1
|
Cruz LL, Ferreira Silva BS, Araujo GG, Leal-Silva T, Paula VG, Souza MR, Soares TS, Moraes-Souza RQ, Monteiro GC, Lima GPP, Damasceno DC, Volpato GT. Phytochemical and antidiabetic analysis of Curatella americana L. aqueous extract on the rat pregnancy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115287. [PMID: 35421527 DOI: 10.1016/j.jep.2022.115287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curatella americana L. is employed in popular medicine for treating diabetes. However, the understanding around its outcomes during pregnancy is unclear. AIM OF THE STUDY To evaluate the phytochemical and hypoglycemic analysis of the C. americana extract and its maternal-fetal effect on diabetic rats. MATERIALS AND METHOD Diabetes was chemically induced 24 h after birth in Wistar female newborn rats. At adulthood, after diabetes status confirmation, the rats were mated and randomized into four experimental groups: Nondiabetic (Control): given water; Treated: given C. americana extract; Diabetic, and Treated Diabetic rats. The aqueous extract of C. americana leaves (300 mg/kg) was administered daily through oral route during pregnancy. Maternal toxicity and biochemical profile, reproductive outcomes, fetal development, and phenolic composition and biogenic amines in aqueous extract were analyzed. RESULTS AND CONCLUSION Phytochemical analysis revealed that the main phenolic components are 3-hydroxytyrosol, kaempferol, and quercetin, while tryptophan and putrescine derivatives were identified as the dominant amines. C. americana extract treatment improved the lipid profile, although no effect on hyperglycemic control in diabetic rats was observed. Maternal diabetes or C. americana extract caused embryo losses confirmed by the lower number of pre-embryos in early pregnancy and higher percentage of abnormal morphologically pre-embryos. C. americana extract previously caused premature pre-embryo fixation before implantation window in nondiabetic and diabetic mothers and intrauterine growth restriction in the fetuses of treated nondiabetic dams, complicating the embryo fetal development. These findings reinforce the caution of indiscriminate use of medicinal plants, especially during pregnancy.
Collapse
Affiliation(s)
- Larissa Lopes Cruz
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Bruno Stefano Ferreira Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil
| | - Gabriel Gomes Araujo
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil
| | - Thaís Leal-Silva
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Maysa Rocha Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Thaigra Souza Soares
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Rafaianne Queiroz Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil; Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Gean Charles Monteiro
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemical and Biological Sciences, Institute of Bioscience, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University, 18618-000, Botucatu, São Paulo, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso, 78605-091, Barra do Garças, Mato Grosso State, Brazil.
| |
Collapse
|
2
|
Seo SY, Kim YJ, Park KY. Increasing Polyamine Contents Enhances the Stress Tolerance via Reinforcement of Antioxidative Properties. FRONTIERS IN PLANT SCIENCE 2019; 10:1331. [PMID: 31736992 PMCID: PMC6834694 DOI: 10.3389/fpls.2019.01331] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/08/2023]
Abstract
The diamine putrescine and the polyamines (PAs), spermidine (Spd) and spermine (Spm), are ubiquitously occurring polycations associated with several important cellular functions, especially antisenescence. Numerous studies have reported increased levels of PA in plant cells under conditions of abiotic and biotic stress such as drought, high salt concentrations, and pathogen attack. However, the physiological mechanism of elevated PA levels in response to abiotic and biotic stresses remains undetermined. Transgenic plants having overexpression of SAMDC complementary DNA and increased levels of putrescine (1.4-fold), Spd (2.3-fold), and Spm (1.8-fold) under unstressed conditions were compared to wild-type (WT) plants in the current study. The most abundant PA in transgenic plants was Spd. Under salt stress conditions, enhancement of endogenous PAs due to overexpression of the SAMDC gene and exogenous treatment with Spd considerably reduces the reactive oxygen species (ROS) accumulation in intra- and extracellular compartments. Conversely, as compared to the WT, PA oxidase transcription rapidly increases in the S16-S-4 transgenic strain subsequent to salt stress. Furthermore, transcription levels of ROS detoxifying enzymes are elevated in transgenic plants as compared to the WT. Our findings with OxyBlot analysis indicate that upregulated amounts of endogenous PAs in transgenic tobacco plants show antioxidative effects for protein homeostasis against stress-induced protein oxidation. These results imply that the increased PAs induce transcription of PA oxidases, which oxidize PAs, which in turn trigger signal antioxidative responses resulting to lower the ROS load. Furthermore, total proteins from leaves with exogenously supplemented Spd and Spm upregulate the chaperone activity. These effects of PAs for antioxidative properties and antiaggregation of proteins contribute towards maintaining the physiological cellular functions against abiotic stresses. It is suggested that these functions of PAs are beneficial for protein homeostasis during abiotic stresses. Taken together, these results indicate that PA molecules function as antisenescence regulators through inducing ROS detoxification, antioxidative properties, and molecular chaperone activity under stress conditions, thereby providing broad-spectrum tolerance against a variety of stresses.
Collapse
Affiliation(s)
| | | | - Ky Young Park
- Department of Biology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
3
|
Jain V, Raina S, Gheware AP, Singh R, Rehman R, Negi V, Murray Stewart T, Mabalirajan U, Mishra AK, Casero RA, Agrawal A, Ghosh B. Reduction in polyamine catabolism leads to spermine-mediated airway epithelial injury and induces asthma features. Allergy 2018; 73:2033-2045. [PMID: 29729200 DOI: 10.1111/all.13472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Airway epithelial injury is a crucial component of acute and severe asthma pathogenesis and a promising target for treatment of refractory asthma. However, the underlying mechanism of epithelial injury remains poorly explored. Although high levels of polyamines, mainly spermine, have been found in asthma and comorbidity, their role in airway epithelial injury and the cause of their altered levels in asthma have not been explored. METHODS We measured key polyamine metabolic enzymes in lung samples from normal and asthmatic subjects and in mice with OVA-induced allergic airway inflammation (AAI). Polyamine metabolism was modulated using pharmacologic/genetic modulators. Epithelial stress and apoptosis were measured by TSLP levels and TUNEL assay, respectively. RESULTS We found loss of the polyamine catabolic enzymes spermidine/spermine-N (1)-acetyltransferase-1 (SAT1) and spermine oxidase (SMOX) predominantly in bronchial epithelial cells (BECs) of human asthmatic lung samples and mice with AAI. In naïve mice, SAT1 or SMOX knockdown led to airway hyper-responsiveness, remodeling, and BEC apoptosis. Conversely, in mice with AAI, overexpression of either SAT1 or SMOX alleviated asthmatic features and reduced TSLP levels and BEC apoptosis. Similarly, while pharmacological induction of SAT1 and SMOX using the polyamine analogue bis(ethyl)norspermine (BENSPM) alleviated asthmatic features with reduced TSLP levels and BEC apoptosis, pharmacological inhibition of these enzymes using BERENIL or MDL72527, respectively, worsened them. Spermine accumulation in lungs correlated with BEC apoptosis, and spermine treatment caused apoptosis of human BEAS-2B cells in vitro. CONCLUSIONS Spermine induces BEC injury. Induction of polyamine catabolism may represent a novel therapeutic approach for asthma via reversing BEC stress.
