1
|
Ouamnina A, Alahyane A, Elateri I, Ouhammou M, Abderrazik M. In Vitro and Molecular Docking Studies of Antiglycation Potential of Phenolic Compounds in Date Palm (Phoenix dactylifera L.) Fruit: Exploring Local Varieties in the Food Industry. HORTICULTURAE 2024; 10:657. [DOI: 10.3390/horticulturae10060657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The Moroccan date-growing sector is rich in a wide diversity of varieties but faces major challenges, notably the undervaluation of certain varieties intended mainly for animal feed. In this study, our objective was to evaluate the antiglycation activity of four date varieties, including three low-market-value varieties and one high-market-value variety, harvested during two seasons (2021 and 2022). In addition, to improve our knowledge of the antiglycation potential, molecular docking analyses were carried out. The results of the antiglycation activity of the date extracts showed strong activity, particularly for the ‘Khalt Khal’ variety, which showed a 50% inhibition concentration (IC50) of 1.83 mg/mL and 2 mg/mL in 2021 and 2022, respectively. In addition, the molecular docking analysis also showed the possible link between the bioactive compounds identified and their mechanisms of action. Our findings suggest new evidence for the antiglycation properties of the bioactive compounds present in dates. These results suggest the use of these varieties as a source of bioactive molecules or as a food additive. This could make it possible to create medicines or food products with a high commercial value using dates, which could help to treat the complications associated with glycation.
Collapse
Affiliation(s)
- Abdoussadeq Ouamnina
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| | - Abderrahim Alahyane
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
- Higher Institute of Nursing Professions and Health Techniques of Guelmim (ISPITSG), Guelmin 81000, Morocco
| | - Imane Elateri
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| | - Mourad Ouhammou
- Laboratory of Material Sciences and Process Optimization, Faculty of Sciences, Semlalia, Cadi Ayyad University, BP 2390, Marrakech 40000, Morocco
| | - Mohamed Abderrazik
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Departement of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
- Agrobiotechnology and Bioengineering Center, CNRST-Labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Cadi Ayyad University, Marrakech 40000, Morocco
| |
Collapse
|
2
|
Ouamnina A, Alahyane A, Elateri I, Abderrazik M. Phenolic composition, antioxidant capacity, and antiglycation potential of select Moroccan date varieties: promising sources for functional food development. EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION 2024; 9:745-760. [DOI: 10.1007/s41207-024-00473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/22/2024] [Indexed: 01/03/2025]
|
3
|
Yuan X, Liu J, Nie C, Ma Q, Wang C, Liu H, Chen Z, Zhang M, Li J. Comparative Study of the Effects of Dietary-Free and -Bound Nε-Carboxymethyllysine on Gut Microbiota and Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5014-5025. [PMID: 38388339 DOI: 10.1021/acs.jafc.3c09395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nε-carboxymethyllysine (CML) is produced by a nonenzymatic reaction between reducing sugar and ε-amino group of lysine in food and exists as free and bound forms with varying digestibility and absorption properties in vivo, causing diverse interactions with gut microbiota. The effects of different forms of dietary CML on the gut microbiota and intestinal barrier of mice were explored. Mice were exposed to free and bound CML for 12 weeks, and colonic morphology, gut microbiota, fecal short-chain fatty acids (SCFAs), intestinal barrier, and receptor for AGE (RAGE) signaling cascades were measured. The results indicated that dietary-free CML increased the relative abundance of SCFA-producing genera including Blautia, Faecalibacterium, Agathobacter, and Roseburia. In contrast, dietary-bound CML mainly increased the relative abundance of Akkermansia. Moreover, dietary-free and -bound CML promoted the gene and protein expression of zonula occludens-1 and claudin-1. Additionally, the intake of free and bound CML caused an upregulation of RAGE expression but did not activate downstream inflammatory pathways due to the upregulation of oligosaccharyl transferase complex protein 48 (AGER1) expression, indicating a delicate balance between protective and proinflammatory effects in vivo. Dietary-free and -bound CML could modulate the gut microbiota community and increase tight-junction expression, and dietary-free CML might exert a higher potential benefit on gut microbiota and SCFAs than dietary-bound CML.
Collapse
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huicui Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Demirer B, Fisunoğlu M. Evaluation of the effects of dietary advanced glycation end products on inflammation. NUTR BULL 2024; 49:6-18. [PMID: 38114851 DOI: 10.1111/nbu.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Advanced glycation end products (AGEs) are a large number of heterogeneous compounds formed by the glycation of proteins, fats or nucleic acids. Endogenous AGEs have been associated with various health problems such as obesity, type 2 diabetes mellitus and cardiovascular disease. Inflammation is thought to be one of the main mechanisms in the development of these disorders. Although AGEs are produced endogenously in the body, exogenous sources such as smoking and diet also contribute to the body pool. Therefore, when the AGE pool in the body rises above physiological levels, different pathological conditions may occur through various mechanisms, especially inflammation. While the effects of endogenous AGEs on the development of inflammation have been studied relatively extensively, and current evidence indicates that dietary AGEs (dAGEs) contribute to the body's AGE pool, it is not yet known whether dAGEs have the same effect on the development of inflammation as endogenous AGEs. Therefore, this review aimed to evaluate the results of cross-sectional and intervention studies to understand whether dAGEs are associated with inflammation and, if there is an effect on inflammation, through which mechanisms this effect might occur.
Collapse
Affiliation(s)
- Büşra Demirer
- Nutrition and Dietetics, Karabuk University, Karabuk, Turkey
| | | |
Collapse
|
5
|
Bronowicka-Szydełko A, Gostomska-Pampuch K, Kuzan A, Pietkiewicz J, Krzystek-Korpacka M, Gamian A. Effect of advanced glycation end-products in a wide range of medical problems including COVID-19. Adv Med Sci 2024; 69:36-50. [PMID: 38335908 DOI: 10.1016/j.advms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.
Collapse
Affiliation(s)
| | | | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
6
|
Lin CJ, Mondal S, Lee SL, Kang JW, So PTC, Dong CY. Multiphoton imaging of the monosachharide induced formation of fluorescent advanced glycation end products in tissues. JOURNAL OF BIOPHOTONICS 2024; 17:e202300261. [PMID: 37679896 DOI: 10.1002/jbio.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
We studied the in vitro rate of fluorescent advanced glycation end products (fAGEs) formation with multiphoton microscopy in different porcine tissues (aorta, cornea, kidney, dermis, and tendon). These tissues were treated with d-glucose, d-galactose, and d-fructose, three primary monosaccharides found in human diets. We found that the use of d-fructose resulted in the highest glycation rate, followed by d-galactose and then d-glucose. Moreover, compared to non-collagen tissue constituents such as elastic fibers and cells, the rate of tissue glycation was consistently higher in collagen, suggesting that collagen is a more sensitive target for fAGE formation. However, we also found that collagen in different tissues exhibits different rates of fAGE formation, with slower rates observed in tightly packed tissues such as cornea and tendon. Our study suggests that for fAGE to be developed into a long-term glycemic biomarker, loosely organized collagen tissues located in the proximity of vasculature may be the best targets.
