1
|
Phosphodiesterase delta governs the mechanical properties of erythrocytes infected with Plasmodium falciparum gametocytes. Microbes Infect 2023; 25:105102. [PMID: 36708871 DOI: 10.1016/j.micinf.2023.105102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
To persist in the blood circulation and to be available for mosquitoes, Plasmodium falciparum gametocytes modify the deformability and the permeability of their erythrocyte host via cyclic AMP (cAMP) signaling pathway. Cyclic nucleotide levels are tightly controlled by phosphodiesterases (PDE), however in Plasmodium these proteins are poorly characterized. Here, we characterize the P. falciparum phosphodiesterase delta (PfPDEδ) and we investigate its role in the cAMP signaling-mediated regulation of gametocyte-infected erythrocyte mechanical properties. Our results revealed that PfPDEδ is a dual-function enzyme capable of hydrolyzing both cAMP and cGMP, with a higher affinity for cAMP. We also show that PfPDEδ is the most expressed PDE in mature gametocytes and we propose that it is located in parasitophorous vacuole at the interface between the host cell and the parasite. We conclude that PfPDEδ is the master regulator of both the increase in deformability and the inhibition of channel activity in mature gametocyte stages, and may therefore play a crucial role in the persistence of mature gametocytes in the bloodstream.
Collapse
|
2
|
Semenza GL. Hypoxia-inducible factors: roles in cardiovascular disease progression, prevention, and treatment. Cardiovasc Res 2022; 119:371-380. [PMID: 35687650 DOI: 10.1093/cvr/cvac089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIF)-1 and HIF-2 are master regulators of oxygen homeostasis that regulate the expression of thousands of genes in order to match O2 supply and demand. A large body of experimental data links HIF activity to protection against multiple disorders affecting the cardiovascular system: ischemic cardiovascular disease (including coronary artery disease and peripheral artery disease), through collateral blood vessel formation and preconditioning phenomena; emphysema; lymphedema; and lung transplant rejection. In these disorders, strategies to increase the expression of one or both HIFs may be of therapeutic utility. Conversely, extensive data link HIFs to the pathogenesis of pulmonary arterial hypertension and drugs that inhibit one or both HIFs may be useful in treating this disease.
Collapse
Affiliation(s)
- Gregg L Semenza
- Armstrong Oxygen Biology Research Center, Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
4
|
Rajakovich LJ, Pandelia ME, Mitchell AJ, Chang WC, Zhang B, Boal AK, Krebs C, Bollinger JM. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Biochemistry 2019; 58:1627-1647. [PMID: 30789718 PMCID: PMC6503667 DOI: 10.1021/acs.biochem.9b00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The assignment of biochemical functions to hypothetical proteins is challenged by functional diversification within many protein structural superfamilies. This diversification, which is particularly common for metalloenzymes, renders functional annotations that are founded solely on sequence and domain similarities unreliable and often erroneous. Definitive biochemical characterization to delineate functional subgroups within these superfamilies will aid in improving bioinformatic approaches for functional annotation. We describe here the structural and functional characterization of two non-heme-iron oxygenases, TmpA and TmpB, which are encoded by a genomically clustered pair of genes found in more than 350 species of bacteria. TmpA and TmpB are functional homologues of a pair of enzymes (PhnY and PhnZ) that degrade 2-aminoethylphosphonate but instead act on its naturally occurring, quaternary ammonium analogue, 2-(trimethylammonio)ethylphosphonate (TMAEP). TmpA, an iron(II)- and 2-(oxo)glutarate-dependent oxygenase misannotated as a γ-butyrobetaine (γbb) hydroxylase, shows no activity toward γbb but efficiently hydroxylates TMAEP. The product, ( R)-1-hydroxy-2-(trimethylammonio)ethylphosphonate [( R)-OH-TMAEP], then serves as the substrate for the second enzyme, TmpB. By contrast to its purported phosphohydrolytic activity, TmpB is an HD-domain oxygenase that uses a mixed-valent diiron cofactor to enact oxidative cleavage of the C-P bond of its substrate, yielding glycine betaine and phosphate. The high specificities of TmpA and TmpB for their N-trimethylated substrates suggest that they have evolved specifically to degrade TMAEP, which was not previously known to be subject to microbial catabolism. This study thus adds to the growing list of known pathways through which microbes break down organophosphonates to harvest phosphorus, carbon, and nitrogen in nutrient-limited niches.
Collapse
Affiliation(s)
- Lauren J. Rajakovich
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Maria-Eirini Pandelia
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Andrew J. Mitchell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Wei-chen Chang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: REG Life Sciences, LLC, South San Francisco, California 94080
| | - Amie K. Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Cui H, Liu J, Xu G, Ren X, Li Z, Li Y, Ning Z. Altered Expression of Zinc Transporter ZIP12 in Broilers of Ascites Syndrome Induced by Intravenous Cellulose Microparticle Injection. Biochem Genet 2018; 57:159-169. [PMID: 30073576 DOI: 10.1007/s10528-018-9876-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/14/2018] [Indexed: 12/13/2022]
Abstract
Ascites syndrome (AS) is a harmful disease in fast-growing broilers characterized by heart failure and serious fluid accumulation in the abdominal cavity. One of the known functions of zinc transporter ZIP12 is an important regulator in pulmonary hypertension (PH) in rat. Whether chicken ZIP12 is involved in the process of AS need to be explored. Here, chicken ZIP12 was sequenced and expression pattern and histological distribution were detected in broilers of AS induced by intravenous cellulose microparticle injection. Phylogenetic analysis showed that ZIP12 was significantly different between chicken and mammalian. The relative mRNA expression level of ZIP12 in the liver and lung in AS and pre-ascites (PAS) groups were significantly higher (P < 0.01) than that in control. The immunohistological staining using rabbit anti-chicken ZIP12 IgG and integrated optical density analysis showed the positive cells of ZIP12 distributed in detected tissues and the expression level of ZIP12 protein increased in AS and PAS groups compared to control. The results will provide the basic data of ZIP12 in the pathological process of AS in broiler chickens and offer an important reference for prevention and control of the disease.
Collapse
Affiliation(s)
- Hao Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jianxin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Guming Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xujiao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhenbiao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
6
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
7
|
Röhrig T, Liesenfeld D, Richling E. Identification of a Phosphodiesterase-Inhibiting Fraction from Roasted Coffee (Coffea arabica) through Activity-Guided Fractionation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3792-3800. [PMID: 28443667 DOI: 10.1021/acs.jafc.6b05613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent reports that coffee can significantly inhibit cAMP phosphodiesterases (PDEs) in vitro, as well as in vivo, have described another beneficial effect of coffee consumption. However, the PDE-inhibiting substances remain mostly unknown. We chose activity-guided fractionation and an in vitro test system to identify the coffee components that are responsible for PDE inhibition. This approach indicated that a fraction of melanoidins reveals strong PDE-inhibiting potential (IC50 = 130 ± 42 μg/mL). These melanoidins were characterized as water-soluble, low-molecular weight melanoidins (<3 kDa) with a nitrogen content of 4.2% and a carbohydrate content lower than those of other melanoidins. Fractions containing known PDE inhibitors such as chlorogenic acids, alkylpyrazines, or trigonelline as well as N-caffeoyl-tryptophan and N-p-coumaroyl-tryptophan did not exert PDE-inhibiting activity. We also observed that the known PDE inhibitor caffeine does not contribute to the PDE-inhibiting effects of coffee.