Collapse
Affiliation(s)
- V. Jain
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - S. Raina
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - A. P. Gheware
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - R. Singh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - R. Rehman
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - V. Negi
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - T. Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center School of Medicine Johns Hopkins University Baltimore MD USA
| | - U. Mabalirajan
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - A. K. Mishra
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - R. A. Casero
- The Sidney Kimmel Comprehensive Cancer Center School of Medicine Johns Hopkins University Baltimore MD USA
| | - A. Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| | - B. Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease CSIR‐Institute of Genomics and Integrative Biology (CSIR‐IGIB) Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Chennai India
| |
Collapse
|
4
|
Chen C, Ye Y, Wang R, Zhang Y, Wu C, Debnath SC, Ma Z, Wang J, Wu M. Streptomyces nigra sp. nov. Is a Novel Actinobacterium Isolated From Mangrove Soil and Exerts a Potent Antitumor Activity in Vitro. Front Microbiol 2018; 9:1587. [PMID: 30072967 PMCID: PMC6058180 DOI: 10.3389/fmicb.2018.01587] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022] Open
Abstract
A new bacterial strain, designated 452T, was isolated from the rhizosphere soil of the mangrove Avicennia marina in China. As determined, its cell wall peptidoglycan contained LL-diaminopimelic acid; MK-9(H8) and MK-9(H6) were the major isoprenoid quinones; and iso-C16:0 (31.3%), anteiso-C15:0 (16.9%), and iso-C15:0 (12.5%) were the major cellular fatty acids (>10.0%). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 452T formed a distinct lineage in the clade of the genus Streptomyces, and was closely related to S. coerulescens DSM 40146T (99.6% sequence identity), S. bellus DSM 40185T (99.5%), and S. coeruleorubidus DSM 41172T (99.3%). The DNA-DNA relatedness between strain 452T and these type strains ranged between 29.3 and 42.3%. Based on the phenotypic, chemotaxonomic, and phylogenetic features, the strain 452T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces nigra sp. nov. is proposed. The type strain is 452T (=KCTC 39960T = MCCC 1K03346T). Further, strain 452T extracts exhibited a pronounced antitumor activity against human cancer cell lines A549, HCT-116, and HepG2, but not against normal human colon cells CCD-18Co. Active substances in the fermentation broth of strain 452T were isolated by bioassay-guided analysis, and then purified using a macroporous resin, silica gel, sephadex LX-20 column, and semi-preparative high-performance liquid chromatography (HPLC). Eight proline-containing diketopiperazines, namely, cyclo(Pro-Ala), cyclo(Pro-Gly), cyclo(Pro-Phe), cyclo(Pro-Met), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Pro-Tyr), and cyclo(L-Leu-trans-4-hydroxy-L-Pro), were identified by electrospray ionization mass spectrometry (MS) and nuclear magnetic resonance (NMR). The compounds displayed different levels of cytotoxicity. The highest cytotoxicity was exhibited by cyclo(Pro-Ala) and cyclo(Pro-Met) against A549 cells, and cyclo(Phe-Pro) and cyclo(Pro-Ala) against HCT-116 cells, with average IC50 values equal to 18.5, 27.3, 32.3, and 47.6 μg/mL, respectively. The diversity of diketopiperazines and other chemicals produced by 452T was further investigated using gas chromatography (GC)-MS and liquid chromatography (LC)-MS. The analysis revealed 16 types of metabolites with antitumor activity and 16 other types of diketopiperazines. Hence, extracts of the newly identified strain may be used a starting material for the development of antitumor agents.
Collapse
Affiliation(s)
- Can Chen
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Yanghui Ye
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Ruijun Wang
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Yinglao Zhang
- Biomedical Research Program, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen Wu
- Institute of Hydraulic and Marine Engineering, School of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Sanjit C Debnath
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Zhongjun Ma
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Jidong Wang
- Department of New Drug Screening, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, China
| | - Min Wu
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Bourgognon JM, Spiers JG, Scheiblich H, Antonov A, Bradley SJ, Tobin AB, Steinert JR. Alterations in neuronal metabolism contribute to the pathogenesis of prion disease. Cell Death Differ 2018; 25:1408-1425. [PMID: 29915278 DOI: 10.1038/s41418-018-0148-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative conditions are characterised by a progressive loss of neurons, which is believed to be initiated by misfolded protein aggregations. During this time period, many physiological and metabolomic alterations and changes in gene expression contribute to the decline in neuronal function. However, these pathological effects have not been fully characterised. In this study, we utilised a metabolomic approach to investigate the metabolic changes occurring in the hippocampus and cortex of mice infected with misfolded prion protein. In order to identify these changes, the samples were analysed by ultrahigh-performance liquid chromatography-tandem mass spectroscopy. The present dataset comprises a total of 498 compounds of known identity, named biochemicals, which have undergone principal component analysis and supervised machine learning. The results generated are consistent with the prion-inoculated mice having significantly altered metabolic profiles. In particular, we highlight the alterations associated with the metabolism of glucose, neuropeptides, fatty acids, L-arginine/nitric oxide and prostaglandins, all of which undergo significant changes during the disease. These data provide possibilities for future studies targeting and investigating specific pathways to better understand the processes involved in neuronal dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Hannah Scheiblich
- MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Alexey Antonov
- MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK
| | - Sophie J Bradley
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Joern R Steinert
- MRC Toxicology Unit, University of Leicester, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
6
|
Yang Y, Chen S, Zhang Y, Lin X, Song Y, Xue Z, Qian H, Wang S, Wan G, Zheng X, Zhang L. Induction of autophagy by spermidine is neuroprotective via inhibition of caspase 3-mediated Beclin 1 cleavage. Cell Death Dis 2017; 8:e2738. [PMID: 28383560 PMCID: PMC5477584 DOI: 10.1038/cddis.2017.161] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
Spermidine, a natural polyamine presented widely in mammalian cells, has been implicated to extend the lifespan of several model organisms by inducing autophagy. However, the effect of spermidine against neuronal damage has not yet been fully determined. In this study, neuronal cell injury was induced by treating PC12 cells and cortical neurons with 1 μM staurosporine (STS). We found that STS-induced cell injury could be efficiently attenuated by pretreatment with 1 mM spermidine. Spermidine inhibited the caspase 3 activation induced by STS. Moreover, STS incubation resulted in autophagic degradation failure, which could be attenuated by the pretreatment of spermidine. Knocking down the expression of Beclin 1 efficiently suppressed autophagosome and autolysosome accumulation, and abolished the protective effects of spermidine against STS-induced neurotoxicity. Increased Beclin 1 cleavage and partial nuclear translocation of Beclin 1 fragment was detected in STS-treated cells, which could be blocked by spermidine, pan-caspase inhibitor or caspase 3-specific inhibitor. The nuclear translocation of Beclin 1 fragment universally occurs in damaged neurons. Beclin 1 mutation at the sites of 146 and 149 prevented the intracellular re-distribution of Beclin 1 induced by STS. In addition, intraperitoneal injection of spermidine ameliorated ischemia/reperfusion-induced neuronal injury in the hippocampus and cortex of rats, possibly via blocking caspase 3 activation and consequent Beclin 1 cleavage. Our findings suggest that caspase 3-mediated Beclin 1 cleavage occurs in acute neuronal cell injury both in vitro and in vivo. The neuroprotective effect of spermidine may be related to inhibition of the caspase 3-mediated Beclin 1 cleavage and restoration of the Beclin 1-dependent autophagy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Sicong Chen
- Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
- Clinical Research Center, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Zhang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Lin
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yiyin Song
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhaoliang Xue
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Haoran Qian
- Department of General Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Shanshan Wang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Guihua Wan
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxiang Zheng
- Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Lihui Zhang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids 2016; 48:2313-26. [PMID: 27619911 DOI: 10.1007/s00726-016-2323-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.