Collapse
Affiliation(s)
- Chih-Ju Lin
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| | - Sohidul Mondal
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| | - Sheng-Lin Lee
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| | - Jeon-Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chen Yuan Dong
- Department of Physics, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Portha B, Liu J. Les AGE (produits terminaux de glycation) : attention danger. Origine, effets toxiques et stratégies thérapeutiques. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2023; 58:376-388. [DOI: 10.1016/j.cnd.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
10
|
Arivazhagan L, López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) - Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:937071. [PMID: 35811725 PMCID: PMC9263181 DOI: 10.3389/fcvm.2022.937071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 12/25/2022] Open
Abstract
Obesity and non-alcoholic fatty liver disease (NAFLD) are on the rise world-wide; despite fervent advocacy for healthier diets and enhanced physical activity, these disorders persist unabated and, long-term, are major causes of morbidity and mortality. Numerous fundamental biochemical and molecular pathways participate in these events at incipient, mid- and advanced stages during atherogenesis and impaired regression of established atherosclerosis. It is proposed that upon the consumption of high fat/high sugar diets, the production of receptor for advanced glycation end products (RAGE) ligands, advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs), contribute to the development of foam cells, endothelial injury, vascular inflammation, and, ultimately, atherosclerosis and its consequences. RAGE/Diaphanous-1 (DIAPH1) increases macrophage foam cell formation; decreases cholesterol efflux and causes foam cells to produce and release damage associated molecular patterns (DAMPs) molecules, which are also ligands of RAGE. DAMPs stimulate upregulation of Interferon Regulatory Factor 7 (IRF7) in macrophages, which exacerbates vascular inflammation and further perturbs cholesterol metabolism. Obesity and NAFLD, characterized by the upregulation of AGEs, ALEs and DAMPs in the target tissues, contribute to insulin resistance, hyperglycemia and type two diabetes. Once in motion, a vicious cycle of RAGE ligand production and exacerbation of RAGE/DIAPH1 signaling ensues, which, if left unchecked, augments cardiometabolic disease and its consequences. This Review focuses on RAGE/DIAPH1 and its role in perturbation of metabolism and processes that converge to augur cardiovascular disease.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, The State University of New York at Albany, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States,*Correspondence: Ann Marie Schmidt
| |
Collapse
|
11
|
Wu Y, Zong M, Wu H, He D, Li L, Zhang X, Zhao D, Li B. Dietary Advanced Glycation End-Products Affects the Progression of Early Diabetes by Intervening in Carbohydrate and Lipid Metabolism. Mol Nutr Food Res 2022; 66:e2200046. [PMID: 35355400 DOI: 10.1002/mnfr.202200046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Indexed: 12/18/2022]
Abstract
SCOPE Epidemiologic studies indicate significant contributions of thermally processed diets to the risk for diabetes and its related renal complications, but the mechanisms relating diet to disease remain unclear. This study evaluates the effects of the diet differ only in the content of advanced glycation end-products (AGEs) on early diabetes in Leprdb/db mice. METHODS AND RESULTS High AGEs diet (60 mg CML per kg protein) is fed to mice for 8 weeks. Dietary AGEs associated with diabetic features, including hyperglycemia, insulin resistance, and increased mRNA expression of renal chemokines, CCL3 and CXC3L1 are found. Untargeted metabolomics reveal that the high AGEs diet inhibits carbohydrate catabolism and promotes lipid anabolism. Additionally, the high AGEs diet alters the composition of the gut microbiota and indirectly affects the carbohydrate metabolism by altering the plasma levels of glyceraldehyde and pyruvate. However, switching to the lower AGEs diet can relieve most of the symptoms except microbiota composition. CONCLUSION The results indicate that dietary AGEs exposure intervenes in the development of diabetes through modulating the carbohydrate and lipid metabolism, and critically, switching to the lower AGEs diet arrested or reversed diabetes progression. A light-processing dietary intervention that helps to arrest early diabetes is suggested.
Collapse
Affiliation(s)
- Yi Wu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
| | - Minhua Zong
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
| | - Hong Wu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
| | - Dong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, P. R. China
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, P. R. China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing, MOA; Key Laboratory of Meat Processing and Quality Control, MOE; Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, P. R. China
| |
Collapse
|
12
|
Differences in kinetics and dynamics of endogenous versus exogenous advanced glycation end products (AGEs) and their precursors. Food Chem Toxicol 2022; 164:112987. [PMID: 35398182 DOI: 10.1016/j.fct.2022.112987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) and their precursors, referred to as glycation products, are a heterogenous group of compounds being associated with adverse health effects. They are formed endogenously and in exogenous sources including food. This review investigates the roles of endogenously versus exogenously formed glycation products in the potential induction of adverse health effects, focusing on differences in toxicokinetics and toxicodynamics, which appeared to differ depending on the molecular mass of the glycation product. Based on the available data, exogenous low molecular mass (LMM) glycation products seem to be bioavailable and to contribute to dicarbonyl stress and protein cross-linking resulting in formation of endogenous AGEs. Bioavailability of exogenous high molecular mass (HMM) glycation products appears limited, while these bind to the AGE receptor (RAGE), initiating adverse health effects. Together, this suggests that RAGE-binding in relevant tissues will more likely result from endogenously formed glycation products. Effects on gut microbiota induced by glycation products is proposed as a third mode of action. Overall, studies which better discriminate between LMM and HMM glycation products and between endogenous and exogenous formation are needed to further elucidate the contributions of these different types and sources of glycation products to the ultimate biological effects.
Collapse
|
13
|
Merhi Z, Du XQ, Charron MJ. Postnatal weaning to different diets leads to different reproductive phenotypes in female offspring following perinatal exposure to high levels of dietary advanced glycation end products. F&S SCIENCE 2022; 3:95-105. [PMID: 35559999 DOI: 10.1016/j.xfss.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To examine, following perinatal exposure to a diet high in advanced glycation end products (AGEs), whether the use of standard AGE-free mouse chow during the postweaning period alters metabolism and reproduction differently than exposure to a diet low in AGEs. DESIGN Experimental animal study. SETTING University-based research laboratory. ANIMAL(S) Female CD1 mice. INTERVENTION(S) Seven-week-old mice were placed on a diet either low or high in AGEs perinatally, before mating and then during pregnancy and lactation. All offspring were weaned onto an AGE-free normal chow. MAIN OUTCOME MEASURE(S) Growth curve, liver and abdominal fat weight, insulin and glucose tolerance tests, vaginal opening, estrous cyclicity, and serum levels of antimüllerian hormone, leptin, and adiponectin were assessed. Ovarian histologic examination for follicular count and gene expression was also performed. RESULT(S) Compared with the mice exposed to a diet low in AGEs, the mice exposed to a diet high in AGEs showed lower body weight in pups, lower liver weight, delayed vaginal opening, higher serum antimüllerian hormone levels, lower primordial and secondary follicle pools, and higher ovarian Fshr messenger RNA levels. CONCLUSION(S) Following weaning, perinatal AGEs can target puberty onset and folliculogenesis differently to standard mouse chow.
Collapse
Affiliation(s)
- Zaher Merhi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, New York; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York; Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
14
|
Experimental Animal Studies Support the Role of Dietary Advanced Glycation End Products in Health and Disease. Nutrients 2021; 13:nu13103467. [PMID: 34684468 PMCID: PMC8539226 DOI: 10.3390/nu13103467] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
The increased incidence of obesity, diabetes mellitus, aging, and associated comorbidities indicates the interplay between genetic and environmental influences. Several dietary components have been identified to play a role in the pathogenesis of the so-called "modern diseases", and their complications including advanced glycation end products (AGEs), which are generated during the food preparation and processing. Diet-derived advanced glycation end products (dAGEs) can be absorbed in the gastrointestinal system and contribute to the total body AGEs' homeostasis, partially excreted in the urine, while a significant amount accumulates to various tissues. Various in vitro, in vivo, and clinical studies support that dAGEs play an important role in health and disease, in a similar way to those endogenously formed. Animal studies using wild type, as well as experimental, animal models have shown that dAGEs contribute significantly to the pathogenesis of various diseases and their complications, and are involved in the changes related to the aging process. In addition, they support that dAGEs' restriction reduces insulin resistance, oxidative stress, and inflammation; restores immune alterations; and prevents or delays the progression of aging, obesity, diabetes mellitus, and their complications. These data can be extrapolated in humans and strongly support that dAGEs' restriction should be considered as an alternative therapeutic intervention.