Collapse
Affiliation(s)
- Teresa Röhrig
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schroedinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - David Liesenfeld
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schroedinger-Straße 52, D-67663 Kaiserslautern, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schroedinger-Straße 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Kasahara M, Suetsugu N, Urano Y, Yamamoto C, Ohmori M, Takada Y, Okuda S, Nishiyama T, Sakayama H, Kohchi T, Takahashi F. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system. Sci Rep 2016; 6:39232. [PMID: 27982074 PMCID: PMC5159850 DOI: 10.1038/srep39232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023] Open
Abstract
Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants.
Collapse
Affiliation(s)
- Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Urano
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Chiaki Yamamoto
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Mikiya Ohmori
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuki Takada
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa 920-0934, Japan
| | - Hidetoshi Sakayama
- Department of Biology, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
9
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Berardi S, Papponetti M, Conti P, Spoto G. Bamifylline Similar to Theophylline and Caffeine is a Competitive Inhibitor of the Cyclic Nucleotide Phosphodiesterase V. Int J Immunopathol Pharmacol 2016. [DOI: 10.1177/039463209600900106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bamifylline was found to be a poor inhibitor of 3′,5′-cyclic GMP phosphodiesterase (PDE V) as other methylxanthines such as teophylline and caffeine. The IC50 was respectively 3.24, 2.91, 1.69 mM. Inhibition decreased at higher cGMP concentrations. Lineweaver-Burk plots were linear or nearly linear. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at the catalytic site on phosphodiesterase.
Collapse
Affiliation(s)
| | | | - P. Conti
- Immunology Division, Institute of Experimental Medicine, University “G. D'Annunzio” 66013 Chieti, Italy
| | | |
Collapse
|
11
|
Pharmacotherapy for Erectile Dysfunction: Recommendations From the Fourth International Consultation for Sexual Medicine (ICSM 2015). J Sex Med 2016; 13:465-88. [DOI: 10.1016/j.jsxm.2016.01.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023]
|
12
|
Huang YMM, Huber G, McCammon JA. Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Protein Sci 2015; 24:1884-9. [PMID: 26346301 DOI: 10.1002/pro.2794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Signaling in cells often involves co-localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'-5'-cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme-substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.
Collapse
Affiliation(s)
- Yu-ming M Huang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Gary Huber
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093
| | - J Andrew McCammon
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
13
|
The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature 2015; 524:356-60. [PMID: 26258299 PMCID: PMC6091855 DOI: 10.1038/nature14620] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/03/2015] [Indexed: 12/27/2022]
Abstract
The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension1-3. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene, Slc39a12, as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter, ZIP12. We report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia-dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This entirely novel and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.
Collapse
|
14
|
Butrous G. The role of phosphodiesterase inhibitors in the management of pulmonary vascular diseases. Glob Cardiol Sci Pract 2014; 2014:257-90. [PMID: 25780785 PMCID: PMC4352681 DOI: 10.5339/gcsp.2014.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterase inhibitors (PDE) can be used as therapeutic agents for various diseases such as dementia, depression, schizophrenia and erectile dysfunction in men, as well as congestive heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, other inflammatory diseases, diabetes and various other conditions. In this review we will concentrate on one type of PDE, mainly PDE5 and its role in pulmonary vascular diseases.
Collapse
|
15
|
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2014; 21:e25-50. [PMID: 25056711 DOI: 10.1111/odi.12275] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
By catalyzing hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. As these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A, and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multimolecular signaling/regulatory complexes, called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners.
Collapse
Affiliation(s)
- F Ahmad
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
16
|
GRIME GEOFFREYW, PÅLSGÅRD EVA, GARMAN ELSPETHF, UGARTE MARTA, POTTAGE DAVID, WYETH PAUL. RECENT BIOMEDICAL APPLICATIONS OF THE OXFORD SCANNING PROTON MICROPROBE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s0129083599000309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Oxford Scanning Proton Microprobe continues to be used in the field of trace element measurement in biological systems, exploiting the unique advantages of sensitive, quantitative trace element analysis using PIXE, high spatial resolution and the long penetrating power of MeV protons. This paper outlines a number of recent applications which highlight these advantages. These include: (a) Analysing the distribution of metals in the pupae of leaf-cutting ants to determine the storage sites and transport mechanism of metals used to harden the edges of the mandibles. (b) A study of the distribution of zinc in the retina of rats to determine the role of zinc in light and dark adaptation of the eye. (c) The analysis of crystals of proteins and other large organic molecules prepared for structure determination using x-ray diffraction. These often contain metal atoms, and the identity and concentration of the metal is an important diagnostic for determining the nature of the protein and the quality of the crystallisation. The crystals are normally small (~100μm) and so microPIXE is being used to characterise them. This technique has wide ranging applications, including qualitative and quantitative identification of metals in reaction centres, in active sites and in metal binding proteins, and of DNA or RNA bound to proteins.
Collapse
Affiliation(s)
- GEOFFREY W. GRIME
- University of Oxford Department of Materials, Parks Road, Oxford, OX1 3PH, UK
| | - EVA PÅLSGÅRD
- University of Oxford Department of Materials, Parks Road, Oxford, OX1 3PH, UK
| | - ELSPETH F. GARMAN
- University of Oxford Department of Biochemistry, South Parks Road, Oxford, UK
| | - MARTA UGARTE
- University of Oxford, Nuffield Laboratory of Ophthalmology, The Eye Hospital, Walton Street, Oxford, UK
| | - DAVID POTTAGE
- Applied Bio-Composites Group, University of Southampton Department of Chemistry, Southampton, UK
| | - PAUL WYETH
- Applied Bio-Composites Group, University of Southampton Department of Chemistry, Southampton, UK
| |
Collapse
|
17
|
Combined ligand based pharmacophore modeling, virtual screening methods to identify critical chemical features of novel potential inhibitors for phosphodiesterase-5. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2011.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are promising targets for pharmacological intervention. The presence of multiple PDE genes, diversity of the isoforms produced from each gene, selective tissue and cellular expression of the isoforms, compartmentation within cells, and an array of conformations of PDE proteins are some of the properties that challenge the development of drugs that target these enzymes. Nevertheless, many of the characteristics of PDEs are also viewed as unique opportunities to increase specificity and selectivity when designing novel compounds for certain therapeutic indications. This chapter provides a summary of the major concepts related to the design and use of PDE inhibitors. The overall structure and properties of the catalytic domain and conformations of PDEs are summarized in light of the most recent X-ray crystal structures. The distinctive properties of catalytic domains of different families as well as the technical challenges associated with probing PDE properties and their interactions with small molecules are discussed. The effect of posttranslational modifications and protein-protein interactions are additional factors to be considered when designing PDE inhibitors. PDE inhibitor interaction with other proteins needs to be taken into account and is also discussed.