Collapse
|
8
|
Biodegradable hybrid recombinant block copolymers for non-viral gene transfection. Int J Pharm 2011; 427:105-12. [PMID: 21983093 DOI: 10.1016/j.ijpharm.2011.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 09/12/2011] [Accepted: 09/24/2011] [Indexed: 12/28/2022]
Abstract
Thermal targeting of therapeutic genes can enhance local gene concentration to maximize their efficacy. However, lack of safe and efficient carriers has impeded the development of this delivery option. Herein, we report the preparation and evaluation of a hybrid recombinant material, p[Asp(DET)](53)ELP(1-90), that possess a thermo-responsive elastin-like polypeptide (ELP) segment and a diethylenetriamine (DET) modified poly-L-aspartic acid segment. The term, hybrid, indicates that the material was prepared by genetic engineering and synthetic chemistry. In summary, the thermal phase transition behavior and cytotoxicity of the biodegradable copolymer were studied. The polyplexes formed by the copolymer and pGL4 plasmid were characterized by dynamic light scattering and ζ-potential measurements. The polyplexes retained the thermal phase transition behavior conferred by the copolymer; however, they exhibited a two-step transition process not seen with the copolymer. The polyplexes also showed appreciable transfection efficiency with low cytotoxicity.
Collapse
|
9
|
Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 2009; 38:353-68. [PMID: 20012114 DOI: 10.1007/s00726-009-0431-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/20/2009] [Indexed: 02/02/2023]
Abstract
The polyamines spermine, spermidine and putrescine are ubiquitous cell components. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper-containing amine oxidases. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. In tumors, polyamines and amine oxidases are increased as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H(2)O(2) and aldehydes produced by the reaction. This study demonstrated that multidrug-resistant (MDR) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding wild-type (WT) ones to H(2)O(2) and aldehydes, the products of BSAO-catalyzed oxidation of spermine. Transmission electron microscopy (TEM) observations showed major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. Increasing the incubation temperature from 37 to 42 degrees Celsius enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumor growth, particularly well if the enzyme has been conjugated to a biocompatible hydrogel polymers. Since both wild-type and MDR cancer cells after pre-treatment with MDL 72527, a lysosomotropic compound, are sensitized to subsequent exposure to BSAO/spermine, it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells. It is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.
Collapse
|
10
|
Zhao YC, Chi YJ, Yu YS, Liu JL, Su RW, Ma XH, Shan CH, Yang ZM. Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology 2008; 149:2325-32. [PMID: 18202119 DOI: 10.1210/en.2007-1420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyamines are key regulators in cell growth and differentiation. It has been shown that ornithine decarboxylase (Odc) was essential for post-implantation embryo development, and overexpression of spermidine/spermine N1-acetyltransferase will lead to ovarian hypofunction and hypoplastic uteri. However, the expression and function of polyamine-related genes in mouse uterus during early pregnancy are still unknown. In this study we investigated the expression, regulation, and function of polyamine-related genes in mouse uterus during the peri-implantation period. Odc expression was strongly detected at implantation sites and stimulated by estrogen treatment. The expression of Odc antizyme 1 and spermidine/spermine N1-acetyltransferase was also highly shown at implantation sites and regulated by Odc or polyamine level in uterine cells. Embryo implantation was significantly inhibited by alpha-difluoromethylornithine, an Odc inhibitor. Moreover, the reduction of Odc activity caused by alpha-difluoromethylornithine treatment was compensated by the up-regulation of S-adenosylmethionine decarboxylase gene expression. Collectively, our results indicated that the coordinated expression of uterine polyamine-related genes may be important for embryo implantation.
Collapse
Affiliation(s)
- Yue-Chao Zhao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, College of Life Science, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lasbury ME, Merali S, Durant PJ, Tschang D, Ray CA, Lee CH. Polyamine-mediated apoptosis of alveolar macrophages during Pneumocystis pneumonia. J Biol Chem 2007; 282:11009-20. [PMID: 17314093 DOI: 10.1074/jbc.m611686200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The number of alveolar macrophages is decreased during Pneumocystis pneumonia (Pcp), partly because of activation of apoptosis in these cells. This apoptosis occurs in both rat and mouse models of Pcp. Bronchoalveolar lavage (BAL) fluids from Pneumocystis-infected animals were found to contain high levels of polyamines, including spermidine, N1-acetylspermine, and N1-acetylspermidine. These BAL fluids and exogenous polyamines were able to induce apoptosis in alveolar macrophages. Apoptosis of alveolar macrophages during infection, after incubation with BAL fluids from Pneumocystis-infected animals, or after incubation with polyamines was marked by an increase in intracellular reactive oxygen species, activation of caspases-3 and -9, DNA fragmentation, and leakage of mitochondrial cytochrome c into the cytoplasm. When polyamines were depleted from the BAL fluids of infected animals, the ability of these BAL fluids to induce apoptosis was lost. Interestingly, the apoptosis inducing activity of the polyamine-depleted BAL fluids was restored when polyamines were added back. The results of this study suggested that Pneumocystis infection results in accumulation of high levels of polyamines in the lung. These polyamines activate apoptosis of alveolar macrophages, perhaps because of the ROS that are produced during polyamine metabolism.
Collapse
Affiliation(s)
- Mark E Lasbury
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Yerushalmi HF, Besselsen DG, Ignatenko NA, Blohm-Mangone KA, Padilla-Torres JL, Stringer DE, Guillen JM, Holubec H, Payne CM, Gerner EW. Role of polyamines in arginine-dependent colon carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog 2006; 45:764-73. [PMID: 16705737 DOI: 10.1002/mc.20246] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the role of polyamines in arginine-dependent intestinal tumorigenesis in Apc(Min) (/+) mice. Arginine is a substrate for ornithine synthesis and thus can influence polyamine production. Supplementing the diet with arginine increased intestinal and colonic polyamine levels and colonic carcinogenesis. Inhibiting polyamine synthesis with D,L-alpha-diflouromethylornithine (DFMO) decreased small intestinal and colonic polyamine pools. In mice provided basal diet, but not when supplemented with arginine, DFMO decreased small intestinal tumor number and burden, and increased intestinal apoptosis. In mice provided supplemental arginine in the diet, DFMO induced late apoptosis and decreased tumorigenesis in the colon. DFMO slightly reduced tumor incidence, number, and size while significantly decreasing tumor burden and grade. These changes in colon tumorigenesis did not occur in mice not provided supplemental arginine. Our study indicates that polyamines play unique roles in intestinal and colonic carcinogenesis in Apc(Min) (/+) mice. Inhibition of polyamine synthesis suppresses the arginine-dependent risk of colon tumorigenesis, resulting in apoptosis induction and decreased tumorigenesis, in this murine model.
