1
|
Kim S, Shin JJ, Kang M, Yang Y, Cho YS, Paik H, Kim J, Yi Y, Lee S, Koo HY, Bok J, Bae YC, Kim JY, Kim E. Alternatively spliced mini-exon B in PTPδ regulates excitatory synapses through cell-type-specific trans-synaptic PTPδ-IL1RAP interaction. Nat Commun 2025; 16:4415. [PMID: 40360498 PMCID: PMC12075705 DOI: 10.1038/s41467-025-59685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
PTPδ, encoded by PTPRD, is implicated in various neurological, psychiatric, and neurodevelopmental disorders, but the underlying mechanisms remain unclear. PTPδ trans-synaptically interacts with multiple postsynaptic adhesion molecules, which involves its extracellular alternatively spliced mini-exons, meA and meB. While PTPδ-meA functions have been studied in vivo, PTPδ-meB has not been studied. Here, we report that, unlike homozygous PTPδ-meA-mutant mice, homozygous PTPδ-meB-mutant (Ptprd-meB-/-) mice show markedly reduced early postnatal survival. Heterozygous Ptprd-meB+/- male mice show behavioral abnormalities and decreased excitatory synaptic density and transmission in dentate gyrus granule cells (DG-GCs). Proteomic analyses identify decreased postsynaptic density levels of IL1RAP, a known trans-synaptic partner of meB-containing PTPδ. Accordingly, IL1RAP-mutant mice show decreased excitatory synaptic transmission in DG-GCs. Ptprd-meB+/- DG interneurons with minimal IL1RAP expression show increased excitatory synaptic density and transmission. Therefore, PTPδ-meB is important for survival, synaptic, and behavioral phenotypes and regulates excitatory synapses in cell-type-specific and IL1RAP-dependent manners.
Collapse
Affiliation(s)
- Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jae Jin Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, 28119, Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Hyojung Paik
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Jimin Kim
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Yunho Yi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
2
|
Surana S, Villarroel-Campos D, Rhymes ER, Kalyukina M, Panzi C, Novoselov SS, Fabris F, Richter S, Pirazzini M, Zanotti G, Sleigh JN, Schiavo G. The tyrosine phosphatases LAR and PTPRδ act as receptors of the nidogen-tetanus toxin complex. EMBO J 2024; 43:3358-3387. [PMID: 38977849 PMCID: PMC11329502 DOI: 10.1038/s44318-024-00164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Tetanus neurotoxin (TeNT) causes spastic paralysis by inhibiting neurotransmission in spinal inhibitory interneurons. TeNT binds to the neuromuscular junction, leading to its internalisation into motor neurons and subsequent transcytosis into interneurons. While the extracellular matrix proteins nidogens are essential for TeNT binding, the molecular composition of its receptor complex remains unclear. Here, we show that the receptor-type protein tyrosine phosphatases LAR and PTPRδ interact with the nidogen-TeNT complex, enabling its neuronal uptake. Binding of LAR and PTPRδ to the toxin complex is mediated by their immunoglobulin and fibronectin III domains, which we harnessed to inhibit TeNT entry into motor neurons and protect mice from TeNT-induced paralysis. This function of LAR is independent of its role in regulating TrkB receptor activity, which augments axonal transport of TeNT. These findings reveal a multi-subunit receptor complex for TeNT and demonstrate a novel trafficking route for extracellular matrix proteins. Our study offers potential new avenues for developing therapeutics to prevent tetanus and dissecting the mechanisms controlling the targeting of physiological ligands to long-distance axonal transport in the nervous system.
Collapse
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Elena R Rhymes
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
| | - Maria Kalyukina
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Chiara Panzi
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Sergey S Novoselov
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
| | - Federico Fabris
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Sandy Richter
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - James N Sleigh
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Lie E, Li Y, Kim R, Kim E. SALM/Lrfn Family Synaptic Adhesion Molecules. Front Mol Neurosci 2018; 11:105. [PMID: 29674953 PMCID: PMC5895706 DOI: 10.3389/fnmol.2018.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in regulating neuronal and synapse development that have also been implicated in diverse brain dysfunctions, including autism spectrum disorders (ASDs). SALMs, also known as leucine-rich repeat (LRR) and fibronectin III domain-containing (LRFN) proteins, were originally identified as a group of novel adhesion-like molecules that contain LRRs in the extracellular region as well as a PDZ domain-binding tail that couples to PSD-95, an abundant excitatory postsynaptic scaffolding protein. While studies over the last decade have steadily explored the basic properties and synaptic and neuronal functions of SALMs, a number of recent studies have provided novel insights into molecular, structural, functional and clinical aspects of SALMs. Here we summarize these findings and discuss how SALMs act in concert with other synaptic proteins to regulate synapse development and function.
Collapse
Affiliation(s)
- Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
4
|
St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JD, Rajendran D, Couzens AL, Currie KW, Tkach JM, Cheung SW, Pelletier L, Gingras AC. Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators. Cell Rep 2016; 17:2488-2501. [DOI: 10.1016/j.celrep.2016.10.078] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/03/2016] [Accepted: 10/19/2016] [Indexed: 01/23/2023] Open
|
5
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
6
|
Muise A, Rotin D. Apical junction complex proteins and ulcerative colitis: a focus on thePTPRSgene. Expert Rev Mol Diagn 2014; 8:465-77. [DOI: 10.1586/14737159.8.4.465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Kapp K, Siemens J, Häring HU, Lammers R. Proteolytic processing of the protein tyrosine phosphatase α extracellular domain is mediated by ADAM17/TACE. Eur J Cell Biol 2012; 91:687-93. [PMID: 22647903 DOI: 10.1016/j.ejcb.2012.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 01/06/2023] Open
Abstract
The receptor protein tyrosine phosphatase alpha (PTPα) is involved in the regulation of tyrosine kinases like the Src kinase and the insulin receptor. As with other PTPs, its function is determined by alternative splicing, dimerisation, phosphorylation and proteolytical processing. PTPα is cleaved by calpain in its intracellular domain, which decreases its potential to dephosphorylate Src kinase. Here, we demonstrate that PTPα is also processed in the extracellular domain. Extracellular processing was exclusively found for a splice variant containing an extra nine amino acid insert three residues amino-terminal from the transmembrane domain. Processing was sensitive to the metalloprotease-inhibitor Batimastat, and CHO-M2 cells lacking a disintegrin and metalloproteinase 17 (ADAM17; tumor-necrosis-factor α converting enzyme) activity were not able to cleave PTPα. After transient overexpression of ADAM17 and PTPα in these cells, processing was restored, proving that ADAM17 is involved in this process. Further characterization of the consequences of processing revealed that dephosphorylation of the insulin receptor or activation of Src was not affected but focus formation was reduced. We conclude that extracellular proteolytic processing is a novel mechanism for PTPα regulation.
