1
|
Tachibana Y, Yamamoto M. Recent advances in identifying and characterizing secretory proteins of Toxoplasma gondii by CRISPR-based screening. Parasitol Int 2025; 105:102997. [PMID: 39586398 DOI: 10.1016/j.parint.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The apicomplexan parasite, Toxoplasma gondii, develops unique secretory organelles, such as micronemes, rhoptries, and dense granules, which do not exist in other well-studied eukaryotic organisms. These secretory organelles are key features of apicomplexan parasites and discharge various proteins that are essential for invasion, replication, egress, host-parasite interactions, and virulence. Many studies have therefore focused on identifying and characterizing the proteins secreted by T. gondii that play essential roles in pathology and that can be targeted for therapeutics and vaccine development. The recent development of functional genetic screens based on CRISPR/Cas9 technology has revolutionized this field and has enabled the identification of genes that contribute to parasite fitness in vitro and in vivo. Consequently, characterization of genes identified by unbiased CRISPR screens has revealed novel aspects of apicomplexan biology. In this review, we describe the development of CRIPSR-based screening technology for T. gondii, and recent advances in our understanding of secretory proteins identified and characterized by CRISPR-based screening.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Zan GX, Qu HZ, Meng J, Wang XF, Yan HC, Wang XQ, Zhou JY. Matrine disturbs the eimeria necatrix-induced loop of tuft cell-intestinal stem cell-goblet cell by inactivating IL-13/JAK2/STAT3 signaling. Poult Sci 2025; 104:104786. [PMID: 39798285 PMCID: PMC11954915 DOI: 10.1016/j.psj.2025.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025] Open
Abstract
As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo. The results showed that EN infection resulted in swelling and hemorrhage of the jejunum, accompanied by the increase in levels of sIgA and inflammatory cytokines (IL-6, IL-1β, and TNF-α). And these inflammatory symptoms were effectively relieved by Matrine intervention. Concurrently, Matrine resisted the EN-induced increase in tuft cell numbers and levels of crucial pro-inflammatory factors (IL-25 and IL-13), while also reversing the differentiation of secretory cell progenitors into goblet cells. Importantly, Matrine impeded the upregulation of the inflammatory signaling pathway JAK2/STAT3 in EN-infected chicks and IOs. Conversely, exogenous supplementation of IL-13 or activation of STAT3 via Colivelin eliminated the standardization of the tuft cell-ISC-goblet cell loop by Matrine. Overall, our findings suggested that Matrine intercepted the tuft cell-ISC-goblet cell loop by reinstating IL-13/JAK2/STAT3 signaling after EN infection.
Collapse
Affiliation(s)
- Geng-Xiu Zan
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China
| | - Hao-Zhan Qu
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China
| | - Jia Meng
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Sun W, Zhang F, Zhu J, Yu Y, Wang Y, Luo Q, Yu L. The microneme protein1 (MIC1) of Chinese 1 Toxoplasma regulates pyroptosis through the TLR4/NLRP3 pathway in macrophages. Parasit Vectors 2024; 17:495. [PMID: 39614314 PMCID: PMC11607952 DOI: 10.1186/s13071-024-06584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND TgMIC1, a soluble adhesion protein that typically facilitates parasite invasion, exhibited varying expression levels among distinct virulence strains of Chinese 1 Toxoplasma. This study aims to explore its role in immunological regulation and its association with diverse postinfection outcomes in Toxoplasma infection. METHODS First, the mic1 knockout strain Wh3Δmic1 was generated and assessed for its virulence and proliferative capacity. Subsequently, the serum inflammation levels were examined in mice infected with Wh3Δmic1, Wh3, and Wh6. Furthermore, rMIC1 and rMIC1-T126A/T220A, which lack binding sites to N-glycan in TLR4, were produced for coculture with bone marrow-derived macrophages (BMDMs) to investigate their impact on pyroptosis. RESULTS Our data showed Wh3Δmic1 exhibited a significant reduction in invasion efficiency, limited growth, and attenuated inflammatory responses in mice. Additionally, it displayed a decreased capacity to induce pyroptosis when compared with Wh3-infected BMDMs. Moreover, rMIC1 but not rMIC1-T126A/T220A was found to be able to upregulate NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and activate GSDMD and caspase-1 in BMDMs but not in TLR4-/- and NLRP3-/- BMDMs. CONCLUSIONS TgMIC1 is implicated in both parasite invasion and the modulation of macrophage pyroptosis via the TLR4/NLRP3 pathway. This investigation indicates that TgMIC1 serves diverse functions in Toxoplasma gondii infection, thereby enhancing comprehension of the immune regulatory mechanisms of the parasite.
Collapse
Affiliation(s)
- Wenze Sun
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Fan Zhang
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jinjin Zhu
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yanxia Yu
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yang Wang
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qingli Luo
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology; Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
4
|
Wang C, Sun P, Jia Y, Tang X, Liu X, Suo X, Peng H. Protein disulfide isomerase PDI8 is indispensable for parasite growth and associated with secretory protein processing in Toxoplasma gondii. mBio 2024; 15:e0205124. [PMID: 39162526 PMCID: PMC11389393 DOI: 10.1128/mbio.02051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Protein disulfide isomerase, containing thioredoxin (Trx) domains, serves as a vital enzyme responsible for oxidative protein folding (the formation, reduction, and isomerization of disulfide bonds in newly synthesized proteins) in the endoplasmic reticulum (ER). However, the role of ER-localized PDI proteins in parasite growth and their interaction with secretory proteins remain poorly understood. In this study, we identified two ER-localized PDI proteins, TgPDI8 and TgPDI6, in Toxoplasma gondii. Conditional knockdown of TgPDI8 resulted in a significant reduction in intracellular proliferation and invasion abilities, leading to a complete block in plaque formation on human foreskin fibroblast monolayers, whereas parasites lacking TgPDI6 did not exhibit any apparent fitness defects. The complementation of TgPDI8 with mutant variants highlighted the critical role of the CXXC active site cysteines within its Trx domains for its enzymatic activity. By utilizing TurboID-based proximity labeling, we uncovered a close association between PDI proteins and canonical secretory proteins. Furthermore, parasites lacking TgPDI8 showed a significant reduction in the expression of secretory proteins, especially those from micronemes and dense granules. In summary, our study elucidates the roles of TgPDI8 and sets the stage for future drug discovery studies. IMPORTANCE Apicomplexans, a phylum of intracellular parasites, encompass various zoonotic pathogens, including Plasmodium, Cryptosporidium, Toxoplasma, and Babesia, causing a significant economic burden on human populations. These parasites exhibit hypersensitivity to disruptions in endoplasmic reticulum (ER) redox homeostasis, necessitating the presence of ER-localized thioredoxin (Trx) superfamily proteins, particularly protein disulfide isomerase (PDI), for proper oxidative folding. However, the functional characteristics of ER-localized PDI proteins in Toxoplasma gondii remain largely unexplored. In this study, we identified two ER-localized proteins, namely, TgPDI8 and TgPDI6, and demonstrated the indispensable role of TgPDI8 in parasite survival. Through a comprehensive multi-omics analysis, we elucidated the crucial role of TgPDI8 in the processing of secretory proteins in T. gondii. Additionally, we introduced a novel ER-anchored TurboID method to label and identify canonical secretory proteins in T. gondii. This research opens up new avenues for understanding oxidative folding and the secretory pathway in apicomplexan parasites, laying the groundwork for future advancements in antiparasitic drug development.
Collapse
Affiliation(s)
- Chaoyue Wang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China
- Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong Province, China
| | - Yonggen Jia
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China
- Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
7
|
Jennison C, Armstrong JM, Dankwa DA, Hertoghs N, Kumar S, Abatiyow BA, Naung M, Minkah NK, Swearingen KE, Moritz R, Barry AE, Kappe SHI, Vaughan AM. Plasmodium GPI-anchored micronemal antigen is essential for parasite transmission through the mosquito host. Mol Microbiol 2024; 121:394-412. [PMID: 37314965 PMCID: PMC11076100 DOI: 10.1111/mmi.15078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Plasmodium parasites, the eukaryotic pathogens that cause malaria, feature three distinct invasive forms tailored to the host environment they must navigate and invade for life cycle progression. One conserved feature of these invasive forms is the micronemes, apically oriented secretory organelles involved in egress, motility, adhesion, and invasion. Here we investigate the role of GPI-anchored micronemal antigen (GAMA), which shows a micronemal localization in all zoite forms of the rodent-infecting species Plasmodium berghei. ∆GAMA parasites are severely defective for invasion of the mosquito midgut. Once formed, oocysts develop normally, however, sporozoites are unable to egress and exhibit defective motility. Epitope-tagging of GAMA revealed tight temporal expression late during sporogony and showed that GAMA is shed during sporozoite gliding motility in a similar manner to circumsporozoite protein. Complementation of P. berghei knockout parasites with full-length P. falciparum GAMA partially restored infectivity to mosquitoes, indicating conservation of function across Plasmodium species. A suite of parasites with GAMA expressed under the promoters of CTRP, CAP380, and TRAP, further confirmed the involvement of GAMA in midgut infection, motility, and vertebrate infection. These data show GAMA's involvement in sporozoite motility, egress, and invasion, implicating GAMA as a regulator of microneme function.