Collapse
Affiliation(s)
- Hagit F Yerushalmi
- Gastrointestinal Cancer Program, Arizona Cancer Center, The University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mistry D, Chambers MG, Mason RM. The role of adenosine in chondrocyte death in murine osteoarthritis and in a murine chondrocyte cell line. Osteoarthritis Cartilage 2006; 14:486-95. [PMID: 16443378 DOI: 10.1016/j.joca.2005.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 11/30/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of adenosine in chondrocyte death in murine osteoarthritis (OA). METHODS 5'-Nucleotidase (5'NT) generates adenosine. Enzyme activity was measured histochemically in normal murine and osteoarthritic STR/ort strain tibial cartilage. Adenosine-mediated cell death was investigated in MC615 chondrocyte cultures. Adenosine receptors (ARs) were assessed by reverse transcriptase polymerase chain reaction (RT-PCR). Cellular uptake of [(3)H] adenosine was measured with or without the inhibitor, nitrobenzylthioinosine (NBTI). Cell death was assessed by cell counting and DNA laddering following selective receptor stimulation, or after modulating adenosine metabolism with adenosine deaminase (ADA) or adenosine kinase (AK) inhibitors [erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and Iodotubericidin (Itub)], or with homocysteine (HC). Markers of apoptosis were assessed by Western blotting. Cell studies were validated by incubating normal murine knee joints in a medium containing adenosine and metabolic inhibitors. Apoptotic chondrocytes were identified with the TUNEL reaction. RESULTS 5'NT activity in STR/ort tibial cartilage increased with development of OA, especially close to OA lesions. Adenosine induced MC615 cell death in the presence of ADA inhibition (100 microM EHNA), or 1mM HC, or both. Adenosine uptake, mediated by NBTI-sensitive adenosine transporters, was required for cell death. ARs were expressed (A2b>A2a>A1) but were not involved in mediating cell death. Cell death involved the activation of caspase-3 and DNA fragmentation and was prevented by inhibiting caspase activity. However, neither caspase-8 nor caspase-9 was detected. Adenosine+EHNA induced chondrocyte apoptosis in normal murine knee joints. CONCLUSION Increased adenosine production may induce chondrocyte apoptosis and play a role in OA in STR/ort mice.
Collapse
Affiliation(s)
- D Mistry
- Department of Clinical Pharmacology, William Harvey Research Institute, St Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK
| | | | | |
Collapse
|
14
|
Abstract
The natural polyamines putrescine, spermidine and spermine are in multiple ways involved in cell growth and the maintenance of cell viability. In the course of the last 15 years more and more evidence hinted also at roles in gene regulation. It is therefore not surprising that the polyamines are involved in events inherent to genetically programmed cell death. Following inhibition of ornithine decarboxylase, a key step in polyamine biosynthesis, numerous links have been identified between the polyamines and apoptotic pathways. Examples of activation and prevention of apoptosis due to polyamine depletion are known for several cell lines. Elevation of polyamine concentrations may lead to apoptosis or to malignant transformation. These observations are discussed in the present review, together with possible mechanisms of action of the polyamines. Contradictory results and incomplete information blur the picture and complicate interpretation. Since, however, much interest is focussed at present on all aspects of programmed cell death, a considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro- and anti-apoptotic factors. Such situation is quite common in polyamine research.
Collapse
Affiliation(s)
- Nikolaus Seiler
- Laboratory of Nutritional Cancer Prevention, Institut de Recherche Contre les Cancers de l'Appareil Digestif (IRCAD), Strasbourg Cedex, 67091, France.
| | | |
Collapse
|
15
|
Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A, Moghimi SM. Low and high molecular weight poly(l-lysine)s/poly(l-lysine)-DNA complexes initiate mitochondrial-mediated apoptosis differently. FEBS Lett 2005; 579:6191-8. [PMID: 16243317 DOI: 10.1016/j.febslet.2005.09.092] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Poly(L-lysine)s, PLLs, are commonly used for DNA compaction and cell transfection. We report that, although PLLs of low (2.9 kDa), L-PLL, and high (27.4 kDa), H-PLL, Mw in free form and DNA-complexed cannot only cause rapid plasma membrane damage in human cell lines, phosphatidylserine "scrambling" and loss of membrane integrity, but later (24 h) initiate stress-induced cell death via mitochondrial permeabilization without the involvement of processed caspase-2. Mitochondrially mediated apoptosis was confirmed by detection of cytochrome c (Cyt c) release, activation of caspases-9 and -3, and subsequent changes in mitochondrial membrane potential. Plasma membrane damage and apoptosis were most prominent with H-PLL. Cytoplasmic level of Cyt c was more elevated following H-PLL treatment, but unlike L-PLL case, inhibition of Bax channel-forming activity reduced the extent of Cyt c release from mitochondria by half. Inhibition of Bax channel-forming activity had no modulatory effect on L-PLL-mediated Cyt c release. Further, functional studies of isolated mitochondria indicate that H-PLL, but not L-PLL, can directly induce Cyt c release, membrane depolarization, and a progressive decline in the rate of uncoupled respiration. Combined, our data suggest that H-PLL and L-PLL are capable of initiating mitochondrially mediated apoptosis differently. The observed PLL-mediated late-phase apoptosis may provide an explanation for previously reported transient gene expression associated with PLL-based transfection vectors. The importance of our data in relation to design of novel and safer cationic non-viral vectors for human gene therapy is discussed.
Collapse
Affiliation(s)
- Peter Symonds
- Cancer Research-UK, Tumour Cytokine Biology Group, University Hospital, Nottingham NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
16
|
Mariggiò MA, Vinella A, Pasquetto N, Curci E, Cassano A, Fumarulo R. In vitro effects of polyamines on polymorphonuclear cell apoptosis and implications in the pathogenesis of periodontal disease. Immunopharmacol Immunotoxicol 2005; 26:93-101. [PMID: 15106734 DOI: 10.1081/iph-120029947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Apoptosis provides a mechanism for clearance of unwanted cells in a variety of situations in which programmed or physiological cell death occurs; but the premature death of defensive cells could promote infection, inflammation and concomitant diseases. Polymorphonuclear cells (PMN) of gingival sulcus play an important role in host defense against periodontal tissue-invading bacteria, but their phagocytic activity is conditioned by several virulence factors released by oral pathogens. Polyamines derived from oral bacteria frequently occur at concentrations approaching 1 mM in gingival fluid at diseased periodontal sites. Brief exposure of PMN to polyamines shortened the lag culture time required to observe microscopical or DNA fragmentation traces. Increase of Fas/Apo-1 expression and caspase-8 and caspase-3 activation focused two typical steps in the pathway of the pro-apoptotic mechanism exhibited by polyamines, even if to a different extent: spermine > spermidine > putrescine. The possible role played by polyamines in the pathogenesis of periodontal disease by dysregulating apoptosis of gingival PMN is discussed.