Collapse
Affiliation(s)
- Katja Kapp
- Department of Internal Medicine IV, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
8
|
PTPRF is disrupted in a patient with syndromic amastia. BMC MEDICAL GENETICS 2011; 12:46. [PMID: 21453473 PMCID: PMC3083333 DOI: 10.1186/1471-2350-12-46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The presence of mammary glands distinguishes mammals from other organisms. Despite significant advances in defining the signaling pathways responsible for mammary gland development in mice, our understanding of human mammary gland development remains rudimentary. Here, we identified a woman with bilateral amastia, ectodermal dysplasia and unilateral renal agenesis. She was found to have a chromosomal balanced translocation, 46,XX,t(1;20)(p34.1;q13.13). In addition to characterization of her clinical and cytogenetic features, we successfully identified the interrupted gene and studied its consequences. METHODS Characterization of the breakpoints was performed by molecular cytogenetic techniques. The interrupted gene was further analyzed using quantitative real-time PCR and western blotting. Mutation analysis and high-density SNP array were carried out in order to find a pathogenic mutation. Allele segregations were obtained by haplotype analysis. RESULTS We enabled to identify its breakpoint on chromosome 1 interrupting the protein tyrosine receptor type F gene (PTPRF). While the patient's mother and sisters also harbored the translocated chromosome, their non-translocated chromosomes 1 were different from that of the patient. Although a definite pathogenic mutation on the paternal allele could not be identified, PTPRF's RNA and protein of the patient were significantly less than those of her unaffected family members. CONCLUSIONS Although ptprf has been shown to involve in murine mammary gland development, no evidence has incorporated PTPRF in human organ development. We, for the first time, demonstrated the possible association of PTPRF with syndromic amastia, making it a prime candidate to investigate for its spatial and temporal roles in human breast development.
Collapse
|
9
|
Woo J, Kwon SK, Kim E. The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci 2009; 42:1-10. [PMID: 19467332 DOI: 10.1016/j.mcn.2009.05.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Cell adhesion molecules at neuronal synapses regulate diverse aspects of synaptic development, including axo-dendritic contact establishment, early synapse formation, and synaptic maturation. Recent studies have identified several synaptogenic adhesion molecules. The NGL (netrin-G ligand; LRRC4) family of synaptic cell adhesion molecules belongs to the superfamily of leucine-rich repeat (LRR) proteins. The three known members of the NGL family, NGL-1, NGL-2, and NGL-3, are mainly localized to the postsynaptic side of excitatory synapses, and interact with the presynaptic ligands, netrin-G1, netrin-G2, and LAR, respectively. NGLs interact with the abundant postsynaptic density (PSD) protein, PSD-95, and other postsynaptic proteins, including NMDA receptors. These interactions are thought to couple synaptic adhesion events to the assembly of synaptic proteins. In addition, NGL proteins regulate axonal outgrowth and lamina-specific dendritic segmentation, suggesting that the NGL-dependent adhesion system is important for the development of axons, dendrites, and synapses. Consistent with these functions, defects in NGLs and their ligands are associated with impaired learning and memory, hyperactivity, and an abnormal acoustic startle response in transgenic mice, and schizophrenia, bipolar disorder, and Rett syndrome in human patients.
Collapse
Affiliation(s)
- Jooyeon Woo
- National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
10
|
Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci 2009; 12:428-37. [PMID: 19252495 DOI: 10.1038/nn.2279] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 12/11/2022]
Abstract
Synaptic adhesion molecules regulate multiple steps of synapse formation and maturation. The great diversity of neuronal synapses predicts the presence of a large number of adhesion molecules that control synapse formation through trans-synaptic and heterophilic adhesion. We identified a previously unknown trans-synaptic interaction between netrin-G ligand-3 (NGL-3), a postsynaptic density (PSD) 95-interacting postsynaptic adhesion molecule, and leukocyte common antigen-related (LAR), a receptor protein tyrosine phosphatase. NGL-3 and LAR expressed in heterologous cells induced pre- and postsynaptic differentiation in contacting axons and dendrites of cocultured rat hippocampal neurons, respectively. Neuronal overexpression of NGL-3 increased presynaptic contacts on dendrites of transfected neurons. Direct aggregation of NGL-3 on dendrites induced coclustering of excitatory postsynaptic proteins. Knockdown of NGL-3 reduced the number and function of excitatory synapses. Competitive inhibition by soluble LAR reduced NGL-3-induced presynaptic differentiation. These results suggest that the trans-synaptic adhesion between NGL-3 and LAR regulates excitatory synapse formation in a bidirectional manner.
Collapse
|
11
|
Abstract
Protein-tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post-translational modifications affecting intrinsic catalytic activity, ligand binding and dimerization. Here, we review the regulatory mechanisms found to control the classical protein-tyrosine phosphatases.
Collapse
|
12
|
Machide M, Hashigasako A, Matsumoto K, Nakamura T. Contact Inhibition of Hepatocyte Growth Regulated by Functional Association of the c-Met/Hepatocyte Growth Factor Receptor and LAR Protein-tyrosine Phosphatase. J Biol Chem 2006; 281:8765-72. [PMID: 16415345 DOI: 10.1074/jbc.m512298200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contact inhibition, the inhibition of cell proliferation by tight cell-cell contact is a fundamental characteristic of normal cells. Using primary cultured hepatocytes, we investigated the mechanisms of contact inhibition that decrease the mitogenic activity of hepatocyte growth factor (HGF), focusing on the regulation of c-Met/HGF-receptor activation. In hepatocytes cultured at a sparse cell density, HGF stimulation induced prolonged c-Met tyrosine phosphorylation for over 5 h and a marked mitogenic response. In contrast, HGF stimulation induced transient c-Met tyrosine phosphorylation in <3 h and failed to induce mitogenic response in hepatocytes cultured at a confluent cell density. Treatment of the confluent cells with HGF plus orthovanadate, a broad spectrum protein-tyrosine phosphatase inhibitor, however, prolonged c-Met tyrosine phosphorylation for over 5 h and permitted the subsequent mitogenic response. The mitogenic response to HGF was associated with the duration of c-Met tyrosine phosphorylation even in the sparse cells. We found that the activity and expression of the protein-tyrosine phosphatase LAR increased following HGF stimulation specifically in confluent hepatocytes and not in sparse hepatocytes. LAR and c-Met were associated, and purified LAR dephosphorylated tyrosine-phosphorylated c-Met in in vitro phosphatase reactions. Furthermore, antisense oligonucleotides specific for LAR mRNA suppressed the expression of LAR, allowed prolonged c-Met tyrosine phosphorylation, and led to acquisition of a mitogenic response in hepatocytes even under the confluent condition. Thus functional association of LAR and c-Met underlies the inhibition of c-Met-mediated mitogenic signaling through the dephosphorylation of c-Met, which specifically occurs under the confluent condition.