Collapse
|
15
|
Effect of Advanced Glycation End-Products and Excessive Calorie Intake on Diet-Induced Chronic Low-Grade Inflammation Biomarkers in Murine Models. Nutrients 2021; 13:nu13093091. [PMID: 34578967 PMCID: PMC8468789 DOI: 10.3390/nu13093091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic Low-Grade Inflammation (CLGI) is a non-overt inflammatory state characterized by a continuous activation of inflammation mediators associated with metabolic diseases. It has been linked to the overconsumption of Advanced Glycation End-Products (AGEs), and/or macronutrients which lead to an increase in local and systemic pro-inflammatory biomarkers in humans and animal models. This review provides a summary of research into biomarkers of diet-induced CLGI in murine models, with a focus on AGEs and obesogenic diets, and presents the physiological effects described in the literature. Diet-induced CLGI is associated with metabolic endotoxemia, and/or gut microbiota remodeling in rodents. The mechanisms identified so far are centered on pro-inflammatory axes such as the interaction between AGEs and their main receptor AGEs (RAGE) or increased levels of lipopolysaccharide. The use of murine models has helped to elucidate the local and systemic expression of CLGI mediators. These models have enabled significant advances in identification of diet-induced CLGI biomarkers and resultant physiological effects. Some limitations on the translational (murine → humans) use of biomarkers may arise, but murine models have greatly facilitated the testing of specific dietary components. However, there remains a lack of information at the whole-organism level of organization, as well as a lack of consensus on the best biomarker for use in CLGI studies and recommendations as to future research conclude this review.
Collapse
|
16
|
Guo HW, Tseng TY, Lin CJ, Dong CY. Hemoglobin autofluorescence as potential long-term glycemic marker in the rat animal model. JOURNAL OF BIOPHOTONICS 2021; 14:e202000389. [PMID: 33884768 DOI: 10.1002/jbio.202000389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Diabetes is a serious disease whose patients often require long-term care. Blood glucose and intermediate glycation product of glycated hemoglobin (HbA1c) are, at best, surrogate biomarkers of disease progression. There is indication that advanced glycation end products (AGEs) better reflect diabetic risks. In this study, we explored the use of red blood cells (RBCs) and lysed hemoglobin (Hb) autofluorescence (AF) as potential biomarkers of diabetic complication. AF spectra measured under 370 nm excitation reveals that both RBC and Hb fluorescence in the 420 to 600 nm region. At early time points following diabetic induction in rats, AF increase in lysed Hb is more dramatic compared to that of RBCs. Moreover, we found significance variance of Hb autofluorescence despite relatively constant HbA1c levels. Furthermore, we found that although a correlation exists between AGE autofluorescence and HbA1c levels, the lack of complete correspondence suggests that the rate of AGE production differs significantly among different rats. Our results suggest that with additional development, both RBC and Hb autofluorescence from lysed RBCs may be used act long-term glycemic markers for diabetic complications in patients.
Collapse
Affiliation(s)
- Han-Wen Guo
- Department of Physics, National Taiwan University, Taiwan, ROC
| | - Te-Yu Tseng
- Department of Physics, National Taiwan University, Taiwan, ROC
| | - Chih-Ju Lin
- Department of Physics, National Taiwan University, Taiwan, ROC
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taiwan, ROC
| |
Collapse
|
17
|
Merhi Z, Du XQ, Charron MJ. Perinatal exposure to high dietary advanced glycation end products affects the reproductive system in female offspring in mice. Mol Hum Reprod 2021; 26:615-623. [PMID: 32609365 DOI: 10.1093/molehr/gaaa046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal nutrition and the intrauterine environment are important in determining susceptibility to reproductive and metabolic disturbances. Advanced glycation end products (AGEs) are widely consumed in Western diet. The purpose of this study was to determine whether perinatal exposure to a high levels of dietary AGEs affect metabolic and reproductive parameters in female mice offspring. Female CD1 mice, 7 weeks old, were placed on either a diet low (L-AGE) or high (H-AGE) in AGEs before mating and then during pregnancy and lactation. All offspring were weaned onto the L-AGE diet and studied through to 16 weeks of age; they were counted and weighed at birth and then every week for a total of 11 weeks. Vaginal opening, litter size, growth curve, liver and abdominal fat weights, serum levels of anti-Mullerian hormone, leptin and adiponectin, as well as insulin and glucose tolerance tests were compared. Ovaries were harvested for follicular count and gene expression by real-time polymerase chain reaction. Compared to perinatal exposure to the L-AGE diet, perinatal exposure to the H-AGE diet caused lower body weight at birth, and adult offspring exhibited delayed growth, lower serum leptin and adiponectin levels, delayed vaginal opening, irregular oestrous cyclicity, arrested follicular development and significant alterations in the expression of genes involved in folliculogenesis (Amh and Amhr2) and steroidogenesis (Cyp19a1). These results indicate that perinatal exposure to a diet elevated in AGEs causes deficits in perinatal growth, pubertal onset, and reproductive organ development in female mice. Whether these findings translate to humans remains to be determined in future studies.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA.,Department of Obstetrics and Gynecology NYU School of Medicine, New York, NY 10016, USA
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine & the Fleischer Institute for Diabetes & Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Lin CJ, Lee SL, Kang JW, So PTC, Dong CY. Multiphoton imaging of the effect of monosaccharide diffusion and formation of fluorescent advanced end products in porcine aorta. JOURNAL OF BIOPHOTONICS 2021; 14:e202000439. [PMID: 33611855 DOI: 10.1002/jbio.202000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Prolonged exposure of tissues to elevated blood sugar levels lead to the formation of advanced glycation end products (AGEs), thus contributing to diabetic complications. Since the vascular system is in immediate contact with blood, diabetic effects on aorta is a major health concern. However, the relative effect of the diffusion of sugar molecular through the vascular wall and the rate of AGE formation is not known. In this study, we aim to address this issue by incubating excised porcine aorta in D-glucose, D-galactose, and D-fructose solutions for different periods. The tissue specimens were then excised for multiphoton imaging of autofluorescence intensity profiles across the aorta wall. We found that for Days 4 to 48 incubation, autofluorescence is constant along the radial direction of the aorta sections, suggesting that monosaccharide diffusion is rapid in comparison to the rate of formation of fluorescent AGEs (fAGEs). Moreover, we found that in porcine aorta, the rate of fAGE formation of D-fructose and D-glucose are factors 2.08 and 1.14 that of D-galactose. Our results suggest that for prolonged exposure of the cardiovascular system to elevated monosaccharides 4 days or longer, damage to the aorta is uniform throughout the tissues.
Collapse
Affiliation(s)
- Chih-Ju Lin
- Department of Physics, National Taiwan University, Taipei, Taiwan, R. O. C
| | - Sheng-Lin Lee
- Department of Physics, National Taiwan University, Taipei, Taiwan, R. O. C
| | - Jeon-Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taipei, Taiwan, R. O. C
| |
Collapse
|
19
|
Choudhury RP, Edgar L, Rydén M, Fisher EA. Diabetes and Metabolic Drivers of Trained Immunity. Arterioscler Thromb Vasc Biol 2021; 41:1284-1290. [PMID: 33657881 PMCID: PMC10069665 DOI: 10.1161/atvbaha.120.314211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulating evidence shows how diverse physiological functions, such as metabolism, immunity, tissue homeostasis, and hematopoiesis, are intricately and profoundly intertwined at multiple levels. This brief review will present evidence from a rapidly expanding field of immunometabolism, highlighting how cells that are relevant to processes at play in determining vascular health and disease can be programmed by changes in their metabolic environment. It will focus on how such changes can be imprinted or trained, particularly through epigenetic modifications, such that adaptations driven by metabolic signals can cause persistent changes in cell function, even after the original stimulus has been corrected or removed. Recognition of these processes and elucidation of the mechanisms underlying them stand to have far-reaching implications for the diagnosis and treatment of diabetes and related metabolic states.
Collapse
Affiliation(s)
- Robin P. Choudhury
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (R.P.C., L.E.)
| | - Laurienne Edgar
- Radcliffe Department of Medicine, University of Oxford, United Kingdom (R.P.C., L.E.)
- Novo Nordisk A/S, Gatwick, United Kingdom (L.E.)