Collapse
Affiliation(s)
- Charlie Jennison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Janna M. Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Dorender A. Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Myo Naung
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Victoria, Carlton, Australia
- Department of Global Health, University of Washington, Washington, Seattle, USA
| | - Nana K. Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
| | - Kristian E. Swearingen
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Victoria, Geelong, Australia
| | - Robert Moritz
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Victoria, Geelong, Australia
| | - Alyssa E. Barry
- Department of Global Health, University of Washington, Washington, Seattle, USA
- Institute for Systems Biology, Washington, Seattle, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
- Burnet Institute, Victoria, Melbourne, Australia
- Department of Pediatrics, University of Washington, Washington, Seattle, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Washington, Seattle, USA
- Burnet Institute, Victoria, Melbourne, Australia
- Department of Pediatrics, University of Washington, Washington, Seattle, USA
| |
Collapse
|
8
|
Sun L, Li C, Zhao N, Wang B, Li H, Wang H, Zhang X, Zhao X. Host protein EPCAM interacting with EtMIC8-EGF is essential for attachment and invasion of Eimeria tenella in chickens. Microb Pathog 2024; 188:106549. [PMID: 38281605 DOI: 10.1016/j.micpath.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Chao Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding City, 071000, Hebei Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Bingxiang Wang
- Shandong Vocational Animal Science and Veterinary College, Weifang City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Hairong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
9
|
Shan Z, Song X, Yang X, Xue Y, Wu Y, Wang X, Liu J, Liu Q. Calreticulin (CALR) promotes ionophore-induced microneme secretion in Toxoplasma gondii. Parasitol Res 2024; 123:139. [PMID: 38381180 DOI: 10.1007/s00436-024-08162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
The flow of calcium ions (Ca2+) is involved in numerous vital activities of Toxoplasma gondii. Calreticulin is a type of Ca2+-binding protein in the endoplasmic reticulum (ER) that is involved in Ca2+ signaling pathway regulation, Ca2+ storage, and protein folding. In this work, the calreticulin (CALR), a protein predicted to possess a conserved domain of calreticulin in T. gondii, was characterized. The CALR localized in the ER. Using reverse genetics, we discovered that CALR is not necessary for the lytic cycle, including invasion and replication. However, depletion of CALR affected microneme secretion triggered by A23187, which is a Ca2+ ionophore used to increase cytoplasmic Ca2+ concentration. Furthermore, we discovered that CALR influences Ca2+ release. Transcriptomic comparison between Δcalr and Δku80 parasites showed that 226 genes in the Δcalr parasites were significantly downregulated (p < 0.05). The cellular biological functions of the downregulated genes were mainly involved in calmodulin-dependent protein kinase pathways. Furthermore, in the absence of CALR, tachyzoites were still able to cause acute infection in mice. These results imply that by influencing ER Ca2+ release content, CALR may further impair the ionophore-induced secretion of the parasite. However, this protein is not required for the completion of the parasite's lytic cycle or for the acute virulence of the parasite.
Collapse
Affiliation(s)
- Zhili Shan
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xingju Song
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yangfei Xue
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yayun Wu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianmei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Dos Santos Pacheco N, Tell I Puig A, Guérin A, Martinez M, Maco B, Tosetti N, Delgado-Betancourt E, Lunghi M, Striepen B, Chang YW, Soldati-Favre D. Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins. Nat Commun 2024; 15:379. [PMID: 38191574 PMCID: PMC10774369 DOI: 10.1038/s41467-023-44631-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
In Apicomplexa, rhoptry discharge is essential for invasion and involves an apical vesicle (AV) docking one or two rhoptries to a macromolecular secretory apparatus. Toxoplasma gondii is armed with 10-12 rhoptries and 5-6 microtubule-associated vesicles (MVs) presumably for iterative rhoptry discharge. Here, we have addressed the localization and functional significance of two intraconoidal microtubule (ICMT)-associated proteins instrumental for invasion. Mechanistically, depletion of ICMAP2 leads to a dissociation of the ICMTs, their detachment from the conoid and dispersion of MVs and rhoptries. ICMAP3 exists in two isoforms that contribute to the control of the ICMTs length and the docking of the two rhoptries at the AV, respectively. This study illuminates the central role ICMTs play in scaffolding the discharge of multiple rhoptries. This process is instrumental for virulence in the mouse model of infection and in addition promotes sterile protection against T. gondii via the release of key effectors inducing immunity.
Collapse
Affiliation(s)
- Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Estefanía Delgado-Betancourt
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Lunghi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Wang Z, Li J, Yang Q, Sun X. Global Proteome-Wide Analysis of Cysteine S-Nitrosylation in Toxoplasma gondii. Molecules 2023; 28:7329. [PMID: 37959749 PMCID: PMC10649196 DOI: 10.3390/molecules28217329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Toxoplasma gondii transmits through various routes, rapidly proliferates during acute infection and causes toxoplasmosis, which is an important zoonotic disease in human and veterinary medicine. T. gondii can produce nitric oxide and derivatives, and S-nitrosylation contributes to their signaling transduction and post-translation regulation. To date, the S-nitrosylation proteome of T. gondii remains mystery. In this study, we reported the first S-nitrosylated proteome of T. gondii using mass spectrometry in combination with resin-assisted enrichment. We found that 637 proteins were S-nitrosylated, more than half of which were localized in the nucleus or cytoplasm. Motif analysis identified seven motifs. Of these motifs, five and two contained lysine and isoleucine, respectively. Gene Ontology enrichment revealed that S-nitrosylated proteins were primarily located in the inner membrane of mitochondria and other organelles. These S-nitrosylated proteins participated in diverse biological and metabolic processes, including organic acid binding, carboxylic acid binding ribose and phosphate biosynthesis. T. gondii S-nitrosylated proteins significantly contributed to glycolysis/gluconeogenesis and aminoacyl-tRNA biosynthesis. Moreover, 27 ribosomal proteins and 11 microneme proteins were identified as S-nitrosylated proteins, suggesting that proteins in the ribosome and microneme were predominantly S-nitrosylated. Protein-protein interaction analysis identified three subnetworks with high-relevancy ribosome, RNA transport and chaperonin complex components. These results imply that S-nitrosylated proteins of T. gondii are associated with protein translation in the ribosome, gene transcription, invasion and proliferation of T. gondii. Our research is the first to identify the S-nitrosylated proteomic profile of T. gondii and will provide direction to the ongoing investigation of the functions of S-nitrosylated proteins in T. gondii.
Collapse
Affiliation(s)
- Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (X.S.)
| | | | | | | |
Collapse
|
14
|
Ribeiro E. Silva A, Diallo MA, Sausset A, Robert T, Bach S, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Overexpression of Eimeria tenella Rhoptry Kinase 2 Induces Early Production of Schizonts. Microbiol Spectr 2023; 11:e0013723. [PMID: 37260371 PMCID: PMC10434272 DOI: 10.1128/spectrum.00137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T. gondii. To date, among the 28 ropk genes carried by E. tenella, only two to four were confirmed by proteomic analysis or immunostaining to be expressed at the sporozoite stage. We have previously shown that EtROP1 is implicated in the inhibition of host cell apoptosis by interacting with the cellular p53. This work functionally described the second ROP kinase expressed at the sporozoite stage in E. tenella. EtROP2 is an active kinase that phosphorylates cell substrates of approximately 50 kDa. Its overexpression leads to the shortening of the prepatent period and to the early development of first-generation schizonts. Conduction of RNA sequencing analysis and reverse transcriptase quantitative PCR (RT-qPCR) on the host cell allowed us to identify the mitogen-activated protein kinase (MAPK) pathway and the transcription factor cFos to be upregulated by EtROP2. We also showed by immunofluorescence assay that the active kinase EtROP2 is implicated in the p38 MAPK pathway activation. We established here that EtROP2 activates the p38 MAPK pathway through a direct or indirect phosphorylation, leading to the overexpression of the master transcription factor cFos known to be implicated in E. tenella development. IMPORTANCE Rhoptries are specialized secretory organelles found in zoite stages of apicomplexan parasites. In addition to well-conserved rhoptry neck proteins, their protein consists mostly of kinase proteins, highly divergent from eukaryotic kinases. Some of those kinases are described as major virulence factors in Toxoplasma gondii, secreted into the host cell to hijack signaling pathways. Most of those kinases remain to be characterized in Eimeria tenella. Deciphering their cellular function is a prerequisite to supporting their relevance as a druggable target in development of new means of Eimeria tenella control. Secreted divergent kinases that interact with host cell partners to modulate pathways are good candidates, as they coevolve with their host targets to ensure their function within the host and are less prone to mutations that would lead to drug resistance. The absence of any orthologous kinase in host cells makes these parasite kinases a promising drug target candidate.