Collapse
Affiliation(s)
- Maria A Mariggiò
- Dipartimento di Scienze Biomediche e Oncologia Umana, Sezione di Patologia Generale e Oncologia Sperimentale, Università degli Studi di Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Ikeguchi Y, Wang X, McCLOSKEY D, Coleman C, Nelson P, Hu G, Shantz L, Pegg A. Characterization of transgenic mice with widespread overexpression of spermine synthase. Biochem J 2004; 381:701-7. [PMID: 15104536 PMCID: PMC1133879 DOI: 10.1042/bj20040419] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
A widespread increase in SpmS (spermine synthase) activity has been produced in transgenic mice using a construct in which the human SpmS cDNA was placed under the control of a composite CMV-IE (cytomegalovirus immediate early gene) enhancer-chicken beta-actin promoter. Four separate founder CAG/SpmS mice were studied. Transgenic expression of SpmS was found in all of the tissues examined, but the relative SpmS activities varied widely according to the founder animal and the tissue studied. Very large increases in SpmS activity were seen in many tissues. SpdS (spermidine synthase) activity was not affected. Although there was a statistically significant decline in spermidine content and increase in spermine, the alterations were small compared with the increase in SpmS activity. These results provide strong support for the concept that the levels of the higher polyamines spermidine and spermine are not determined only by the relative activities of the two aminopropyltransferases. Other factors such as availability of the aminopropyl donor substrate decarboxylated S-adenosylmethionine and possibly degradation or excretion must also influence the spermidine/spermine ratio. No deleterious effects of SpmS overexpression were seen. The mice had normal growth, fertility and behaviour up to the age of 12 months. However, breeding the CAG/SpmS mice with MHC (alpha-myosin heavy chain)/AdoMetDC (S-adenosylmethionine decarboxylase) mice, which have a large increase in S-adenosylmethionine decarboxylase expression in heart, was lethal. In contrast, breeding the CAG/SpmS mice with MHC/ODC (L-ornithine decarboxylase) mice, which have a large increase in cardiac ornithine decarboxylase expression, had a protective effect in preventing the small decrease in viability of the MHC/ODC mice.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Xiaojing Wang
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Diane E. McCLOSKEY
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Catherine S. Coleman
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Paul Nelson
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Guirong Hu
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Lisa M. Shantz
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | | |
Collapse
|
18
|
Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, Jackson DM, Appleton I. Neuroprotective effects of spermine following hypoxia‐ischemia‐induced brain damage: A mechanistic study. FASEB J 2004; 18:1114-6. [PMID: 15132986 DOI: 10.1096/fj.03-1203fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polyamines (spermine, putrescine, and spermidine) can have neurotoxic or neuroprotective properties in models of neurodegeneration. However, assessment in a model of hypoxia-ischemia (HI) has not been defined. Furthermore, the putative mechanisms of neuroprotection have not been elucidated. Therefore, the present study examined the effects of the polyamines in a rat pup model of HI and determined effects on key enzymes involved in inflammation, namely, nitric oxide synthase (NOS) and arginase. In addition, effects on mitochondrial function were investigated. The polyamines or saline were administered i.p. at 10mg/kg/day for 6 days post-HI. Histological assessment 7 days post-HI revealed that only spermine significantly (P<0.01) reduced infarct size from 46.14 +/- 10.4 mm3 (HI + saline) to 4.9 +/- 2.7 mm3. NOS activity was significantly increased following spermine treatment in the left (ligated) hemisphere compared with nonintervention controls (P<0.01) and HI + saline (P<0.05). In contrast, spermine decreased arginase activity compared with HI + saline but was still significantly elevated in comparison to nonintervention controls (P<0.01). Assessment of mitochondrial function in the HI + saline group, revealed significant and extensive damage to complex-I (P<0.01) and IV (P<0.001) and loss of citrate synthase activity (P<0.05). No effect on complex II-III was observed. Spermine treatment significantly prevented all these effects. This study has therefore confirmed the neuroprotective effects of spermine in vivo. However, for the first time, we have shown that this effect may, in part, be due to increased NOS activity and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jänne J, Alhonen L, Pietilä M, Keinänen TA. Genetic approaches to the cellular functions of polyamines in mammals. ACTA ACUST UNITED AC 2004; 271:877-94. [PMID: 15009201 DOI: 10.1111/j.1432-1033.2004.04009.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The polyamines putrescine, spermidine and spermine are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive. Pharmacological interventions have demonstrated convincingly that a steady supply of these compounds is a prerequisite for cell proliferation to occur. The last decade has witnessed the appearance of a substantial number of studies, in which genetic engineering of polyamine metabolism in transgenic rodents has been employed to unravel their cellular functions. Transgenic activation of polyamine biosynthesis through an overexpression of their biosynthetic enzymes has assigned specific roles for these compounds in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase, as achieved through targeted disruption of their genes, is not compatible with murine embryogenesis. Finally, the first reports of human diseases apparently caused by mutations or rearrangements of the genes involved in polyamine metabolism have appeared.
Collapse
Affiliation(s)
- Juhani Jänne
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
20
|
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376:1-14. [PMID: 13678416 PMCID: PMC1223767 DOI: 10.1042/bj20031327] [Citation(s) in RCA: 705] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 01/30/2023]
Abstract
Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
Collapse
Affiliation(s)
- Heather M Wallace
- Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
21
|
Takahashi Y, Berberich T, Miyazaki A, Seo S, Ohashi Y, Kusano T. Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:820-9. [PMID: 14675447 DOI: 10.1046/j.1365-313x.2003.01923.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyamines (PAs) play important roles in cell proliferation, growth and environmental stress responses of all living organisms. In this study, we examine whether these compounds act as signal mediators. Spermine (Spm) specifically activated protein kinases of tobacco leaves, which were identified as salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), using specific antibodies. Upon Spm treatment, upregulation of WIPK, but not SIPK, was observed. Spm-induced mitogen-activated protein kinases (MAPKs) activation and WIPK upregulation were prevented upon pre-treatment with antioxidants and Ca2+ channel blockers. Additionally, Spm specifically stimulated expression of the alternative oxidase (AOX) gene, which was disrupted by these antioxidants and Ca2+ channel blockers. Bongkrekic acid (BK), an inhibitor of the opening of mitochondrial permeability transition (PT) pores, suppressed MAPKs activation and accumulation of WIPK and AOX mRNA. Our data collectively suggest that Spm causes mitochondrial dysfunction via a signalling pathway in which reactive oxygen species and Ca2+ influx are involved. As a result, the phosphorylation activities of the two MAPK enzymes SIPK and WIPK are stimulated.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Ikeguchi Y, Mackintosh CA, McCloskey DE, Pegg AE. Effect of spermine synthase on the sensitivity of cells to anti-tumour agents. Biochem J 2003; 373:885-92. [PMID: 12737625 PMCID: PMC1223546 DOI: 10.1042/bj20030246] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 04/09/2003] [Accepted: 05/09/2003] [Indexed: 12/17/2022]
Abstract
The role of spermine in the sensitivity of cells to various established and experimental anti-tumour agents was examined, using paired cell lines that possess or lack spermine synthase. All spermine-synthase-deficient cells had no detectable spermine, and elevated spermidine, content. Spermine content did not alter the cell growth rate. There was little or no difference in sensitivity of immortalized mouse embryonic fibroblasts to doxorubicin, etoposide, cisplatin, methylglyoxal bis(guanylhydrazone) or H(2)O(2) and only a slight increase in sensitivity to vinblastine and nocodazole. However, the absence of spermine clearly increased the sensitivity to 1,3-bis(2-chloroethyl)- N -nitrosourea, suggesting that depletion of spermine may be a useful way to increase the anti-neoplastic effects of anti-tumour agents that form chloroethyl-mediated interstrand DNA cross-links. The effects of spermine on the response to polyamine analogues (which have been proposed to be useful anti-neoplastic agents) were complex, and depended on the compound examined and on the cells tested. Sensitivity to CHENSpm ( N (1)-ethyl- N (11)-[(cycloheptyl)methyl]-4,8-diazaundecane) was substantially greater in immortalized fibroblasts that lack spermine. In contrast, BE-3-4-3 [ N (1), N (12)-bis(ethyl)spermine] and BE-3-3-3 [ N (1), N (11)-bis(ethyl)norspermine] were more active against cells that contained spermine. The presence of spermine correlated with a greater induction of spermidine/spermine- N (1)-acetyltransferase by BE-3-3-3, which is consistent with suggestions that this induction is important for the response to this drug. These findings support the concepts that different polyamine analogues have different sites of action and that CHENSpm has a different site of action from BE-3-3-3.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Cellular and Molecular Physiology (H166), Room C4737, Pennsylvania State University College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
23
|
Walters D. Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. THE NEW PHYTOLOGIST 2003; 159:109-115. [PMID: 33873679 DOI: 10.1046/j.1469-8137.2003.00802.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Although most work on polyamines in incompatible interactions between plants and pathogens has focussed on polyamines conjugated to phenolic compounds (hydroxycinnamic acid amides), changes in free polyamines and their catabolism have been shown to occur in such interactions. A common feature of these interactions is an increase in diamine oxidase (DAO) activity and, in some interactions, of polyamine oxidase (PAO). The activities of these two enzymes produces hydrogen peroxide (H2 O2 ), which may act in structural defense, as a signal molecule, or as an antimicrobial compound in host resistance. There are several possible roles for polyamines and polyamine catabolism in plant resistance to pathogen infection; H2 O2 produced might trigger the hypersensitive response (HR), thought to be a form of programmed cell death (PCD), the polyamine spermine might act as an inducer of PR proteins, and as a trigger for caspase activity and hence HR. There is, however, a need for more precise information on the timing and location of changes in polyamine metabolism in the development of resistance. Only with this information can a case be made for the involvement of polyamines and polyamine catabolism in plant defense.