Collapse
Affiliation(s)
- Mitsuru Machide
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
13
|
Besco J, Popesco MC, Davuluri RV, Frostholm A, Rotter A. Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPkappa, mu, rho and PCP-2). BMC Genomics 2004; 5:14. [PMID: 15040814 PMCID: PMC373446 DOI: 10.1186/1471-2164-5-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 02/11/2004] [Indexed: 11/22/2022] Open
Abstract
Background Four genes designated as PTPRK (PTPκ), PTPRL/U (PCP-2), PTPRM (PTPμ) and PTPRT (PTPρ) code for a subfamily (type R2B) of receptor protein tyrosine phosphatases (RPTPs) uniquely characterized by the presence of an N-terminal MAM domain. These transmembrane molecules have been implicated in homophilic cell adhesion. In the human, the PTPRK gene is located on chromosome 6, PTPRL/U on 1, PTPRM on 18 and PTPRT on 20. In the mouse, the four genes ptprk, ptprl, ptprm and ptprt are located in syntenic regions of chromosomes 10, 4, 17 and 2, respectively. Results The genomic organization of murine R2B RPTP genes is described. The four genes varied greatly in size ranging from ~64 kb to ~1 Mb, primarily due to proportional differences in intron lengths. Although there were also minor variations in exon length, the number of exons and the phases of exon/intron junctions were highly conserved. In situ hybridization with digoxigenin-labeled cRNA probes was used to localize each of the four R2B transcripts to specific cell types within the murine central nervous system. Phylogenetic analysis of complete sequences indicated that PTPρ and PTPμ were most closely related, followed by PTPκ. The most distant family member was PCP-2. Alignment of RPTP polypeptide sequences predicted putative alternatively spliced exons. PCR experiments revealed that five of these exons were alternatively spliced, and that each of the four phosphatases incorporated them differently. The greatest variability in genomic organization and the majority of alternatively spliced exons were observed in the juxtamembrane domain, a region critical for the regulation of signal transduction. Conclusions Comparison of the four R2B RPTP genes revealed virtually identical principles of genomic organization, despite great disparities in gene size due to variations in intron length. Although subtle differences in exon length were also observed, it is likely that functional differences among these genes arise from the specific combinations of exons generated by alternative splicing.
Collapse
Affiliation(s)
- Julie Besco
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Magdalena C Popesco
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ramana V Davuluri
- Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrienne Frostholm
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Andrej Rotter
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Wheeler MA, Townsend MK, Yunker LA, Mauro LJ. Transcriptional activation of the tyrosine phosphatase gene, OST-PTP, during osteoblast differentiation. J Cell Biochem 2003; 87:363-76. [PMID: 12397596 DOI: 10.1002/jcb.10297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are critical regulators of cellular phosphorylation functioning in processes such as cell growth, differentiation, and adhesion. Osteotesticular PTP (OST) is the only characterized member of this superfamily whose expression is regulated in osteoblasts and critical for their in vitro differentiation. Such evidence would suggest that this molecule is a key modulator of signaling events during osteogenesis, yet little is known about its genetic regulation. In an effort to examine the molecular mechanisms involved in the cellular regulation of OST, we have characterized its expression in MC3T3 osteoblasts during differentiation. Northern analysis revealed that murine OST mRNA is dramatically regulated during the preosteoblast to osteoblast progression, with predominant expression in differentiated and early mineralizing osteoblasts. This expression pattern is unique to this phosphatase since, in comparison, the structurally similar receptor PTP, LAR, and the intracellular PTP1B show little change during differentiation. Cell density contributes to this upregulated expression as confluent cultures display an increase in OST transcripts within 4 h post-plating. Transient transfection of the OST promoter in differentiating MC3T3 results in a significant increase in transcriptional activation from day 0 to day 5 of differentiation, similar in timing and intensity to the observed upregulation of the endogenous gene. This activation appears to be specific to osteoblasts, since progression to a myoblast phenotype results in no change in reporter gene activity. Culturing these preosteoblast cells in the absence of critical co-factors results in an inhibition of differentiation and leads to a delayed induction of OST transcripts as well as the attenuation of transcriptional activation. These results show that the murine OST gene is regulated at the transcriptional level in an osteoblast-specific, differentiation-dependent manner during the differentiation of MC3T3 osteoblasts. Future studies will help determine the essential regulatory elements within the OST-PTP promoter and the critical signaling pathways important in this regulation.
Collapse
Affiliation(s)
- Marie A Wheeler
- Department of Animal Science-Physiology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
15
|
Beltran PJ, Bixby JL, Masters BA. Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003; 456:384-95. [PMID: 12532410 DOI: 10.1002/cne.10532] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Competition and cooperation between type II and type III receptor protein tyrosine phosphatases (RPTPs) regulate axon extension and pathfinding in Drosophila. The first step to investigate whether RPTPs influence axon growth in the more complex vertebrate nervous system is to identify which neurons express a particular RPTP. We studied the expression of mouse PTPRO, a type III RPTP with an extracellular region containing eight fibronectin type III domains, during embryogenesis and after birth. Mouse PTPRO mRNA is expressed exclusively in two cell types: neurons and kidney podocytes. Maximal expression in the brain was coincident with mid to late gestation and axonogenesis in the brain. We cloned two cDNAs, including a splice variant without sequence coding of 28 amino acids within the juxtamembrane domain that was found mostly in kidney. In situ hybridization detected mPTPRO mRNA in the cerebral cortex, olfactory bulb and nucleus, hippocampus, motor neurons, and the spinal cord midline. In addition, mPTPRO mRNA was found throughout dorsal root, cranial, and sympathetic ganglia and within kidney glomeruli. Mouse PTPRO mRNA was observed in neuron populations expressing TrkA, the high-affinity nerve growth factor receptor, or TrkC, the neurotrophin-3 receptor, and immunoreactive mPTPRO and TrkC colocalized in large dorsal root ganglia proprioceptive neurons. Our results suggest that mPTPRO is involved in the differentiation and axonogenesis of central and peripheral nervous system neurons, where it is in a position to modulate intracellular responses to neurotrophin-3 and/or nerve growth factor.
Collapse
Affiliation(s)
- Pedro J Beltran
- The Neuroscience Program and Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
16
|
Harrington RJ, Gutch MJ, Hengartner MO, Tonks NK, Chisholm AD. TheC. elegansLAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development 2002; 129:2141-53. [PMID: 11959824 DOI: 10.1242/dev.129.9.2141] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Receptor-like protein-tyrosine phosphatases (RPTPs) form a diverse family of cell surface molecules whose functions remain poorly understood. The LAR subfamily of RPTPs has been implicated in axon guidance and neural development. Here we report the molecular and genetic analysis of the C. elegans LAR subfamily member PTP-3. PTP-3 isoforms are expressed in many tissues in early embryogenesis, and later become localized to neuronal processes and to epithelial adherens junctions. Loss of function in ptp-3 causes low-penetrance defects in gastrulation and epidermal development similar to those of VAB-1 Eph receptor tyrosine kinase mutants. Loss of function in ptp-3 synergistically enhances phenotypes of mutations in the C. elegans Eph receptor VAB-1 and a subset of its ephrin ligands, but does not show specific interactions with several other RTKs or morphogenetic mutants. The genetic interaction of vab-1 and ptp-3 suggests that LAR-like RPTPs and Eph receptors have related and partly redundant functions in C. elegans morphogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Caenorhabditis elegans/enzymology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Caenorhabditis elegans Proteins
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cloning, Molecular
- Ephrins
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Helminth Proteins/genetics
- Helminth Proteins/physiology
- Intracellular Signaling Peptides and Proteins
- Molecular Sequence Data
- Morphogenesis
- Mutation
- Phenotype
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Robert J Harrington
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
17
|
Besco JA, Frostholm A, Popesco MC, Burghes AHM, Rotter A. Genomic organization and alternative splicing of the human and mouse RPTPrho genes. BMC Genomics 2001; 2:1. [PMID: 11423001 PMCID: PMC33392 DOI: 10.1186/1471-2164-2-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2001] [Accepted: 06/08/2001] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Receptor protein tyrosine phosphatase rho (RPTPrho, gene symbol PTPRT) is a member of the type IIB RPTP family. These transmembrane molecules have been linked to signal transduction, cell adhesion and neurite extension. The extracellular segment contains MAM, Ig-like and fibronectin type III domains, and the intracellular segment contains two phosphatase domains. The human RPTPrho gene is located on chromosome 20q12-13.1, and the mouse gene is located on a syntenic region of chromosome 2. RPTPrho expression is restricted to the central nervous system. RESULTS The cloning of the mouse cDNA, identification of alternatively spliced exons, detection of an 8 kb 3'-UTR, and the genomic organization of human and mouse RPTPrho genes are described. The two genes are comprised of at least 33 exons. Both RPTPrho genes span over 1 Mbp and are the largest RPTP genes characterized. Exons encoding the extracellular segment through the intracellular juxtamembrane 'wedge' region are widely spaced, with introns ranging from 9.7 to 303.7 kb. In contrast, exons encoding the two phosphatase domains are more tightly clustered, with 15 exons spanning approximately 60 kb, and introns ranging in size from 0.6 kb to 13.1 kb. Phase 0 introns predominate in the intracellular, and phase 1 in the extracellular segment. CONCLUSIONS We report the first genomic characterization of a RPTP type IIB gene. Alternatively spliced variants may result in different RPTPrho isoforms. Our findings suggest that RPTPrho extracellular and intracellular segments originated as separate modular proteins that fused into a single transmembrane molecule during a later evolutionary period.