Collapse
Affiliation(s)
| | | | - Alix Sausset
- ISP, INRAE, Université de Tours, Nouzilly, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | | | | | | |
Collapse
|
15
|
Sun L, Zhao N, Li H, Wang B, Li H, Zhang X, Zhao X. Construction of a Lactobacillus plantarum-based claudin-3 targeting delivery system for the development of vaccines against Eimeria tenella. Vaccine 2023; 41:756-765. [PMID: 36526500 DOI: 10.1016/j.vaccine.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Avian coccidiosis causes huge economic losses to the poultry industry worldwide and currently lacks effective live vector vaccines. Achieving efficient antigen delivery to mucosa-associated lymphoid tissue (MALT) is critical for improving the effectiveness of vaccines. Here, chicken claudin-3 (CLDN3), a tight junction protein expressed in MALT, was identified as a target, and the C-terminal region of Clostridium perfringens enterotoxin (C-CPE) was proven to bind to chicken CLDN3. Then, a CLDN3-targeting Lactobacillus plantarum NC8-expressing C-CPE surface display system (NC8/GFP-C-CPE) was constructed to successfully express the heterologous protein on the surface of L. plantarum. The colonization level of NC8/GFP-C-CPE was significantly increased compared to the non-targeting strain and could persist in the intestine for at least 72 h. An oral vaccine strain expressing five EGF domains of Eimeria tenella microneme protein 8 (EtMIC8-EGF) (NC8/EtMIC8-EGF-C-CPE) was constructed to evaluate the protective efficacy against E. tenella infection. The results revealed that CLDN3-targeting L. plantarum induced stronger mucosal immunity in gut-associated lymphoid tissues (GALT) as well as humoral responses and conferred better protection in terms of parasite replication and pathology than the non-targeting strain. Overall, we successfully constructed a CLDN3-targeting L. plantarum NC8 surface display system characterized by MALT-targeting, which is an efficient antigen delivery system to confer enhanced protective efficacy in chickens against E. tenella infection.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
16
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
17
|
Mamaghani AJ, Fathollahi A, Arab-Mazar Z, kohansal K, Fathollahi M, Spotin A, Bashiri H, Bozorgomid A. Toxoplasma gondii vaccine candidates: a concise review. Ir J Med Sci 2023; 192:231-261. [PMID: 35394635 PMCID: PMC8992420 DOI: 10.1007/s11845-022-02998-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis. It has been shown that the severity of symptoms depends on the functioning of the host immune system. Although T. gondii infection typically does not lead to severe disease in healthy people and after infection, it induces a stable immunity, but it can contribute to severe and even lethal Toxoplasmosis in immunocompromised individuals (AIDS, bone marrow transplant and neoplasia). The antigens that have been proposed to be used in vaccine candidate in various studies include surface antigens and secretory excretions that have been synthesized and evaluated in different studies. In some studies, secretory antigens play an important role in stimulating the host immune response. Various antigens such as SAG, GRA, ROP, ROM, and MAG have been from different strains of T. gondii have been synthesized and their protective effects have been evaluated in animal models in different vaccine platforms including recombinant antigens, nanoparticles, and DNA vaccine. Four bibliographic databases including Science Direct, PubMed Central (PMC), Scopus, and Google Scholar were searched for articles published up to 2020.The current review article focuses on recent studies on the use and usefulness of recombinant antigens, nanoparticles, and DNA vaccines.
Collapse
Affiliation(s)
- Amirreza Javadi Mamaghani
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anwar Fathollahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Arab-Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra kohansal
- Department of Medical Parasitology, School of Medicine, Jondishapour University of Medical Sciences, Ahvaz, Iran
| | - Matin Fathollahi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homayoon Bashiri
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Venancio Brochi JC, Pereira LM, Yatsuda AP. Extracellular H 2O 2, peroxiredoxin, and glutathione reductase alter Neospora caninum invasion and proliferation in Vero cells. Exp Parasitol 2022; 242:108381. [PMID: 36122700 DOI: 10.1016/j.exppara.2022.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Neospora caninum is a protozoan member of the Apicomplexa phylum and is closely connected with abortion in cattle. The development of the parasite in host cells is characterized by the active secretion of proteins, allied to the tight control of the redox status. In this sense, elucidating the mechanisms related to the role of the redox agents and enzymes during the invasion and proliferation of N. caninum may contribute to developing novel forms of neosporosis control. In this study we verified the effects of the recombinant forms of N. caninum glutathione reductase (rNcGR) and thioredoxin-dependent peroxide reductase (rNcPrx), as well as H2O2 in the tachyzoite invasion and proliferation. rNcPrx interfered in the N. caninum invasion in a redox state manner. Oxidized rNcPrx inhibited the N. caninum invasion and proliferation with no toxic effects observed in Vero cells. In contrast, lower concentrations of H2O2 (10 μM) stimulated the N. caninum invasion, which was reverted in higher doses (>100 μM). H2O2 inhibited the parasite proliferation in lower concentrations than cytotoxicity in host cells, resulting in a positive selectivity index (1.8). Besides, rNcPrx (reduced and non-reduced) and rNcGR inhibited the parasite proliferation without affecting the host cell. Our results indicate the connection between the N. caninum development and the redox state, contributing to the elucidation of parasite propagation and control mechanisms.
Collapse
Affiliation(s)
- Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
19
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
20
|
Liu X, Li C, Li X, Ehsan M, Lu M, Li K, Xu L, Yan R, Song X, Li X. Proteomics analysis reveals that the proto-oncogene eIF-5A indirectly influences the growth, invasion and replication of Toxoplasma gondii tachyzoite. Parasit Vectors 2021; 14:283. [PMID: 34039408 PMCID: PMC8157420 DOI: 10.1186/s13071-021-04791-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The proliferative stage (tachyzoite) of Toxoplasma gondii (T. gondii) is critical for its transmission and pathogenesis, and a proto-oncogene eukaryotic translation initiation factor (eIF-5A) plays an important role in various cellular processes such as cell multiplication. METHODS We performed a proteomic study to evaluate the specific roles of eIF-5A involved in invasion and replication of T. gondii, and both in vivo and in vitro trials using eIF-5A-interfered and wild tachyzoites were performed to verify the proteomic results. RESULTS The results of our study showed that T. gondii eIF-5A affected tachyzoite growth and also participated in the synthesis of proteins through regulation of both ribosomal and splicing pathways. Inhibition of eIF-5A in T. gondii resulted in the downregulated expression of soluble adhesions, such as microneme protein 1 (MIC1) and MIC4, which in turn decreased the parasite population that adhered to the surface of host cells. The reduced attachment, combined with lower expression of some rhoptry proteins (ROPs) and dense granule antigens (GRAs) involved in different stages of T. gondii invasion such as ROP4 and GRA3, ultimately reduce the invasion efficiency. These processes regulated by eIF-5A eventually affect the replication of tachyzoites. CONCLUSIONS Our findings showed that eIF-5A influenced tachyzoite survival and was also involved in the process of parasite invasion and replication. These results will provide new clues for further development of targeted drugs to control T. gondii infection.
Collapse
Affiliation(s)
- Xinchao Liu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100 People’s Republic of China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Chunjing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiaoyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu People’s Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Ke Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Poultry and Poultry Diseases Institute, Yunnan Animal Science and Veterinary Institute, Kunming, 650224 People’s Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
21
|
Sun H, Li J, Wang L, Yin K, Xu C, Liu G, Xiao T, Huang B, Wei Q, Gong M, Cao J. Comparative Proteomics Analysis for Elucidating the Interaction Between Host Cells and Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:643001. [PMID: 34055664 PMCID: PMC8158437 DOI: 10.3389/fcimb.2021.643001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii, a representative model organism belonging to the phylum Apicomplexa, can infect almost all warm-blooded organisms, including humans. The invasion of host cells via host–parasite interaction is the key step for T. gondii to complete its life cycle. Herein we performed tandem mass tag analysis to investigate global proteomic changes in host cells (human foreskin fibroblasts, HFFs) [HFFs infected with T. gondii (HT) vs. HFFs (H)] and T. gondii [HT vs. T. gondii (T)] during intracellular infection. Overall, 3477 and 1434 proteins were quantified, of which 375 and 1099 proteins were differentially expressed (adjusted p-value < 0.05 and >1.5 or <0.67-fold change) in host cells and T. gondii, respectively. T. gondii invasion relies on the secretion of numerous secretory proteins, which originate from three secretory organelles: micronemes, rhoptries, and dense granules. In the HT vs. T group, few secretory proteins were upregulated, such as microneme proteins (MICs: MIC6, MIC10), rhoptry bulb proteins (ROPs: ROP5, ROP17), and dense granule proteins (GRAs: GRA4, GRA5, GRA12). In contrast, dozens of known secretory proteins were significantly downregulated in T. gondii-infected HFFs. In HFFs, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed a large number of differentially expressed proteins (DEPs) enriched in metabolic processes and immune-associated signaling pathways, such as NF-κB, cAMP, and Rap1 signaling pathways. Further, in case of T. gondii, DEPs were involved in ribosome biogenesis, citrate cycle, and galactose metabolism, indicating that cell biosynthesis and metabolism of T. gondii were altered after host cell invasion. These findings reveal novel modifications in the proteome of host cells as well as T. gondii, helping us better understand the mechanisms underlying host–parasite interaction.