Collapse
Affiliation(s)
- Dale Walters
- Crop and Soil Research Group, Scottish Agricultural College, Ayr Campus, Auchincruive Estate, Ayr KA6 5HW, UK
| |
Collapse
|
24
|
Teti D, Visalli M, McNair H. Analysis of polyamines as markers of (patho)physiological conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:107-49. [PMID: 12450656 DOI: 10.1016/s1570-0232(02)00669-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aliphatic polyamines, putrescine, spermidine and spermine, are normal cell constituents that play important roles in cell proliferation and differentiation. The equilibrium between cellular uptake and release and the balanced activities of biosynthetic and catabolic enzymes of polyamines are essential for normal homeostasis in the proliferation and functions of cells and tissues. However, the intracellular polyamine content increases in hyperplastic or neoplastic growth. Although the involvement of polyamines in physiological and pathological cell proliferation and differentiation has been well established, the role they play is quite different in relation to cell systems and animal models and is dependent on inducer agents and stimuli. Also, the experimental procedures used to deplete polyamines have been shown to influence the cell responses. In this paper, the assay methods currently in use for polyamines are reviewed and compared with respect to sensitivity, reproducibility and applicability to routine analysis. The relevance of polyamine metabolism and the uptake/release process in many physiological and pathological processes is highlighted, and the cellular polyamine pathways are discussed in relation to the possible diagnostic and therapeutic significance of these mediators.
Collapse
Affiliation(s)
- Diana Teti
- Department of Experimental Pathology and Microbiology, Section of Experimental Pathology, Azienda Policlinico Universitario, Torre Biologica, IV piano, Via Consolare Valeria, 98125 Messina, Italy.
| | | | | |
Collapse
|
25
|
Yuan Q, Ray RM, Johnson LR. Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome c. Am J Physiol Cell Physiol 2002; 282:C1290-7. [PMID: 11997243 DOI: 10.1152/ajpcell.00351.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome c from mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with alpha-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-x(L) and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
26
|
Burns MR, LaTurner S, Ziemer J, McVean M, Devens B, Carlson CL, Graminski GF, Vanderwerf SM, Weeks RS, Carreon J. Induction of apoptosis by aryl-substituted diamines: role of aromatic group substituents and distance between nitrogens. Bioorg Med Chem Lett 2002; 12:1263-7. [PMID: 11965367 DOI: 10.1016/s0960-894x(02)00156-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of aromatic substituted diamines was synthesized and characterized for their cytotoxic profiles against human breast and prostate tumor cell lines. Following a structure function analysis of the effects of changes of the benzyl substituents and the distance between amino groups the most potent analogues were analyzed biologically and were shown to induce apoptosis. These compounds do not induce the enzyme SSAT or deplete intracellular polyamine levels, mechanisms demonstrated by other cytotoxic polyamine analogues.
Collapse
Affiliation(s)
- Mark R Burns
- MediQuest Therapeutics, Inc., 4010 Stone Way North, Seattle, WA 98103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Serafini-Fracassini D, Del Duca S, Monti F, Poli F, Sacchetti G, Bregoli AM, Biondi S, Della Mea M. Transglutaminase activity during senescence and programmed cell death in the corolla of tobacco (Nicotiana tabacum) flowers. Cell Death Differ 2002; 9:309-21. [PMID: 11859413 DOI: 10.1038/sj.cdd.4400954] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 07/31/2001] [Accepted: 09/11/2001] [Indexed: 12/20/2022] Open
Abstract
Corolla life span of undetached flowers of Nicotiana tabacum was divided into stages from the closed corolla (stage 1) through anthesis (stage 5) to death (stage 9). Senescence began around stage 6 in the proximal part, concomitantly with DNA laddering. Nuclear blebbing, DNA laddering, cell wall modification, decline in protein, water, pigment content and membrane integrity were observed during senescence and PCD. Transglutaminase activity was measured as mono- and bis-derivatives of putrescine (mono-PU; bis-PU) and bis-derivatives of spermidine (bis-SD). Bis-derivatives decreased with the progression of senescence, while mono-PU increased during early senescence; derivatives were present in different amounts in the proximal and distal parts of the corolla. In excised flowers, exogenous spermine delayed senescence and PCD, and caused an increase in free and acid-soluble conjugated PA levels. Bis-PU was the most abundant PA-derivative before DNA laddering stage; thereafter, bis-PU generally decreased and mono-PU became the most abundant derivative.