Collapse
Affiliation(s)
- Julie A Besco
- Departments of Pharmacology, The Ohio State University Columbus, OH 43210, USA
| | - Adrienne Frostholm
- Departments of Pharmacology, The Ohio State University Columbus, OH 43210, USA
| | - Magdalena C Popesco
- Departments of Pharmacology, The Ohio State University Columbus, OH 43210, USA
| | - Arthur HM Burghes
- Molecular and Cellular Biochemistry, The Ohio State University Columbus, OH 43210, USA
| | - Andrej Rotter
- Departments of Pharmacology, The Ohio State University Columbus, OH 43210, USA
| |
Collapse
|
18
|
Morrison DF, Mauro LJ. Structural characterization and chromosomal localization of the mouse cDNA and gene encoding the bone tyrosine phosphatase, mOST-PTP. Gene 2000; 257:195-208. [PMID: 11080586 DOI: 10.1016/s0378-1119(00)00397-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosine kinases and phosphatases are regulators of the steady-state levels of phosphotyrosine proteins and, in this way, are key players in determining the functional state of the cell. As a unique member of the protein tyrosine phosphatase (PTP) superfamily, osteotesticular PTP (OST-PTP) is a receptor protein whose expression is highly regulated during osteoblast differentiation and in response to modulators of bone remodeling such as parathyroid hormone and vitamin D3. To explore the molecular mechanisms and signaling pathways important in the regulation of this gene, we characterized the structural organization of the mouse OST-PTP cDNA and gene and determined its chromosomal localization. The mouse cDNA is approximately 5.5 kb including 5.1 kb of coding sequence, 315 bp 5' UTR and 102 bp 3' UTR. It is expressed as a single approximately 5.8 kb transcript in day 8 differentiated MC3T3 osteoblasts. Although highly homologous to the rat OST-PTP cDNA, the mouse cDNA possesses a 74 bp insert in the 5' UTR which contains several potential transcription factor binding sites such as AP-2 and NFkappaB. The mouse OST-PTP (mOST-PTP) gene is a single copy gene encompassing 35 exons and spanning only 20.65 kb. As such, it is the smallest gene of the characterized receptor PTP genes. This is due to the lack of large introns and the conserved spatial organization of exons which encode specific protein motifs in the mOST-PTP molecule. Sequence analysis of the putative mOST-PTP promoter revealed basal elements as well as many potential cis-acting regulatory elements with relevance to gene regulation in bone. Of particular interest is the single osteoblast specific element known as osteocalcin specific element 2 (OSE2) found at position -1867, as well as numerous VDRE and NFkappaB sites found throughout the promoter and the 5' UTR. Fluorescence in situ hybridization studies have shown that mOST-PTP localizes to mouse chromosome 1, region F-G which is syntenic to the segment of human chromosome 1q32-33. This characterization of the mOST-PTP cDNA and gene will facilitate future experiments exploring the mechanisms of regulation of this phosphatase during osteogenesis.
Collapse
Affiliation(s)
- D F Morrison
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
19
|
Suárez Pestana E, Tenev T, Gross S, Stoyanov B, Ogata M, Böhmer FD. The transmembrane protein tyrosine phosphatase RPTPsigma modulates signaling of the epidermal growth factor receptor in A431 cells. Oncogene 1999; 18:4069-79. [PMID: 10435588 DOI: 10.1038/sj.onc.1202794] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attenuation of epidermal growth factor receptor signaling by the ganglioside G(M3) has previously been found to involve activation of an unknown protein-tyrosine phosphatase (PTP). In transient expression experiments we tested different PTPs for activation towards EGF receptor by G(M3). The transmembrane PTP RPTPsigma but not RPTPalpha or the SH2-domain PTP SHP-1 exhibited elevated activity towards EGF receptor in G(M3)-treated cells. The possible relevance of RPTPsigma for regulation of EGF receptor signaling activity was further explored in stable A431 cells lines inducibly expressing RPTPsigma or RPTPsigma antisense RNA. RPTPsigma expression clearly reduced EGF receptor phosphorylation. Also, soft agar colony formation of respective cell lines was reduced upon RPTPsigma expression whereas RPTPsigma antisense RNA expression augmented both, EGF receptor phosphorylation and soft agar colony formation. In addition, RPTPsigma antisense RNA expression rendered A431 cells resistant to inhibition of EGF receptor phosphorylation by G(M3). We propose that RPTPsigma participates in EGF receptor dephosphorylation in A431 cells, becomes activated by G(M3) via an unknown mechanism and is thereby capable to mediate attenuation of EGF receptor phosphorylation by G(M3).
Collapse
Affiliation(s)
- E Suárez Pestana
- Research Unit 'Molecular Cell Biology', Klinikum der Friedrich-Schiller Universität Jena, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Elchebly M, Wagner J, Kennedy TE, Lanctôt C, Michaliszyn E, Itié A, Drouin J, Tremblay ML. Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat Genet 1999; 21:330-3. [PMID: 10080191 DOI: 10.1038/6859] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphatase sigma (PTP-sigma, encoded by the Ptprs gene) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases that is highly expressed during mammalian embryonic development in the germinal cell layer lining the lateral ventricles of the developing brain, dorsal root ganglia, Rathke's pouch, olfactory epithelium, retina and developing lung and heart. On the basis of its expression and homology with the Drosophila melanogasterorthologues DPTP99 and DPTP100A (refs 5,6), which have roles in the targeting of axonal growth cones, we hypothesized that PTP-sigma may also have a modulating function in cell-cell interactions, as well as in axon guidance during mammalian embryogenesis. To investigate its function in vivo, we generated Ptprs-deficient mice. The resulting Ptprs-/-animals display retarded growth, increased neonatal mortality, hyposmia and hypofecundity. Anatomical and histological analyses showed a decrease in overall brain size with a severe depletion of luteinizing hormone-releasing hormone (LHRH)-immunoreactive cells in Ptprs-/- hypothalamus. Ptprs-/- mice have an enlarged intermediate pituitary lobe, but smaller anterior and posterior lobes. These results suggest that tyrosine phosphorylation-dependent signalling pathways regulated by PTP-sigma influence the proliferation and/or adhesiveness of various cell types in the developing hypothalamo-pituitary axis.