Collapse
Affiliation(s)
- Hui Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of People's Republic of China Key Laboratory of Parasite and Vector Biology, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Longjiang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Gongzhen Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Ting Xiao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Bingcheng Huang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Qingkuan Wei
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining City, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of People's Republic of China Key Laboratory of Parasite and Vector Biology, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China.,The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Hassan EM, Örmeci B, DeRosa MC, Dixon BR, Sattar SA, Iqbal A. A review of Cryptosporidium spp. and their detection in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1-25. [PMID: 33460403 DOI: 10.2166/wst.2020.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryptosporidium spp. are one of the most important waterborne pathogens worldwide and a leading cause of mortality from waterborne gastrointestinal diseases. Detection of Cryptosporidium spp. in water can be very challenging due to their low numbers and the complexity of the water matrix. This review describes the biology of Cryptosporidium spp. and current methods used in their detection with a focus on C. parvum and C. hominis. Among the methods discussed and compared are microscopy, immunology-based methods using monoclonal antibodies, molecular methods including PCR (polymerase chain reaction)-based assays, and emerging aptamer-based methods. These methods have different capabilities and limitations, but one common challenge is the need for better sensitivity and specificity, particularly in the presence of contaminants. The application of DNA aptamers in the detection of Cryptosporidium spp. oocysts shows promise in overcoming these challenges, and there will likely be significant developments in aptamer-based sensors in the near future.
Collapse
Affiliation(s)
- Eman M Hassan
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Canada, K1S 5B6
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada, K1A 0K9
| | - Syed A Sattar
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail: ; C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| | - Asma Iqbal
- C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| |
Collapse
|
23
|
Hunter ES, Paight C, Lane CE. Metabolic Contributions of an Alphaproteobacterial Endosymbiont in the Apicomplexan Cardiosporidium cionae. Front Microbiol 2020; 11:580719. [PMID: 33335517 PMCID: PMC7737231 DOI: 10.3389/fmicb.2020.580719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
Apicomplexa is a diverse protistan phylum composed almost exclusively of metazoan-infecting parasites, including the causative agents of malaria, cryptosporidiosis, and toxoplasmosis. A single apicomplexan genus, Nephromyces, was described in 2010 as a mutualist partner to its tunicate host. Here we present genomic and transcriptomic data from the parasitic sister species to this mutualist, Cardiosporidium cionae, and its associated bacterial endosymbiont. Cardiosporidium cionae and Nephromyces both infect tunicate hosts, localize to similar organs within these hosts, and maintain bacterial endosymbionts. Though many other protists are known to harbor bacterial endosymbionts, these associations are completely unknown in Apicomplexa outside of the Nephromycidae clade. Our data indicate that a vertically transmitted α-proteobacteria has been retained in each lineage since Nephromyces and Cardiosporidium diverged. This α-proteobacterial endosymbiont has highly reduced metabolic capabilities, but contributes the essential amino acid lysine, and essential cofactor lipoic acid to C. cionae. This partnership likely reduces resource competition with the tunicate host. However, our data indicate that the contribution of the single α-proteobacterial endosymbiont in C. cionae is minimal compared to the three taxa of endosymbionts present in the Nephromyces system, and is a potential explanation for the virulence disparity between these lineages.
Collapse
Affiliation(s)
- Elizabeth Sage Hunter
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Christopher Paight
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Christopher E. Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
24
|
Attias M, Teixeira DE, Benchimol M, Vommaro RC, Crepaldi PH, De Souza W. The life-cycle of Toxoplasma gondii reviewed using animations. Parasit Vectors 2020; 13:588. [PMID: 33228743 PMCID: PMC7686686 DOI: 10.1186/s13071-020-04445-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite that is the causative agent of toxoplasmosis, an infection with high prevalence worldwide. Most of the infected individuals are either asymptomatic or have mild symptoms, but T. gondii can cause severe neurologic damage and even death of the fetus when acquired during pregnancy. It is also a serious condition in immunodeficient patients. The life-cycle of T. gondii is complex, with more than one infective form and several transmission pathways. In two animated videos, we describe the main aspects of this cycle, raising questions about poorly or unknown issues of T. gondii biology. Original plates, based on electron microscope observations, are also available for teachers, students and researchers. The main goal of this review is to provide a source of learning on the fundamental aspects of T. gondii biology to students and teachers contributing for better knowledge and control on this important parasite, and unique cell model. In addition, drawings and videos point to still unclear aspects of T. gondii lytic cycle that may stimulate further studies.![]()
Collapse
Affiliation(s)
- Márcia Attias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | - Rossiane C Vommaro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Henrique Crepaldi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Ramírez-Flores CJ, Cruz-Mirón R, Lagunas-Cortés N, Mondragón-Castelán M, Mondragon-Gonzalez R, González-Pozos S, Mondragón-Flores R. Toxoplasma gondii excreted/secreted proteases disrupt intercellular junction proteins in epithelial cell monolayers to facilitate tachyzoites paracellular migration. Cell Microbiol 2020; 23:e13283. [PMID: 33108050 DOI: 10.1111/cmi.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.
Collapse
Affiliation(s)
- Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Ricardo Mondragon-Gonzalez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | | | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| |
Collapse
|
26
|
Broncel M, Dominicus C, Vigetti L, Nofal SD, Bartlett EJ, Touquet B, Hunt A, Wallbank BA, Federico S, Matthews S, Young JC, Tate EW, Tardieux I, Treeck M. Profiling of myristoylation in Toxoplasma gondii reveals an N-myristoylated protein important for host cell penetration. eLife 2020; 9:e57861. [PMID: 32618271 PMCID: PMC7373427 DOI: 10.7554/elife.57861] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022] Open
Abstract
N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl transferase (NMT) has been proposed as an attractive drug target in several pathogens. Myristoylation often primes for subsequent palmitoylation and stable membrane attachment, however, growing evidence suggests additional regulatory roles for myristoylation on proteins. Here we describe the myristoylated proteome of Toxoplasma gondii using chemoproteomic methods and show that a small-molecule NMT inhibitor developed against related Plasmodium spp. is also functional in Toxoplasma. We identify myristoylation on a transmembrane protein, the microneme protein 7 (MIC7), which enters the secretory pathway in an unconventional fashion with the myristoylated N-terminus facing the lumen of the micronemes. MIC7 and its myristoylation play a crucial role in the initial steps of invasion, likely during the interaction with and penetration of the host cell. Myristoylation of secreted eukaryotic proteins represents a substantial expansion of the functional repertoire of this co-translational modification.
Collapse
Affiliation(s)
- Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Caia Dominicus
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Luis Vigetti
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Stephanie D Nofal
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward J Bartlett
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Bastien Touquet
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Bethan A Wallbank
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefania Federico
- The Peptide Chemistry STP, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City CampusLondonUnited Kingdom
| | - Isabelle Tardieux
- Institute for Advanced Biosciences, Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble AlpesGrenobleFrance
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
27
|
Stasic AJ, Chasen NM, Dykes EJ, Vella SA, Asady B, Starai VJ, Moreno SNJ. The Toxoplasma Vacuolar H +-ATPase Regulates Intracellular pH and Impacts the Maturation of Essential Secretory Proteins. Cell Rep 2020; 27:2132-2146.e7. [PMID: 31091451 PMCID: PMC6760873 DOI: 10.1016/j.celrep.2019.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Vacuolar-proton ATPases (V-ATPases) are conserved complexes that couple the hydrolysis of ATP to the pumping of protons across membranes. V-ATPases are known to play diverse roles in cellular physiology. We studied the Toxoplasma gondii V-ATPase complex and discovered a dual role of the pump in protecting parasites against ionic stress and in the maturation of secretory proteins in endosomal-like compartments. Toxoplasma V-ATPase subunits localize to the plasma membrane and to acidic vesicles, and characterization of conditional mutants of the a1 subunit highlighted the functionality of the complex at both locations. Microneme and rhoptry proteins are required for invasion and modulation of host cells, and they traffic via endosome-like compartments in which proteolytic maturation occurs. We show that the V-ATPase supports the maturation of rhoptry and microneme proteins, and their maturases, during their traffic to their corresponding organelles. This work underscores a role for V-ATPases in regulating virulence pathways. Stasic et al. characterize the function of the vacuolar proton ATPase in the life cycle of Toxoplasma gondii, a widespread parasite that infects almost one-third of the world’s population. The work presents molecular evidence of the pump’s role in the synthesis of virulence factors of a highly successful pathogen.