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institute, C2-94, Karolinska University Hospital, Huddinge, Stockholm, Sweden (M.R.)
| | - Edward A. Fisher
- Department of Medicine, NYU Grossman School of Medicine, NY (E.A.F.)
| |
Collapse
|
20
|
Zhang Y, Dong L, Zhang J, Shi J, Wang Y, Wang S. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annu Rev Food Sci Technol 2021; 12:259-286. [PMID: 33770470 DOI: 10.1146/annurev-food-062320-012215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermal processing is one of the most important processing methods in the food industry. However, many studies have revealed that thermal processing can have detrimental effects on the nutritional and functional properties of foods because of the complex interactions among food components. Proteins are essential nutrients for humans, and changes in the structure and nutritional properties of proteins can substantially impact the biological effects of foods. This review focuses on the interactions among proteins, sugars, and lipids during thermal food processing and the effects of these interactions on the structure, nutritional value, and biological effects of proteins. In particular, the negative effects of modified proteins on human health and strategies for mitigating these detrimental effects from two perspectives, namely, reducing the formation of modified proteins during thermal processing and dietary intervention in vivo, are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jiaqi Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| |
Collapse
|
21
|
Nie C, Li Y, Qian H, Ying H, Wang L. Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr 2020; 62:3103-3115. [DOI: 10.1080/10408398.2020.1863904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf 2020; 19:2559-2587. [DOI: 10.1111/1541-4337.12593] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|
23
|
Thornton K, Merhi Z, Jindal S, Goldsammler M, Charron MJ, Buyuk E. Dietary Advanced Glycation End Products (AGEs) could alter ovarian function in mice. Mol Cell Endocrinol 2020; 510:110826. [PMID: 32339649 DOI: 10.1016/j.mce.2020.110826] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Nutrition is an important source of exogenous AGEs and thermally processed foods present in western-style diets contain a large amount of these pro-inflammatory AGEs. Additionally, the intake of dietary AGEs could upregulate ovarian gene expression of inflammatory macrophage markers. The objective of this study was to investigate the effect of diet rich in AGEs on estrous cyclicity and ovarian function in a mouse model. Six-week old C57BL/6 J female mice were randomly subjected to either a diet low in AGEs (L-AGE) or a diet high in AGEs (H-AGE) for a total of 13 weeks. Experiments performed included daily vaginal smears to assess estrous cyclicity, ovarian superovulation with gonadotropins to assess the number of oocytes released, whole ovarian tissue mRNA quantification by RT-PCR to quantify genes involved in folliculogenesis, steroidogenesis, and macrophage markers, and ovarian morphology for follicle count. Outcome measures included estrous cyclicity, number of oocytes following superovulation, expression of genes involved in folliculogenesis, steroidogenesis, and macrophage infiltration as well as the number of primordial, primary, secondary, antral follicles and corpora lutea. Compared to mice on L-AGE diet, mice on H-AGE spent significantly longer time in the diestrus phase, had similar number of oocytes released following ovarian superovulation, and showed significant alterations in genes involved in steroidogenesis (increase in Star mRNA expression levels) and folliculogenesis (increase in Gdf-9 and Fshr mRNA expression levels). Mouse macrophage marker F4/80 mRNA expression was upregulated in mice on H-AGE diet compared to mice on L-AGE diet. Finally, mice on H-AGE diet had significantly fewer corpora lutea in their ovaries. These results indicate that the ingestion of high amounts of dietary AGEs could disrupt folliculogenesis and steroidogenesis that might lead to abnormal estrous cyclicity. Intake of dietary AGEs could also upregulate ovarian gene expression of inflammatory macrophage markers.
Collapse
Affiliation(s)
- Kimberly Thornton
- Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, NY, 10530, USA; Department of Obstetrics & Gynecology and Women's Health, Division of Reproductive Endocrinology and Infertility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Currently at Reproductive Medicine Associates of New York, Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10022, USA
| | - Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Sangita Jindal
- Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, NY, 10530, USA; Department of Obstetrics & Gynecology and Women's Health, Division of Reproductive Endocrinology and Infertility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michelle Goldsammler
- Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, NY, 10530, USA; Department of Obstetrics & Gynecology and Women's Health, Division of Reproductive Endocrinology and Infertility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen J Charron
- Department of Obstetrics & Gynecology and Women's Health, Division of Reproductive Endocrinology and Infertility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Erkan Buyuk
- Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, NY, 10530, USA; Department of Obstetrics & Gynecology and Women's Health, Division of Reproductive Endocrinology and Infertility, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Currently at Reproductive Medicine Associates of New York, Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10022, USA.
| |
Collapse
|
24
|
Tavares JF, Ribeiro PVM, Coelho OGL, Silva LED, Alfenas RCG. Can advanced glycation end-products and their receptors be affected by weight loss? A systematic review. Obes Rev 2020; 21:e13000. [PMID: 31950676 DOI: 10.1111/obr.13000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
Abstract
Advanced glycation end products (AGEs) have been implicated in the pathogenesis of most chronic diseases. Therefore, identification of treatments that can attenuate the effects of these compounds and prevent cardiometabolic complications is of extreme public health interest. Recently, body weight management interventions showed positive results on reducing serum AGE concentrations. Moreover, the soluble receptor for advanced glycation end products (sRAGE) is considered to be a novel biomarker to identify patients with obesity most likely to benefit from weight management interventions. This systematic review aimed to critically analyze papers evaluating the effects of weight loss on serum AGEs and its receptors in adults with excess body weight. MEDLINE, Cochrane, Scopus, and Lilacs databases were searched. Three studies evaluating the response of AGEs to energy-restricted diets and six assessing sRAGE as the primary outcome were included. Energy-restricted diets and bariatric surgery reduced serum AGE concentrations, but effects on endogenous secretory RAGE (esRAGE) and sRAGE concentrations are conflicting. These results may be associated with mechanisms related to changes in dietary intake and limiting endogenous AGE formation. Therefore, the role of energy-restricted diets and bariatric surgery on lowering serum AGE concentrations, as well as its effects on AGEs receptors, deserves further investigation.
Collapse
Affiliation(s)
- Juliana F Tavares
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Priscila V M Ribeiro
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Olívia G L Coelho
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís E da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
25
|
Prasad K, Bhanumathy KK. AGE-RAGE Axis in the Pathophysiology of Chronic Lower Limb Ischemia and a Novel Strategy for Its Treatment. Int J Angiol 2020; 29:156-167. [PMID: 33041612 DOI: 10.1055/s-0040-1710045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This review focuses on the role of advanced glycation end products (AGEs) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting in CLLI. Serum and tissue levels of AGE, and expression of RAGE are elevated, and the serum levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction increase the generation of various atherogenic factors including reactive oxygen species, nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE, suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by upregulating sRAGE expression, and exogenous administration of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the development of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for prevention, regression, and slowing of progression of CLLI.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Division of Oncology, Cancer Cluster Unit, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
26
|
Liang Z, Chen X, Li L, Li B, Yang Z. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit Rev Food Sci Nutr 2019; 60:3475-3491. [PMID: 31760755 DOI: 10.1080/10408398.2019.1693958] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs), which are closely associated with various chronic diseases, are formed through the Maillard reaction when aldehydes react with amines in heated foods or in living organisms. The fate of dietary AGEs after oral intake plays a crucial role in regulating the association between dietary AGEs and their biological effects. However, the complexity and diversity of dietary AGEs make their fate ambiguous. Glycated modifications can impair the digestion, transport and uptake of dietary AGEs. High and low molecular weight AGEs may exhibit individual differences in their distribution, metabolism and excretion. Approximately 50-60% of free AGEs are excreted after dietary intake, whereas protein-bound AGEs exhibit a limited excretion rate. In this article, we summarize several AGE classification criteria and their abundance in foods, and in the body. A standardized static in vitro digestion method is strongly recommended to obtain comparable results of AGE digestibility. Sophisticated hypotheses regarding the intestinal transportation and absorption of drugs, as well as calculated physicochemical parameters, are expected to alleviate the difficulties determining the digestion, transport and uptake of dietary AGEs. Orally supplied AGEs with low or high molecular weights must be supported by well-defined amounts in investigations of excretion. Furthermore, unequivocal evidence should be obtained regarding the degradation and metabolism products of dietary AGEs.