Collapse
Affiliation(s)
- M Elchebly
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xie J, Zhang B, Lan MS, Notkins AL. Genomic structure and promoter sequence of the insulin-dependent diabetes mellitus autoantigen, IA-2 (PTPRN). Genomics 1998; 54:338-43. [PMID: 9828138 DOI: 10.1006/geno.1998.5583] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IA-2 is a transmembrane protein tyrosine phosphatase, expressed in neuroendocrine cells, and a major autoantigen in insulin-dependent diabetes mellitus. In the present study we elucidated the structure of the IA-2 gene (HGMW-approved symbol PTPRN) and its promoter sequence. A 40-kb genomic clone covering the whole IA-2 coding sequence and 4 kb proximal 5'-upstream sequence was isolated and mapped. The IA-2 gene encompasses approximately 20 kb with 23 exons ranging from 34 bp to more than 650 bp. The extracellular domain is encoded by exons 1-12, the transmembrane region by exon 13, and the intracellular domain by exons 14-23. The transcriptional start site(s) of the IA-2 gene was mapped by 5' rapid amplification of cDNA ends to 97 bp upstream of the translational start site. A 3-kb 5'-upstream region was sequenced, revealing a GC-rich region and TATA-less sequence containing several potential transcription-regulating sites (i.e., Sp1, CREB, GATA-1, and MZF). Functional promoter activity was confirmed by transient transfection of U87MG cells with deletion mutants linked to a luciferase reporter gene.
Collapse
Affiliation(s)
- J Xie
- Experimental Medicine Section, Oral Infection and Immunity Branch, Bethesda, Maryland, 20892-4322, USA
| | | | | | | |
Collapse
|
22
|
Haworth K, Shu KK, Stokes A, Morris R, Stoker A. The expression of receptor tyrosine phosphatases is responsive to sciatic nerve crush. Mol Cell Neurosci 1998; 12:93-104. [PMID: 9790732 DOI: 10.1006/mcne.1998.0707] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Given the importance of phosphotyrosine signaling in growth cone dynamics, we have examined the embryonic and adult expression of receptor-like protein tyrosine phosphatases in sensory neurons and studied their responsiveness to nerve lesions in young adult animals. The phosphatases LAR, PTPsigma, and PTPalpha are expressed in most neurons of E14 and E18 rat embryo dorsal root ganglia, while BEM-1 is expressed in a more restricted subset of these neurons. These phosphatases continue to be expressed in young adult animals, suggesting that they have roles in mature as well as in developing dorsal root ganglia neurons. After an experimental sciatic nerve crush, the expression of the phosphatase genes was significantly and differentially altered in these neurons. PTPsigma mRNA was increased by 50% after 3 days, while LAR and PTPalpha expression dropped by 50 and 20%, respectively. BEM-1 mRNA levels were unaltered. These data show that mRNA levels of specific tyrosine phosphatase genes are highly responsive to nerve damage and may be reset to a new and potentially optimal pattern of expression more conducive for nerve regeneration. We propose that tyrosine phosphatases are not only involved in primary axonogenesis but can also now be implicated in the molecular control of adult nerve repair.
Collapse
Affiliation(s)
- K Haworth
- Department of Human Anatomy, University of Oxford, Oxford, OX1 3QX, UK
| | | | | | | | | |
Collapse
|
23
|
Jiang S, Tulloch AG, Kim TA, Fu Y, Rogers R, Gaskell A, White RA, Avraham H, Avraham S. Characterization and chromosomal localization of PTP-NP-2, a new isoform of protein tyrosine phosphatase-like receptor, expressed on synaptic boutons. Gene 1998; 215:345-59. [PMID: 9714834 DOI: 10.1016/s0378-1119(98)00282-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, there have been several reports describing the cloning and characterization of the novel family of protein tyrosine phosphatase-like receptor molecules (known as IA-2 and PTP-NP/PTP-IAR/IA-2beta/phogrin), which may act as autoantigens in diabetes. Here, we report the molecular characterization and chromosomal localization of a new isoform of this family in brain termed PTP-NP-2 (for PTP-NP tyrosine phosphatase isoform), and its function in rat primary hippocampal neurons. PTP-NP-2 has 48% identity to IA-2. The principal difference between PTP-NP-2 and PTP-NP is a 17-amino-acid insert near the N-terminus of PTP-NP that is absent in PTP-NP-2. Genomic DNA analysis indicates that the 17-amino-acid insert is coded by a separate exon, suggesting that both IA-2beta and PTP-NP-2 are isoforms arising by alternate splicing of the same gene. Reverse transcriptase-PCR revealed that both isoforms are present in human SH-SY5Y neuroblastoma cells. PTP-NP-2 mRNA expression is highly restricted, with a 5.5-kb specific transcript in human fetal and adult brain and 5.5 and 3. 8 kb in human adult pancreas. SH-SY5Y neuroblastoma and U87-MG glioblastoma cells showed specific transcripts of 5.5 and 3.8<HSP SP = "0.25">kb, respectively, indicating the existence of several isoforms of this molecule in the nervous system. The human gene encoding PTP-NP-2 was assigned to human chromosome 7q22-qter using Southern blot analysis of genomic DNAs from rodent/human somatic hybrid cell lines. Confocal microscopy analyses of rat primary hippocampal neurons revealed that PTP-NP-2 is abundantly expressed on synaptic boutons in primary neurons. Wild-type PTP-NP-2 showed no measurable tyrosine phosphatase activity using an in-vitro pNPP assay. Examination of the PTP-NP-2 catalytic consensus sequence revealed that this sequence differed from the typical tyrosine phosphatase-domain consensus sequence by an alanine to aspartate change (amino acid 930). Mutation of aspartate 930 to alanine produced a catalytically active enzyme, suggesting that native PTP-NP and its isoform PTP-NP-2 are catalytically inactive receptor protein tyrosine phosphatase homologues. Taken together, these results indicate that the tyrosine phosphatase PTP-NP-2 is a new isoform of PTP-NP tyrosine phosphatase, is expressed on synaptic boutons and may participate in the regulation of synaptic bouton endocytosis.
Collapse
Affiliation(s)
- S Jiang
- Division of Experimental Medicine, Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
O'Grady P, Thai TC, Saito H. The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J Cell Biol 1998; 141:1675-84. [PMID: 9647658 PMCID: PMC2133008 DOI: 10.1083/jcb.141.7.1675] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Leukocyte antigen-related protein (LAR) is a prototype for a family of transmembrane protein tyrosine phosphatases whose extracellular domain is composed of three Ig and several fibronectin type III (FnIII) domains. Complex alternative splicing of the LAR-FnIII domains 4-8 has been observed. The extracellular matrix laminin-nidogen complex was identified as a ligand for the LAR-FnIII domain 5 (Fn5) using a series of GST-LAR-FnIII domain fusion proteins and testing them in in vitro ligand-binding assays. LAR- laminin-nidogen binding was regulated by alternative splicing of a small exon within the LAR-Fn5 so that inclusion of this exon sequence resulted in disruption of the laminin-nidogen-binding activity. Long cellular processes were observed when HeLa cells were plated on laminin-nidogen, but not when plated on a fibronectin surface. Indirect immunofluorescent antibody staining revealed high expression of LAR in a punctate pattern, throughout the length of these cellular processes observed on laminin-nidogen. Antibody-induced cross-linking of LAR inhibited formation of these cellular processes, and inhibition was correlated with changes in cellular actin cytoskeletal structure. Thus, LAR-laminin-nidogen binding may play a role in regulating cell signaling induced by laminin-nidogen, resulting in cell morphological changes.