Collapse
Affiliation(s)
- Andrew J Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Nathan M Chasen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Eric J Dykes
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602-7400, USA.
| |
Collapse
|
28
|
Onile OS, Ojo GJ, Oyeyemi BF, Agbowuro GO, Fadahunsi AI. Development of multiepitope subunit protein vaccines against Toxoplasma gondii using an immunoinformatics approach. NAR Genom Bioinform 2020; 2:lqaa048. [PMID: 33575600 PMCID: PMC7671309 DOI: 10.1093/nargab/lqaa048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
Approximately one-third of the world’s human population is estimated to have been exposed to the parasite Toxoplasma gondii. Its prevalence is reportedly high in Ethiopia (74.80%) and Zimbabwe (68.58%), and is 40.40% in Nigeria. The adverse effect of this parasite includes a serious congenital disease in the developing fetus of pregnant women. After several efforts to eliminate the disease, only one licensed vaccine ‘Toxovax’ has been used to avoid congenital infections in sheep. The vaccine has been adjudged expensive coupled with adverse effects and short shelf life. The potential of vaccine to likely revert to virulent strain is a major reason why it has not been found suitable for human use, hence the need for a vaccine that will induce T and B memory cells capable of eliciting longtime immunity against the infection. This study presents immunoinformatics approaches to design a T. gondii-oriented multiepitope subunit vaccine with focus on micronemal proteins for the vaccine construct. The designed vaccine was subjected to antigenicity, immunogenicity, allergenicity and physicochemical parameter analyses. A 657-amino acid multiepitope vaccine was designed with the antigenicity probability of 0.803. The vaccine construct was classified as stable, non-allergenic, and highly immunogenic, thereby indicating the safety of the vaccine construct for human use.
Collapse
Affiliation(s)
- Olugbenga S Onile
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| | - Glory J Ojo
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| | - Bolaji Fatai Oyeyemi
- Molecular Biology Group, Department of Science Technology, The Federal Polytechnic, 360231, Ado-Ekiti, Ekiti State, Nigeria
| | - Gbenga O Agbowuro
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| | - Adeyinka I Fadahunsi
- Biotechnology Programme, Department of Biological Sciences, Elizade University, 340211, Ilara-Mokin, Nigeria
| |
Collapse
|
29
|
Wei W, Shen N, Xiao J, Tao Y, Luo Y, Angel C, Gu X, Xie Y, He R, Jing B, Peng X, Yang G. Expression Analysis and Serodiagnostic Potential of Microneme Proteins 1 and 3 in Eimeria stiedai. Genes (Basel) 2020; 11:E725. [PMID: 32610686 PMCID: PMC7397282 DOI: 10.3390/genes11070725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
Eimeria stiedai is an apicomplexan protozoan parasite that invades the liver and bile duct epithelial cells in rabbits and causes severe hepatic coccidiosis, resulting in significant economic losses in the domestic rabbit industry. Hepatic coccidiosis lacks the typical clinical symptoms and there is a lack of effective premortem tools to timely diagnose this disease. Therefore, in the present study we cloned and expressed the two microneme proteins i.e., microneme protein 1 (EsMIC1) and microneme protein 3 (EsMIC3) from E. stiedai and used them as recombinant antigens to develop a serodiagnostic method for an effective diagnosis of hepatic coccidiosis. The cDNAs encoding EsMIC1 and EsMIC3 were cloned and the mRNA expression levels of these two genes at different developmental stages of E. stiedai were determined by quantitative real-time PCR analysis (qRT-PCR). The immunoreactivity of recombinant EsMIC1 (rEsMIC1) and EsMIC3 (rEsMIC3) proteins were detected by Western blotting, and indirect enzyme-linked immunosorbent assays (ELISAs) based on these two recombinant antigens were established to evaluate their serodiagnostic potential. Our results showed that the proteins encoded by the ORFs of EsMIC1 (711 bp) and EsMIC3 (891 bp) were approximately 25.89 and 32.39 kDa in predicted molecular weight, respectively. Both EsMIC1 and EsMIC3 showed the highest mRNA expression levels in the merozoites stage of E. stiedai. Western blotting analysis revealed that both recombinant proteins were recognized by E. stiedai positive sera, and the indirect ELISAs using rEsMIC1 and rEsMIC3 were developed based on their good immunoreactivity, with 100% (48/48) sensitivity and 97.9% (47/48) specificity for rEsMIC1 with 100% (48/48) sensitivity and 100% (48/48) specificity for rEsMIC3, respectively. Moreover, rEsMIC1- and rEsMIC3-based indirect ELISA were able to detect corresponding antibodies in sera at days 6, 8, and 10 post E. stiedai infection, with the highest positive diagnostic rate (62.5% (30/48) for rEsMIC1 and 66.7% (32/48) for rEsMIC3) observed at day 10 post infection. Therefore, both EsMIC1 and EsMIC3 can be used as potential serodiagnostic candidate antigens for hepatic coccidiosis caused by E. stiedai.
Collapse
Affiliation(s)
- Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuanyuan Tao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yuejun Luo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (W.W.); (N.S.); (J.X.); (Y.T.); (Y.L.); (C.A.); (X.G.); (Y.X.); (R.H.); (B.J.)
| |
Collapse
|
30
|
Villares M, Berthelet J, Weitzman JB. The clever strategies used by intracellular parasites to hijack host gene expression. Semin Immunopathol 2020; 42:215-226. [PMID: 32002610 DOI: 10.1007/s00281-020-00779-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/01/2020] [Indexed: 01/08/2023]
Abstract
Intracellular pathogens need to develop sophisticated mechanisms to survive and thrive in the hostile environment within host cells. Unicellular, eukaryotic parasites from the Apicomplexa phylum have become masters of manipulating their host cells, exploiting signaling, and metabolic pathways to hijack host gene expression to their own advantage. These intracellular parasites have developed a wide range of strategies that affect transcriptional machineries and epigenetic events in the host cell nucleus. In recent years, many laboratories have risen to the challenge of studying the epigenetics of host-pathogen interactions with the hope that unraveling the complexity of the mechanisms involved will provide important insights into parasitism and provide clues to fight infection. In this review, we survey some of these many strategies that Apicomplexan parasites employ to hijack their hosts, including inducing epigenetic enzymes, secreting epigenators into host cells, sequestering host signaling proteins, and co-opting non-coding RNAs to change gene and protein expression. We cite selected examples from the literature on Apicomplexa parasites (including Toxoplasma, Theileria, and Cryptosporidium) to highlight the success of these parasitic processes. We marvel at the effectiveness of the strategies that these pathogens have evolved and wonder what mysteries lie ahead in exploring the epigenetics of host-parasite interactions.
Collapse
Affiliation(s)
- Marie Villares
- UMR 7216 Epigenetics and Cell Fate, CNRS, Université de Paris, Bâtiment Lamarck, Case 7042, 35 rue Hélène Brion, 75205, Paris cedex 13, France
| | - Jérémy Berthelet
- UMR 7216 Epigenetics and Cell Fate, CNRS, Université de Paris, Bâtiment Lamarck, Case 7042, 35 rue Hélène Brion, 75205, Paris cedex 13, France
| | - Jonathan B Weitzman
- UMR 7216 Epigenetics and Cell Fate, CNRS, Université de Paris, Bâtiment Lamarck, Case 7042, 35 rue Hélène Brion, 75205, Paris cedex 13, France.
| |
Collapse
|
31
|
RON2, a novel gene in Babesia bigemina, contains conserved, immunodominant B-cell epitopes that induce antibodies that block merozoite invasion. Parasitology 2019; 146:1646-1654. [PMID: 31452491 PMCID: PMC6786967 DOI: 10.1017/s0031182019001161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bovine babesiosis is the most important protozoan disease transmitted by ticks. In Plasmodium falciparum, another Apicomplexa protozoan, the interaction of rhoptry neck protein 2 (RON2) with apical membrane antigen-1 (AMA-1) has been described to have a key role in the invasion process. To date, RON2 has not been described in Babesia bigemina, the causal agent of bovine babesiosis in the Americas. In this work, we found a ron2 gene in the B. bigemina genome. RON2 encodes a protein that is 1351 amino acids long, has an identity of 64% (98% coverage) with RON2 of B. bovis and contains the CLAG domain, a conserved domain in Apicomplexa. B. bigemina ron2 is a single copy gene and it is transcribed and expressed in blood stages as determined by RT-PCR, Western blot, and confocal microscopy. Serum samples from B. bigemina-infected bovines were screened for the presence of RON2-specific antibodies, showing the recognition of conserved B-cell epitopes. Importantly, in vitro neutralization assays showed an inhibitory effect of RON2-specific antibodies on the red blood cell invasion by B. bigemina. Therefore, RON2 is a novel antigen in B. bigemina and contains conserved B-cell epitopes, which induce antibodies that inhibit merozoite invasion.