Collapse
Affiliation(s)
- Zhili Liang
- School of Food Science, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Zhao Yang
- School of Food Science, Guangdong Food and Drug Vocational College, Guangzhou, China
| |
Collapse
|
27
|
AGE-RAGE stress: a changing landscape in pathology and treatment of Alzheimer's disease. Mol Cell Biochem 2019; 459:95-112. [PMID: 31079281 DOI: 10.1007/s11010-019-03553-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Numerous hypotheses including amyloid cascade, cholinergic, and oxidative have been proposed for pathogenesis of Alzheimer's disease (AD). The data suggest that advanced glycation end products (AGEs) and its receptor RAGE (receptor for AGE) are involved in the pathogenesis of AD. AGE-RAGE stress, defined as a balance between stressors (AGE, RAGE) and anti-stressors (sRAGE, AGE degraders) in favor of stressors, has been implicated in pathogenesis of diseases. AGE and its interaction with RAGE-mediated increase in the reactive oxygen species (ROS) damage brain because of its increased vulnerability to ROS. AGE and ROS increase the synthesis of amyloid β (Aβ) leading to deposition of Aβ and phosphorylation of tau, culminating in formation of plaques and neurofibrillary tangles. ROS increase the synthesis of Aβ, high-mobility group box 1(HMGB1), and S100 that interacts with RAGE to produce additional ROS resulting in enhancement of AD pathology. Elevation of ROS precedes the Aβ plaques formation. Because of involvement of AGE and RAGE in AD pathology, the treatment should be targeted at lowering AGE levels through reduction in consumption and formation of AGE, and lowering expression of RAGE, blocking of RAGE ligand binding, increasing levels of soluble RAGE (sRAGE), and use of antioxidants. The above treatment aspect of AD is lacking. In conclusion, AGE-RAGE stress initiates, and Aβ, HMGB1, and S100 enhance the progression of AD. Reduction of levels of AGE and RAGE, elevation of sRAGE, and antioxidants would be beneficial therapeutic modalities in the prevention, regression, and slowing of progression of AD.
Collapse
|
28
|
Zhang W, Zhao T, Zhao Y, Gui D, Xu Y. Advanced Glycation End Products in Chinese Medicine Mediated Aging Diseases: A Review. Curr Vasc Pharmacol 2019; 18:322-333. [PMID: 31060489 DOI: 10.2174/1570161117666190507112157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Aging has become a worldwide problem. During this process, the incidence of related diseases such as diabetes and atherosclerosis increases dramatically. Studies within the most recent two decades suggest a pivotal role of Advanced Glycation End Products (AGEs) in the aging process. This review aims to systemically summarize the effects and potential mechanism of Chinese Medicines on inhibiting AGEs-related aging diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Yonghua Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| |
Collapse
|
29
|
Wei Q, Liu T, Sun DW. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Geicu OI, Stanca L, Dinischiotu A, Serban AI. Proteomic and immunochemical approaches to understanding the glycation behaviour of the casein and β-lactoglobulin fractions of flavoured drinks under UHT processing conditions. Sci Rep 2018; 8:12869. [PMID: 30150692 PMCID: PMC6110766 DOI: 10.1038/s41598-018-28943-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Dairy technology used to produce sweetened milk products might introduce additional advanced glycation end products (AGEs) into the diet. These molecular messengers are linked to detrimental health effects. Using a model accurate to the thermal treatment, reducing sugars, main protein content, and prolonged storage of ultra-high-temperature-sterilized (UHT) milk, we studied the behaviour of milk proteins during glycation. Two-dimensional electrophoresis (2-DE) profiles and western blots of glycated total casein revealed the major contributions of αs2-casein and β-casein and the relatively minor contributions of κ-casein towards the formation of Nε-carboxymethyllysine (CML)-positive aggregates. Glycated κ-casein had the lowest furosine (FUR), 5-hydroxymethylfurfural (HMF) and AGEs content. Conversely, the α-casein fraction demonstrated a high susceptibility to glycation, having the highest FUR, HMF and AGE levels. The gel-filtration elution profiles and the corresponding fraction fluorescence revealed that glycated casein aggregates were highly fluorescent, while the β-lactoglobulin glycation profile was similar to that of bovine serum albumin, and fluorescence was detected mainly in tetramers. Although CML is not a cross-linking AGE, it was only detected in large molecular aggregates and not in glycated monomers. Our results also indicate that in casein, glycation-induced changes in the UHT conditions were less deleterious than the subsequent 90 day storage period.
Collapse
Grants
- TE_2012-3-0034, 15/26.04.2013 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding)
- TE_2012-3-0034, 15/26.04.2013 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding)
- TE_2012-3-0034, 15/26.04.2013 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding)
- TE_2012-3-0034, 15/26.04.2013 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding)
Collapse
Affiliation(s)
- Ovidiu I Geicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Andreea I Serban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania.
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| |
Collapse
|
31
|
Freund MA, Chen B, Decker EA. The Inhibition of Advanced Glycation End Products by Carnosine and Other Natural Dipeptides to Reduce Diabetic and Age-Related Complications. Compr Rev Food Sci Food Saf 2018; 17:1367-1378. [DOI: 10.1111/1541-4337.12376] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Michael A. Freund
- Dept. of Food Science; Univ. of Massachusetts - Amherst; 240 Chenoweth Laboratory, 102 Holdsworth Way Amherst MA 01003 U.S.A
| | - Bingcan Chen
- Dept. of Plant Sciences; North Dakota State Univ.; PO Box 6050 Fargo ND 58108-6050 U.S.A
| | - Eric A. Decker
- Dept. of Food Science; Univ. of Massachusetts - Amherst; 240 Chenoweth Laboratory, 102 Holdsworth Way Amherst MA 01003 U.S.A
| |
Collapse
|
32
|
Tsutsui A, Ogura A, Tahara T, Nozaki S, Urano S, Hara M, Kojima S, Kurbangalieva A, Onoe H, Watanabe Y, Taniguchi N, Tanaka K. In vivo imaging of advanced glycation end products (AGEs) of albumin: first observations of significantly reduced clearance and liver deposition properties in mice. Org Biomol Chem 2018; 14:5755-60. [PMID: 26932508 DOI: 10.1039/c6ob00098c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advanced glycation end products (AGEs) are associated with various diseases, especially during aging and the development of diabetes and uremia. To better understand these biological processes, investigation of the in vivo kinetics of AGEs, i.e., analysis of trafficking and clearance properties, was carried out by molecular imaging. Following the preparation of Cy7.5-labeled AGE-albumin and intravenous injection in BALB/cA-nu/nu mice, noninvasive fluorescence kinetics analysis was performed. In vivo imaging and fluorescence microscopy analysis revealed that non-enzymatic AGEs were smoothly captured by scavenger cells in the liver, i.e., Kupffer and other sinusoidal cells, but were unable to be properly cleared from the body. Overall, these results highlight an important link between AGEs and various disorders associated with them, which may serve as a platform for future research to better understand the processes and mechanisms of these disorders.
Collapse
Affiliation(s)
- Ayumi Tsutsui
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Tsuyoshi Tahara
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satoshi Nozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Mitsuko Hara
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako-shi, Saitama 351-0198, Japan
| | - Soichi Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako-shi, Saitama 351-0198, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Hirotaka Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. and Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia and Japan Science and Technology Agency-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Houston M, Minich D, Sinatra ST, Kahn JK, Guarneri M. Recent Science and Clinical Application of Nutrition to Coronary Heart Disease. J Am Coll Nutr 2018; 37:169-187. [PMID: 29313752 DOI: 10.1080/07315724.2017.1381053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the greatest threats to mortality in industrialized societies continues to be coronary heart disease (CHD). Moreover, the ability to decrease the incidence of CHD has reached a limit utilizing traditional diagnostic evaluations and prevention and treatment strategies for the top five cardiovascular risk factors (hypertension, diabetes mellitus, dyslipidemia, obesity, and smoking). It is well known that about 80% of CHD can be prevented with optimal nutrition, coupled with exercise, weight management, mild alcohol intake, and smoking cessation. Among all of these factors, optimal nutrition provides the basic foundation for prevention and treatment of CHD. Numerous prospective nutrition clinical trials have shown dramatic reductions in the incidence of CHD. As nutritional science and nutrigenomics research continues, our ability to adjust the best nutrition with an individualized approach is emerging. This article reviews the role of nutrition in the prevention and treatment of CHD and myocardial infarction (MI).
