1
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
2
|
Luo L, Zhu D, Huang R, Xiong L, Mehjabin R, He L, Liao L, Li Y, Zhu Z, Wang Y. Molecular cloning and preliminary functional analysis of six RING-between-ring (RBR) genes in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2019; 87:62-72. [PMID: 30610929 DOI: 10.1016/j.fsi.2018.12.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Ubiquitination is a post-translational modification of proteins that is widely present in eukaryotic cells. There is increasing evidence that ubiquitinated proteins play crucial roles in the immune response process. In mammals, RING-between-RING (RBR) proteins play a key role in regulating immune signaling as the important E3 ubiquitin ligases during ubiquitination. However, the function of RBR in fish is still unclear. In the present study, six RBR genes (RNF19A, RNF19B, RNF144AA, RNF144AB, RNF144B and RNF217) of grass carp (Ctenopharyngodon idellus) were cloned and characterized. Similar to mammals, all six members of RBR family contained RING, in-between-ring (IBR) and transmembrane (TM) domains. These genes were constitutively expressed in all studied tissues, but the relative expression level differed. Following grass carp reovirus(GCRV) infection, the expression of six RBR genes in liver, gill, spleen and intestine significantly altered. Additionally, their expression in Ctenopharyngodon idellus kidney (CIK) cells was significantly increased after GCRV infection. And deficiency of RNF144B in CIK with small interference RNA (siRNA) up-regulated polyinosinic:polycytidylic acid poly(I:C))-induced inflammatory cytokines production, including IFN-I, TNF-α, IL-6, and transcription factor IRF3, which demonstrated that RNF144B was a negative regulator of inflammatory cytokines. Our results suggested that the RBR might play a vital role in regulating immune signaling and laid the foundation for the further mechanism research of RBR in fishes.
Collapse
Affiliation(s)
- Lifei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Denghui Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lv Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rumana Mehjabin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337:47-57. [PMID: 26318284 DOI: 10.1016/j.tox.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a specific, non-lysosomal pathway responsible for the controlled degradation of abnormal and short-half-life proteins. Despite its relevance in cell homeostasis, information regarding control of the UPS component gene expression is lacking. Data from a recent study suggest that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, might control the expression of several genes encoding for UPS proteins. Here, we showed that activation of AHR by TCDD and β-naphthoflavone (β-NF) results in Ubcm4 gene induction accompanied by an increase in protein levels. UbcM4 is an ubiquitin-conjugating enzyme or E2 protein that in association with ubiquitin ligase enzymes or E3 ligases promotes the ubiquitination and 26S proteasome-mediated degradation of different proteins, including p53, c-Myc, and c-Fos. We also present data demonstrating increased c-Fos ubiquitination and proteasomal degradation through the AHR-mediated induction of UbcM4 expression. The present study shows that AHR modulates the degradation of proteins involved in cell cycle control, consistent with previous reports demonstrating an essential role of the AHR in cell cycle regulation.
Collapse
|
5
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
6
|
Spratt DE, Mercier P, Shaw GS. Structure of the HHARI catalytic domain shows glimpses of a HECT E3 ligase. PLoS One 2013; 8:e74047. [PMID: 24058416 PMCID: PMC3772753 DOI: 10.1371/journal.pone.0074047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn²⁺-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.
Collapse
Affiliation(s)
- Donald E. Spratt
- Department of Biochemistry, Schulich School of Medicine and
Dentistry, University of Western Ontario, London, Ontario,
Canada
| | - Pascal Mercier
- Department of Biochemistry, Schulich School of Medicine and
Dentistry, University of Western Ontario, London, Ontario,
Canada
| | - Gary S. Shaw
- Department of Biochemistry, Schulich School of Medicine and
Dentistry, University of Western Ontario, London, Ontario,
Canada
| |
Collapse
|
7
|
Rana R, Coulter S, Kinyamu H, Goldstein JA. RBCK1, an E3 ubiquitin ligase, interacts with and ubiquinates the human pregnane X receptor. Drug Metab Dispos 2013; 41:398-405. [PMID: 23160820 PMCID: PMC3558864 DOI: 10.1124/dmd.112.048728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)-interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation.
Collapse
Affiliation(s)
- Ritu Rana
- Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
8
|
Tatematsu K, Yoshimoto N, Okajima T, Tanizawa K, Kuroda S. Identification of ubiquitin ligase activity of RBCK1 and its inhibition by splice variant RBCK2 and protein kinase Cbeta. J Biol Chem 2008; 283:11575-85. [PMID: 18303026 DOI: 10.1074/jbc.m706961200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a RING-IBR protein, RBCK1, as a protein kinase C (PKC) beta- and zeta-interacting protein, and its splice variant, RBCK2, lacking the C-terminal half including the RING-IBR domain. RBCK1 has been shown to function as a transcriptional activator whose nuclear translocation is prevented by interaction with the cytoplasmic RBCK2. We here demonstrate that RBCK1, like many other RING proteins, also possesses a ubiquitin ligase (E3) activity and that its E3 activity is inhibited by interaction with RBCK2. Moreover, RBCK1 has been found to undergo efficient phosphorylation by PKCbeta. The phosphorylated RBCK1 shows no self-ubiquitination activity in vitro. Overexpression of PKCbeta leads to significant increases in the amounts of intracellular RBCK1, presumably suppressing the proteasomal degradation of RBCK1 through self-ubiquitination, whereas coexpression with PKCalpha, PKCepsilon, and PKCzeta shows no or little effect on the intracellular amount of RBCK1. Taken together, the E3 activity of RBCK1 is controlled by two distinct manners, interaction with RBCK2 and phosphorylation by PKCbeta. It is possible that other RING proteins, such as Parkin, BRCA1, and RNF8, having the E3 activity, are also down-regulated by interaction with their RING-lacking splice variants and/or phosphorylation by protein kinases.
Collapse
Affiliation(s)
- Kenji Tatematsu
- Department of Structural Molecular Biology, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | |
Collapse
|
9
|
Zumbrennen KB, Hanson ES, Leibold EA. HOIL-1 is not required for iron-mediated IRP2 degradation in HEK293 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:246-52. [PMID: 17822790 PMCID: PMC2274887 DOI: 10.1016/j.bbamcr.2007.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 07/19/2007] [Accepted: 07/26/2007] [Indexed: 01/11/2023]
Abstract
Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.