Collapse
|
32
|
Panas MW, Ferrel A, Naor A, Tenborg E, Lorenzi HA, Boothroyd JC. Translocation of Dense Granule Effectors across the Parasitophorous Vacuole Membrane in Toxoplasma-Infected Cells Requires the Activity of ROP17, a Rhoptry Protein Kinase. mSphere 2019; 4:e00276-19. [PMID: 31366709 PMCID: PMC6669336 DOI: 10.1128/msphere.00276-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii tachyzoites co-opt host cell functions through introduction of a large set of rhoptry- and dense granule-derived effector proteins. These effectors reach the host cytosol through different means: direct injection for rhoptry effectors and translocation across the parasitophorous vacuolar membrane (PVM) for dense granule (GRA) effectors. The machinery that translocates these GRA effectors has recently been partially elucidated, revealing three components, MYR1, MYR2, and MYR3. To determine whether other proteins might be involved, we returned to a library of mutants defective in GRA translocation and selected one with a partial defect, suggesting it might be in a gene encoding a new component of the machinery. Surprisingly, whole-genome sequencing revealed a missense mutation in a gene encoding a known rhoptry protein, a serine/threonine protein kinase known as ROP17. ROP17 resides on the host cytosol side of the PVM in infected cells and has previously been known for its activity in phosphorylating and thereby inactivating host immunity-related GTPases. Here, we show that null or catalytically dead mutants of ROP17 are defective in GRA translocation across the PVM but that translocation can be rescued "in trans" by ROP17 delivered by other tachyzoites infecting the same host cell. This strongly argues that ROP17's role in regulating GRA translocation is carried out on the host cytosolic side of the PVM, not within the parasites or lumen of the parasitophorous vacuole. This represents an entirely new way in which the different secretory compartments of Toxoplasma tachyzoites collaborate to modulate the host-parasite interaction.IMPORTANCE When Toxoplasma infects a cell, it establishes a protective parasitophorous vacuole surrounding it. While this vacuole provides protection, it also serves as a barrier to the export of parasite effector proteins that impact and take control of the host cell. Our discovery here that the parasite rhoptry protein ROP17 is necessary for export of these effector proteins provides a distinct, novel function for ROP17 apart from its known role in protecting the vacuole. This will enable future research into ways in which we can prevent the export of effector proteins, thereby preventing Toxoplasma from productively infecting its animal and human hosts.
Collapse
Affiliation(s)
- Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Abel Ferrel
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Elizabeth Tenborg
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- University of California at Davis, School of Veterinary Medicine, Davis, California, USA
| | - Hernan A Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Zhu W, Li J, Pappoe F, Shen J, Yu L. Strategies Developed by Toxoplasma gondii to Survive in the Host. Front Microbiol 2019; 10:899. [PMID: 31080445 PMCID: PMC6497798 DOI: 10.3389/fmicb.2019.00899] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
One of the most successful intracellular parasites, Toxoplasma gondii has developed several strategies to avoid destruction by the host. These include approaches such as rapid and efficient cell invasion to avoid phagocytic engulfment, negative regulation of the canonical CD40-CD40L-mediated autophagy pathway, impairment of the noncanonical IFN-γ-dependent autophagy pathway, and modulation of host cell survival and death to obtain lifelong parasite survival. Different virulent strains have even evolved different ways to cope with and evade destruction by the host. This review aims to illustrate every aspect of the game between the host and Toxoplasma during the process of infection. A better understanding of all aspects of the battle between Toxoplasma and its hosts will be useful for the development of better strategies and drugs to control the parasite.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,Graduate School of Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Jingyang Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China.,The Clinical Laboratory of the Third People's Hospital of Heifei, Hefei, China
| | - Faustina Pappoe
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Zhang D, Jiang N, Chen Q. ROP9, MIC3, and SAG2 are heparin-binding proteins in Toxoplasma gondii and involved in host cell attachment and invasion. Acta Trop 2019; 192:22-29. [PMID: 30664845 DOI: 10.1016/j.actatropica.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii (T. gondii) is an obligatory intracellular parasite that can infect varieties of warm-blooded animals, including humans and birds. Heparan sulfate (HS) is widely distributed on the eukaryotic cell surface of vertebrates and can inhibit T. gondii invasion. In this study, we investigated the transcription and expression of the level of TgROP9, TgMIC3, and TgSAG2 in T. gondii RH strain, and found that the expression levels of these three proteins in invading parasites were higher compared to those free ranging parasites. The recombinant proteins showed specific binding activity to both heparin and host cell surface. Incubation of these proteins with the host cells could block T. gondiiinvasion. Furthermore, protein-specific antibodies also blocked parasite invasion. Antibodies in the sera of T. gondii infected individuals recognized the recombinant TgROP9, TgMIC3, and TgSAG2, which suggested the exposure of these proteins to human immune system. Mice immunized with the three proteins exhibited protective immunity against lethal challenge. The data collectively suggested that these parasitic proteins may be used as candidate antigens for development of anti-toxoplasmosis vaccine.
Collapse
|
35
|
Dubois DJ, Soldati-Favre D. Biogenesis and secretion of micronemes in Toxoplasma gondii. Cell Microbiol 2019; 21:e13018. [PMID: 30791192 DOI: 10.1111/cmi.13018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
One of the hallmarks of the parasitic phylum of Apicomplexa is the presence of highly specialised, apical secretory organelles, called the micronemes and rhoptries that play critical roles in ensuring survival and dissemination. Upon exocytosis, the micronemes release adhesin complexes, perforins, and proteases that are crucially implicated in egress from infected cells, gliding motility, migration across biological barriers, and host cell invasion. Recent studies on Toxoplasma gondii and Plasmodium species have shed more light on the signalling events and the machinery that trigger microneme secretion. Intracellular cyclic nucleotides, calcium level, and phosphatidic acid act as key mediators of microneme exocytosis, and several downstream effectors have been identified. Here, we review the key steps of microneme biogenesis and exocytosis, summarising the still fractal knowledge at the molecular level regarding the fusion event with the parasite plasma membrane.
Collapse
Affiliation(s)
- David J Dubois
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva, Switzerland
| |
Collapse
|
36
|
Arredondo SA, Swearingen KE, Martinson T, Steel R, Dankwa DA, Harupa A, Camargo N, Betz W, Vigdorovich V, Oliver BG, Kangwanrangsan N, Ishino T, Sather N, Mikolajczak S, Vaughan AM, Torii M, Moritz RL, Kappe SHI. The Micronemal Plasmodium Proteins P36 and P52 Act in Concert to Establish the Replication-Permissive Compartment Within Infected Hepatocytes. Front Cell Infect Microbiol 2018; 8:413. [PMID: 30547015 PMCID: PMC6280682 DOI: 10.3389/fcimb.2018.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Within the liver, Plasmodium sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the Plasmodium s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1. However, the relationship between P36 and P52 during sporozoite invasion remains unknown. Here we show that parasites with a single P52 or P36 gene deletion each lack a PV after hepatocyte invasion, thereby pheno-copying the lack of a PV observed for the P52/P36 dual gene deletion parasite line. This indicates that both proteins are equally important in the establishment of a PV and act in the same pathway. We created a Plasmodium yoelii P36mCherry tagged parasite line that allowed us to visualize the subcellular localization of P36 and found that it partially co-localizes with P52 in the sporozoite secretory microneme organelles. Furthermore, through co-immunoprecipitation studies in vivo, we determined that P36 and P52 form a protein complex in sporozoites, indicating a concerted function for both proteins within the PV formation pathway. However, upon sporozoite stimulation, only P36 was released as a secreted protein while P52 was not. Our results support a model in which the putatively glycosylphosphatidylinositol (GPI)-anchored P52 may serve as a scaffold to facilitate the interaction of secreted P36 with the host cell during sporozoite invasion of hepatocytes.