Collapse
Affiliation(s)
- Mark Houston
- a Associate Clinical Professor of Medicine, Vanderbilt University Medical School, Director, Hypertension Institute and Vascular Biology, Medical Director of Division of Human Nutrition, Saint Thomas Medical Group, Saint Thomas Hospital , Nashville , Tennessee , USA
| | - Deanna Minich
- b University of Western States, Institute for Functional Medicine , Seattle , Washington , USA
| | - Stephen T Sinatra
- c Assistant Clinical Professor of Medicine, University of Connecticut Medical School , Farmington , Connecticut , USA
| | - Joel K Kahn
- d Clinical Professor of Medicine, Wayne State University School of Medicine, Kahn Center for Cardiac Longevity , Bloomfield Township , Michigan , USA
| | - Mimi Guarneri
- e Director, Guarneri Integrative Health, Inc., La Jolla, California at Pacific Pearl , La Jolla , California , USA
| |
Collapse
|
34
|
Ishibashi Y, Matsui T, Isami F, Abe Y, Sakaguchi T, Higashimoto Y, Yamagishi SI. N-butanol extracts of Morinda citrifolia suppress advanced glycation end products (AGE)-induced inflammatory reactions in endothelial cells through its anti-oxidative properties. Altern Ther Health Med 2017; 17:137. [PMID: 28259164 PMCID: PMC5336679 DOI: 10.1186/s12906-017-1641-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 02/02/2023]
Abstract
Background Advanced glycation end products (AGEs), senescent macroprotein derivatives formed during a normal aging process and acceleratedly under diabetic conditions, play a role in atherosclerotic cardiovascular disease. AGEs cause endothelial cell (EC) damage, an initial trigger for atherosclerosis through the interaction with a receptor for AGEs (RAGE). We have previously shown that n-butanol extracts of Morinda citrifolia (noni), a plant belonging to the family Rubiaceae, block the binding of AGEs to RAGE in vitro. In this study, we examined the effects of n-butanol extracts of noni on reactive oxygen species (ROS) generation and inflammatory reactions on AGE-exposed human umbilical vein ECs (HUVECs). Methods HUVECs were treated with 100 μg/ml AGE-bovine serum albumin (AGE-BSA) or non-glycated BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni for 4 h. Then ROS generation and inflammatory and gene expression in HUVECs were evaluated by dihydroethidium staining and real-time reverse transcription-polymerase chain reaction analyses, respectively. THP-1 cell adhesion to HUVECs was measured after 2-day incubation of AGE-BSA or BSA in the presence or absence of 670 ng/ml n-butanol extracts of noni. Results N-butanol extracts of noni at 670 ng/ml significantly inhibited the AGE-induced ROS generation and RAGE, intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 gene expressions in HUVECs. AGEs significantly increased monocytic THP-1 cell adhesion to HUVECs, which was also prevented by 670 ng/ml n-butanol extracts of noni. Conclusions The present study demonstrated for the first time that N-butanol extracts of noni could suppress the AGE-induced inflammatory reactions in HUVECs through its anti-oxidative properties via blocking of the interaction of AGEs with RAGE. Inhibition of the AGE-RAGE axis by n-butanol extracts of noni may be a novel nutraceutical strategy for the treatment of cardiovascular disease.
Collapse
|
35
|
Prasad K, Mishra M. Do Advanced Glycation End Products and Its Receptor Play a Role in Pathophysiology of Hypertension? Int J Angiol 2017; 26:1-11. [PMID: 28255209 PMCID: PMC5330762 DOI: 10.1055/s-0037-1598183] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a close relationship between arterial stiffness and blood pressure. The studies suggest that the advanced glycation end products (AGEs) and its cell receptor (RAGE) are involved in the arterial stiffness in two ways: changes in arterial structure and vascular function. Plasma levels of AGEs and expression of RAGE are elevated, while the levels of soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) are lowered in patients with hypertension (HTN). There is a positive correlation between plasma levels of AGEs and arterial stiffness, and an inverse association between arterial stiffness/HTN, and serum levels of sRAGE and esRAGE. Various measures can reduce the levels of AGEs and expression of RAGE, and elevate sRAGE. Arterial stiffness and blood pressure could be reduced by lowering the serum levels of AGEs, and increasing the levels of sRAGE. Levels of AGEs can be lowered by reducing the consumption of AGE-rich diet, short duration of cooking in moist heat at low temperature, and cessation of cigarette smoking. Drugs such as aminoguanidine, vitamins, angiotensin-converting enzyme (ACE) inhibitors, angiotensin-II receptor blockers, statins, and metformin inhibit AGE formation. Alagebrium, an AGE breakers reduces levels of AGEs. Clinical trials with some drugs tend to reduce stiffness. Systemic administration of sRAGE has beneficial effect in animal studies. In conclusion, AGE-RAGE axis is involved in arterial stiffness and HTN. The studies suggest that inhibition of AGEs formation, reduction of AGE consumption, blockade of AGE-RAGE interaction, suppression of RAGE expression, and exogenous administration of sRAGE may be novel therapeutic strategies for treatment of arterial stiffness and HTN.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Manish Mishra
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
36
|
Federico G, Gori M, Randazzo E, Vierucci F. Skin advanced glycation end-products evaluation in infants according to the type of feeding and mother's smoking habits. SAGE Open Med 2016; 4:2050312116682126. [PMID: 28210490 PMCID: PMC5302171 DOI: 10.1177/2050312116682126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study was conducted to assess whether formula-fed infants had increased skin advanced glycation end-products compared with breastfed ones. We also evaluated the effect of maternal smoke during pregnancy and lactation on infant skin advanced glycation end-products accumulation. METHODS Advanced glycation end-product-linked skin autofluorescence was measured in 101 infants. RESULTS In infants born from non-smoking mothers, advanced glycation end-products were higher in formula-fed subjects than in breastfed subjects (0.80 (0.65-0.90) vs 1.00 (0.85-1.05), p < 0.001). Advanced glycation end-products in breastfed infants from smoking mothers were higher than in those from non-smoking mothers (0.80 (0.65-0.90) vs 1.00 (0.90-1.17), p = 0.009). CONCLUSION Formula-fed infants had increased amounts of advanced glycation end-products compared with the breastfed ones, confirming that breast milk represents the best food for infants. Breastfed infants from mothers smoking during pregnancy and lactation had increased skin advanced glycation end-products, suggesting that smoke-related advanced glycation end-products transfer throughout breast milk. Moreover, advanced glycation end-products may already increase during gestation, possibly affecting fetal development. Thus, we reinforced that smoking must be stopped during pregnancy and lactation.
