1
|
Suzuki T, Nishi Y, Koyama T, Nakada M, Arimatsu R, Komiya Y, Ogawa A, Osaki R, Maeno T, Egusa AS, Nakamura M, Tatsumi R, Ojima K, Nishimura T. Reduced myogenic differentiation capacity of satellite cell-derived myoblasts in male ICR mice compared with male C57BL/6 and BALB/c mice. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01035-0. [PMID: 40387981 DOI: 10.1007/s11626-025-01035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 05/20/2025]
Abstract
Many strains of wild-type laboratory mice have been developed for studies in the life sciences, including skeletal muscle cell biology. Muscle regeneration capacity differs among wild-type mouse strains. However, few studies have focused on whether myogenic stem cells (satellite cells) are directly related to mouse strain-dependent myoregeneration gaps using in vitro culture models. In this study, we selected three major wild-type mouse strains, CD1 (outbred; Jcl:ICR [ICR]), C57BL/6NJcl (inbred; B6), and BALB/cAJcl (inbred; C), which are widely used in laboratory experiments. Initially, we compared myotube fusion capabilities using satellite cell-derived myoblasts. The results showed that cell cultures isolated from male ICR mice could not efficiently form myotubes owing to low expression levels of myogenic regulatory factors (e.g., MyoD, myogenin, myocyte enhancer factor [MEF] 2A, and MEF2C) compared with B6 and C mouse strains. Next, we compared the myofiber-type compositions of muscle tissues and cultured myotubes among male mice from each of the three strains. Although each muscle tissue used for satellite cell isolation similarly expressed fast-twitch myofiber markers in all mouse strains, male ICR-derived myoblasts formed abundant amounts of slow-type myotubes. By contrast, myotubes from male B6 and C mice expressed substantial levels of fast-twitch myofiber markers. We also performed a comparative experiment in female ICR, B6, and C mouse strains, similar to the male mouse experiments. The myogenic differentiation potencies of myoblasts and myofiber-type compositions of myotubes in female mouse strains were similar. Thus, male ICR-derived satellite cells (myoblasts) had low myogenic differentiation potential, which may be associated with the tendency slow-twitch myotube formation.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Yuriko Nishi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minori Nakada
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rio Arimatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Aoi Ogawa
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rika Osaki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Maeno
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ai Saiga Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Mako Nakamura
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, Naro, Tsukuba, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Choi S, Shin S. Inhibition of myotube formation by platelet-derived growth factor subunit B in QM7 cells. Anim Biosci 2025; 38:157-165. [PMID: 39210814 PMCID: PMC11725729 DOI: 10.5713/ab.24.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The primary objective of this study was to investigate the role and regulatory mechanisms of platelet-derived growth factor subunit B (PDGFB) in muscle differentiation. METHODS In this study, a vector for PDGFB was designed and transfected into quail muscle cells to investigate its role and regulatory mechanism during muscle formation. To investigate the inhibitory mechanisms of PDGFB on myogenic differentiation, the mRNA expression levels of various genes and the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), both known to regulate muscle development and differentiation were compared. RESULTS PDGFB-overexpressed (OE) cells formed morphologically shorter and thinner myotubes and demonstrated a smaller total myotube area than did the control cells. This result was also confirmed at the molecular level by a reduced amount of myosin heavy chain protein in the PDGFB-OE cells. Therefore, PDGFB inhibits the differentiation of muscle cells. Additionally, the expression of myogenin (MYOG) significantly decreased in the PDGFBOE cells on days 2 and 4 compared with that in the control cells. The phosphorylation of ERK 1/2, an upstream protein that inhibits MYOG expression, increased in the PDGFB-OE cells on day 4 compared with that in the control cells. The decreased expression of MYOG in the PDGFB-OE cells increased by inhibition ERK 1/2 phosphorylation. CONCLUSION PDGFB may suppress myogenesis by reducing MYOG expression through ERK 1/2 phosphorylation. These findings can help understand muscle differentiation and potentially improve poultry meat production.