Collapse
Affiliation(s)
- Silvia A. Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Thomas Martinson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ryan Steel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Dorender A. Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Anke Harupa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tomoko Ishino
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Japan
| | - Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Sebastian Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Motomi Torii
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Japan
| | | | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
37
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
38
|
Hidalgo-Ruiz M, Suarez CE, Mercado-Uriostegui MA, Hernandez-Ortiz R, Ramos JA, Galindo-Velasco E, León-Ávila G, Hernández JM, Mosqueda J. Babesia bovis RON2 contains conserved B-cell epitopes that induce an invasion-blocking humoral immune response in immunized cattle. Parasit Vectors 2018; 11:575. [PMID: 30390674 PMCID: PMC6215676 DOI: 10.1186/s13071-018-3164-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022] Open
Abstract
Background Babesia bovis belongs to the phylum Apicomplexa and is the major causal agent of bovine babesiosis, the most important veterinary disease transmitted by arthropods. In apicomplexan parasites, the interaction between AMA1 and RON2 is necessary for the invasion process, and it is a target for vaccine development. In B. bovis, the existence of AMA1 has already been reported; however, the presence of a homolog of RON2 is unknown. The aim of this study was to characterize RON2 in B. bovis. Results The B. bovis ron2 gene has a similar synteny with the orthologous gene in the B. bigemina genome. The entire ron2 gene was sequenced from different B. bovis strains showing > 99% similarity at the amino acid and nucleotide level among all the sequences obtained, including the characteristic CLAG domain for cytoadherence in the amino acid sequence, as is described in other Apicomplexa. The in silico transcription analysis showed similar levels of transcription between attenuated and virulent B. bovis strains, and expression of RON2 was confirmed by western blot in the B. bovis T3Bo virulent strain. Four conserved peptides, containing predicted B-cell epitopes in hydrophilic regions of the protein, were designed and chemically synthesized. The humoral immune response generated by the synthetic peptides was characterized in bovines, showing that anti-RON2 antibodies against peptides recognized intraerythrocytic merozoites of B. bovis. Only peptides P2 and P3 generated partially neutralizing antibodies that had an inhibitory effect of 28.10% and 21.42%, respectively, on the invasion process of B. bovis in bovine erythrocytes. Consistently, this effect is additive since inhibition increased to 42.09% when the antibodies were evaluated together. Finally, P2 and P3 peptides were also recognized by 83.33% and 87.77%, respectively, of naturally infected cattle from endemic areas. Conclusions The data support RON2 as a novel B. bovis vaccine candidate antigen that contains conserved B-cell epitopes that elicit partially neutralizing antibodies. Electronic supplementary material The online version of this article (10.1186/s13071-018-3164-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Hidalgo-Ruiz
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, 76140, Queretaro, Queretaro, Mexico
| | - Carlos E Suarez
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF, WSU, P. O. Box 647030, Pullman, WA, 99164-6630, USA
| | - Miguel A Mercado-Uriostegui
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, 76140, Queretaro, Queretaro, Mexico
| | - Ruben Hernandez-Ortiz
- CENID-Parasitologia Veterinaria / INIFAP, Carretera federal Cuernavaca-Cuautla #8534, Col. Progreso, 62550, Jiutepec, Morelos, Mexico
| | - Juan Alberto Ramos
- CENID-Parasitologia Veterinaria / INIFAP, Carretera federal Cuernavaca-Cuautla #8534, Col. Progreso, 62550, Jiutepec, Morelos, Mexico
| | - Edelmira Galindo-Velasco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Km. 40 carretera Colima-Manzanillo, 28100, Tecoman, Colima, Mexico
| | - Gloria León-Ávila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, 11340, Mexico City, Mexico
| | - José Manuel Hernández
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, C. A. Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, 76140, Queretaro, Queretaro, Mexico.
| |
Collapse
|
39
|
Development and characterization of monoclonal antibodies againstBesnoitia besnoititachyzoites. Parasitology 2018; 146:187-196. [DOI: 10.1017/s0031182018001336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThis is the first report on the development and characterization of eight monoclonal antibodies (MABs) generated against whole- and membrane-enriched tachyzoite extracts of the apicomplexan parasiteBesnoitia besnoiti. Confocal laser scanning immunofluorescence microscopy was used to localize respective epitopes inB. besnoititachyzoites along the lytic cycle. A pattern compatible with dense granule staining was observed with MABs 2.A.12, 2.F.3 and 2.G.4, which could be confirmed by immunogold electron microscopy for MABs 2.A.12 and 2.F.3. In particular, MABs 2.F.3 and 2.G.4 were secreted during early invasion, proliferation and egress phases. MABs 3.10.8 and 5.5.11 labelled the tachyzoite surface, whilst MABs 1.17.8, 8.9.2 and 2.G.A recognized the apical tip, which is reminiscent for microneme localization. Besides, the epitopes recognized by the latter two (MABs 8.9.2 and 2.G.A) exhibited a redistribution from the anterior part across the parasite surface towards the posterior end during invasion. Most MABs developed were genus-specific. Indeed, the MABs cross-reacted neither withT. gondiinor withN. caninumtachyzoites. In summary, we have generated MABs that will be useful to study the key processes in the lytic cycle of the parasite and with additional promising diagnostic value. However, the molecular identity of the antigens recognized remains to be elucidated.
Collapse
|
40
|
Xu Y, Wang X, Liu J, Fu Y, Xu J, Liu Q. Toxoplasma gondii rhoptry protein38 (TgROP38) affects parasite invasion, egress, and induces IL-18 secretion during early infection. Acta Biochim Biophys Sin (Shanghai) 2018; 50:766-775. [PMID: 29961856 DOI: 10.1093/abbs/gmy075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 11/14/2022] Open
Abstract
Toxoplasma rhoptry protein 38 (TgROP38) is a new active kinase that modulates host cell signal transduction and TgROP38 expression shows strain-specificity and stage-specificity in different isolates. In the present study, we overexpressed ROP38 in the RH and prugniaud (PRU) strain (RH+rop38II and PRU+rop38II), disrupted ROP38 (PRUΔROP38) in the PRU strain, complemented the ROP38 (PRUΔROP38comp+) in the PRUΔROP38 strain, and compared phenotypes of gene-edited and parental strains. We found that knockout of ROP38 led to increased proliferation (P < 0.01) and invasion (P < 0.01) ability of the parasite. However, intraperitoneal infection with 1000 tachyzoites, PRUΔROP38 showed almost no virulent to mice compared with PRU (P < 0.01). Mice infected with low dose of PRU parasites produced higher levels of IL-18 and IL-1β compared with those infected with the PRUΔROP38 parasites during early days (P < 0.01). IL-18 produced by the PRU-infected group was significantly higher than that of the PRUΔROP38-infected group in vitro (P < 0.01). These phenomena may be related to the involvement of TgROP38 in the regulation of TgProfilin (TgPRF) protein, which could be recognized by host Toll-like receptor 11 and 12 (TLR11 and TLR12), an activation of host immune response. We also found that TgPRF expression was obviously decreased in PRUΔROP38, which was related to the cytokines production in mice model. These findings reveal an intriguing biological function of ROP38 in the RH and PRU toxoplasma, which may provide us with some clues of the existence of this protein in other isolates.
Collapse
Affiliation(s)
- Ying Xu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaojia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianhai Xu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Protective immune response against Toxoplasma gondii elicited by a novel yeast-based vaccine with microneme protein 16. Vaccine 2018; 36:3943-3948. [PMID: 29793893 DOI: 10.1016/j.vaccine.2018.05.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that can invade all eukaryotic cells and infect all warm-blood animals, causing the important zoonosis toxoplasmosis. Invasion of host cells is the key step necessary for T. gondii to complete its life cycle and microneme proteins play an important role in attachment and invasion of host cells. Microneme protein 16 (TgMIC16) is a new protective protein in T. gondii and belongs to transmembrane microneme proteins (TM-MIC). The TM-MICs are released onto the parasite's surface as complexes capable of interacting with host cell receptors. In the present study, we expressed the TgMIC16 protein on the surface of Saccharomyce cerevisiae (pCTCON2-TgMIC16/EBY100) and evaluated it as a potential vaccine for BALB/c mice against challenge infection with the RH strain of T. gondii. We immunized BALB/c mice both orally and intraperitoneally. After three immunizations, the immune response was evaluated by measuring antibody levels, lymphocyte proliferative responses, percentages of CD4+ and CD8+ T lymphocytes, cytokine production, and the survival times of challenged mice. The results showed that the pCTCON2-TgMIC16/EBY100 vaccine stimulated humoral and cellular immune responses. In addition, mice immunized with the pCTCON2-TgMIC16/EBY100 vaccine showed increased survival times compared with non-immunized controls. In summary, TgMIC16 displayed on the cell surface of S. cerevisiae could be used as potential vaccine against toxoplasmosis.
Collapse
|
42
|
Sun H, Li J, Liu GZ, Yin K, Cui Y, Xiao T, Xu C, Huang BC, Wei QK. Expression of codon-optimized TgMIC16 in three Escherichia coli strains. 3 Biotech 2017; 7:270. [PMID: 28794925 DOI: 10.1007/s13205-017-0885-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023] Open
Abstract
In a previous study, we found that rabbit anti-Toxoplasma gondii serum was capable of recognizing truncated T. gondii microneme protein 16 (TgMIC16), indicating that TgMIC16 is an essential antigenic T. gondii protein. However, the broad application of this recombinant protein is limited by its low expression level. In this study, we performed codon optimization of TgMIC16 by changing the codon-adaptation index from 0.22 to 1.0 without altering the amino acid sequence and expressed the optimized gene in three different Escherichia coli strains, followed by comparison of soluble recombinant-protein expression and yield. Our results showed that the recombinant protein rTgMIC16 was expressed as inclusion bodies in all three strains following optimization of induction parameters, and western blot analysis revealed the presence of a ~72-kD recombinant protein as a specific band following purification. A shuffle-expression strain was selected to amplify incubation products and induce expression, resulting in an overall rTgMIC16 yield of ~20 mg/L. These findings provide a basis for further investigation of TgMIC16 to elucidate its functions and interaction partners.