Collapse
Affiliation(s)
- Giovanni Federico
- Unit of Pediatric Endocrinology & Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Martina Gori
- Unit of Pediatric Endocrinology & Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Emioli Randazzo
- Unit of Pediatric Endocrinology & Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
37
|
Goodarzi MT, Khodadadi I, Tavilani H, Abbasi Oshaghi E. The Role of Anethum graveolens L. (Dill) in the Management of Diabetes. J Trop Med 2016; 2016:1098916. [PMID: 27829842 PMCID: PMC5088306 DOI: 10.1155/2016/1098916] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Aim. There is evidence that Anethum graveolens (AG) has been used for centuries in Asian traditional medicine, and its constituents have useful effects on the control and management of diabetes and cardiovascular disorders. AG has many useful effects, including hypolipidemic and hypoglycemic effects, and it has been reported to reduce the incidence of diabetic complications. It acts mainly by affecting antioxidant capacity and change in some genes in glucose and lipid pathways. The aim of the present paper was to summarize pharmacological effects of AG in the management of diabetes. Methods. To prepare this review, a pharmacological and phytochemical literature survey was performed using Scopus, PubMed, and Web of Science. Also, some historical and ethnopharmacological literature sources were used. Results. This review plans to provide readers with an assessment of the pharmacological effects of AG, especially in diabetes. Conclusion. The paper highlights the therapeutic effects of AG which would aid in supporting their safe use in the management of diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi Oshaghi
- Department of Clinical Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
38
|
Xu L, Wang YR, Li PC, Feng B. Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products: increasing uptake, esterification and decreasing efflux of cholesterol. Lipids Health Dis 2016; 15:161. [PMID: 27644038 PMCID: PMC5028926 DOI: 10.1186/s12944-016-0334-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023] Open
Abstract
Background Previous reports have suggested that advanced glycation end products (AGEs) participate in the pathogenesis of diabetic macroangiopathy. Our previous study have found that AGEs can increase the lipid droplets accumulation in aortas of diabetic rats, but the current understanding of the mechanisms remains incomplete by which AGEs affect lipids accumulation in macrophages and accelerate atherosclerosis. In this study, we investigated the role of AGEs on lipids accumulation in macrophages and the possible molecular mechanisms including cholesterol influx, esterification and efflux of macrophages. Methods THP-1 cells were incubated with PMA to differentiate to be macrophages which were treated with AGEs in the concentration of 300 μg/ml and 600 μg/ml with or without anti-RAGE (receptor for AGEs) antibody and then stimulated by oxidized-LDL (oxLDL) or Dil-oxLDL. Lipids accumulation was examined by oil red staining. The cholesterol uptake, esterification and efflux were detected respectively by fluorescence microscope, enzymatic assay kit and fluorescence microplate. Quantitative RT-PCR and Western blot were used to measure expression of the moleculars involved in cholesterol uptake, synthesis/esterification and efflux. Results AGEs increased lipids accumulation in macrophages in a concentration-dependent manner. 600 μg/ml AGEs obviously upregulated oxLDL uptake, increased levels of cholesterol ester in macrophages, and decreased the HDL-mediated cholesterol efflux by regulating the main molecular expression including CD36, Scavenger receptors (SR) A2, HMG-CoA reductase (HMGCR), ACAT1 and ATP-binding cassette transporter G1 (ABCG1). The changes above were inversed when the cells were pretreated with anti-RAGE antibody. Conclusions The current study suggest that AGEs can increase lipids accumulation in macrophages by regulating cholesterol uptake, esterification and efflux mainly through binding with RAGE, which provide a deep understanding of mechanisms how AGEs accelerating diabetic atherogenesis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Endocriology and Metabolic Disease, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yi-Ru Wang
- Tongji University School of Medicine, Shanghai, 200120, China
| | - Pei-Cheng Li
- Tongji University School of Medicine, Shanghai, 200120, China
| | - Bo Feng
- Department of Endocriology and Metabolic Disease, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China. .,, Ji-mo Road 150, Shanghai, 200120, China.
| |
Collapse
|
39
|
Kakde S, Bhopal RS, Bhardwaj S, Misra A. Urbanized South Asians' susceptibility to coronary heart disease: The high-heat food preparation hypothesis. Nutrition 2016; 33:216-224. [PMID: 27776951 DOI: 10.1016/j.nut.2016.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/17/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Known risk factors do not fully explain the comparatively high susceptibility to coronary heart disease (CHD) in South Asians (Indian, Pakistani, Bangladeshi, and Sri Lankan populations in South Asia and overseas). The search for explanatory hypotheses and cofactors that raise susceptibility of South Asians to CHD continues. The aim of this study was to propose "the high-heat food preparation hypothesis," where neo-formed contaminants (NFCs) such as trans-fatty acids (TFAs) and advanced glycation end-products (AGEs) are the cofactors. METHODS We reviewed the actions of AGEs and TFAs, the burden of these products in tissues and blood in South Asians, the relationship between these products and CHD, the effects of preparing food and reheating oils at high temperatures on NFCs, and the foods and mode of preparation in South Asian and Chinese cuisines. RESULTS Animal and human studies show NFCs increase the risk for CHD. Evidence on the consumption and body burden of these products across ethnic groups is not available, and comparable data on the NFC content of the cuisine of South Asians and potential comparison populations (e.g., the Chinese with lower CHD rates) are limited. South Asians' cuisine is dominated by frying and roasting techniques that use high temperatures. South Asian foods have high TFA content primarily through the use of partially hydrogenated fats, reheated oils, and high-heat cooking. Reheating oils greatly increases the TFA content. In comparison, Chinese cuisine involves mostly braising, steaming, and boiling rather than frying. CONCLUSION We hypothesize that South Asians' susceptibility to CHD is partly attributable to high-heat treated foods producing high NFCs. Research to accrue direct evidence is proposed.
Collapse
Affiliation(s)
- Smitha Kakde
- Edinburgh Migration, Ethnicity and Health Research Group, Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Raj S Bhopal
- Edinburgh Migration, Ethnicity and Health Research Group, Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.
| | - Swati Bhardwaj
- National Diabetes, Obesity and Cholesterol Diseases Foundation, SDA, New Delhi, India; Diabetes Foundation (India), SDA, New Delhi, India; Center of Nutrition & Metabolic Research (C-NET), Delhi, India
| | - Anoop Misra
- National Diabetes, Obesity and Cholesterol Diseases Foundation, SDA, New Delhi, India; Diabetes Foundation (India), SDA, New Delhi, India; Center of Nutrition & Metabolic Research (C-NET), Delhi, India; Fortis C-DOC Center for Excellence for Diabetes, Metabolic Diseases and Endocrinology, New Delhi, India
| |
Collapse
|
40
|
Neviere R, Yu Y, Wang L, Tessier F, Boulanger E. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions. Glycoconj J 2016; 33:607-17. [PMID: 27277623 DOI: 10.1007/s10719-016-9679-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
|
41
|
Serra A, Gallart-Palau X, See-Toh RSE, Hemu X, Tam JP, Sze SK. Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms. Sci Rep 2016; 6:26106. [PMID: 27189269 PMCID: PMC4870627 DOI: 10.1038/srep26106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Nutraceuticals have been proposed to exert positive effects on human health and confer protection against many chronic diseases. A major bioactive component of soy-based foods is lunasin peptide, which has potential to exert a major impact on the health of human consumers worldwide, but the biochemical features of dietary lunasin still remain poorly characterized. In this study, lunasin was purified from a soy-based food product via strong anion exchange solid phase extraction and then subjected to top-down mass spectrometry analysis that revealed in detail the molecular diversity of lunasin in processed soybean foods. We detected multiple glycated proteoforms together with potentially toxic advanced glycation end products (AGEs) derived from lunasin. In both cases, modification sites were Lys24 and Lys29 located at the helical region that shows structural homology with a conserved region of chromatin-binding proteins. The identified post-translational modifications may have an important repercussion on lunasin epigenetic regulatory capacity. Taking together, our results demonstrate the importance of proper chemical characterization of commercial processed food products to assess their impact on consumer's health and risk of chronic diseases.
Collapse
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Rachel Su-En See-Toh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
42
|
Thangthaeng N, Poulose SM, Miller MG, Shukitt-Hale B. Preserving Brain Function in Aging: The Anti-glycative Potential of Berry Fruit. Neuromolecular Med 2016; 18:465-73. [DOI: 10.1007/s12017-016-8400-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/28/2016] [Indexed: 12/01/2022]
|
43
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
44
|
McCarty MF. The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2015-0056/hmbci-2015-0056.xml. [PMID: 26872317 DOI: 10.1515/hmbci-2015-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022]
Abstract
The serum total and LDL cholesterol levels of long-term vegans tend to be very low. The characteristically low ratio of saturated to unsaturated fat in vegan diets, and the absence of cholesterol in such diets, clearly contribute to this effect. But there is reason to suspect that the quantity and composition of dietary protein also play a role in this regard. Vegan diets of moderate protein intake tend to be relatively low in certain essential amino acids, and as a result may increase hepatic activity of the kinase GCN2, which functions as a gauge of amino acid status. GCN2 activation boosts the liver's production of fibroblast growth factor 21 (FGF21), a factor which favorably affects serum lipids and metabolic syndrome. The ability of FGF21 to decrease LDL cholesterol has now been traced to at least two mechanisms: a suppression of hepatocyte expression of sterol response element-binding protein-2 (SREBP-2), which in turn leads to a reduction in cholesterol synthesis; and up-regulated expression of hepatocyte LDL receptors, reflecting inhibition of a mechanism that promotes proteasomal degradation of these receptors. In mice, the vascular benefits of FGF21 are also mediated by favorable effects on adipocyte function - most notably, increased adipocyte secretion of adiponectin, which directly exerts anti-inflammatory effects on the vasculature which complement the concurrent reduction in LDL particles in preventing or reversing atherosclerosis. If, as has been proposed, plant proteins preferentially stimulate glucagon secretion owing to their amino acid composition, this would represent an additional mechanism whereby plant protein promotes FGF21 activity, as glucagon acts on the liver to boost transcription of the FGF21 gene.