Collapse
Affiliation(s)
- D Serafini-Fracassini
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Singh R, Pervin S, Wu G, Chaudhuri G. Activation of caspase-3 activity and apoptosis in MDA-MB-468 cells by N(omega)-hydroxy-L-arginine, an inhibitor of arginase, is not solely dependent on reduction in intracellular polyamines. Carcinogenesis 2001; 22:1863-9. [PMID: 11698350 DOI: 10.1093/carcin/22.11.1863] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have shown previously that (NOHA) an intermediate in the nitric oxide (NO) synthetic pathway and an inhibitor of arginase significantly reduced intracellular polyamines, activated caspase-3 and induced apoptosis in the human breast cancer cell line MDA-MB-468. These actions of NOHA were abolished in the presence of exogenous L-ornithine suggesting that a reduction in the intracellular polyamine content might be responsible for the activation of caspase-3 and apoptotic actions of NOHA. In order to further explore this possibility, we used SAM-486A and alpha-difluoromethylornithine (DFMO), which are inhibitors of S-adenosylmethionine decarboxylase (SAMDC), and ornithine decarboxylase (ODC), respectively, either alone or in combination to reduce the intracellular polyamine levels. We then assessed whether a reduction in polyamine levels by these two compounds to a similar degree to that produced by NOHA activated caspase-3 which occurs prior to the onset of apoptosis. We observed that both SAM-486A and DFMO, either alone or in combination, inhibited cell proliferation, induced p21 and arrested cells in the G(0)-G(1) phase of the cell cycle but failed to activate caspase-3 as assessed by enzymatic assay of caspase-3, western blot analysis of the proteolytic cleavage of caspase-3 protein as well as TUNEL assay. Furthermore, pre-incubation of the cells with SAM-486A and DFMO for 4 days, either alone or in combination significantly inhibited the activation of caspase-3 and apoptosis by NOHA when compared with that observed with cells treated with NOHA alone. Our results, therefore, indicate that the activation of caspase-3 and apoptosis observed with NOHA cannot be solely explained by a reduction in intracellular polyamine levels and that other mechanisms need to be also considered.
Collapse
Affiliation(s)
- R Singh
- Department of Obstetrics, Jonsson Comprehensive Cancer Center, University of California School of Medicine, Los Angeles, CA 90095-1740, USA
| | | | | | | |
Collapse
|
29
|
Maccarrone M, Bari M, Battista N, Di Rienzo M, Falciglia K, Finazzi Agrò A. Oxidation products of polyamines induce mitochondrial uncoupling and cytochrome c release. FEBS Lett 2001; 507:30-4. [PMID: 11682054 DOI: 10.1016/s0014-5793(01)02949-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spermine is shown to uncouple isolated mitochondria and to trigger the selective release of cytochrome c. Pargyline, an inhibitor of amine oxidase (AO), fully prevented these effects of spermine, which instead were potentiated by exogenous AO. Hydrogen peroxide, an oxidation product of spermine, mimicked the effects of spermine on mitochondria, while the addition of catalase prevented them. Spermidine and putrescine also caused mitochondrial uncoupling and triggered cytochrome c release, with a potency which correlated with the substrate preference of mitochondrial AO. Pargyline protected human lymphoma U937 cells against UVB-induced apoptosis, by reducing AO activity, mitochondrial uncoupling and cytochrome c release.
Collapse
Affiliation(s)
- M Maccarrone
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Via di Tor Vergata 135, I-00133, Rome, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Flamigni F, Facchini A, Stanic I, Tantini B, Bonavita F, Stefanelli C. Control of survival of proliferating L1210 cells by soluble guanylate cyclase and p44/42 mitogen-activated protein kinase modulators. Biochem Pharmacol 2001; 62:319-28. [PMID: 11434904 DOI: 10.1016/s0006-2952(01)00646-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular signaling pathways involved in the survival of proliferating L1210 leukemia cells were investigated by using specific modulators. Among the various inhibitors tested, only 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ), a soluble guanylate cyclase (sGC) inhibitor, was found to induce a marked increase in caspase activity, which was associated with a loss of cell viability and a reduction in cGMP content. ODQ also provoked the processing of caspases-3 and -9, release of cytochrome c and, as early events, reduction of Bcl-2 content and dephosphorylation of Bad at Ser 112. Furthermore, YC-1, an sGC activator, and 8-Br-cGMP, a cell-permeant analogue of cGMP, exerted some protection against various apoptotic stimuli, such as serum deprivation or spermine accumulation. Although PD98059 (2'-amino-3'-methoxyflavone), an inhibitor of the p44/42 mitogen-activated protein kinase (MAPK) pathway, did not increase basal caspase activity, and ODQ did not affect p44/42 MAPK phosphorylation significantly, phorbol myristate acetate stimulated p44/42 MAPK and reduced caspase activation induced by ODQ, serum deprivation, and spermine in a p44/42-dependent manner. SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)1H-imidazole), a p38 MAPK inhibitor, also partially protected against ODQ-induced apoptosis by increasing p44/42 MAPK phosphorylation. In conclusion, these results suggest that sGC may be relevant both for survival of L1210 cells under basal growing conditions and for protection against various apoptotic stimuli. p44/42 MAPK activation may also confer some protection from apoptosis, but apparently through a pathway largely independent of cGMP.
Collapse
Affiliation(s)
- F Flamigni
- Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Rodriguez-Sallaberry C, Simmen FA, Simmen RC. Polyamine- and insulin-like growth factor-I-mediated proliferation of porcine uterine endometrial cells: a potential role for spermidine/spermine N(1)-acetyltransferase during peri-implantation. Biol Reprod 2001; 65:587-94. [PMID: 11466230 DOI: 10.1095/biolreprod65.2.587] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) and the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) are progesterone-regulated genes with maximal expression at peri-implantation in the porcine uterine endometrium. However, while IGF-I stimulates cell proliferation, SSAT, by acetylating the naturally occurring polyamines (PA) spermine (SPM) and spermidine (SPD), typically functions as a cell growth inhibitor. The present study examined the functional relationships of IGF-I, SSAT, and PA in the control of endometrial cell proliferation. Northern blot analysis indicated that SSAT mRNA levels change with distinct pregnancy stages, in contrast to those for the PA biosynthetic enzyme ornithine decarboxylase (ODC). Primary cultures of luminal and glandular epithelial (LE, GE) and stromal (ST) cells isolated from Day 12 pregnant pig endometrium had IGF-I mRNA levels for ST > LE > GE cells. The mRNA levels for SSAT and ODC were transiently diminished by IGF-I treatment, but only in GE cells. By contrast, SPM and SPD increased SSAT mRNA levels in GE and ST cells, but increased ODC mRNA levels only in GE cells. IGF-I, putrescine (PUT), and SPM individually increased cellular DNA synthesis as measured by tritiated thymidine incorporation in GE and ST cells, while SPD had an effect only in ST cells. IGF-I enhanced the proliferative effect of each PA in GE cells, but only of SPD in ST cells. The mitogen-activated protein kinase inhibitor, PD98059, inhibited the induction by SPM of GE cell DNA synthesis but not that of IGF-I. Wortmannin, a phosphatidylinositol-3-kinase inhibitor had no effect on either IGF-I or SPM induction of GE cell DNA synthesis. The relative concentrations of SPM, SPD, and PUT in uterine luminal fluids differed, with the levels for each PA higher at pregnancy Day 12 than at 11.5. These results suggest that IGF-I and PA act through distinct signaling pathways to mediate cell-type-specific growth of early pregnancy pig uterine endometrium. Further, SSAT, through its control of intracellular PA levels, likely plays a modulatory role in the establishment of an optimal uterine environment for successful embryo attachment.