Collapse
Affiliation(s)
- P O'Grady
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
McAndrew PE, Frostholm A, White RA, Rotter A, Burghes AH. Identification and characterization of RPTP rho, a novel RPTP mu/kappa-like receptor protein tyrosine phosphatase whose expression is restricted to the central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:9-21. [PMID: 9602027 DOI: 10.1016/s0169-328x(98)00014-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the cloning, chromosomal localization and characterization of RPTPrho, a new member of the RPTPmu/kappa phosphatase subfamily. Receptor tyrosine phosphatases in this subfamily are comprised of a MAM domain near the N-terminal, an immunoglobulin-like domain, four fibronectin type III repeats, a single transmembrane domain, and a large juxtamembrane segment followed by two intracellular phosphatase domains. An alternatively spliced mini-exon was identified in the extracellular segment of RPTPrho, between the fourth fibronectin type III repeat and the transmembrane domain. The RPTPrho gene was mapped to human chromosome 20 and mouse chromosome 2. Northern blot analysis demonstrated that RPTPrho expression was restricted to the central nervous system, and in situ hybridization studies showed that the RPTPrho transcript was distributed throughout the murine brain and spinal cord. Exceptionally high levels of the transcript were present in the cortex and olfactory bulbs during perinatal development, but were down-regulated during postnatal week two. The motifs found in the extracellular segment of type II receptor protein tyrosine phosphatases are commonly found in neural cell adhesion molecules, suggesting that RPTPrho may be involved in both signal transduction and cellular adhesion in the central nervous system.
Collapse
Affiliation(s)
- P E McAndrew
- Dept. of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
26
|
Wallace MJ, Fladd C, Batt J, Rotin D. The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol Cell Biol 1998; 18:2608-16. [PMID: 9566880 PMCID: PMC110640 DOI: 10.1128/mcb.18.5.2608] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The LAR family protein tyrosine phosphatases (PTPs), including LAR, PTP delta, and PTP sigma, are transmembrane proteins composed of a cell adhesion molecule-like ectodomain and two cytoplasmic catalytic domains: active D1 and inactive D2. We performed a yeast two-hybrid screen with the first catalytic domain of PTP sigma (PTP sigma-D1) as bait to identify interacting regulatory proteins. Using this screen, we identified the second catalytic domain of PTP delta (PTP delta-D2) as an interactor of PTP sigma-D1. Both yeast two-hybrid binding assays and coprecipitation from mammalian cells revealed strong binding between PTP sigma-D1 and PTP delta-D2, an association which required the presence of the wedge sequence in PTP sigma-D1, a sequence recently shown to mediate D1-D1 homodimerization in the phosphatase RPTP alpha. This interaction was not reciprocal, as PTP delta-D1 did not bind PTP sigma-D2. Addition of a glutathione S-transferase (GST)-PTP delta-D2 fusion protein (but not GST alone) to GST-PTP sigma-D1 led to approximately 50% inhibition of the catalytic activity of PTP sigma-D1, as determined by an in vitro phosphatase assay against p-nitrophenylphosphate. A similar inhibition of PTP sigma-D1 activity was obtained with coimmunoprecipitated PTP delta-D2. Interestingly, the second catalytic domains of LAR (LAR-D2) and PTP sigma (PTP sigma-D2), very similar in sequence to PTP delta-D2, bound poorly to PTP sigma-D1. PTP delta-D1 and LAR-D1 were also able to bind PTP delta-D2, but more weakly than PTP sigma-D1, with a binding hierarchy of PTP sigma-D1 >> PTP delta-D1 > LAR-D1. These results suggest that association between PTP sigma-D1 and PTP delta-D2, possibly via receptor heterodimerization, provides a negative regulatory function and that the second catalytic domains of this and likely other receptor PTPs, which are often inactive, may function instead to regulate the activity of the first catalytic domains.
Collapse
Affiliation(s)
- M J Wallace
- Division of Respiratory Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Hassel B, Rathjen FG, Volkmer H. Organization of the neurofascin gene and analysis of developmentally regulated alternative splicing. J Biol Chem 1997; 272:28742-9. [PMID: 9353344 DOI: 10.1074/jbc.272.45.28742] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurofascin is an axonal member of the L1 subgroup of the immunoglobulin superfamily implicated in neurite extension in the course of embryonic development. Here we have isolated and characterized the gene encoding chicken neurofascin. Comparison of genomic sequences with cDNA sequences provides the structure and localization of intron/exon boundaries and indicates that neurofascin isoforms are generated by alternative splicing of its pre-mRNA. The neurofascin gene is composed of 33 exons distributed over 72 kilobases. Each of the six immunoglobulin- and five fibronectin-type III-like domains is encoded by two exons. While introns between domains are of phase 1, others are of phase 0, 1, or 2. Alternative splicing of neurofascin is developmentally regulated as shown by polymerase chain reaction analysis. Furthermore, plasmid libraries from long range polymerase chain reaction-amplified cDNA of neurofascin were used to examine and quantify the distribution of alternatively spliced exons in individual neurofascin molecules. We found 50 different neurofascin isoforms at different developmental stages and revealed the existence of one major "early" in comparison with multiple "late" neurofascin isoforms.
Collapse
Affiliation(s)
- B Hassel
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13122 Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
28
|
Aicher B, Lerch MM, Müller T, Schilling J, Ullrich A. Cellular redistribution of protein tyrosine phosphatases LAR and PTPsigma by inducible proteolytic processing. J Cell Biol 1997; 138:681-96. [PMID: 9245795 PMCID: PMC2141638 DOI: 10.1083/jcb.138.3.681] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most receptor-like protein tyrosine phosphatases (PTPases) display a high degree of homology with cell adhesion molecules in their extracellular domains. We studied the functional significance of processing for the receptor-like PTPases LAR and PTPsigma. PTPsigma biosynthesis and intracellular processing resembled that of the related PTPase LAR and was expressed on the cell surface as a two-subunit complex. Both LAR and PTPsigma underwent further proteolytical processing upon treatment of cells with either calcium ionophore A23187 or phorbol ester TPA. Induction of LAR processing by TPA in 293 cells did require overexpression of PKCalpha. Induced proteolysis resulted in shedding of the extracellular domains of both PTPases. This was in agreement with the identification of a specific PTPsigma cleavage site between amino acids Pro821 and Ile822. Confocal microscopy studies identified adherens junctions and desmosomes as the preferential subcellular localization for both PTPases matching that of plakoglobin. Consistent with this observation, we found direct association of plakoglobin and beta-catenin with the intracellular domain of LAR in vitro. Taken together, these data suggested an involvement of LAR and PTPsigma in the regulation of cell contacts in concert with cell adhesion molecules of the cadherin/catenin family. After processing and shedding of the extracellular domain, the catalytically active intracellular portions of both PTPases were internalized and redistributed away from the sites of cell-cell contact, suggesting a mechanism that regulates the activity and target specificity of these PTPases. Calcium withdrawal, which led to cell contact disruption, also resulted in internalization but was not associated with prior proteolytic cleavage and shedding of the extracellular domain. We conclude that the subcellular localization of LAR and PTPsigma is regulated by at least two independent mechanisms, one of which requires the presence of their extracellular domains and one of which involves the presence of intact cell-cell contacts.