Collapse
Affiliation(s)
- Hui Sun
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Jin Li
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Gong-Zhen Liu
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Kun Yin
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Yong Cui
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Ting Xiao
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Chao Xu
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Bing-Cheng Huang
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| | - Qing-Kuan Wei
- Shandong Academy of Medical Sciences, Shandong Institute of Parasitic Diseases, 11 Taibai Middle Road, Jining, 272033 Shandong China
| |
Collapse
|
43
|
Liu Q, Li FC, Zhou CX, Zhu XQ. Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol 2017; 176:89-98. [PMID: 28286325 DOI: 10.1016/j.exppara.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii microneme proteins (TgMICs), secreted by micronemes upon contact with host cells, are reported to play important roles in multiple stages of the T. gondii life cycle, including parasite motility, invasion, intracellular survival, and egress from host cells. Meanwhile, during these processes, TgMICs participate in many protein-protein and protein-carbohydrate interactions, such as undergoing proteolytic maturation, binding to aldolase, engaging the host cell receptors and forming the moving junction (MJ), relying on different types of ectodomains, transmembrane (TM) domains and cytoplasmic domains (CDs). In this review, we summarize the research advances in protein-protein and protein-carbohydrate interactions related to TgMICs, and their intimate associations with corresponding biological processes during T. gondii infection, which will contribute to an improved understanding of the molecular pathogenesis of T. gondii infection, and provide a basis for developing effective control strategies against T. gondii.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| |
Collapse
|
44
|
Bullen HE, Soldati-Favre D. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa. FEBS Lett 2016; 590:2469-81. [PMID: 27403735 DOI: 10.1002/1873-3468.12296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022]
Abstract
Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa.
Collapse
|
45
|
Morse D, Webster W, Kalanon M, Langsley G, McFadden GI. Plasmodium falciparum Rab1A Localizes to Rhoptries in Schizonts. PLoS One 2016; 11:e0158174. [PMID: 27348424 PMCID: PMC4922565 DOI: 10.1371/journal.pone.0158174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/11/2016] [Indexed: 12/17/2022] Open
Abstract
Over-expression of a GFP-PfRab1A fusion protein in Plasmodium falciparum schizonts produces a punctate pattern of fluorescence typical of rhoptries, secretory organelles involved in host cell invasion. The GFP-positive bodies were purified by a combination of differential and density gradient centrifugation and their protein content determined by MS/MS sequencing. Consistent with the GFP rhoptry-like pattern of transgenic parasites, four of the 19 proteins identified have been previously described to be rhoptry-associated and another four are ER or ER-associated proteins. Confirmation that GFP-PfRab1A decorates rhoptries was obtained by its co-localization with Rap1 and Ron4 in late phase schizonts. We conclude that PfRab1A potentially regulates vesicular traffic from the endoplasmic reticulum to the rhoptries in Apicomplexa parasites.
Collapse
Affiliation(s)
- David Morse
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- * E-mail:
| | - Wesley Webster
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ming Kalanon
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, 75014, Paris, France
| | | |
Collapse
|
46
|
Zhang Z, Liu X, Yang X, Liu L, Wang S, Lu M, Ehsan M, Gadahi JA, Song X, Xu L, Yan R, Li X. The Molecular Characterization and Immunity Identification of Microneme 3 of Eimeria acervulina. J Eukaryot Microbiol 2016; 63:709-721. [PMID: 27037629 DOI: 10.1111/jeu.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/30/2022]
Abstract
The gene of Eimeria acervulina microneme protein 3 (EaMIC3) was cloned and characterized. According to the conserved sequence, the 3'- and 5'-ends of EaMIC3 were amplified by the rapid amplification of cDNA ends (RACE). The full length cDNA of this gene was obtained by overlapping the sequences of 3'- and 5'-extremities and amplification by reverse transcription PCR. The sequence analysis revealed that the opening reading frame (ORF) of EaMIC3 was 2,607 bp and encoded a protein of 868 amino acids with 93.04 kDa. Western blotting assay showed that the recombinant protein was successfully recognized by the sera of chickens experimentally infected with E. acervulina, whereas the native protein in the somatic extract of sporozoites was as well detected by sera from rats immunized with the recombinant protein of EaMIC3. Immunofluorescence analysis indicated that EaMIC3 was expressed in the sporozoites and merozoites stages of E. acervulina. Animal challenge experiments demonstrated that the recombinant protein of EaMIC3 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented anticoccidial index (ACI) more than 165. Moreover, EaMIC3 protein produced significantly high level of IgG antibody, IFN-γ, IL-10, IL-17 TGF-β, CD4+ , and CD8+ .
Collapse
Affiliation(s)
- ZhenChao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - XinChao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - XinChao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - LianRui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mohammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Javaid A Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
47
|
Pinzan CF, Sardinha-Silva A, Almeida F, Lai L, Lopes CD, Lourenço EV, Panunto-Castelo A, Matthews S, Roque-Barreira MC. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice. PLoS One 2015; 10:e0143087. [PMID: 26575028 PMCID: PMC4648487 DOI: 10.1371/journal.pone.0143087] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/04/2015] [Indexed: 12/24/2022] Open
Abstract
Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.
Collapse
Affiliation(s)
- Camila Figueiredo Pinzan
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Sardinha-Silva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Livia Lai
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Carla Duque Lopes
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Vicente Lourenço
- Department of Medicine, Division of Rheumatology, University of California Los Angeles, Los Angeles, California, 90095–1670, United States of America
| | - Ademilson Panunto-Castelo
- Department of Biology, School of Philosophy, Sciences and Literature of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Stephen Matthews
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
48
|
Gliding motility in apicomplexan parasites. Semin Cell Dev Biol 2015; 46:135-42. [DOI: 10.1016/j.semcdb.2015.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 11/22/2022]
|
49
|
Wang Y, Yin H. Research advances in microneme protein 3 of Toxoplasma gondii. Parasit Vectors 2015; 8:384. [PMID: 26194005 PMCID: PMC4509771 DOI: 10.1186/s13071-015-1001-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/09/2015] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite. It has extensive host populations and is prevalent globally; T. gondii infection can cause a zoonotic parasitic disease. Microneme protein 3 (MIC3) is a secreted protein that is expressed in all stages of the T. gondii life cycle. It has strong immunoreactivity and plays an important role in the recognition, adhesion and invasion of host cells by T. gondii. This article reviews the molecular structure of MIC3, its role in the invasion of host cells by parasites, its relationship with parasite virulence, and its induction of immune protection to lay a solid foundation for an in-depth study of potential diagnostic agents and vaccines for preventing toxoplasmosis.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
50
|
He L, Fan L, Hu J, Miao X, Huang Y, Zhou Y, Hu M, Zhao J. Characterisation of a Babesia orientalis apical membrane antigen, and comparison of its orthologues among selected apicomplexans. Ticks Tick Borne Dis 2015; 6:290-6. [PMID: 25732411 DOI: 10.1016/j.ttbdis.2015.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
In the present study, we identified and characterised the complete coding sequence of Babesia orientalis apical membrane antigen 1 (designated Bo-ama1); it is 1803bp in length and encodes a polypeptide of 601 amino acids (aa). The Bo-ama-1 gene product (Bo-AMA1) is predicted to be 67kDa in size and contains a signal peptide. Mature Bo-AMA1 is predicted to have one transmembrane region and a short cytoplasmic tail (C-terminal domain). The extracellular part of Bo-AMA1 has three functional domains (DI, DII and DIII) with 14 conserved cysteine residues. A Bo-AMA1 fragment containing all three of these domains (designated Bo-AMA1-DI/II/III) was cloned into the plasmid vector pET-28a and expressed as a recombinant (His-fusion) protein of 53kDa. Antibodies in the serum from a B. orientalis-infected water buffalo specifically recognised this protein in immunoblotting analysis. Rabbit antibodies raised against the recombinant protein were able to detect native Bo-AMA1 (67kDa) from erythrocytes of B. orientalis-infected water buffalo. Bo-AMA1 is a new member of the AMA1 family and might be a good antigen for the specific detection of antibodies produced in B. orientalis infected cattle. This protein is likely to play critical roles during host cell adherence and invasion by B. orientalis, as the AMA1s reported in other organisms such as Plasmodium falciparum and Toxoplasma gondii. Further research is required to explore the biological functions of this protein and to determine whether its immunisation can induce protective effects in water buffalo against B. orientalis infection.
Collapse
Affiliation(s)
- Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Lizhe Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Jinfang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Xiaoyan Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Yuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|