Collapse
Affiliation(s)
- C Rodriguez-Sallaberry
- Department of Animal Sciences and Interdisciplinary Concentration in Animal Molecular & Cell Biology, University of Florida, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
32
|
Abstract
Three tri-substituted spermidines, di-p-coumaroyl-caffeoylspermidine, tri-caffeoylspermidine and tri-p-coumaroylspermidine, isolated from pollen of Quercus alba, were examined for antifungal activity. Both di-p-coumaroyl-caffeoylspermidine and tri-p-coumaroylspermidine reduced mycelial growth of the oat leaf stripe pathogen, Pyrenophora avenae and reduced powdery mildew (Blumeria graminis f. sp. hordei) infection of barley seedlings when applied as a post-inoculation treatment. When used as a pre-inoculation treatment, only di-p-coumaroyl-caffeoylspermidine reduced powdery mildew infection significantly. Growth of P. avenae in the presence of 100 microM di-p-coumaroyl-caffeoylspermidine reduced activity of S-adenosylmethionine decarboxylase (AdoMetDC), and led to a reduction in the incorporation of labelled ornithine into spermidine. The other two spermidine conjugates increased AdoMetDC activity and the flux label from ornithine into spermine in P. avenae significantly.
Collapse
Affiliation(s)
- D Walters
- Department of Plant Biology, The Scottish Agricultural College, Auchincruive, Nr Ayr, UK.
| | | | | |
Collapse
|
33
|
Stefanelli C, Pignatti C, Tantini B, Fattori M, Stanic I, Mackintosh CA, Flamigni F, Guarnieri C, Caldarera CM, Pegg AE. Effect of polyamine depletion on caspase activation: a study with spermine synthase-deficient cells. Biochem J 2001; 355:199-206. [PMID: 11256964 PMCID: PMC1221727 DOI: 10.1042/0264-6021:3550199] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of the caspase proteases represents a central point in apoptosis. The requirement for spermine for the processes leading to caspase activation has been studied in transformed embryonic fibroblasts obtained from gyro (Gy) mutant male mice. These cells lack spermine synthase activity and thus provide a valuable model to study the role of spermine in cell processes. Gy fibroblasts do not contain spermine and have a higher spermidine content. However, when compared with fibroblasts obtained from normal male littermates (N cells), Gy fibroblasts were observed to grow normally. The lack of spermine did not affect the expression of Bcl-2, and caspases 3 and 9 were activated by etoposide in both N and Gy cells, indicating that spermine is dispensable for caspase activation. Spermine deficiency did not significantly influence caspase activity in cells treated with etoposide, cycloheximide or staurosporine, but sensitized the cells to UV irradiation, which triggered significantly higher caspase activity in Gy cells compared with N cells. alpha-Difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis that is able to deplete cells of putrescine and spermidine, but usually does not influence spermine content, was able to produce a more complete polyamine depletion in Gy cells. This depletion, which included spermine deficiency, dramatically increased caspase activation and cell death in Gy fibroblasts exposed to UV irradiation. On the other hand, in either N or Gy cells, DFMO treatment did not influence caspase activity triggered by staurosporine, but inhibited it when the inducers were cycloheximide or etoposide. In Gy cells depleted of polyamines by DFMO, polyamine replenishment with either spermidine or spermine was sufficient to restore caspase activity induced by etoposide, indicating that, in this model, polyamines have an interchangeable role in supporting caspase activation. Therefore, spermine is not required for such activation, and the effect and specificity of polyamine depletion on caspase activity may be very different, depending on the role of polyamines in the specific death pathways engaged by different stimuli. Some inducers of apoptosis, for example etoposide, absolutely require polyamines for caspase activation, yet the lack of polyamines, particularly spermine, strongly increases caspase activation when induced by UV irradiation.
Collapse
Affiliation(s)
- C Stefanelli
- Department of Biochemistry G. Moruzzi, University of Bologna, Via Irnerio 48, I-40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mather M, Rottenberg H. Polycations induce the release of soluble intermembrane mitochondrial proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:357-68. [PMID: 11115647 DOI: 10.1016/s0005-2728(00)00231-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The release of proapoptotic proteins from the intermembrane space of mitochondria is an early critical step in many pathways to apoptosis. Induction of the mitochondrial permeability transition pore (PTP) was suggested to be the mechanism of the release of soluble mitochondrial intermembrane proteins (SIMP) in apoptosis. However, several studies suggested that proapoptotic proteins (e.g. Bax and Bid) can induce the release of SIMP (e.g. cytochrome c (cyt c) and adenylate kinase 2 (AK2)) in vivo and in vitro independent of PTP. We have found that a number of structurally diverse polycations, such as aliphatic polyamines (e.g. spermine and to a lesser extent spermidine), aminoglycosides (e.g. streptomycin, gentamicin and neomycin), and cytotoxic peptides (e.g. melittin), induce the release of SIMP from liver mitochondria, in vitro. All the polycations released AK2 together with cyt c, suggesting that rupture of the outer membrane is a common mechanism of cyt c release by these polycations. Several polycations (e.g. spermine, spermidine and neomycin) induced SIMP release without inducing significant swelling, and this release was not inhibited significantly by the PTP inhibitor cyclosporin. In contrast, under the same conditions, streptomycin and melittin induced swelling and SIMP release that was inhibited strongly by cyclosporin. Gentamicin-induced swelling and release of SIMP were partially inhibited by cyclosporin. The affinity of polyamines to the anionic phospholipids of the mitochondrial membranes (spermine=neomycin>gentamicin>streptomycin=spermidine) correlated roughly with their ability to induce PTP-independent release of SIMP, which suggests that the binding of polycations to the anionic phospholipids of the outer mitochondrial membrane facilitates the rupture of this membrane. However, some polycations facilitated the induction of PTP, possibly by binding to cardiolipin on the inner membrane. This dual mechanism may be relevant to the induction of SIMP release in apoptosis.
Collapse
Affiliation(s)
- M Mather
- MCP Hahnemann University, M.S. 435, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- R A Casero
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
36
|
Yuan Q, Ray RM, Viar MJ, Johnson LR. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G130-8. [PMID: 11123206 DOI: 10.1152/ajpgi.2001.280.1.g130] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.
Collapse
Affiliation(s)
- Q Yuan
- Department of Physiology, College of Medicine, The University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
37
|
Schipper RG, Penning LC, Verhofstad AA. Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin Cancer Biol 2000; 10:55-68. [PMID: 10888272 DOI: 10.1006/scbi.2000.0308] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The natural polyamines (putrescine, spermidine and spermine) are ubiquitous low-molecular aliphatic amines that play multifunctional roles in cell growth and differentiation. Recently, evidence has merging that polyamines are actively involved in cell death. Changes in polyamine homeostasis have been reported during cell death of nerve cells, in programmed cell death of embryonic cells and in various in vitro models of apoptosis. Polyamines and many of their structural analogs exert cytotoxic effects in vitro as well in vivo. Furthermore, polyamine analogs and inhibitors of the polyamine anabolic/catabolic pathways modulate processes of cell death in a cell-type specific way. Much ambiguity exists in the working mechanisms by which polyamines mediate apoptosis since they have been shown to act as promoting, modulating or protective agents in apoptosis. Nevertheless, from the studies reviewed here it can be concluded that polyamines are critically involved in cellular survival which makes them suitable targets for therapeutic intervention that is specifically directed to cell death pathways.
Collapse
Affiliation(s)
- R G Schipper
- Department of Pathology, University Hospital Nijmegen, The Netherlands
| | | | | |
Collapse
|