Collapse
Affiliation(s)
- Sarang Choi
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
3
|
Hamaguchi H, Dohi K, Sakai T, Taoka M, Isobe T, Matsui TS, Deguchi S, Furuichi Y, Fujii NL, Manabe Y. PDGF-B secreted from skeletal muscle enhances myoblast proliferation and myotube maturation via activation of the PDGFR signaling cascade. Biochem Biophys Res Commun 2023; 639:169-175. [PMID: 36521377 DOI: 10.1016/j.bbrc.2022.11.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Myokines, secreted factors from skeletal muscle, act locally on muscle cells or satellite cells, which is important in regulating muscle mass and function. Here, we found platelet-derived growth factor subunit B (PDGF-B) is constitutively secreted from muscle cells without muscle contraction. Furthermore, PDGF-B secretion increased with myoblast to myotube differentiation. To examine the role of PDGF-B as a paracrine or autocrine myokine, myoblasts or myotubes were treated with PDGF-B. As a result, myoblast proliferation was significantly enhanced via several signaling pathways. Intriguingly, myotubes treated with PDGF-B showed enhanced maturation as indicated by their increased myotube diameter, myosin heavy chain expression, and strengthened contractile force. These findings suggest that PDGF-B is constitutively secreted by myokines to enhance myoblast proliferation and myotube maturation, which may contribute to skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hiroki Hamaguchi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kitora Dohi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, 192-0397, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
4
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
5
|
Bordini M, Soglia F, Davoli R, Zappaterra M, Petracci M, Meluzzi A. Molecular Pathways and Key Genes Associated With Breast Width and Protein Content in White Striping and Wooden Breast Chicken Pectoral Muscle. Front Physiol 2022; 13:936768. [PMID: 35874513 PMCID: PMC9304951 DOI: 10.3389/fphys.2022.936768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Growth-related abnormalities affecting modern chickens, known as White Striping (WS) and Wooden Breast (WB), have been deeply investigated in the last decade. Nevertheless, their precise etiology remains unclear. The present study aimed at providing new insights into the molecular mechanisms involved in their onset by identifying clusters of co-expressed genes (i.e., modules) and key loci associated with phenotypes highly related to the occurrence of these muscular disorders. The data obtained by a Weighted Gene Co-expression Network Analysis (WGCNA) were investigated to identify hub genes associated with the parameters breast width (W) and total crude protein content (PC) of Pectoralis major muscles (PM) previously harvested from 12 fast-growing broilers (6 normal vs. 6 affected by WS/WB). W and PC can be considered markers of the high breast yield of modern broilers and the impaired composition of abnormal fillets, respectively. Among the identified modules, the turquoise (r = -0.90, p < 0.0001) and yellow2 (r = 0.91, p < 0.0001) were those most significantly related to PC and W, and therefore respectively named “protein content” and “width” modules. Functional analysis of the width module evidenced genes involved in the ubiquitin-mediated proteolysis and inflammatory response. GTPase activator activity, PI3K-Akt signaling pathway, collagen catabolic process, and blood vessel development have been detected among the most significant functional categories of the protein content module. The most interconnected hub genes detected for the width module encode for proteins implicated in the adaptive responses to oxidative stress (i.e., THRAP3 and PRPF40A), and a member of the inhibitor of apoptosis family (i.e., BIRC2) involved in contrasting apoptotic events related to the endoplasmic reticulum (ER)-stress. The protein content module showed hub genes coding for different types of collagens (such as COL6A3 and COL5A2), along with MMP2 and SPARC, which are implicated in Collagen type IV catabolism and biosynthesis. Taken together, the present findings suggested that an ER stress condition may underly the inflammatory responses and apoptotic events taking place within affected PM muscles. Moreover, these results support the hypothesis of a role of the Collagen type IV in the cascade of events leading to the occurrence of WS/WB and identify novel actors probably involved in their onset.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Cesena, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Sawada A, Yamamoto T, Sato T. Tceal5 and Tceal7 Function in C2C12 Myogenic Differentiation via Exosomes in Fetal Bovine Serum. Int J Mol Sci 2022; 23:2036. [PMID: 35216152 PMCID: PMC8877866 DOI: 10.3390/ijms23042036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
The proliferation and differentiation of skeletal muscle cells are usually controlled by serum components. Myogenic differentiation is induced by a reduction of serum components in vitro. It has been recently reported that serum contains not only various growth factors with specific actions on the proliferation and differentiation of myogenic cells, but also exogenous exosomes, the function of which is poorly understood in myogenesis. We have found that exosomes in fetal bovine serum are capable of exerting an inhibitive effect on the differentiation of C2C12 myogenic cells in vitro. In this process of inhibition, the downregulation of Tceal5 and Tceal7 genes was observed. Expression of these genes is specifically increased in direct proportion to myogenic differentiation. Loss- or gain- of function studies with Tceal5 and Tceal7 indicated that they have the potential to regulate myogenic differentiation via exosomes in fetal bovine serum.