Collapse
Affiliation(s)
- B Aicher
- Department of Molecular Biology, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
29
|
Schaapveld RQ, Schepens JT, Robinson GW, Attema J, Oerlemans FT, Fransen JA, Streuli M, Wieringa B, Hennighausen L, Hendriks WJ. Impaired mammary gland development and function in mice lacking LAR receptor-like tyrosine phosphatase activity. Dev Biol 1997; 188:134-46. [PMID: 9245518 DOI: 10.1006/dbio.1997.8630] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The LAR receptor-like protein tyrosine phosphatase is composed of two intracellular tyrosine phosphatase domains and a cell adhesion molecule-like extracellular region containing three immunoglubulin-like domains in combination with eight fibronectin type-III-like repeats. This architecture suggests that LAR may function in cellular signalling by the regulation of tyrosine phosphorylation through cell-cell or cell-matrix interactions. We used gene targeting in mouse embryonic stem cells to generate mice lacking sequences encoding both LAR phosphatase domains. Northern blot analysis of various tissues revealed the presence of a truncated LAR mRNA lacking the cytoplasmic tyrosine phosphatase domains and indicated that this LAR mutation is not accompanied by obvious changes in the expression levels of one of the LAR-like receptor tyrosine phosphatases PTPdelta or PTPsigma. LAR-/- mice develop and grow normally and display no appreciable histological tissue abnormalities. However, upon breeding we observed an abnormal neonatal death rate for pups from LAR-/- females. Mammary glands of LAR-/- females were incapable of delivering milk due to an impaired terminal differentiation of alveoli at late pregnancy. As a result, the glands failed to switch to a lactational state and showed a rapid involution postpartum. In wild-type mice, LAR expression is regulated during pregnancy reaching maximum levels around Day 16 of gestation. Taken together, these findings suggest an important role for LAR-mediated signalling in mammary gland development and function.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Cell Differentiation
- Female
- Gene Expression Regulation, Developmental
- Gene Targeting
- Histocytochemistry
- Lactation
- Male
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mice
- Mice, Knockout
- Nerve Tissue Proteins
- Pregnancy
- Protein Tyrosine Phosphatases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombination, Genetic
Collapse
Affiliation(s)
- R Q Schaapveld
- Institute of Cellular Signalling, University of Nijmegen, Adelbertusplein 1, Nijmegen, 6525 EK, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tabiti K, Cui L, Chhatwal VJ, Moochhala S, Ngoi SS, Pallen CJ. Novel alternative splicing predicts a secreted extracellular isoform of the human receptor-like protein tyrosine phosphatase LAR. Gene 1996; 175:7-13. [PMID: 8917069 DOI: 10.1016/0378-1119(96)00113-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RT-PCR was used to examine the expression of LAR (encoding the leukocyte-common antigen-related protein tyrosine phosphatase) in normal human colon mucosa, and colon polyps and tumors. Although the LAR protein was not detected in the colon in a previous immunohistochemical study, amplification of a region of LAR between the most membrane proximal (eighth) fibronectin type-III (FN-III) repeat and the transmembrane domain demonstrated LAR expression in all samples, but showed no difference in expression within matched samples from each patient examined. An additional minor fragment amplified in all reactions was consistently observed in colon and various cell line samples using this and two other LAR-specific sets of primers. Cloning and sequencing of the fragment identified it as deriving from a novel alternatively spliced form of LAR containing a retained intron of 85 bp. This intron encodes an additional 13 amino acids followed by an in-frame stop codon, thus its retention is predicted to give rise to a secreted LAR extracellular region isoform(s). LAR transcripts containing the intron were detected by RNase protection assay of colon samples and were present in most human tissues examined by Northern analysis. A protein in colon tumor extract was recognized by antiserum raised to the intron-encoded sequence. Soluble isoforms of the LAR extracellular immunoglobulin (Ig)-like/FN-III repeat-containing region could have a biological function distinct from those isoforms localized at the cell surface and/or coupled to intracellular phosphatase activity.
Collapse
Affiliation(s)
- K Tabiti
- Cell Regulation Laboratory, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
31
|
Endo N, Rutledge SJ, Opas EE, Vogel R, Rodan GA, Schmidt A. Human protein tyrosine phosphatase-sigma: alternative splicing and inhibition by bisphosphonates. J Bone Miner Res 1996; 11:535-43. [PMID: 8992885 DOI: 10.1002/jbmr.5650110415] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two forms of the transmembrane human protein tyrosine phosphatase (PTP sigma), generated by alternative splicing, were identified by cDNA cloning and Northern hybridization with selective cDNA probes. The larger form of PTP sigma is expressed in various human tissues, human osteosarcoma, and rat tibia. The hPTP sigma cDNA codes for a protein of 1911 amino acid residues and is composed of a cytoplasmic region with two PTP domains and an extracellular region that can be organized into three tandem repeats of immunoglobulin-like domains and eight tandem repeats of fibronectin type III-like domains. In the brain, the major transcript of PTP sigma is an alternatively spliced mRNA, in which the coding region for the fibronectin type III-like domains number four to seven are spliced out, thus coding for a protein of 1502 amino acid residues similar to the rat PTP sigma and rat PTP-NE3. Using in situ hybridization, we assigned hPTP sigma to chromosome 6, arm 6q and band 6q15. The bacterial-expressed hPTP sigma exhibits PTPase activity that was inhibited by orthovanadate (IC50 = 0.02 microM) and by two bisphosphonates used for the treatment of bone diseases, alendronate (ALN) (IC50 = 0.5 microM) and etidronate (IC50 = 0.2 microM). In quiescent calvaria osteoblasts, micromolar concentrations of vanadate, ALN and etidronate stimulate cellular proliferation. These findings show tissue-specific alternative splicing of PTP sigma and suggest that PTPs are putative targets of bisphosphonate action.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Bone Neoplasms/pathology
- Brain/metabolism
- Cell Division/drug effects
- Cell Division/genetics
- Chromosomes, Human, Pair 6/metabolism
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Diphosphonates/toxicity
- Enzyme Inhibitors/adverse effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Molecular Sequence Data
- Osteosarcoma/pathology
- Polymerase Chain Reaction
- Protein Tyrosine Phosphatases/drug effects
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA/genetics
- RNA/metabolism
- Tumor Cells, Cultured
- Vanadates/toxicity
Collapse
Affiliation(s)
- N Endo
- Department of Bone Biology, Merck Research Laboratories, West Point, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
32
|
Krueger NX, Van Vactor D, Wan HI, Gelbart WM, Goodman CS, Saito H. The transmembrane tyrosine phosphatase DLAR controls motor axon guidance in Drosophila. Cell 1996; 84:611-22. [PMID: 8598047 DOI: 10.1016/s0092-8674(00)81036-3] [Citation(s) in RCA: 284] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DLAR is a receptor-like, transmembrane protein-tyrosine phosphatase in Drosophila that is expressed almost exclusively by developing neurons. Analysis of Dlar loss-of-function mutations shows that DLAR plays a key role during motoneuron growth cone guidance. Segmental nerve b (SNb) motor axons normally exit the common motor pathway, enter the ventral target region, and then synapse on specific ventral muscles. In Dlar mutant embryos, SNb axons bypass their normal target region and instead continue to extend along the common pathway. SNd motor axons also make pathfinding errors, while SNa and SNc axons appear normal. Thus, DLAR controls the ability of certain motor axons to navigate specific choices points in the developing Drosophila nervous system.