Collapse
|
20
|
Biswas KH, Visweswariah SS. Distinct allostery induced in the cyclic GMP-binding, cyclic GMP-specific phosphodiesterase (PDE5) by cyclic GMP, sildenafil, and metal ions. J Biol Chem 2010; 286:8545-8554. [PMID: 21193396 DOI: 10.1074/jbc.m110.193185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.
Collapse
Affiliation(s)
- Kabir H Biswas
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sandhya S Visweswariah
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
21
|
Corbin JD, Foster TL, Bessay E, Busch J, Blount M, Francis SH. Metal ion stimulators of PDE5 cause similar conformational changes in the enzyme as does cGMP or sildenafil. Cell Signal 2010; 23:778-84. [PMID: 21187142 DOI: 10.1016/j.cellsig.2010.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
Abstract
Purified PDE5 preparations exhibited variable proportions of two mobility forms (Bands 2 and 3) by native PAGE. Treatment of recombinant or native PDE5 with either cGMP or a substrate analog such as sildenafil, each of which is known to produce stimulatory effects on enzyme functions, caused a similar native PAGE band-shift to the lower mobility form (shift of Band 2 to Band 3). Incubation of PDE5 with Mg(++) or Mn(++), which is known to stimulate activity, caused a similar shift of the enzyme from Band 2 to Band 3 as did cGMP or sildenafil, but incubation with EDTA caused a time- and concentration-dependent shift to higher mobility (shift of Bands 2 and 3 to Band 1). A slow time course of the EDTA-induced band-shift suggested removal of a pre-bound metal ion (Me(++)) with affinity of ~0.1 nM, which was similar to the previously determined affinity of PDE5 for Zn(++). The EDTA-treated enzyme (Band 1) could be shifted to Bands 2 and 3 by addition of cGMP, sildenafil, or Me(++); however, the cGMP- or sildenafil-induced shift was inhibited and the Me(++)-induced shift was facilitated by treatment with EDTA. Results suggested that Me(++) removal from PDE5 produces a unique apoenzyme form (Band 1, more globular, negatively charged, or both) of PDE5 that can be partially converted to forms (Band 2, less globular or negatively charged, or both; and Band 3, more elongated/positively charged, or both) by addition of Me(++), substrate, or substrate analog. It is concluded that Me(++) causes conversion of PDE5 to similar conformational forms as caused by substrate or inhibitor binding to the catalytic site.
Collapse
Affiliation(s)
- Jackie D Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Mashhadi Z, Xu H, White RH. An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2',3'-cyclic phosphate in methanopterin biosynthesis. Biochemistry 2009; 48:9384-92. [PMID: 19746965 DOI: 10.1021/bi9010336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H(2)N-cP) is the first intermediate in biosynthesis of the pterin portion of tetrahydromethanopterin (H(4)MPT), a C(1) carrier coenzyme first identified in the methanogenic archaea. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I [Grochowski, L. L., Xu, H., Leung, K., and White, R. H. (2007) Biochemistry 46, 6658-6667]. Here we report the identification of a cyclic phosphodiesterase that hydrolyzes the cyclic phosphate of H(2)N-cP and converts it to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-d-neopterin 3'-monophosphate. The enzyme from Methanocaldococcus jannachii is designated MptB (MJ0837 gene product) to indicate that it catalyzes the second step of the biosynthesis of methanopterin. MptB is a member of the HD domain superfamily of enzymes, which require divalent metals for activity. Direct metal analysis of the recombinant enzyme demonstrated that MptB contained 1.0 mol of zinc and 0.8 mol of iron per protomer. MptB requires Fe(2+) for activity, the same as observed for MptA. Thus the first two enzymes involved in H(4)MPT biosynthesis in the archaea are Fe(2+) dependent.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
23
|
Haase H, Rink L. Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 2009; 29:133-52. [PMID: 19400701 DOI: 10.1146/annurev-nutr-080508-141119] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent years have brought a paradigm shift for the role of the essential trace element zinc in immunity. Although its function as a structural component of many enzymes has been known for decades, current experimental evidence points to an additional function of the concentration of free or loosely bound zinc ions as an intracellular signal. The activity of virtually all immune cells is modulated by zinc in vitro and in vivo. In this review, we discuss the interactions of zinc with major signaling pathways that regulate immune cell activity, and the implications of zinc deficiency or supplementation on zinc signaling as the molecular basis for an effect of zinc on immune cell function.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
24
|
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Light Hall Room 702, Nashville, TN 37232-0615, USA.
| | | | | |
Collapse
|
25
|
Abstract
Purines are critical cofactors in the enzymatic reactions that create and maintain living organisms. In humans, there are approximately 3,266 proteins that utilize purine cofactors and these proteins constitute the so-called purinome. The human purinome encompasses a wide-ranging functional repertoire and many of these proteins are attractive drug targets. For example, it is estimated that 30% of modern drug discovery projects target protein kinases and that modulators of small G-proteins comprise more than 50% of currently marketed drugs. Given the importance of purine-binding proteins to drug discovery, the following review will discuss the forces that mediate protein:purine recognition, the factors that determine druggability of a protein target, and the process of structure-based drug design. A review of purine recognition in representatives of the various purine-binding protein families, as well as the challenges faced in targeting members of the purinome in drug discovery campaigns will also be given.
Collapse
Affiliation(s)
- Jeremy M Murray
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
26
|
Kodimuthali A, Jabaris SSL, Pal M. Recent advances on phosphodiesterase 4 inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. J Med Chem 2008; 51:5471-89. [PMID: 18686943 DOI: 10.1021/jm800582j] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arumugam Kodimuthali
- New Drug Discovery, R & D Center, Matrix Laboratories Limited, Anrich Industrial Estate, Bollaram, Jinnaram Mandal, Medak District, Andhra Pradesh, 502 325, India
| | | | | |
Collapse
|
27
|
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76:481-511. [PMID: 17376027 DOI: 10.1146/annurev.biochem.76.060305.150444] [Citation(s) in RCA: 940] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although cyclic nucleotide phosphodiesterases (PDEs) were described soon after the discovery of cAMP, their complexity and functions in signaling is only recently beginning to become fully realized. We now know that at least 100 different PDE proteins degrade cAMP and cGMP in eukaryotes. A complex PDE gene organization and a large number of PDE splicing variants serve to fine-tune cyclic nucleotide signals and contribute to specificity in signaling. Here we review some of the major concepts related to our understanding of PDE function and regulation including: (a) the structure of catalytic and regulatory domains and arrangement in holoenzymes; (b) PDE integration into signaling complexes; (c) the nature and function of negative and positive feedback circuits that have been conserved in PDEs from prokaryotes to human; (d) the emerging association of mutant PDE alleles with inherited diseases; and (e) the role of PDEs in generating subcellular signaling compartments.