Collapse
Affiliation(s)
- Kimberly B. Zumbrennen
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Oncological Sciences, University of Utah, Salt Lake City, Utah, 84112
| | - Eric S. Hanson
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Departments of Medicine, University of Utah, Salt Lake City, Utah, 84112
| | - Elizabeth A. Leibold
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, Utah, 84112
- Departments of Medicine, University of Utah, Salt Lake City, Utah, 84112
- Oncological Sciences, University of Utah, Salt Lake City, Utah, 84112
- Address correspondence to: Elizabeth A. Leibold, University of Utah, Program in Human Molecular Biology, 15 North 2030 East, SLC, UT 84112; Tel. 1−801−585−5002; Fax. 1−801−585−3501; E-Mail:
| |
Collapse
|
10
|
Abstract
An overview of the large and functionally diverse RBR protein family that mediates protein-protein interactions of various kinds in development and disease. Summary Proteins of the ring between ring fingers (RBR)-domain family are characterized by three groups of specifically clustered (typically eight) cysteine and histidine residues. Whereas the amino-terminal ring domain (N-RING) binds two zinc ions and folds into a classical cross-brace ring finger, the carboxy-terminal ring domain (C-RING) involves only one zinc ion. The three-dimensional structure of the central ring domain, the IBR domain, is still unsolved. About 400 genes coding for RBR proteins have been identified in the genomes of uni- and multicellular eukaryotes and some of their viruses, but the family has not been found in archaea or bacteria. The RBR proteins are classified into 15 major subfamilies (besides some orphan cases) by the phylogenetic relationships of the RBR segments and the conservation of their sequence architecture. The RBR domain mediates protein-protein interactions and a subset of RBR proteins has been shown to function as E3 ubiquitin ligases. RBR proteins have attracted interest because of their involvement in diseases such as parkinsonism, dementia with Lewy bodies, and Alzheimer's disease, and in susceptibility to some intracellular bacterial pathogens. Here, we present an overview of the RBR-domain containing proteins and their subcellular localization, additional domains, function, specificity, and regulation.
Collapse
Affiliation(s)
- Birgit Eisenhaber
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse, A-1030 Vienna, Austria
| | - Nina Chumak
- Institute of Applied Genetics and Cell Biology, Department of Plant Science and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse, A-1190 Vienna, Austria
| | - Frank Eisenhaber
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse, A-1030 Vienna, Austria
| | - Marie-Theres Hauser
- Institute of Applied Genetics and Cell Biology, Department of Plant Science and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse, A-1190 Vienna, Austria
| |
Collapse
|
11
|
Tian Y, Zhang Y, Zhong B, Wang YY, Diao FC, Wang RP, Zhang M, Chen DY, Zhai ZH, Shu HB. RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem 2007; 282:16776-82. [PMID: 17449468 DOI: 10.1074/jbc.m701913200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inflammation is a homeostatic mechanism that limits the effects of infectious agents. Tumor necrosis factor (TNF) and interleukin (IL)-1 are two cytokines that induce inflammation through activation of the transcription factor NF-kappaB. Various studies have suggested that two homologous and structurally related adapter proteins TAB2 and TAB3 play redundant roles in TNF- and IL-1-mediated NF-kappaB activation pathways. Both TAB2 and TAB3 contain CUE, coiled-coil, and nuclear protein localization 4 zinc finger (NZF) domains. The NZF domains of TAB2/3 are critical for TAB2/3 to bind to Lys(63)-linked polyubiquitin chains of other adaptor proteins, such as receptor-interacting protein and TRAF6, which are two signaling proteins essential for TNF- and IL-1-induced NF-kappaB activation, respectively. In a search for proteins containing NZF domains conserved with those of TAB2/3, we identified RBCK1, which has been shown to act as an E3 ubiquitin ligase in iron metabolism. Overexpression of RBCK1 negatively regulates TAB2/3-mediated and TNF- and IL-1-induced NF-kappaB activation, whereas knockdown of RBCK1 by RNA interference potentiates TNF- and IL-1-induced NF-kappaB activation. RBCK1 physically interacts with TAB2/3 and facilitates degradation of TAB2/3 through a proteasome-dependent process. Taken together, our findings suggest that RBCK1 is involved in negative regulation of inflammatory signaling triggered by TNF and IL-1 through targeting TAB2/3 for degradation.
Collapse
Affiliation(s)
- Yang Tian
- College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
13
|
Bayle J, Lopez S, Iwaï K, Dubreuil P, De Sepulveda P. The E3 ubiquitin ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins. FEBS Lett 2006; 580:2609-14. [PMID: 16643902 DOI: 10.1016/j.febslet.2006.03.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/17/2022]
Abstract
The suppressor of cytokine signaling (SOCS) proteins are thought to exert their function through the recruitment of interacting-proteins to the ubiquitin/proteasome degradation pathway. All SOCS proteins bind an Elongin BC E3 ubiquitin ligase complex through the common Socs-box. Here, we show that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), another E3 ubiquitin ligase, interacts with SOCS6. The Ubl domain of HOIL-1 and the SH2 and Socs-box domains of SOCS6 are required for the interaction. HOIL-1 expression stabilizes SOCS6 and induces the ubiquitination and degradation of proteins associated with SOCS6. These data suggest that SOCS proteins may interact with different E3 ubiquitin ligases in addition to a common Elongin BC E3 complex.
Collapse
Affiliation(s)
- Julie Bayle
- INSERM UMR599, Laboratoire d'hématopoïèse moléculaire et fonctionnelle, Marseille, France
| | | | | | | | | |
Collapse
|
14
|
Qiu X, Fay DS. ARI-1, an RBR family ubiquitin-ligase, functions with UBC-18 to regulate pharyngeal development in C. elegans. Dev Biol 2006; 291:239-52. [PMID: 16457801 DOI: 10.1016/j.ydbio.2005.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/25/2005] [Accepted: 11/29/2005] [Indexed: 02/08/2023]
Abstract
The LIN-35 retinoblastoma protein homolog and the ubiquitin-conjugating enzyme UBC-18 function redundantly to control an early step of pharyngeal morphogenesis in C. elegans. In order to identify ubiquitin-ligases acting downstream of UBC-18, we carried out a two-hybrid screen using UBC-18 as the bait molecule. Our screen identified three putative ubiquitin-ligases, one of which, ARI-1, showed genetic interactions leading to defective pharyngeal development that were identical to that previously observed for UBC-18. ARI-1 is a member of the RBR family of ubiquitin-ligases and contains a C-terminal motif that places it within the highly conserved Ariadne subfamily of RBR ligases. Our analyses indicate that ARI-1 is the principal Ariadne family member in C. elegans that is involved in the control of pharyngeal development with UBC-18. Using GFP reporters, we find that ARI-1 is expressed dynamically in a wide range of tissues including muscles and neurons during embryonic and postembryonic development. We also provide evidence that dsRNA species containing 14 or fewer base pairs of contiguous identity with closely related mRNAs are sufficient to mediate off-target silencing in C. elegans.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | |
Collapse
|
15
|
Huang J, Xu LG, Liu T, Zhai Z, Shu HB. The p53-inducible E3 ubiquitin ligase p53RFP induces p53-dependent apoptosis. FEBS Lett 2006; 580:940-7. [PMID: 16427630 DOI: 10.1016/j.febslet.2005.09.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 11/19/2022]
Abstract
Recently, it has been shown that really interesting new gene (RING)-in between ring finger (IBR)-RING domain-containing proteins, such as Parkin and Parc, are E3 ubiquitin ligases and are involved in regulation of apoptosis. In this report, we show that p53-inducible RING-finger protein (p53RFP), a p53-inducible E3 ubiquitin ligase, induces p53-dependent but caspase-independent apoptosis. p53RFP contains an N-terminal RING-IBR-RING domain and an uncharacterized, evolutionally highly conserved C-terminal domain. p53RFP interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8 but not with UbcH5, and this interaction is mediated through the RING-IBR-RING domain of p53RFP. Interestingly, the conserved C-terminal domain of p53RFP is required and sufficient for p53RFP-mediated apoptosis, suggesting p53RFP-mediated apoptosis does not require its E3 ubiquitin ligase activity. Together with a recent report showing that p53RFP is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, our findings suggest that p53RFP is involved in switching a cell from p53-mediated growth arrest to apoptosis.