Collapse
Affiliation(s)
- N X Krueger
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cirri P, Fiaschi T, Chiarugi P, Camici G, Manao G, Raugei G, Ramponi G. The molecular basis of the differing kinetic behavior of the two low molecular mass phosphotyrosine protein phosphatase isoforms. J Biol Chem 1996; 271:2604-7. [PMID: 8576228 DOI: 10.1074/jbc.271.5.2604] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The low molecular mass phosphotyrosine protein phosphatase is a cytosolic enzyme of 18 kDa. Mammalian species contain a single gene that codifies for two distinct isoenzymes; they are produced through alternative splicing and thus differ only in the sequence from residue 40 to residue 73. Isoenzymes differ also in substrate specificity and in the sensitivity to activity modulators. In our study, we mutated a number of residues included in the alternative 40-73 sequence by substituting the residues present in the type 2 isoenzyme with those present in type 1 and subsequently examined the kinetic properties of the purified mutated proteins. The results enabled us to identify the molecular site that determines the kinetic characteristics of each isoform; the residue in position 50 plays the main role in the determination of substrate specificity, while the residues in both positions 49 and 50 are involved in the strong activation of the type 2 low M(r) phosphotyrosine protein phosphatase isoenzyme by purine compounds such as guanosine and cGMP. The sequence 49-50 is included in a loop whose N terminus is linked to the beta 2-strand and whose C terminus is linked to the alpha 2-helix; this loop is very near the active site pocket. Our findings suggest that this loop is involved both in the regulation of the enzyme activity and in the determination of the substrate specificity of the two low M(r) phosphotyrosine protein phosphatase isoenzymes.
Collapse
Affiliation(s)
- P Cirri
- Dipartimento di Scienze Biochimiche, Università di Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Reddy RS, Swarup G. Alternative splicing generates four different forms of a non-transmembrane protein tyrosine phosphatase mRNA. DNA Cell Biol 1995; 14:1007-15. [PMID: 8534367 DOI: 10.1089/dna.1995.14.1007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PTP-S is a widely expressed non-transmembrane protein tyrosine phosphatase (PTPase), which binds to DNA in vitro. The cellular PTP-S gene product is present mainly in the nucleus in association with chromatin. cDNAs related to PTP-S have been described from human and mouse cells. To establish the origin of molecular diversity in these cDNAs, genomic clones of rat PTP-S were isolated that span over 40 kb of the gene and contain 7 axons. The exon-intron splice sites in the catalytic domain are conserved between PTP-S and human PTP1B. Sequences specific to and homologous to human T-cell PTPase (TC-PTP) were found in the genomic clones of PTP-S, which are expressed in rat cells, as determined by using a specific probe and Northern blot analysis. Analysis of RNA from different rat tissues by reverse transcription-polymerase chain reaction (RT-PCR) showed the presence of four different forms of PTP-S mRNA (named PTP-S1, PTP-S2, PTP-S3, and PTP-S4). PTP-S1 is same as PTP-S reported previously by us. PTP-S2, which is the major form, differs from PTP-S1 in having additional 19 amino acids corresponding to exon E1. PTP-S4 is similar to human T-cell phosphatase. PTP-S3 differs from PTP-S4 in having a deletion of 19 amino acids corresponding to exon E1. Our results suggest that four different forms of PTP-S mRNA arise from a single gene by differential splicing. Two of these forms, PTP-S1 and PTP-S3, were not found in human cells, possibly due to the loss of an internal splice acceptor site in one of the exons, suggesting the occurrence of species-specific splicing in this gene.
Collapse
Affiliation(s)
- R S Reddy
- Centre for Cellular & Molecular Biology, Hyderabad, India
| | | |
Collapse
|
35
|
Stoker AW, Gehrig B, Haj F, Bay BH. Axonal localisation of the CAM-like tyrosine phosphatase CRYP alpha: a signalling molecule of embryonic growth cones. Development 1995; 121:1833-44. [PMID: 7600997 DOI: 10.1242/dev.121.6.1833] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Migrating embryonic growth cones require multiple, membrane-associated signalling molecules to monitor and respond to guidance cues. Here we present the first evidence that vertebrate cell adhesion molecule-like protein tyrosine phosphatases are likely to be components of this signalling system. CRYP alpha, the gene for an avian cell adhesion molecule-like phosphatase, is strongly expressed in the embryonic nervous system. In this study we have immunolocalised the protein in the early chick embryo and demonstrated its predominant localisation in axons of the central and peripheral nervous systems. This location suggests that the major, early role of the enzyme is in axonal development. In a study of sensory neurites in culture, we furthermore show that this phosphatase localises in migrating growth cones, within both the lamellipodia and filopodia. The dependence of growth cone migration on both cell adhesion and signalling through phosphotyrosine turnover, places the cell adhesion molecule-like CRYP alpha phosphatase in a position to be a regulator of these processes.
Collapse
Affiliation(s)
- A W Stoker
- Department of Human Anatomy, University of Oxford, UK
| | | | | | | |
Collapse
|
36
|
Pulido R, Krueger NX, Serra-Pagès C, Saito H, Streuli M. Molecular characterization of the human transmembrane protein-tyrosine phosphatase delta. Evidence for tissue-specific expression of alternative human transmembrane protein-tyrosine phosphatase delta isoforms. J Biol Chem 1995; 270:6722-8. [PMID: 7896816 DOI: 10.1074/jbc.270.12.6722] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protein-tyrosine phosphatases (PTPases) play an essential role in the regulation of cell activation, proliferation, and differentiation. A major subfamily of these enzymes is the transmembrane-type PTPases that contain extracellular regions comprised of Ig-like and fibronectin type III (FN-III)-like domains. Characterization of the human transmembrane PTPase delta (HPTP delta) revealed the existence of multiple HPTP delta isoforms that vary in their extracellular regions. The full-length HPTP delta isoform has an extracellular region containing three Ig-like and eight FN-III-like domains connected via a transmembrane peptide to an intracellular region with two PTPase domains, whereas another isoform lacks four of the eight FN-III like domains. Furthermore, other HPTP delta isoforms exist that lack 9 amino acids within the second Ig-like domain and 4 amino acids at the junction of the second and third Ig-like domains or 9 amino acids within the fifth FN-III-like domain. Reverse transcription polymerase chain reaction analysis demonstrated that HPTP delta isoforms lacking these short peptides are expressed in kidney, whereas isoforms containing these peptides are expressed in the brain. Analysis of HPTP delta biosynthesis demonstrated that HPTP delta is expressed as a complex of two noncovalently associated subunits derived from a proprotein and that the HPTP delta ectodomain is shed from the cell surface. Mutational analysis of the HPTP delta proprotein cleavage site revealed the existence of two or three functional and overlapping furin-like endoprotease cleavage sites.
Collapse
Affiliation(s)
- R Pulido
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|