Collapse
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 943095-5317, USA.
| | | |
Collapse
|
28
|
Desmeules P, Penney SE, Desbat B, Salesse C. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers. Biophys J 2007; 93:2069-82. [PMID: 17526567 PMCID: PMC1959526 DOI: 10.1529/biophysj.106.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/17/2007] [Indexed: 01/16/2023] Open
Abstract
It has been postulated that myristoylation of peripheral proteins would facilitate their binding to membranes. However, the exact involvement of this lipid modification in membrane binding is still a matter of debate. Proteins containing a Ca(2+)-myristoyl switch where the extrusion of their myristoyl group is dependent on calcium binding is best illustrated by the Ca(2+)-binding recoverin, which is present in retinal rod cells. The parameters responsible for the modulation of the membrane binding of recoverin are still largely unknown. This study was thus performed to determine the involvement of different parameters on recoverin membrane binding. We have used surface pressure measurements and PM-IRRAS spectroscopy to monitor the adsorption of myristoylated and nonmyristoylated recoverin onto phospholipid monolayers in the presence and absence of calcium. The adsorption curves have shown that the myristoyl group and hydrophobic residues of myristoylated recoverin strongly accelerate membrane binding in the presence of calcium. In the case of nonmyristoylated recoverin in the presence of calcium, hydrophobic residues alone are responsible for its much faster monolayer binding than myristoylated and nonmyristoylated recoverin in the absence of calcium. The infrared spectra revealed that myristoylated and nonmyristoylated recoverin behave very different upon adsorption onto phospholipid monolayers. Indeed, PM-IRRAS spectra indicated that the myristoyl group allows a proper orientation and organization as well as faster and stronger binding of myristoylated recoverin to lipid monolayers compared to nonmyristoylated recoverin. Simulations of the spectra have allowed us to postulate that nonmyristoylated recoverin changes conformation and becomes hydrated at large extents of adsorption as well as to estimate the orientation of myristoylated recoverin with respect to the monolayer plane. In addition, adsorption measurements and electrophoresis of trypsin-treated myristoylated recoverin in the presence of zinc or calcium demonstrated that recoverin has a different conformation but a similar extent of monolayer binding in the presence of such ions.
Collapse
Affiliation(s)
- Philippe Desmeules
- Unité de Recherche en Opthalmologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Département d'Opthalmologie, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
29
|
Srivani P, Srinivas E, Raghu R, Sastry GN. Molecular modeling studies of pyridopurinone derivatives—Potential phosphodiesterase 5 inhibitors. J Mol Graph Model 2007; 26:378-90. [PMID: 17307372 DOI: 10.1016/j.jmgm.2007.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 12/01/2022]
Abstract
Two- and three-dimensional quantitative structure-activity relationship (QSAR) and docking studies were carried out on a series of pyridopurinones, to model their phosphodiesterase 5 (PDE5) inhibitory activities. 2D-QSAR was performed using the heuristic and best multi linear regression (BMLR) methods in CODESSA (comprehensive descriptors for structural and statistical analysis), which had given linear models between the inhibitory activity and five descriptors of PDE5 inhibitors, with r(2)=0.987, 0.987, q(2)=0.970, 0.970, F=166.71, 166.71 and s(2)=0.0004, 0.0176, respectively. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) have provided statistically significant models with q(2) values of 0.784, 0.742 and r(2) values of 0.975, 0.972 respectively. The predictive ability of the models was validated using a set of 6 compounds that were not included in the training set and the predictive r(2) obtained for the test set was 0.901 and 0.888 respectively. Docking studies were employed to determine the probable binding conformation of these analogues in the PDE5 active site using the programs GOLD and AutoDock whose results were found complementary with 3D-QSAR maps. Since the potency towards PDE5 and the selectivity over PDE6 is important for the successful development of new PDE5 inhibitors, a PDE6 homology model was built using Insight II and Modeller with Phi-Psi BLAST alignment. The molecules were docked in the active site of PDE6 and analyzed the probable reasons for selectivity of these molecules towards PDE5 over PDE6. Mapping the 3D-QSAR models to the active site of PDE5 provides a new insight into the protein-inhibitor interactions and helpful in designing potent and selective PDE5 inhibitors for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- P Srivani
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | | | | | | |
Collapse
|
30
|
Haase H, Rink L. Signal transduction in monocytes: the role of zinc ions. Biometals 2007; 20:579-85. [PMID: 17453150 DOI: 10.1007/s10534-006-9029-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/20/2006] [Indexed: 11/29/2022]
Abstract
The availability of zinc has a regulatory role in the immune system. It can have either pro- or anti-inflammatory effects, which both seem to be a consequence of a direct interaction of zinc with the cytokine secretion by monocytes. In this review, the molecular basis for this effect, the interaction of zinc with the signal transduction of monocytes, is discussed. In particular, zinc seems to activate or inhibit several signaling pathways that interact with the signal transduction of pathogen sensing receptors, the so-called Toll-like receptors (TLR), which sense pathogen-derived molecular structures and, upon activation, lead to secretion of pro-inflammatory cytokines. The interaction of zinc with protein tyrosine phosphatases and protein kinase C, and a direct modulation of lipopolysaccharide binding to its receptor (TLR-4) all result in enhanced cytokine production. On the other hand, a complex interaction between zinc, NO and cyclic nucleotide signaling, and inhibition of interleukin-1 receptor associated kinase-1, and inhibitor of kappa B kinase all counteract the production of pro-inflammatory cytokines. A role for the zinc binding protein metallothionein as a regulator for intracellular zinc signaling is discussed. By acting on all these signaling molecules, the zinc status of monocytes can have a direct effect on inflammation.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | |
Collapse
|
31
|
Abstract
Zinc plays a vital role in various cellular functions. Zinc deprivation is associated with severe disorders related to growth, maturation, and stress responses. In the heart, zinc affects differentiation and regeneration of cardiac muscle, cardiac conductance, acute stress responses, and recovery of heart transplants. Recent discoveries of the molecular players in zinc homeostasis revealed that the amount of intracellular free zinc is tightly controlled on the level of uptake, intracellular sequestration, redistribution, storage, and elimination, consequently creating a narrow window of optimal zinc concentration in the cells. Most of intracellular zinc is bound to numerous structural and regulatory proteins, with metabolically active, labile zinc present in picoto nanomolar concentrations. The central position of zinc in the redox signaling network is built on its unique chemical nature. The redox inert zinc creates a redox active environment when it binds to a sulfur ligand. The reversible oxidation of the sulfur ligand is coupled to the reversible zinc release from the protein, thereby executing the task of so-called protein "redox zinc switch." Clearly, the impairment of zinc homeostasis will have far reaching physiological consequences.
Collapse
Affiliation(s)
- Irina Korichneva
- Department of Medicine, Division of Cardiovascular Diseases and Hypertension, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA.
| |
Collapse
|
32
|
Siuciak JA, McCarthy SA, Chapin DS, Fujiwara RA, James LC, Williams RD, Stock JL, McNeish JD, Strick CA, Menniti FS, Schmidt CJ. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 2006; 51:374-85. [PMID: 16769090 DOI: 10.1016/j.neuropharm.2006.01.012] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 01/13/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
PDE10A is a newly identified phosphodiesterase that is highly expressed by the medium spiny projection neurons of the striatum. In order to investigate the physiological role of PDE10A in the central nervous system, PDE10A knockout mice (PDE10A(-/-)) were characterized both behaviorally and neurochemically. PDE10A(-/-) mice showed decreased exploratory activity and a significant delay in the acquisition of conditioned avoidance behavior when compared to wild-type (PDE10A(+/+)) mice. However, in a variety of other well-characterized behavioral tasks, including the elevated plus maze (anxiety), forced swim test (depression), hot plate (nociception) and two memory models (passive avoidance and Morris water maze), PDE10A(-/-) mice performed similarly to wild-type mice. When challenged with PCP or MK-801, PDE10A(-/-) mice showed a blunted locomotor response in comparison to PDE10A(+/+) mice. In contrast, PDE10A(-/-) and PDE10A(+/+) mice responded similarly to the locomotor stimulating effects of amphetamine and methamphetamine. Our findings suggest that PDE10A is involved in regulating striatal output, possibly by reducing the sensitivity of medium spiny neurons to glutamatergic excitation. These results are discussed in relationship to the hypothesis that PDE10A inhibition presents a novel treatment for psychosis.
Collapse
Affiliation(s)
- Judith A Siuciak
- CNS Discovery, Pfizer Global Research and Development, MS 8220-4138 Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yuasa K, Mi-Ichi F, Kobayashi T, Yamanouchi M, Kotera J, Kita K, Omori K. PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum. Biochem J 2006; 392:221-9. [PMID: 16038615 PMCID: PMC1317681 DOI: 10.1042/bj20050425] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This is the first report of molecular characterization of a novel cyclic nucleotide PDE (phosphodiesterase), isolated from the human malaria parasite Plasmodium falciparum and designated PfPDE1. PfPDE1 cDNA encodes an 884-amino-acid protein, including six putative transmembrane domains in the N-terminus followed by a catalytic domain. The PfPDE1 gene is a single-copy gene consisting of two exons and a 170 bp intron. PfPDE1 transcripts were abundant in the ring form of the asexual blood stages of the parasite. The C-terminal catalytic domain of PfPDE1, produced in Escherichia coli, specifically hydrolysed cGMP with a K(m) value of 0.65 microM. Among the PDE inhibitors tested, a PDE5 inhibitor, zaprinast, was the most effective, having an IC50 value of 3.8 microM. The non-specific PDE inhibitors IBMX (3-isobutyl-1-methylxanthine), theophylline and the antimalarial chloroquine had IC50 values of over 100 microM. Membrane fractions prepared from P. falciparum at mixed asexual blood stages showed potent cGMP hydrolytic activity compared with cytosolic fractions. This hydrolytic activity was sensitive to zaprinast with an IC50 value of 4.1 microM, but insensitive to IBMX and theophylline. Furthermore, an in vitro antimalarial activity assay demonstrated that zaprinast inhibited the growth of the asexual blood parasites, with an ED50 value of 35 microM. The impact of cyclic nucleotide signalling on the cellular development of this parasite has previously been discussed. Thus this enzyme is suggested to be a novel potential target for the treatment of the disease malaria.
Collapse
Affiliation(s)
- Keizo Yuasa
- *Discovery Research Laboratories, Tanabe Seiyaku Co. Ltd., 2–50, Kawagishi 2-chome, Toda, Saitama 335-8505, Japan
| | - Fumika Mi-Ichi
- †Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 3–1 Hongo-7-chome, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tamaki Kobayashi
- †Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 3–1 Hongo-7-chome, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Yamanouchi
- ‡Medicinal Chemistry Research Laboratories, Tanabe Seiyaku Co. Ltd., 16–89, Kashima 3-chome, Yodogawa-ku, Osaka 532-8505, Japan
| | - Jun Kotera
- *Discovery Research Laboratories, Tanabe Seiyaku Co. Ltd., 2–50, Kawagishi 2-chome, Toda, Saitama 335-8505, Japan
| | - Kiyoshi Kita
- †Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 3–1 Hongo-7-chome, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Omori
- *Discovery Research Laboratories, Tanabe Seiyaku Co. Ltd., 2–50, Kawagishi 2-chome, Toda, Saitama 335-8505, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
34
|
Pissarnitski D. Phosphodiesterase 5 (PDE 5) inhibitors for the treatment of male erectile disorder: Attaining selectivity versus PDE6. Med Res Rev 2006; 26:369-95. [PMID: 16388517 DOI: 10.1002/med.20053] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of phosphodiesterase type 5 (PDE5) in the mechanism of male erection has been well understood, and several drugs inhibiting this enzyme are being used for the treatment of erectile dysfunction (ED). Discovery of inhibitors with improved selectivity versus other PDE isozymes could lead to drugs with improved safety profile. Achievement of selectivity versus PDE6, co-inhibition of which results in disturbances of color perception, remains the most challenging aspect of current drug discovery programs. The present review describes several case studies, where significant (>100 fold) selectivity versus PDE6 has been attained via investigation of structure-activity relationships (SAR). Special attention is given to the chemical routes leading to novel chemotypes and allowing efficient exploration of their SAR's. Strategies for attaining inhibitor selectivity discussed below may be applicable for other drug discovery programs.
Collapse
|
35
|
Su YH, Vacquier VD. Cyclic GMP-specific phosphodiesterase-5 regulates motility of sea urchin spermatozoa. Mol Biol Cell 2005; 17:114-21. [PMID: 16236790 PMCID: PMC1345651 DOI: 10.1091/mbc.e05-08-0820] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Motility, chemotaxis, and the acrosome reaction of animal sperm are all regulated by cyclic nucleotides and protein phosphorylation. One of the cyclic AMP-dependent protein kinase (PKA) substrates in sea urchin sperm is a member of the phosphodiesterase (PDE) family. The molecular identity and in vivo function of this PDE remained unknown. Here we cloned and characterized this sea urchin sperm PDE (suPDE5), which is an ortholog of human PDE5. The recombinant catalytic domain of suPDE5 hydrolyzes only cyclic GMP (cGMP) and the activity is pH-dependent. Phospho-suPDE5 localizes mainly to sperm flagella and the phosphorylation increases when sperm contact the jelly layer surrounding eggs. In vitro dephosphorylation of suPDE5 decreases its activity by approximately 50%. PDE5 inhibitors such as Viagra block the activity of suPDE5 and increase sperm motility. This is the first PDE5 protein to be discovered in animal sperm. The data are consistent with the hypothesis that suPDE5 regulates cGMP levels in sperm, which in turn modulate sperm motility.
Collapse
Affiliation(s)
- Yi-Hsien Su
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | |
Collapse
|
36
|
Iffland A, Kohls D, Low S, Luan J, Zhang Y, Kothe M, Cao Q, Kamath AV, Ding YH, Ellenberger T. Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ in vitro translation system. Biochemistry 2005; 44:8312-25. [PMID: 15938621 DOI: 10.1021/bi047313h] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphodiesterases (PDEs) modulate signaling by cyclic nucleotides in diverse processes such as cardiac contractility, platelet aggregation, lipolysis, glycogenolysis, and smooth muscle contraction. Cyclic guanosine monophosphate (cGMP) stimulated human phosphodiesterase 2 (PDE2) is expressed mainly in brain and heart tissues. PDE2A is involved in the regulation of blood pressure and fluid homeostasis by the atrial natriuretic peptide (ANP), making PDE2-type enzymes important targets for drug discovery. The design of more potent and selective inhibitors of PDE2A for the treatment of heart disease would be greatly aided by the identification of active site residues in PDE2A that determine substrate and inhibitor selectivity. The identification of active site residues through traditional mutational studies involves the time-consuming and tedious purification of a large number of mutant proteins from overexpressing cells. Here we report an alternative approach to rapidly produce active site mutants of human PDE2A and identify their enzymatic properties using a wheat germ in vitro translation (IVT, also known as cell-free translation) system. We also present the crystal structure of the catalytic domain of human PDE2A determined at 1.7 A resolution, which provided a framework for the rational design of active site mutants. Using a rapid IVT approach for expression of human PDE2A mutants, we identified the roles of active site residues Asp811, Gln812, Ile826, and Tyr827 in inhibitor and substrate selectivity for PDE2A.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/chemistry
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-GMP Phosphodiesterases/chemistry
- Adenine/analogs & derivatives
- Adenine/chemistry
- Amino Acid Sequence
- Binding Sites/genetics
- Catalytic Domain/genetics
- Cell-Free System
- Crystallography, X-Ray
- Cyclic Nucleotide Phosphodiesterases, Type 2
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cyclic Nucleotide Phosphodiesterases, Type 5
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphodiesterase Inhibitors/chemistry
- Protein Binding/genetics
- Protein Biosynthesis
- Rolipram/chemistry
- Sequence Alignment
- Substrate Specificity/genetics
- Triticum/chemistry
- Triticum/genetics
Collapse
Affiliation(s)
- André Iffland
- Department of Biology, Pfizer Research Technology Center, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shin D, Heo YS, Lee KJ, Kim CM, Yoon JM, Lee JI, Hyun YL, Jeon YH, Lee TG, Cho JM, Ro S. Structural chemoproteomics and drug discovery. Biopolymers 2005; 80:258-63. [PMID: 15812788 DOI: 10.1002/bip.20263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Our laboratories have developed several technologies to accelerate drug discovery process on the basis of structural chemoproteomics. They include SPS technology for the efficient determination of protein structures, SCP technology for the rapid lead generation and SDF technology for the productive lead optimization. Using these technologies, we could determine many 3D structures of target proteins bound with biologically active chemicals including the structure of phosphodiesterase 5/Viagra complex and obtain highly potent compounds in animal models of obesity, diabetes, cancer and inflammation. In this paper, we will discuss concepts and applications of structural chemoproteomics for drug discovery.
Collapse
Affiliation(s)
- Dongkyu Shin
- CrystalGenomics, Inc., Asian Institute for Life Sciences, 388-1 Pungnap-dong, Songpa-gu, Seoul, 138-736, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cote RH. Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. Int J Impot Res 2004; 16 Suppl 1:S28-33. [PMID: 15224133 DOI: 10.1038/sj.ijir.3901212] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphodiesterase 6 (PDE6) is highly concentrated in the retina. It is most abundant in the internal membranes of retinal photoreceptors, where it reduces cytoplasmic levels of cyclic guanosine monophosphate (cGMP) in rod and cone outer segments in response to light. The rod PDE6 holoenzyme comprises alpha and beta catalytic subunits and two identical inhibitory gamma subunits. Each catalytic subunit contains three distinct globular domains corresponding to the catalytic domain and two GAF domains (responsible for allosteric cGMP binding). The PDE6 catalytic subunits resemble PDE5 in amino-acid sequence as well as in three-dimensional structure of the catalytic dimer; preference for cGMP over cyclic adenosine monophosphate (cAMP) as a substrate; and the ability to bind cGMP at the regulatory GAF domains. Most PDE5 inhibitors inhibit PDE6 with similar potency, and electroretinogram studies show modest effects of PDE5 inhibitors on visual function-an observation potentially important in designing PDE5-specific therapeutic agents.
Collapse
Affiliation(s)
- R H Cote
- 1Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824-2617, USA.
| |
Collapse
|
39
|
Abstract
Phosphodiesterases (PDEs) control cellular concentrations of cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP). PDE4 and PDE5 selectively hydrolyze cAMP and cGMP, respectively. PDE family members share approximately 25% sequence identity within a conserved catalytic domain of about 300 amino acids. Crystal structure analysis of PDE4's catalytic domain identifies two metal-binding sites: a high-affinity site and a low-affinity site, which probably bind zinc (Zn2+) and magnesium (Mg2+), respectively. Absolute conservation among the PDEs of two histidine and two aspartic acid residues for divalent metal binding suggests the importance of these amino acids in catalysis. Although active sites of PDEs are apparently structurally similar, PDE4 is specifically inhibited by selective inhibitors such as rolipram, while PDE5 is preferentially blocked by sildenafil. Modeling interactions of the PDE5 inhibitor sildenafil with the PDE4 active site may help explain inhibitor selectivity and provide useful information for the design of new inhibitors.
Collapse
Affiliation(s)
- H Ke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
40
|
Conti M. A view into the catalytic pocket of cyclic nucleotide phosphodiesterases. Nat Struct Mol Biol 2004; 11:809-10. [PMID: 15332080 DOI: 10.1038/nsmb0904-809] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Zhu B, Kelly J, Vemavarapu L, Thompson WJ, Strada SJ. Activation and induction of cyclic AMP phosphodiesterase (PDE4) in rat pulmonary microvascular endothelial cells. Biochem Pharmacol 2004; 68:479-91. [PMID: 15242814 DOI: 10.1016/j.bcp.2004.03.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 03/30/2004] [Indexed: 11/28/2022]
Abstract
Regulation of the rolipram-sensitive cAMP-specific phosphodiesterase 4 (PDE4) gene family was studied in rat pulmonary microvascular endothelial cells (RPMVECs). Total PDE4 hydrolysis was increased within 10 min after addition of forskolin (10 microM), reached a maximum at 20-40 min, and then gradually declined in the cells. A similar activation of PDE4 activity was observed using a protein kinase A (PKA) activator, N(6)-monobutyryl cAMP. Both the forskolin and the N(6)-monobutyryl cAMP activated PDE4 activities were blocked by the PKA-specific inhibitor, H89. This forskolin-stimulated and PKA-mediated short-term activation of PDE4 activity was further confirmed by in vitro phosphorylation of 87kDa PDE4A6 and 83kDa PDE4B3 polypeptides using exogenous PKA Calpha. Increased immunoreactivity of phosphorylated PDE4A6 in situ was detected in Western blots by a PDE4A-phospho antibody specific to the putative PKA phosphorylation sites. Following long-term treatment of RPMVECs with rolipram and forskolin medium (RFM) for more than 60 days, PDE4 activity reached ten-fold higher values than control RPMVECS with twenty-fold increases detected in intracellular cAMP content. The RFM cells showed increased immunoreactivities of the constitutive 4A6 and 4B3 isoforms plus two novel splice variants at 101kDa (4B1) and 71kDa (4B2). Treatment with H89 did not inhibit the PDE4 elevation in RFM cells. In addition to the increased levels of PDE4 in RFM cells, immunofluorescence showed a translocation of PDE4A and 4B to a nuclear region, which was normally not observed in RPMVECs. The PDE4 activity in RFM cells decayed rapidly with an even faster decline of intracellular cAMP content when forskolin/rolipram were removed from the medium. These results suggest that both the activation (short-term) and induction (long-term) of PDE4A/4B isoforms in RPMVECs are closely modulated by the intracellular cAMP content via both post-translational and synthetic mechanisms.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
42
|
Scapin G, Patel SB, Chung C, Varnerin JP, Edmondson SD, Mastracchio A, Parmee ER, Singh SB, Becker JW, Van der Ploeg LHT, Tota MR. Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry 2004; 43:6091-100. [PMID: 15147193 DOI: 10.1021/bi049868i] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes that modulate cyclic nucleotide signaling and as such are clinical targets for a range of disorders including congestive heart failure, erectile dysfunction, and inflammation. The PDE3 family comprises two highly homologous subtypes expressed in different tissues, and inhibitors of this family have been shown to increase lipolysis in adipocytes. A specific PDE3B (the lipocyte-localized subtype) inhibitor would be a very useful tool to evaluate the effects of PDE3 inhibition on lipolysis and metabolic rate and might become a novel tool for treatment of obesity. We report here the three-dimensional structures of the catalytic domain of human PDE3B in complex with a generic PDE inhibitor and a novel PDE3 selective inhibitor. These structures explain the dual cAMP/cGMP binding capabilities of PDE3, provide the molecular basis for inhibitor specificity, and can supply a valid platform for the design of improved compounds.
Collapse
Affiliation(s)
- Giovanna Scapin
- Departments of Medicinal Chemistry, Merck & Co., Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH, Corbin JD. Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol 2004; 66:144-52. [PMID: 15213306 DOI: 10.1124/mol.66.1.144] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sildenafil, tadalafil, and vardenafil each competitively inhibit cGMP hydrolysis by phosphodiesterase-5 (PDE5), thereby fostering cGMP accumulation and relaxation of vascular smooth muscle. Biochemical potencies (affinities) of these compounds for PDE5 determined by IC(50), K(D) (isotherm), K(D) (dissociation rate), and K(D) ((1/2) EC(50)), respectively, were the following: sildenafil (3.7 +/- 1.4, 4.8 +/- 0.80, 3.7 +/- 0.29, and 11.7 +/- 0.70 nM), tadalafil (1.8 +/- 0.40, 2.4 +/- 0.60, 1.9 +/- 0.37, and 2.7 +/- 0.25 nM); and vardenafil (0.091 +/- 0.031, 0.38 +/- 0.07, 0.27 +/- 0.01, and 0.42 +/- 0.10 nM). Thus, absolute potency values were similar for each inhibitor, and relative potencies were vardenafil >> tadalafil > sildenafil. Binding of each (3)H inhibitor to PDE5 was specific as determined by effects of unlabeled compounds. (3)H Inhibitors did not bind to isolated PDE5 regulatory domain. Close correlation of EC(50) values using all three (3)H inhibitors competing against one another indicated that each occupies the same site on PDE5. Studies of sildenafil and vardenafil analogs demonstrated that higher potency of vardenafil is caused by differences in its double ring. Exchange-dissociation studies revealed two binding components for each inhibitor. Excess unlabeled inhibitor did not significantly affect (3)H inhibitor dissociation after infinite dilution, suggesting the absence of subunit-subunit cooperativity. cGMP addition increased binding affinity of [(3)H]tadalafil or [(3)H]vardenafil, an effect presumably mediated by cGMP binding to PDE5 allosteric sites, implying that either inhibitor potentiates its own binding to PDE5 in intact cells by elevating cGMP. Without inhibitor present, cGMP accumulation would stimulate cGMP degradation, but with inhibitor present, this negative feedback process would be blocked.
Collapse
Affiliation(s)
- Mitsi A Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Huai Q, Wang H, Zhang W, Colman RW, Robinson H, Ke H. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc Natl Acad Sci U S A 2004; 101:9624-9. [PMID: 15210993 PMCID: PMC470725 DOI: 10.1073/pnas.0401120101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 05/12/2004] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes controlling cellular concentrations of the second messengers cAMP and cGMP. The crystal structure of the catalytic domain of PDE9A2, a member of a PDE family specifically hydrolyzing cGMP, has been determined at 2.23-A resolution. The PDE9A2 catalytic domain closely resembles the cAMP-specific PDE4D2 but is significantly different from the cGMP-specific PDE5A1, implying that each individual PDE family has its own characteristic substrate recognition mechanism. The different conformations of the H and M loops between PDE9A2 and PDE5A1 imply their less critical roles in nucleotide recognition. The nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) binds to a similar subpocket in the active sites of PDE4, PDE5, and PDE9 and has a common pattern of the binding. However, significantly different orientations and interactions of IBMXs are observed among the three PDE families and also between two monomers of the PDE9A2 dimer. The kinetic properties of the PDE9A2 catalytic domain similar to those of full-length PDE9A imply that the N-terminal regulatory domain does not significantly alter the catalytic activity and the IBMX inhibition.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2',3'-cyclic phosphodiesterase, 2'-nucleotidase, and phosphatase activities. J Biol Chem 2004; 279:36819-27. [PMID: 15210699 DOI: 10.1074/jbc.m405120200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all mature tRNAs, the 3'-terminal CCA sequence is synthesized or repaired by a template-independent nucleotidyltransferase (ATP(CTP):tRNA nucleotidyltransferase; EC 2.7.7.25). The Escherichia coli enzyme comprises two domains: an N-terminal domain containing the nucleotidyltransferase activity and an uncharacterized C-terminal HD domain. The HD motif defines a superfamily of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins and domains associated with nucleotidyltransferases and helicases from bacteria, archaea, and eukaryotes. The C-terminal HD domain in E. coli tRNA nucleotidyltransferase demonstrated Ni(2+)-dependent phosphatase activity toward pyrophosphate, canonical 5'-nucleoside tri- and diphosphates, NADP, and 2'-AMP. Assays with phosphodiesterase substrates revealed surprising metal-independent phosphodiesterase activity toward 2',3'-cAMP, -cGMP, and -cCMP. Without metal or in the presence of Mg(2+), the tRNA nucleotidyltransferase hydrolyzed 2',3'-cyclic substrates with the formation of 2'-nucleotides, whereas in the presence of Ni(2+), the protein also produced some 3'-nucleotides. Mutations at the conserved His-255 and Asp-256 residues comprising the C-terminal HD domain of this protein inactivated both phosphodiesterase and phosphatase activities, indicating that these activities are associated with the HD domain. Low concentrations of the E. coli tRNA (10 nm) had a strong inhibiting effect on both phosphatase and phosphodiesterase activities. The competitive character of inhibition by tRNA suggests that it might be a natural substrate for these activities. This inhibition was completely abolished by the addition of Mg(2+), Mn(2+), or Ca(2+), but not Ni(2+). The data suggest that the phosphohydrolase activities of the HD domain of the E. coli tRNA nucleotidyltransferase are involved in the repair of the 3'-CCA end of tRNA.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Banting and Best Department of Medical Research and Structural Genomics Consortium, 112 College St., University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen X, Zhan CG. Fundamental Reaction Pathways and Free-Energy Barriers for Ester Hydrolysis of Intracellular Second-Messenger 3‘,5‘-Cyclic Nucleotide. J Phys Chem A 2004. [DOI: 10.1021/jp0371635] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xi Chen
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 907 Rose Street, Lexington, Kentucky 40536
| | - Chang-Guo Zhan
- College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 907 Rose Street, Lexington, Kentucky 40536
| |
Collapse
|
47
|
Huai Q, Liu Y, Francis SH, Corbin JD, Ke H. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol Chem 2004; 279:13095-101. [PMID: 14668322 DOI: 10.1074/jbc.m311556200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes controlling cellular concentrations of the second messengers cAMP and cGMP. Crystal structures of the catalytic domains of cGMP-specific PDE5A1 and cAMP-specific PDE4D2 in complex with the nonselective inhibitor 3-isobutyl-1-methylxanthine have been determined at medium resolution. The catalytic domain of PDE5A1 has the same topological folding as that of PDE4D2, but three regions show different tertiary structures, including residues 79-113, 208-224 (H-loop), and 341-364 (M-loop) in PDE4D2 or 535-566, 661-676, and 787-812 in PDE5A1, respectively. Because H- and M-loops are involved in binding of the selective inhibitors, the different conformations of the loops, thus the distinct shapes of the active sites, will be a determinant of inhibitor selectivity in PDEs. IBMX binds to a subpocket that comprises key residues Ile-336, Phe-340, Gln-369, and Phe-372 of PDE4D2 or Val-782, Phe-786, Gln-817, and Phe-820 of PDE5A1. This subpocket may be a common site for binding nonselective inhibitors of PDEs.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | |
Collapse
|
48
|
Yang G, McIntyre KW, Townsend RM, Shen HH, Pitts WJ, Dodd JH, Nadler SG, McKinnon M, Watson AJ. Phosphodiesterase 7A-Deficient Mice Have Functional T Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:6414-20. [PMID: 14662840 DOI: 10.4049/jimmunol.171.12.6414] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes which hydrolyze the cyclic nucleotide second messengers, cAMP and cGMP. In leukocytes, PDEs are responsible for depletion of cAMP which broadly suppresses cell functions and cellular responses to many activation stimuli. PDE7A has been proposed to be essential for T lymphocyte activation based on its induction during cell activation and the suppression of proliferation and IL-2 production observed following inhibition of PDE7A expression using a PDE7A antisense oligonucleotide. These observations have led to the suggestion that selective PDE7 inhibitors could be useful in the treatment of T cell-mediated autoimmune diseases. In the present report, we have used targeted gene disruption to examine the role PDE7A plays in T cell activation. In our studies, PDE7A knockout mice (PDE7A(-/-)) showed no deficiencies in T cell proliferation or Th1- and Th2-cytokine production driven by CD3 and CD28 costimulation. Unexpectedly, the Ab response to the T cell-dependent Ag, keyhole limpet hemocyanin, in the PDE7A(-/-) mice was found to be significantly elevated. The results from our studies strongly support the notion that PDE7A is not essential for T cell activation.
Collapse
Affiliation(s)
- Guchen Yang
- Immunology and Inflammation Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Huai Q, Colicelli J, Ke H. The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis. Biochemistry 2003; 42:13220-6. [PMID: 14609333 DOI: 10.1021/bi034653e] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) regulate the intracellular concentrations of cyclic 3',5'-adenosine and guanosine monophosphates (cAMP and cGMP, respectively) by hydrolyzing them to AMP and GMP, respectively. Family-selective inhibitors of PDEs have been studied for treatment of various human diseases. However, the catalytic mechanism of cyclic nucleotide hydrolysis by PDEs has remained unclear. We determined the crystal structure of the human PDE4D2 catalytic domain in complex with AMP at 2.4 A resolution. In this structure, two divalent metal ions simultaneously interact with the phosphate group of AMP, implying a binuclear catalysis. In addition, the structure suggested that a hydroxide ion or a water bridging two metal ions may serve as the nucleophile for the hydrolysis of the cAMP phosphodiester bond.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | |
Collapse
|
50
|
Airhart N, Yang YF, Roberts CT, Silberbach M. Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J Biol Chem 2003; 278:38693-8. [PMID: 12855709 DOI: 10.1074/jbc.m304098200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circulating natriuretic peptides such as atrial natriuretic peptide (ANP) counterbalance the effects of hypertension and inhibit cardiac hypertrophy by activating cGMP-dependent protein kinase (PKG). Natriuretic peptide binding to type I receptors (NPRA and NPRB) activates their intrinsic guanylyl cyclase activity, resulting in a rapid increase in cytosolic cGMP that subsequently activates PKG. Phosphorylation of the receptor by an unknown serine/threonine kinase is required before ligand binding can activate the cyclase. While searching for downstream PKG partners using a yeast two-hybrid screen of a human heart cDNA library, we unexpectedly found an upstream association with NPRA. PKG is a serine/threonine kinase capable of phosphorylating NPRA in vitro; however, regulation of NPRA by PKG has not been previously reported. Here we show that PKG is recruited to the plasma membrane following ANP treatment, an effect that can be blocked by pharmacological inhibition of PKG activation. Furthermore, PKG participates in a ligand-dependent gain-of-function loop that significantly increases the intrinsic cyclase activity of the receptor. PKG translocation is ANP-dependent but not nitric oxide-dependent. Our results suggest that anchoring of PKG to NPRA is a key event after ligand binding that determines distal effects. As such, the NPRA-PKG association may represent a novel mechanism for compartmentation of cGMP-mediated signaling and regulation of receptor sensitivity.
Collapse
Affiliation(s)
- Nathan Airhart
- Department of Pediatrics and the Heart Research Center, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|