Collapse
Affiliation(s)
- Jun Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
16
|
Tatematsu K, Yoshimoto N, Koyanagi T, Tokunaga C, Tachibana T, Yoneda Y, Yoshida M, Okajima T, Tanizawa K, Kuroda S. Nuclear-Cytoplasmic Shuttling of a RING-IBR Protein RBCK1 and Its Functional Interaction with Nuclear Body Proteins. J Biol Chem 2005; 280:22937-44. [PMID: 15833741 DOI: 10.1074/jbc.m413476200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular localization of a RING-IBR protein, RBCK1, possessing DNA binding and transcriptional activities, has been investigated. The endogenous RBCK1 was found in both the cytoplasm and nucleus. Particularly in the nucleus, it was localized in the granular structures, most likely nuclear bodies. In contrast, the over-expressed RBCK1 was detected exclusively in the cytoplasm. When the cells were treated with leptomycin B, the over-expressed RBCK1 accumulated in the nuclear bodies. These results suggest that RBCK1 possesses the signal sequences responsible for the nuclearcytoplasmic translocation. Mutational analysis of RBCK1 has indicated that an N-terminal region containing Leu-142 and Leu-145 and a C-terminal one containing the RING-IBR domain serve as the nuclear export and localization signals, respectively. Thus, RBCK1 is a transcription factor dynamically shuttling between cytoplasm and nucleus. Furthermore, RBCK1 was found to interact with nuclear body proteins, CREB-binding protein (CBP), and promyelocytic leukemia protein (PML). Coexpression of RBCK1 with CBP significantly enhanced the transcriptional activity of RBCK1. Although PML per se showed no effect on the transcriptional activity of RBCK1, the CBP-enhanced activity was repressed by coexpression with PML, presumably through the interaction of PML and CBP. Taken together, our data demonstrate that RBCK1 is involved in transcriptional machinery in the nuclear bodies, and its transcriptional activity is regulated by nucleocytoplasmic shuttling.
Collapse
Affiliation(s)
- Kenji Tatematsu
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jang JH. FIGC, a novel FGF-induced ubiquitin-protein ligase in gastric cancers. FEBS Lett 2005; 578:21-5. [PMID: 15581609 DOI: 10.1016/j.febslet.2004.10.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/11/2004] [Indexed: 11/24/2022]
Abstract
We have previously shown that fibroblast growth factor receptor 2 (FGFR2) plays an important role in gastric carcinogenesis. In this study, we have used a differential display approach to identify basic fibroblast growth factor (bFGF)-inducible genes in gastric cancer cells. Here, we report that one of these genes is predicted to encode a RING finger protein, designated FIGC. The FIGC gene was found to encode a polypeptide of 381 amino acids with a novel RING finger module at the NH2-terminus and the COOH-terminal proline-rich region. Using an in vitro ubiquitination assay with recombinant protein, we demonstrate that FIGC has intrinsic E3 ubiquitin ligase activity and promotes ubiquitination. Our data indicate that FIGC upregulation in response to bFGF in gastric cancer might be implicated in carcinogenesis through dysregulation of growth modulator.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, Republic of Korea.
| |
Collapse
|
18
|
Iwai K, Ishikawa H, Kirisako T. Identification, Expression, and Assay of an Oxidation‐Specific Ubiquitin Ligase, HOIL‐1. Methods Enzymol 2005; 398:256-71. [PMID: 16275334 DOI: 10.1016/s0076-6879(05)98021-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitin system plays important roles in the regulation of numerous cellular processes. It is well established that ubiquitin ligases (E3s) are key components in determining the specificity of the system and that the modification of substrates such as phosphorylation often plays a critical role in selective substrate recognition by E3s. Through studies analyzing iron-mediated degradation of iron regulatory protein 2 (IRP2), a central regulator of iron metabolism in mammalian cells, we have identified a RING finger protein, HOIL-1, as an ubiquitin ligase recognizing IRP2 through a signal created by heme-mediated oxidative modification of the protein. We have utilized several types of in vitro ubiquitination assays that detect IRP2 ubiquitination and a differential yeast two-hybrid screen in which yeast cells were cultured either in the presence or in the absence of oxygen to control the oxidation state of the bait in the cells in our studies. This chapter describes the detailed methods used for the identification and functional analysis of the HOIL-1 ligase.
Collapse
Affiliation(s)
- Kazuhiro Iwai
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, and Japan Science and Technology Agency, Osaka 545-8585, Japan
| | | | | |
Collapse
|
19
|
Marín I, Lucas JI, Gradilla AC, Ferrús A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics 2004; 17:253-63. [PMID: 15152079 DOI: 10.1152/physiolgenomics.00226.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the parkin gene cause autosomal-recessive juvenile parkinsonism. Parkin encodes a ubiquitin-protein ligase characterized by having the RBR domain, composed of two RING fingers plus an IBR/DRIL domain. The RBR family is defined as the group of genes whose products contain an RBR domain. RBR family members exist in all eukaryotic species for which significant sequence data is available, including animals, plants, fungi, and several protists. The integration of comparative genomics with structural and functional data allows us to conclude that RBR proteins have multiple roles, not only in protein quality control mechanisms, but also as indirect regulators of transcription. A recently formulated hypothesis, based on a case of gene fusion, suggested that RBR proteins may be often part of cullin-containing ubiquitin ligase complexes. Recent data on Parkin protein agrees with that hypothesis. We discuss the involvement of RBR proteins in several neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, 46100 Burjassot, Valencia, Spain.
| | | | | | | |
Collapse
|
20
|
Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 2004; 5:495-502. [PMID: 15107846 DOI: 10.1038/ni1066] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 03/08/2004] [Indexed: 01/25/2023]
Abstract
Activation of Toll-like receptors (TLRs) results in a proinflammatory response needed to combat infection. Thus, limiting TLR signaling is essential for preventing a protective response from causing injury to the host. Here we describe how a RING finger protein, Triad3A, acts as an E3 ubiquitin-protein ligase and enhances ubiquitination and proteolytic degradation of some TLRs. Triad3A overexpression promoted substantial degradation of TLR4 and TLR9 with a concomitant decrease in signaling, but did not affect TLR2 expression or signaling. Conversely, a reduction in endogenous Triad3A by small interfering RNA increased TLR expression and enhanced TLR activation. Thus, ubiquitination by Triad3A represents one pathway by which the intensity and duration of TLR signaling is controlled.
Collapse
Affiliation(s)
- Tsung-Hsien Chuang
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
21
|
Wang B, Alam SL, Meyer HH, Payne M, Stemmler TL, Davis DR, Sundquist WI. Structure and ubiquitin interactions of the conserved zinc finger domain of Npl4. J Biol Chem 2003; 278:20225-34. [PMID: 12644454 PMCID: PMC3366119 DOI: 10.1074/jbc.m300459200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitylated proteins are directed into a large number of different cellular pathways through interactions with effector proteins that contain conserved ubiquitin binding motifs. Here, we report the solution structure and ubiquitin binding properties of one such motif, the Npl4 zinc finger or RanBP2/Nup358 zinc finger (NZF) domain. Npl4 NZF forms a compact module composed of four antiparallel beta-strands linked by three ordered loops. A single zinc ion is coordinated by four conserved cysteines from the first and third loops, which form two rubredoxin knuckles. Npl4 NZF binds specifically, but weakly, to free ubiquitin using a conserved 13TF14 dipeptide to interact with the "Ile-44" surface of ubiquitin. Our studies reveal the structure of this versatile class of protein binding domains and provide a means for identifying the subset of NZF domains likely to bind ubiquitin.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132
| | - Steven L. Alam
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132
| | - Hemmo H. Meyer
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002
| | - Marielle Payne
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132
| | - Timothy L. Stemmler
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Darrell R. Davis
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84132
| | - Wesley I. Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132
- To whom correspondence may be addressed: Dept. of Biochemistry, University of Utah, Salt Lake City, UT 84132. Tel.: 801-585-5402; Fax: 801-581-7959;
| |
Collapse
|
22
|
Yamanaka K, Ishikawa H, Megumi Y, Tokunaga F, Kanie M, Rouault TA, Morishima I, Minato N, Ishimori K, Iwai K. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat Cell Biol 2003; 5:336-40. [PMID: 12629548 DOI: 10.1038/ncb952] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Revised: 11/29/2002] [Accepted: 12/18/2002] [Indexed: 12/31/2022]
Abstract
The ubiquitin system is involved in several basic cellular functions. Ubiquitination is carried out by a cascade of three reactions catalysed by the E1, E2 and E3 enzymes. Among these, the E3 ubiquitin-protein ligases have a pivotal role in determining the specificity of the system by recognizing the target substrates through defined targeting motifs. Although RING finger proteins constitute an important family of E3 ligases, only a few post-transcriptional modifications, including phosphorylation, proline hydroxylation and glycosylation, are known to function as recognition signals for E3. Iron regulatory protein 2 (IRP2), a modulator of iron metabolism, is regulated by iron-induced ubiquitination and degradation. Here we show that the RING finger protein HOIL-1 functions as an E3 ligase for oxidized IRP2, suggesting that oxidation is a specific recognition signal for ubiquitination. The oxidation of IRP2 is generated by haem, which binds to IRP2 in iron-rich cells, and by oxygen, indicating that the iron sensing of IRP2 depends on the synthesis and availability of haem.
Collapse
Affiliation(s)
- Koji Yamanaka
- Department of Molecular & System Biology, Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mladek C, Guger K, Hauser MT. Identification and characterization of the ARIADNE gene family in Arabidopsis. A group of putative E3 ligases. PLANT PHYSIOLOGY 2003; 131:27-40. [PMID: 12529512 PMCID: PMC166784 DOI: 10.1104/pp.012781] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 09/03/2002] [Accepted: 09/26/2002] [Indexed: 05/18/2023]
Abstract
ARIADNE (ARI) proteins were recently identified in fruitfly (Drosophila melanogaster), mouse, and man because of their specific interaction with the ubiquitin-conjugating (E2) enzymes UbcD10, UbcM4, UbcH7, and UbcH8. They are characterized by specific motifs and protein structures that they share with PARKIN, and there is increasing evidence that ARI/PARKIN proteins function as E2-dependent ubiquitin-protein ligases. On the basis of homology and motif searches, 16 AtARI genes were identified in Arabidopsis. Analysis of the position of exons/introns and their chromosomal localization indicates that the AtARI gene family expanded via larger and smaller genome duplications. We present evidence that retroposition of processed mRNA may have also contributed to enlarging this gene family. Phylogenetic analyses divides the AtARI proteins into three subgroups. Two groups are absent in yeast, invertebrates, and vertebrates and may therefore represent new plant-specific subfamilies. Examination of the predicted protein sequences revealed that the ARI proteins share an additional leucine-rich region at the N terminus that is highly conserved in all phyla analyzed. Furthermore, conserved consensus signals for casein kinase II-dependent phosphorylation and for nuclear localization were identified. The in silico-based analyses were complemented with experimental data to quantify expression levels. Using real-time polymerase chain reaction, we show that the ARI genes are differentially transcribed. AtARI1 is highly expressed in all organs, whereas no transcripts could be detected for AtARI11, AtARI13, and AtARI14. AtARI12 and AtARI16 are expressed in an organ-specific manner in the roots and siliques, respectively.
Collapse
Affiliation(s)
- Christina Mladek
- Center of Applied Genetics, University of Agricultural Sciences Vienna, Austria
| | | | | |
Collapse
|
24
|
Früh K, Bartee E, Gouveia K, Mansouri M. Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Res 2002; 88:55-69. [PMID: 12297327 DOI: 10.1016/s0168-1702(02)00120-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many viruses have developed mechanisms to escape the cellular immune response by inhibiting antigen presentation from major histocompatibility complex (MHC) molecules. Most of these immune escape mechanisms are highly host adapted and specific to a given virus species or family. Recent observations however, suggest that a conserved family of viral proteins is used by both gamma-2 herpesviruses and by poxviruses to downregulate MHC class I. In addition, other cell surface molecules involved in immune recognition by T cells and NK cells are also downregulated. Two open reading frames (ORFs), K3 and K5, of Kaposi's sarcoma associated virus (KSHV) and one ORFs, K3, of murine gamma herpesvirus 68 (MHV 68) inhibit surface expression of MHC I molecules. In cells transfected with KSHV-K3 and KSHV-K5, MHC I is rapidly endocytosed and degraded in lysosomes whereas in MHV 68-K3 transfected cells, MHC I is targeted for proteasomal degradation. The K3 and K5 genes display a characteristic conserved domain structure of an amino-terminal plant homeo domain/leukemia associated protein-zinc finger domain followed by two carboxyterminal transmembrane domains. Related proteins are not only found in other gamma-2 herpesviruses, but also in several poxviruses. Moreover, recent data suggest that the K3-related protein of myxoma virus also downregulates MHC I. The presence of similar genes in eukaryotic genomes further indicates that the viral ORFs were originally derived from host genes of as yet unknown function. The molecular mechanism of MHC I downregulation by this novel gene family is only poorly understood at present. However, several lines of evidence suggest that they might function as ubiquitin ligases that regulate the intracellular transport of transmembrane proteins through ubiquitination.
Collapse
Affiliation(s)
- Klaus Früh
- Oregon Health and Science University, Vaccine and Gene Therapy Institute, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
25
|
Marín I, Ferrús A. Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 2002; 19:2039-50. [PMID: 12446796 DOI: 10.1093/oxfordjournals.molbev.a004029] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genes of the RBR family are characterized by the RBR signature (two RING finger domains separated by an IBR/DRIL domain). The RBR family is widespread in eukaryotes, with numerous members in animals (mammals, Drosophila, Caenorhabditis) and plants (Arabidopsis). But yeasts, such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, contain only two RBR genes. We determined the phylogenetic relationships and the most likely orthologs in different species of several family members for which functional data are available. These include: (1) parkin, whose mutations are involved in forms of familial Parkinson's disease; (2) the ariadne genes, recently characterized in Drosophila and mammals; (3) XYbp and Dorfin, two mammalian genes whose products interact with the centrosome; (4) XAP3, RBCK1, and UIP28, mammalian genes encoding Protein Kinase-C-binding proteins; and (5) ARA54, an androgen receptor coactivator. Because several of these genes are involved in ubiquitination, we used phylogenetic and structural analyses to explore the hypothesis that all RBR proteins might play a role in ubiquitination. We show that the involvement of RBR proteins in ubiquitination predates the animals-plants-fungi divergence. On the basis of the evidence provided by cases of gene fusion, we suggest that Ariadne proteins interact with cullin domain-containing proteins to form complexes with ubiquitin-ligase activity.
Collapse
Affiliation(s)
- Ignacio Marín
- Departamento de Genética, Universidad de Valencia, Calle Doctor Moliner 50, Burjassot 46100, Valencia, Spain.
| | | |
Collapse
|
26
|
Ulrich HD. Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr Top Microbiol Immunol 2002; 268:137-74. [PMID: 12083004 DOI: 10.1007/978-3-642-59414-4_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The multitude of natural substrates of the 26S proteasome demonstrates convincingly the diversity and flexibility of the ubiquitin/proteasome system: at the same time, the number of pathways in which ubiquitin-dependent degradation is involved highlights the importance of regulated proteolysis for cellular metabolism. This review has addressed recent advances in our understanding of the principles that govern the recognition and targeting of potential substrates. While the mechanism of ubiquitin activation and conjugation is largely understood, the determination of substrate specificity by ubiquitin protein ligases remains a field of active research. Several conserved degradation signals within substrate proteins have been identified, and it is becoming increasingly clear that these serve as docking sites for specific sets of E3s, which in turn adhere to a number of well-defined strategies for the recognition of these motifs. In particular, RING finger proteins are now emerging as a new and apparently widespread class of ubiquitin ligases. The discovery of more and more E3s will undoubtedly reveal even better the common principles in architecture and mechanisms of this class of enzymes. In contrast to substrate recognition by the ubiquitin conjugation system, the way in which a ubiquitylated protein is delivered to the 26S proteasome is poorly understood. There is no doubt that multiubiquitin chains serve as the principal determinant for recognition by the proteasome, and a number of receptors and candidate targeting factors are known, some of which are associated with the proteasome itself; however, unresolved issues are the significance of the different geometries that alternatively linked multiubiquitin chains can adopt, the role of transport between subcellular compartments, as well as the participation of chaperones in the delivery step. Finally, the analysis of ubiquitin-independent, substrate-specific targeting mechanisms, such as the AZ-dependent degradation of ODC, may provide unexpected answers to questions about protein recognition by the 26S proteasome.
Collapse
Affiliation(s)
- H D Ulrich
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, 35043 Marburg/Lahn, Germany
| |
Collapse
|
27
|
Yu P, Chen Y, Tagle DA, Cai T. PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 2002; 79:869-74. [PMID: 12036302 DOI: 10.1006/geno.2002.6770] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RING-finger proteins contain cysteine-rich, zinc-binding domains and are involved in the formation of macromolecular scaffolds important for transcriptional repression and ubiquitination. In this study, we have identified a RING-H2 finger gene, PJA1 (for praja-1), from a human brain cDNA library and mapped it to human chromosome Xq12 between markers DXS983 and DXS1216, a region implicated in X-linked mental retardation (MRX). Northern blot analysis indicated a 2.7-kb transcript that was abundantly expressed in the brain, including regions of the cerebellum, cerebral cortex, medulla, occipital pole, frontal lobe, temporal lobe, and putamen. Amino acid sequence analysis of the 71-kDa protein PJA1 showed 52.3% identity to human PJA2 (for praja-2, also known as NEURODAP1/KIAA0438) and also a significant identity to its homologs in rat, mouse, and zebrafish. In vitro binding and immunoprecipitation assays demonstrated that both PJA1 and PJA2 are able to bind the ubiquitin-conjugating enzyme UbcH5B. Moreover, the ubiquitination assay indicated that PJA1 and PJA2 have an E2-dependent E3 ubiquitin ligase activity. Thus our findings demonstrate that PJA1 can be involved in protein ubiquitination in the brain and is a suitable candidate gene for MRX.
Collapse
Affiliation(s)
- Ping Yu
- Structure Biophysics Laboratory, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Martinez-Noel G, Müller U, Harbers K. Identification of molecular determinants required for interaction of ubiquitin-conjugating enzymes and RING finger proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5912-9. [PMID: 11722579 DOI: 10.1046/j.0014-2956.2001.02541.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent results from several laboratories suggest that the interaction of E2 ubiquitin-conjugating enzymes with the RING finger domain has a central role in mediating the transfer of ubiquitin to proteins. Here we present a mutational analysis of the interaction between the E2 enzyme UbcM4/UbcH7 and three different RING finger proteins, termed UIPs, which, like Parkin, contain a RING1-IBR-RING2 motif. The results show that the E2 enzyme binds to the RING1 domain but not to the other cysteine/histidine-rich domains of the RING1-IBR-RING2 motif. Three regions within the UbcM4 molecule are involved in this interaction: the H1 alpha helix, loop L1, connecting the third and fourth strand of the beta sheet, and loop L2, located between the fourth beta strand and the second alpha helix. Loop L2 plays an important role in determining the specificity of interaction. The effects of L2 mutations on UbcM4/UIP interaction are different for each UIP, indicating that RING finger domains can vary considerably in their structural requirements for binding to E2 enzymes. The result that single amino-acid changes can regulate binding of E2 enzymes to different RING finger proteins suggests a novel approach to experimentally manipulate proteolytic pathways mediated by RING finger proteins.
Collapse
Affiliation(s)
- G Martinez-Noel
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Hamburg, Germany
| | | | | |
Collapse
|
30
|
Lee SJ, Choi JY, Sung YM, Park H, Rhim H, Kang S. E3 ligase activity of RING finger proteins that interact with Hip-2, a human ubiquitin-conjugating enzyme. FEBS Lett 2001; 503:61-4. [PMID: 11513855 DOI: 10.1016/s0014-5793(01)02689-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To identify proteins that interact with Huntingtin-interacting protein-2 (Hip-2), a ubiquitin-conjugating enzyme, a yeast two-hybrid screen system was used to isolate five positive clones. Sequence analyses showed that, with one exception, all Hip-2-interacting proteins contained the RING finger motifs. The interaction of Hip-2 with RNF2, one of the clones, was further confirmed through in vitro and in vivo experiments. Mutations in the RING domain of RNF2 prevented the clone from binding to Hip-2, an indication that the RING domain is the binding determinant. RNF2 showed a ubiquitin ligase (E3) activity in the presence of Hip-2, suggesting that a subset of RING finger proteins may have roles as E3s.
Collapse
Affiliation(s)
- S J Lee
- Graduate School of Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
31
|
Sun Y, Tan M, Duan H, Swaroop M. SAG/ROC/Rbx/Hrt, a zinc RING finger gene family: molecular cloning, biochemical properties, and biological functions. Antioxid Redox Signal 2001; 3:635-50. [PMID: 11554450 DOI: 10.1089/15230860152542989] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RING (really interesting new gene) finger proteins containing a characteristic C3HC4 or C3H2C3 motif appear to act as E3 ubiquitin ligase and play important roles in many processes, including cell-cycle progression, oncogenesis, signal transduction, and development. This review is focused on SAG/ROC/Rbx/Hrt (sensitive to apoptosis gene/regulator of cullins/RING box protein), an evolutionarily conserved RING finger family of proteins that were cloned recently by several independent laboratories through differential display, yeast two-hybrid screening, or biochemical purification. SAG/ROC2/Rbx2/Hrt2 is expressed in multiple mouse adult tissues, as well as early embryos. In humans, both SAG and ROC1 are ubiquitously expressed at a very high level in heart, skeletal muscle, and testis. Expression of both SAG and ROC1 is induced by mitogenic stimulation. SAG is also induced by a redox agent in cultured cells, as well as in in vivo mouse brain upon ischemia/reperfusion. Structurally, SAG consists of four exons and three introns with at least one splicing variant and two pseudogenes. The SAG gene promoter is enriched with multiple transcription factor binding sites. Biochemically, SAG binds to RNA, has metal-ion binding/free radical scavenging activity, and is redox-sensitive. Most importantly, like ROC1, SAG/ROC2 binds to cullins and acts as an essential component of E3 ubiquitin ligase. Biologically, SAG is a growth-essential gene in yeast. In mammalian cells, SAG protects apoptosis mainly through inhibition of cytochrome c release/caspase activation, and promotes growth under serum deprivation at least in part by inhibiting p27 accumulation. Blocking SAG expression via antisense transfection inhibits tumor cell growth. Thus, SAG appears to be a valid drug target for anticancer therapy.
Collapse
Affiliation(s)
- Y Sun
- Cancer Molecular Sciences, Pfizer Global Research and Development, Ann Arbor Laboratories, MI 48105, USA.
| | | | | | | |
Collapse
|
32
|
Kubo SI, Kitami T, Noda S, Shimura H, Uchiyama Y, Asakawa S, Minoshima S, Shimizu N, Mizuno Y, Hattori N. Parkin is associated with cellular vesicles. J Neurochem 2001; 78:42-54. [PMID: 11432972 DOI: 10.1046/j.1471-4159.2001.00364.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We recently identified a novel gene, parkin, as a pathogenic gene for autosomal recessive juvenile parkinsonism. Parkin encodes a 52-kDa protein with a ubiquitin-like domain and two RING-finger motifs. To provide a insight into the function of parkin, we have examined its intracellular distribution in cultured cells. We found that parkin was localized in the trans-Golgi network and the secretory vesicles in U-373MG or SH-SY5Y cells by immunocytochemical analyses. In the subsequent subcellular fractionation studies of rat brain, we showed that parkin was copurified with the synaptic vesicles (SVs) when we used low ionic conditions throughout the procedure. An immunoelectromicroscopic analysis indicated that parkin was present on the SV membrane. Parkin was readily released from SVs into the soluble phase by increasing ionic strength at neutral pH, but not by a non-ionic detergent. To elucidate its responsible region for membrane association, we transfected with green fluorescent protein-tagged deletion mutants of parkin into COS-1 cells followed by subcellular fractionation. We demonstrated the ability of parkin to bind to the membranes through a broad region except for the ubiquitin-like domain. The significance of SV localization of parkin is discussed.
Collapse
Affiliation(s)
- S I Kubo
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dai KS, Liew CC. A novel human striated muscle RING zinc finger protein, SMRZ, interacts with SMT3b via its RING domain. J Biol Chem 2001; 276:23992-9. [PMID: 11283016 DOI: 10.1074/jbc.m011208200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.
Collapse
Affiliation(s)
- K S Dai
- Institute of Medical Science and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | | |
Collapse
|
34
|
Ardley HC, Tan NG, Rose SA, Markham AF, Robinson PA. Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, Ubch7. J Biol Chem 2001; 276:19640-7. [PMID: 11278816 DOI: 10.1074/jbc.m011028200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported the identification of a RING finger-containing protein, HHARI (human homologue of Drosophila ariadne), which binds to the human ubiquitin-conjugating enzyme UbcH7 in vitro. We now demonstrate that HHARI interacts and co-localizes with UbcH7 in mammalian cells, particularly in the perinuclear region. We have further defined a minimal interaction region of HHARI comprising residues 186-254, identified individual amino acid residues essential for the interaction, and determined that the distance between the RING1 finger and IBR (in between RING fingers) domains is critical to maintaining binding. We have also established that the RING1 finger of HHARI cannot be substituted for by the highly homologous RING finger domains of either of the ubiquitin-protein ligase components c-CBL or Parkin, despite their similarity in structure and their independent capabilities to bind UbcH7. Furthermore, mutation of the RING1 finger domain of HHARI from a RING-HC to a RING-H2 type abolishes interaction with UbcH7. These studies demonstrate that very subtle changes to the domains that regulate recognition between highly conserved components of the ubiquitin pathway can dramatically affect their ability to interact.
Collapse
Affiliation(s)
- H C Ardley
- Molecular Medicine Unit and the Leeds Dental Institute, University of Leeds, Clinical Sciences Building, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Pringa E, Martinez-Noel G, Muller U, Harbers K. Interaction of the ring finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes. J Biol Chem 2001; 276:19617-23. [PMID: 11274149 DOI: 10.1074/jbc.m100192200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U-box domain has been suggested to be a modified RING finger motif where the metal-coordinating cysteines and histidines have been replaced with other amino acids. Known U-box-containing proteins have been implicated in the ubiquitin/proteasome system. In a search for proteins interacting with the ubiquitin-conjugating enzyme UbcM4/UbcH7, we have identified a novel U-box containing protein, termed UIP5, that is exclusively found in the nucleus as part of a nuclear dot-like structure. Interaction between UbcM4 and UIP5 was observed in vivo and in vitro with bacterially expressed proteins. In addition to UbcM4, several other ubiquitin-conjugating enzymes (E2s) that share the same sequence within the L1 loop bind to UIP5. Mutational analysis showed that the U-box, like the RING finger in other proteins, forms the physical basis for the interaction with E2 enzymes. Further support for the structural similarity between U-box and RING finger comes from the observation that, in both cases, the same regions within the UbcM4 molecule are required for interaction. Our results establish at the molecular level a link between the U-box and the ubiquitin conjugating system and strongly suggest that proteins containing U-box domains are functionally closely related to RING finger proteins.
Collapse
Affiliation(s)
- E Pringa
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | |
Collapse
|
36
|
Wang G, McCaffery JM, Wendland B, Dupré S, Haguenauer-Tsapis R, Huibregtse JM. Localization of the Rsp5p ubiquitin-protein ligase at multiple sites within the endocytic pathway. Mol Cell Biol 2001; 21:3564-75. [PMID: 11313482 PMCID: PMC100278 DOI: 10.1128/mcb.21.10.3564-3575.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae RSP5 gene encodes an essential HECT E3 ubiquitin-protein ligase. Rsp5p contains an N-terminal C2 domain, three WW domains in the central portion of the molecule, and a C-terminal catalytic HECT domain. A diverse group of substrates of Rsp5p and vertebrate C2 WW-domain-containing HECT E3s have been identified, including both nuclear and membrane-associated proteins. We determined the intracellular localization of Rsp5p and the determinants necessary for localization, in order to better understand how Rsp5p activities are coordinated. Using both green fluorescent protein fusions to Rsp5p and immunogold electron microscopy, we found that Rsp5p was distributed in a punctate pattern at the plasma membrane, corresponding to membrane invaginations that are likely sites of endosome formation, as well as at perivacuolar sites. The latter appeared to correspond to endocytic intermediates, as these structures were not seen in a sla2/end4-1 mutant, and double-immunogold labeling demonstrated colocalization of Rsp5p with the endosomal markers Pep12p and Vps32p. The C2 domain was an important determinant of localization; however, mutations that disrupted HECT domain function also caused mislocalization of Rsp5p, indicating that enzymatic activity is linked to localization. Deletion of the C2 domain partially stabilized Fur4p, a protein previously shown to undergo Rsp5p- and ubiquitin-mediated endocytosis; however, Fur4p was still ubiquitinated at the plasma membrane when the C2 domain was deleted from the protein. Together, these results indicate that Rsp5p is located at multiple sites within the endocytic pathway and suggest that Rsp5p may function at multiple steps in the ubiquitin-mediated endocytosis pathway.
Collapse
Affiliation(s)
- G Wang
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 2000; 97:13354-9. [PMID: 11078524 PMCID: PMC27228 DOI: 10.1073/pnas.240347797] [Citation(s) in RCA: 714] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2000] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disorder in which familial-linked genes have provided novel insights into the pathogenesis of this disorder. Mutations in Parkin, a ring-finger-containing protein of unknown function, are implicated in the pathogenesis of autosomal recessive familial Parkinson's disease. Here, we show that Parkin binds to the E2 ubiquitin-conjugating human enzyme 8 (UbcH8) through its C-terminal ring-finger. Parkin has ubiquitin-protein ligase activity in the presence of UbcH8. Parkin also ubiquitinates itself and promotes its own degradation. We also identify and show that the synaptic vesicle-associated protein, CDCrel-1, interacts with Parkin through its ring-finger domains. Furthermore, Parkin ubiquitinates and promotes the degradation of CDCrel-1. Familial-linked mutations disrupt the ubiquitin-protein ligase function of Parkin and impair Parkin and CDCrel-1 degradation. These results suggest that Parkin functions as an E3 ubiquitin-protein ligase through its ring domains and that it may control protein levels via ubiquitination. The loss of Parkin's ubiquitin-protein ligase function in familial-linked mutations suggests that this may be the cause of familial autosomal recessive Parkinson's disease.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Neurology, Neuroscience, and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-0005, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pringa E, Meier I, Müller U, Martinez-Noel G, Harbers K. Disruption of the gene encoding the ubiquitin-conjugating enzyme UbcM4 has no effect on proliferation and in vitro differentiation of mouse embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:75-82. [PMID: 11072070 DOI: 10.1016/s0167-4781(00)00221-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitin-conjugating enzyme UbcM4, which is identical to the human enzyme UbcH7, was previously shown to be essential for normal mouse development. In order to study the possible role of UbcM4 for cell proliferation and in vitro differentiation, we here describe the establishment and characterization of fibroblast and embryonic stem cell lines with partial or complete inactivation of the UbcM4 gene. ES cell lines in which both alleles of the gene were inactivated by targeted mutagenesis showed no differences in growth rates, cell cycle progression and in vitro differentiation when compared to wild-type ES cells. Fibroblast cell lines with a partially inactivated UbcM4 gene were derived from embryos of the previously described A6 mouse mutant, where retrovirus integration has resulted in a recessive lethal mutation. As in the mutant embryos, steady levels of RNA and protein in the cell lines were reduced by about 70%. The mutant cell lines showed no differences in immortalization kinetics, growth rates and cell cycle progression when compared to wild-type fibroblasts. Taken together, our results strongly suggest that UbcM4-mediated ubiquitination and degradation are not necessary for proteins involved in the maintenance and growth of cells.
Collapse
Affiliation(s)
- E Pringa
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistr. 52, D-20251, Hamburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Parkinson J, Everett RD. Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 2000; 74:10006-17. [PMID: 11024129 PMCID: PMC102039 DOI: 10.1128/jvi.74.21.10006-10017.2000] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 07/27/2000] [Indexed: 12/12/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP0 interacts with several cellular proteins and induces the proteasome-dependent degradation of others during infection. In this study we show that ICP0 is required for the proteasome-dependent degradation of the ND10 protein Sp100 and, as with the other target proteins, the ICP0 RING finger domain is essential. Further, comparison of the kinetics and ICP0 domain requirements for the degradation of PMI and Sp100 suggests that a common mechanism is involved. Homologues of ICP0 are encoded by other members of the alphaherpesvirus family. These proteins show strong sequence homology to ICP0 within the RING finger domain but limited similarity elsewhere. Using transfection assays, we have shown that all the ICP0 homologues that we tested have significant effects on the immunofluorescence staining character of at least one of the proteins destabilized by ICP0, and by using a recombinant virus, we found that the equine herpesvirus ICP0 homologue induced the proteasome-dependent degradation of endogenous CENP-C and modified forms of PML and Sp100. However, in contrast to ICP0, the homologue proteins had no effect on the distribution of the ubiquitin-specific protease USP7 within the cell, consistent with their lack of a USP7 binding domain. We also found that ICP0 by itself could induce the abrogation of SUMO-1 conjugation and then the proteasome-dependent degradation of unmodified exogenous PML in transfected cells, thus demonstrating that other HSV-1 proteins are not required. Surprisingly, the ICP0 homologues were unable to cause these effects. Overall, these data suggest that the members of the ICP0 family of proteins may act via a similar mechanism or pathway involving their RING finger domain but that their intrinsic activities and effects on endogenous and exogenous proteins differ in detail.
Collapse
Affiliation(s)
- J Parkinson
- MRC Virology Unit, Glasgow G11 5JR, Scotland, United Kingdom.
| | | |
Collapse
|
40
|
van der Laan R, Roest HP, Hoogerbrugge JW, Smit EM, Slater R, Baarends WM, Hoeijmakers JH, Grootegoed JA. Characterization of mRAD18Sc, a mouse homolog of the yeast postreplication repair gene RAD18. Genomics 2000; 69:86-94. [PMID: 11013078 DOI: 10.1006/geno.2000.6220] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RAD18 gene of the yeast Saccharomyces cerevisiae encodes a protein with ssDNA binding activity that interacts with the ubiquitin-conjugating enzyme RAD6 and plays an important role in postreplication repair. We identified and characterized the putative mouse homolog of RAD18, designated mRAD18Sc. The mRAD18Sc open reading frame encodes a 509-amino-acid polypeptide that is strongly conserved in size and sequence between yeast and mammals, with specific conservation of the RING-zinc-finger and the classic zinc-finger domain. The degree of sequence conservation between mRAD18Sc, RAD18, and homologous sequences identified in other species (NuvA from Aspergillus nidulans and Uvs-2 from Neurospora crassa) is entirely consistent with the evolutionary relationship of these organisms, strongly arguing that these genes are one another's homologs. Consistent with the presence of a nuclear translocation signal in the amino acid sequence, we observed the nuclear localization of GFP-tagged mRAD18Sc after stable transfection to HeLa cells. mRNA expression of mRAD18Sc in the mouse was observed in thymus, spleen, brain, and ovary, but was most pronounced in testis, with the highest level of expression in pachytene-stage primary spermatocytes, suggesting that mRAD18Sc plays a role in meiosis of spermatogenesis. Finally, we mapped the mRAD18Sc gene on mouse chromosome 6F.
Collapse
Affiliation(s)
- R van der Laan
- MGC, Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Modification of proteins by the covalent attachment of ubiquitin is known to target them for degradation by proteasomes. Several proteins have been discovered recently that are related to ubiquitin or function similarly. Some of these proteins act as modifiers; others bear ubiquitin-like domains embedded in their polypeptide chain but do not form conjugates with cellular proteins. Ubiquitin-like proteins mediate an impressive range of cellular functions, including cell-cycle progression, DNA repair and apoptosis. Recent discoveries endorse the view that, in many cases, the function of the relatives of ubiquitin is linked to the ubiquitin pathway.
Collapse
Affiliation(s)
- S Jentsch
- Dept of Molecular Cell Biology, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | |
Collapse
|
42
|
Aguilera M, Oliveros M, Martínez-Padrón M, Barbas JA, Ferrús A. Ariadne-1: a vital Drosophila gene is required in development and defines a new conserved family of ring-finger proteins. Genetics 2000; 155:1231-44. [PMID: 10880484 PMCID: PMC1461160 DOI: 10.1093/genetics/155.3.1231] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the identification and functional characterization of ariadne-1 (ari-1), a novel and vital Drosophila gene required for the correct differentiation of most cell types in the adult organism. Also, we identify a sequence-related gene, ari-2, and the corresponding mouse and human homologues of both genes. All these sequences define a new protein family by the Acid-rich, RING finger, B-box, RING finger, coiled-coil (ARBRCC) motif string. In Drosophila, ari-1 is expressed throughout development in all tissues. The mutant phenotypes are most noticeable in cells that undergo a large and rapid membrane deposition, such as rewiring neurons during metamorphosis, large tubular muscles during adult myogenesis, and photoreceptors. Occasional survivors of null alleles exhibit reduced life span, motor impairments, and short and thin bristles. Single substitutions at key cysteines in each RING finger cause lethality with no survivors and a drastic reduction of rough endoplasmic reticulum that can be observed in the photoreceptors of mosaic eyes. In yeast two-hybrid assays, the protein ARI-1 interacts with a novel ubiquitin-conjugating enzyme, UbcD10, whose sequence is also reported here. The N-terminal RING-finger motif is necessary and sufficient to mediate this interaction. Mouse and fly homologues of both ARI proteins and the Ubc can substitute for each other in the yeast two-hybrid assay, indicating that ARI represents a conserved novel mechanism in development. In addition to ARI homologues, the RBR signature is also found in the Parkinson-disease-related protein Parkin adjacent to an ubiquitin-like domain, suggesting that the study of this mechanism could be relevant for human pathology.
Collapse
Affiliation(s)
- M Aguilera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002J, Spain
| | | | | | | | | |
Collapse
|
43
|
Shimura H, Hattori N, Kubo SI, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25:302-5. [PMID: 10888878 DOI: 10.1038/77060] [Citation(s) in RCA: 1462] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autosomal recessive juvenile parkinsonism (AR-JP), one of the most common familial forms of Parkinson disease, is characterized by selective dopaminergic neural cell death and the absence of the Lewy body, a cytoplasmic inclusion body consisting of aggregates of abnormally accumulated proteins. We previously cloned PARK2, mutations of which cause AR-JP (ref. 2), but the function of the gene product, parkin, remains unknown. We report here that parkin is involved in protein degradation as a ubiquitin-protein ligase collaborating with the ubiquitin-conjugating enzyme UbcH7, and that mutant parkins from AR-JP patients show loss of the ubiquitin-protein ligase activity. Our findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies. Our findings should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination, including Alzheimer disease, other tauopathies, CAG triplet repeat disorders and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- H Shimura
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Intense interest in the RING domain has arisen because of its widespread occurrence and involvement in human disease. Several intriguing characteristics evident from the study of this cysteine-rich, zinc-binding domain have made it difficult to establish a single defining biochemical function for RINGs. These proteins are found throughout the cell and mediate diverse cellular processes, e.g. oncogenesis, apoptosis, development and viral infection. Recent developments indicate that RING-mediated protein interactions are critical for transcriptional repression and for ubiquitination. These data are in addition to previously established functions for RINGs in RNA processing, cell-cycle control and peroxisomal biogenesis, to name a few. At first glance, there appears to be little to link such disparate actions. Collectively, these results suggest that RINGs function in formation and architecture of large protein complexes that contribute to diverse cellular processes. Here, new developments, in the context of previous results, are discussed in an attempt to establish a unifying theory for RING function.
Collapse
Affiliation(s)
- K L Borden
- Department of Physiology & Biophysics, Mt. Sinai School of Medicine, New York, NY, 10029, USA.
| |
Collapse
|
45
|
Abstract
Ubiquitination targets proteins for degradation and is a potent regulator of cellular protein function. Recent results implicate the RING finger domain in specific ubiquitination events; it is possible that all RING proteins act as E3 ubiquitin protein ligases, with implications for a variety of biological areas.
Collapse
Affiliation(s)
- P S Freemont
- Molecular Structure and Function Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK.
| |
Collapse
|
46
|
Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, Ciechanover A, Lipkowitz S, Yarden Y. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4:1029-40. [PMID: 10635327 DOI: 10.1016/s1097-2765(00)80231-2] [Citation(s) in RCA: 780] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Receptor desensitization is accomplished by accelerated endocytosis and degradation of ligand-receptor complexes. An in vitro reconstituted system indicates that Cbl adaptor proteins directly control downregulation of the receptor for the epidermal growth factor (EGFR) by recruiting ubiquitin-activating and -conjugating enzymes. We infer a sequential process initiated by autophosphorylation of EGFR at a previously identified lysosome-targeting motif that subsequently recruits Cbl. This is followed by tyrosine phosphorylation of c-Cbl at a site flanking its RING finger, which enables receptor ubiquitination and degradation. Whereas all three members of the Cbl family can enhance ubiquitination, two oncogenic Cbl variants, whose RING fingers are defective and phosphorylation sites are missing, are unable to desensitize EGFR. Our study identifies Cbl proteins as components of the ubiquitin ligation machinery and implies that they similarly suppress many other signaling pathways.
Collapse
Affiliation(s)
- G Levkowitz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|