Collapse
Affiliation(s)
- Aika Sawada
- Faculty of Medical Sciences, Fujita Health University, Toyoake 470-1192, Japan;
- Faculty of Medicine, Department of Anatomy, Fujita Health University, Toyoake 470-1192, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Takahiko Sato
- Faculty of Medicine, Department of Anatomy, Fujita Health University, Toyoake 470-1192, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
7
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
8
|
Tao X, Du P, Li L, Lin J, Shi Y, Wang PY. Human Platelet Lysate Supports Mouse Skeletal Myoblast Growth but Suppresses Cell Fusion on Nanogrooves. ACS APPLIED BIO MATERIALS 2020; 3:3594-3604. [DOI: 10.1021/acsabm.0c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
9
|
Scully D, Sfyri P, Verpoorten S, Papadopoulos P, Muñoz‐Turrillas MC, Mitchell R, Aburima A, Patel K, Gutiérrez L, Naseem KM, Matsakas A. Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury. Acta Physiol (Oxf) 2019; 225:e13207. [PMID: 30339324 DOI: 10.1111/apha.13207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
AIM The use of platelets as biomaterials has gained intense research interest. However, the mechanisms regarding platelet-mediated skeletal myogenesis remain to be established. The aim of this study was to determine the role of platelet releasate in skeletal myogenesis and muscle stem cell fate in vitro and ex vivo respectively. METHODS We analysed the effect of platelet releasate on proliferation and differentiation of C2C12 myoblasts by means of cell proliferation assays, immunohistochemistry, gene expression and cell bioenergetics. We expanded in vitro findings on single muscle fibres by determining the effect of platelet releasate on murine skeletal muscle stem cells using protein expression profiles for key myogenic regulatory factors. RESULTS TRAP6 and collagen used for releasate preparation had a more pronounced effect on myoblast proliferation vs thrombin and sonicated platelets (P < 0.05). In addition, platelet concentration positively correlated with myoblast proliferation. Platelet releasate increased myoblast and muscle stem cell proliferation in a dose-dependent manner, which was mitigated by VEGFR and PDGFR inhibition. Inhibition of VEGFR and PDGFR ablated MyoD expression on proliferating muscle stem cells, compromising their commitment to differentiation in muscle fibres (P < 0.001). Platelet releasate was detrimental to myoblast fusion and affected differentiation of myoblasts in a temporal manner. Most importantly, we show that platelet releasate promotes skeletal myogenesis through the PDGF/VEGF-Cyclin D1-MyoD-Scrib-Myogenin axis and accelerates skeletal muscle regeneration after acute injury. CONCLUSION This study provides novel mechanistic insights on the role of platelet releasate in skeletal myogenesis and set the physiological basis for exploiting platelets as biomaterials in regenerative medicine.
Collapse
Affiliation(s)
- David Scully
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Petros Papadopoulos
- Department of Hematology, Instituto de Investigación Sanitaria San Carlos (IdISSC) