1 inhibits glucagon gene expression, we studied its effect on glucagon promoter activity in non-islet cells using transient transfections and gel-shift analysis. RESULTS In glucagonoma cells transduced with a Pdx1-encoding lentiviral vector, insulin gene expression was induced while glucagon mRNA levels were reduced by 50 to 60%. In the heterologous cell line BHK-21, Pdx1 inhibited by 60 to 80% the activation of the alpha-cell specific element G1 conferred by Pax-6 and/or Cdx-2/3. Although Pdx1 could bind three AT-rich motifs within G1, two of which are binding sites for Pax-6 and Cdx-2/3, the affinity of Pdx1 for G1 was much lower as compared to Pax-6. In addition, Pdx1 inhibited Pax-6 mediated activation through G3, to which Pdx1 was unable to bind. Moreover, a mutation impairing DNA binding of Pdx1 had no effect on its inhibition on Cdx-2/3. Since Pdx1 interacts directly with Pax-6 and Cdx-2/3 forming heterodimers, we suggest that Pdx1 inhibits glucagon gene transcription through protein to protein interactions with Pax-6 and Cdx-2/3. CONCLUSION/INTERPRETATION Cell-specific expression of the glucagon gene can only occur when Pdx1 expression extinguishes from the early alpha cell precursor.
Collapse
Affiliation(s)
- B Ritz-Laser
- Diabetes Unit, University Hospital Geneva, 24, rue Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Pax6 is a transcription factor essential for the development of tissues including the eyes, central nervous system and endocrine glands of vertebrates and invertebrates. It regulates the expression of a broad range of molecules, including transcription factors, cell adhesion and short-range cell-cell signalling molecules, hormones and structural proteins. It has been implicated in a number of key biological processes including cell proliferation, migration, adhesion and signalling both in normal development and in oncogenesis. The mechanisms by which Pax6 regulates its downstream targets likely involve the use of different splice variants and interactions with multiple proteins, allowing it to generate different effects in different cells. Extrapolation to developmental transcription factors in general suggests that variation in the nature of individual factors is likely to contribute to the emergence of differences between tissues.
Collapse
Affiliation(s)
- T Ian Simpson
- Genes and Development Research Group, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
32
|
Abstract
In order to fulfill their roles in neuroendocrine regulation, specific hypothalamic neurons are devoted to produce and deliver biologically active peptides to the pituitary gland. The biosynthesis and release of peptides are strictly controlled by afferents to these hypothalamic neurons. Cell-specific expression and biosynthetic regulation largely relies on transcription from the gene promoter for which the 5(')-flanking regions of the peptidergic genes contain essential elements. Cell-specific transcription factors employ these regulatory elements to exert their control over the expression of the peptidergic gene. This article explores the properties of regulatory elements of the major hypothalamic peptides, somatostatin, growth hormone-releasing hormone, gonadotropin-releasing hormone, thyrotropin-releasing hormone, corticotropin-releasing hormone, vasopressin and oxytocin, and the transcription factors acting on them. These transcription factors are often endpoints of signal transduction pathways that can be activated by neurotransmitters or steroid hormones. Others are essential to provide cell-specific expression of the peptidergic gene during development and mature regulation.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
33
|
Dusing MR, Florence EA, Wiginton DA. Pdx-1 is required for activation in vivo from a duodenum-specific enhancer. J Biol Chem 2001; 276:14434-42. [PMID: 11278481 DOI: 10.1074/jbc.m009249200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The purine metabolic gene adenosine deaminase (ADA) is expressed along a defined spatiotemporal pattern in the developing mammalian small intestine, where high-level expression is limited to the villous epithelium of the duodenum. This activation is observed in rodents as the intestine completes the final maturation resulting in adult crypt-villus structures at 2-3 weeks postpartum. A regulatory module responsible for this pattern of expression has been identified in the second intron of the human ADA gene. Of the multiple duodenal proteins that can interact with this small duodenal enhancer region, the studies contained in this work describe the identification of five of these proteins as the dispersed homeobox protein PDX-1. This transcription factor exhibits a profile of expression in the small intestine similar to that observed for ADA, making it an ideal candidate factor for the duodenum-specific ADA enhancer. Loss of PDX-1 binding, via a PDX-1 mutated enhancer transgenic construction, resulted in complete loss of high-level activation in the duodenum, demonstrating the absolute requirement for this factor in vivo. However, co-transfection experiments suggest that other proteins that bind the enhancer are also required for enhancer function because PDX-1 alone was incapable of significant transactivation.
Collapse
Affiliation(s)
- M R Dusing
- Department of Pediatrics, Division of Developmental Biology, University of Cincinnati College of Medicine and Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
34
|
Dusing MR, Brickner AG, Lowe SY, Cohen MB, Wiginton DA. A duodenum-specific enhancer regulates expression along three axes in the small intestine. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1080-93. [PMID: 11053006 DOI: 10.1152/ajpgi.2000.279.5.g1080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine deaminase (ADA) is expressed at high levels in the epithelium of proximal small intestine. Transgenic mice were used to characterize the regulatory region governing this activation. A duodenum-specific enhancer is located in intron 2 of the human ADA gene at the central site among a cluster of seven DNase I-hypersensitive sites present in duodenal DNA. Flanking DNA, including the remaining hypersensitive sites, is required for consistent high-level enhancer function. The enhancer activates expression in a pattern identical to endogenous ADA along both the anterior-posterior axis of the small intestine and the crypt-villus differentiation axis of the intestinal epithelium. Timing of activation by the central enhancer mimics endogenous mouse ADA activation, occurring at 2-3 wk of age. However, two upstream DNA segments, one proximal and one distal, collaborate to change enhancer activation to a perinatal time point. Studies with duodenal nuclear extracts identified five distinct DNase I footprints within the enhancer. Protected regions encompass six putative binding sites for the transcription factor PDX-1, as well as proposed CDX, hepatocyte nuclear factor-4, and GATA-type sites.
Collapse
Affiliation(s)
- M R Dusing
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
35
|
Duncan MK, Kozmik Z, Cveklova K, Piatigorsky J, Cvekl A. Overexpression of PAX6(5a) in lens fiber cells results in cataract and upregulation of (alpha)5(beta)1 integrin expression. J Cell Sci 2000; 113 ( Pt 18):3173-85. [PMID: 10954416 DOI: 10.1242/jcs.113.18.3173] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PAX6 gene, a key regulator of eye development, produces two major proteins that differ in paired domain structure: PAX6 and PAX6(5a). It is known that an increase in the PAX6(5a) to PAX6 ratio leads to multiple ocular defects in humans. Here, transgenic mice were created that overexpress human PAX6(5a) in the lens. These mice develop cataracts with abnormalities in fiber cell shape as well as fiber cell/lens capsule and fiber cell/fiber cell interactions. While the structure of the actin cytoskeleton appeared relatively normal, the cataractous lens expresses increased amounts of paxillin and p120(ctn) as well as large aggregates of (alpha)5(beta)1 integrin in the dysgenic fiber cells. The elevated amounts of these proteins in the transgenic lens correlated well with elevated levels of their respective mRNAs. To investigate the role of Pax-6(5a) in the upregulation of these genes, a series of gel shift experiments using truncated proteins and consensus oligonucleotides demonstrated the complexity of Pax-6 and Pax-6(5a) binding to DNA, aiding our identification of potential binding sites in the human (α)5- and (beta)1-integrin promoters. Consequent gel shift analysis demonstrated that these putative regulatory sequences bind Pax-6 and/or Pax-6(5a) in lens nuclear extracts, suggesting that the human (alpha)5 and (beta)1 integrin promoters contain PAX6/PAX6(5a) binding sites and maybe directly regulated by this transcription factor in the transgenic lens. We conclude that these transgenic mice are good models to study a type of human cataract and for identifying batteries of genes that are directly or indirectly regulated by both forms of Pax-6.
Collapse
Affiliation(s)
- M K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
36
|
Herzig S, Fuzesi L, Knepel W. Heterodimeric Pbx-Prep1 homeodomain protein binding to the glucagon gene restricting transcription in a cell type-dependent manner. J Biol Chem 2000; 275:27989-99. [PMID: 10869353 DOI: 10.1074/jbc.m003345200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homeodomain proteins specify developmental pathways and cell-specific gene transcription whereby proteins of the PBC subclass can direct target gene specificity of Hox proteins. Proteins encoded by nonclustered homeobox genes have been shown to be essential for cell lineage differentiation and gene expression in pancreatic islets. Using specific antiserum in an electrophoretic mobility shift assay and in vitro transcribed/translated proteins, the nuclear proteins binding domain B of the G3 enhancer-like element of the glucagon gene were identified in the present study as heterodimers consisting of the ubiquitously expressed homeodomain protein Prep1 and the also widely expressed PBC homeoprotein Pbx (isoform 1a, 1b, or 2). These heterodimeric complexes were found to bind also to the glucagon cAMP response element and to a newly identified element termed G5 (from -169 to -140). Whereas the expression of Prep1 or Pbx forms alone had no effect, coexpression of Pbx1a/1b-Prep1 inhibited the glucagon promoter when activated by cotransfected Pax6 or another transcription factor in non-glucagon-producing cells. In contrast, in glucagon-producing pancreatic islet cells, Pbx-Prep1 had no effect on GAL4-Pax6-induced mutant glucagon promoter activity or on Pax6-dependent wild-type glucagon promoter activity. Furthermore, 5'-deletion of G5 enhanced glucagon promoter activity in a non-glucagon-producing cell line but not in glucagon-producing islet cells. This study thus identifies a novel target and Hox-independent function of Pbx-Prep1 heterodimers that, through repression of glucagon gene transcription in non-glucagon-producing cells, may help to establish islet cell-specific expression of the glucagon gene.
Collapse
Affiliation(s)
- S Herzig
- Department of Molecular Pharmacology and Department of Gastroenteropathology, University of Göttingen, 37075 Göttingen, Germany
| | | | | |
Collapse
|
37
|
Schwartz PT, Perez-Villamil B, Rivera A, Moratalla R, Vallejo M. Pancreatic homeodomain transcription factor IDX1/IPF1 expressed in developing brain regulates somatostatin gene transcription in embryonic neural cells. J Biol Chem 2000; 275:19106-14. [PMID: 10751390 DOI: 10.1074/jbc.m000655200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hox-like homeodomain proteins play a critical role during embryonic development by regulating the transcription of genes that are important for the generation of specific organs or cell types. The homeodomain transcription factor IDX1/IPF1, the expression of which was thought until recently to be restricted to the pancreas and foregut, is required for pancreas development and for the expression of genes controlling glucose homeostasis. We report that IDX1/IPF1 is also expressed in embryonic rat brain at a time coincident with active neurogenesis. Electrophoretic mobility shift assays with nuclear extracts of embryonic brains indicated that IDX1/IPF1 binds to two somatostatin promoter elements, SMS-UE-B and the recently discovered SMS-TAAT3. The requirement of these elements for IDX1/IPF1 transactivation of the somatostatin gene in neural cells was confirmed in transfection studies using embryonic cerebral cortex-derived RC2.E10 cells. Immunohistochemical staining of rat embryos showed IDX1/IPF1-positive cells located near the ventricular surface in germinative areas of the developing central nervous system. Cellular colocalization of IDX1/IPF1 and somatostatin was found in several areas of the developing brain, including cortex, ganglionic eminence, hypothalamus, and inferior colliculus. These results support the notion that IDX1/IPF1 regulates gene expression during development of the central nervous system independent of its role on pancreas development and function.
Collapse
Affiliation(s)
- P T Schwartz
- Reproductive Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
38
|
Huang HP, Liu M, El-Hodiri HM, Chu K, Jamrich M, Tsai MJ. Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol 2000; 20:3292-307. [PMID: 10757813 PMCID: PMC85623 DOI: 10.1128/mcb.20.9.3292-3307.2000] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BETA2 (neuroD) gene is expressed in endocrine cells during pancreas development and is essential for proper islet morphogenesis. The objective of this study is to identify potential upstream regulators of the BETA2 gene during pancreas development. We demonstrated that the expression of neurogenin 3 (ngn3), an islet- and neuron-specific basic-helix-loop-helix transcription factor, partially overlaps that of BETA2 during early mouse development. More importantly, overexpression of ngn3 can induce the ectopic expression of BETA2 in Xenopus embryos and stimulate the endogenous RNA of BETA2 in endocrine cell lines. Furthermore, overexpression of ngn3 could cause a dose-dependent activation on the 1.0-kb BETA2 promoter in islet-derived cell lines. Deletion and mutation analyses revealed that two proximal E box sequences, E1 and E3, could bind to ngn3-E47 heterodimer and mediate ngn3 activation. Based on these results, we hypothesize that ngn3 is involved in activating the expression of BETA2 at an early stage of islet cell differentiation through the E boxes in the BETA2 promoter.
Collapse
Affiliation(s)
- H P Huang
- Department of Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Petersen HV, Jørgensen MC, Andersen FG, Jensen J, F-Nielsen T, Jørgensen R, Madsen OD, Serup P. Pax4 represses pancreatic glucagon gene expression. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 3:249-54. [PMID: 10891400 DOI: 10.1006/mcbr.2000.0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The paired box and homeodomain containing transcription factors Pax4 and Pax6 are known to be essential for development of the pancreatic endocrine cells. In this report we demonstrate that stable expression of Pax4 in a rat glucagon-producing cell line inhibits the endogenously expressed glucagon gene completely. Furthermore, Pax4 represses Pax6 independent transcription of the insulin promoter, suggesting that Pax4 can actively repress transcription in addition to acting by competition with the transcriptional activator Pax6.
Collapse
Affiliation(s)
- H V Petersen
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensensvej 6, Gentofte, DK-2820, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The endocrine pancreas is an organ of enormous importance, since its dysfunction causes diabetes, one of the most common human diseases in the world. Regulation of pancreatic endocrine cell determination and differentiation requires a unique set of transcription factors, including basic helix-loop-helix and homeodomain-containing proteins. The physiological role of individual transcription factor has been characterized by gene disruption in the mouse. The results indicate that these genes are not only involved in tissue-specific activation of downstream target genes for islet-specific hormones, but also critical for the proper islet morphogenesis. Future elucidation of the genetic relationship of these genes will lead to a better understanding of the molecular mechanisms controlling endocrine pancreas formation and will contribute to the development of new therapeutic approaches to diabetes.
Collapse
Affiliation(s)
- H P Huang
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|