Collapse
|
45
|
Angoorani P, Ejtahed HS, Mirmiran P, Mirzaei S, Azizi F. Dietary consumption of advanced glycation end products and risk of metabolic syndrome. Int J Food Sci Nutr 2016; 67:170-6. [PMID: 26850840 DOI: 10.3109/09637486.2015.1137889] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic syndrome (MetS) is a complex disorder which has become one of the major public health challenges worldwide. This study was conducted to evaluate the association between dietary advanced glycation end products (AGEs) and risk of MetS and its components. This cross-sectional study was conducted in a representative sample of 5848 adults, aged 19-70 years. Daily consumption of carboxymethyl lysine, a major type of AGEs, was determined using a validated semi-quantitative food frequency questionnaire. Across increasing trend of AGEs consumption, the percentage of fat intake increased and that of carbohydrate significantly decreased (p < 0.001). Subjects in the highest (>10,506 kU/d) compared to the lowest (<6673 kU/d) quartile category of AGEs had higher risk of abdominal obesity (OR: 1.19, 95% CI: 1.01-1.39) and hypertriglyceridemia (OR: 1.26, 95% CI: 1.07-1.49). Therefore, recommendation on restriction of AGEs intake could be a practical approach to prevent metabolic abnormalities.
Collapse
Affiliation(s)
- Pooneh Angoorani
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hanieh-Sadat Ejtahed
- b Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran ;,c Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran
| | - Parvin Mirmiran
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran ;,d Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sahar Mirzaei
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fereidoun Azizi
- e Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
46
|
Gupta A, Uribarri J. Dietary Advanced Glycation End Products and Their Potential Role in Cardiometabolic Disease in Children. Horm Res Paediatr 2016; 85:291-300. [PMID: 27008270 PMCID: PMC4891230 DOI: 10.1159/000444053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The rising incidence of obesity and metabolic diseases such as diabetes mellitus and cardiovascular disease in adolescents and young adults is of grave concern. Recent studies favor a role of lifestyle factors over genetics in the perpetuation of inflammation, insulin resistance and oxidative stress, which are pathophysiologic processes common to the above diseases; furthermore, the importance of dietary factors in addition to calories and physical activity in these processes is being increasingly recognized. Advanced glycation end products (AGEs) belong to a category of dietary oxidants which have been implicated in the pathogenesis of inflammation, oxidative stress, insulin resistance, β-cell failure and endothelial dysfunction. This paper reviews the studies of AGEs with a focus on their role in cardiometabolic disease in children. A Medline search was performed using the key words 'childhood obesity', 'metabolic syndrome' and 'advanced glycation end products'. Articles published in English between 1975 and 2015 and their references were reviewed. While most studies were performed in adults, a few studies also demonstrated a role of AGEs in obesity and associated cardiometabolic comorbidities in the younger population. Available evidence suggests an involvement of AGEs in the pathogenesis of adiposity and β-cell failure in children. Potential areas for further research to investigate underlying mechanisms are proposed.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jaime Uribarri
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Abstract
AbstractDietary advanced glycation end products (AGE) formed during heating of food have gained interest as potential nutritional toxins with adverse effects on inflammation and glucose metabolism. In the present study, we investigated the short-term effects of high and low molecular weight (HMW and LMW) dietary AGE on insulin sensitivity, expression of the receptor for AGE (RAGE), the AGE receptor 1 (AGER1) and TNF-α, F2-isoprostaglandins, body composition and food intake. For 2 weeks, thirty-six Sprague–Dawley rats were fed a diet containing 20 % milk powder with different proportions of this being given as heated milk powder (0, 40 or 100 %), either native (HMW) or hydrolysed (LMW). Gene expression of RAGE and AGER1 in whole blood increased in the group receiving a high AGE LMW diet, which also had the highest urinary excretion of the AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1). Urinary excretion of Nε-carboxymethyl-lysine increased with increasing proportion of heat-treated milk powder in the HMW and LMW diets but was unrelated to gene expression. There was no difference in insulin sensitivity, F2-isoprostaglandins, food intake, water intake, body weight or body composition between the groups. In conclusion, RAGE and AGER1 expression can be influenced by a high AGE diet after only 2 weeks in proportion to MG-H1 excretion. No other short-term effects were observed.
Collapse
|
48
|
Kellow NJ, Coughlan MT. Effect of diet-derived advanced glycation end products on inflammation. Nutr Rev 2015; 73:737-59. [PMID: 26377870 DOI: 10.1093/nutrit/nuv030] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) formed via the Maillard reaction during the thermal processing of food contributes to the flavor, color, and aroma of food. A proportion of food-derived AGEs and their precursors is intestinally absorbed and accumulates within cells and tissues. AGEs have been implicated in the pathogenesis of diabetes-related complications and several chronic diseases via interaction with the receptor for AGEs, which promotes the transcription of genes that control inflammation. The dicarbonyls, highly reactive intermediates of AGE formation, are also generated during food processing and may incite inflammatory responses through 1) the suppression of protective pathways, 2) the incretin axis, 3) the modulation of immune-mediated signaling, and 4) changes in gut microbiota profile and metabolite sensors. In animal models, restriction of dietary AGEs attenuates chronic low-grade inflammation, but current evidence from human studies is less clear. Here, the emerging relationship between excess dietary AGE consumption and inflammation is explored, the utility of dietary AGE restriction as a therapeutic strategy for the attenuation of chronic diseases is discussed, and possible avenues for future investigation are suggested.
Collapse
Affiliation(s)
- Nicole J Kellow
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | - Melinda T Coughlan
- N.J. Kellow and M.T. Coughlan are with the Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia, and the Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia. M.T. Coughlan is with the Department of Medicine, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Yamagishi SI, Matsui T. Pathologic role of dietary advanced glycation end products in cardiometabolic disorders, and therapeutic intervention. Nutrition 2015; 32:157-65. [PMID: 26602289 DOI: 10.1016/j.nut.2015.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023]
Abstract
Reactive derivatives from nonenzymatic glucose-protein condensation reactions, as well as lipids and nucleic acids exposed to reducing sugars, form a heterogeneous group of irreversible adducts called AGEs (advanced glycation end products). The glycation process begins with the conversion of reversible Schiff base adducts to more stable, covalently bound Amadori rearrangement products. Over the course of days to weeks, these Amadori products undergo further rearrangement and condensation reactions to form irreversibly cross-linked macroprotein derivatives known as AGEs. The formation and accumulation of AGEs have been known to progress in a physiological aging process and at an accelerated rate under hyperglycemic and oxidative stress conditions. There is growing evidence that AGEs play a pathologic role in numerous disorders. Indeed, glycation and/or cross-linking modification of circulating or organic matrix proteins by AGEs the senescence of moieties and deteriorate their physiological function and structural integrity in multiple organ systems. Moreover, AGEs elicit oxidative stress and inflammatory reactions through the interaction with the receptor for advanced glycation products in a variety of cells, thereby contributing to the development and progression of various aging- or diabetes-related disorders, such as cardiovascular disease, chronic kidney disease, insulin resistance, and Alzheimer's disease. Recently, diet has been recognized as a major environmental source of AGEs that could cause proinflammatory reactions and organ damage in vivo. Therefore, this review summarizes the pathophysiological role of dietary AGEs in health and disease, especially focusing on cardiometabolic disorders. We also discuss the potential utility in targeting exogenously derived AGEs for therapeutic intervention.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
50
|
Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation End-products (AGEs): an emerging concern for processed food industries. Journal of Food Science and Technology 2015; 52:7561-76. [PMID: 26604334 DOI: 10.1007/s13197-015-1851-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/12/2015] [Accepted: 04/22/2015] [Indexed: 01/02/2023]
Abstract
The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - Amarjeet Kaur
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - S S Thind
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - Baljit Singh
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - Shiveta Raina
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|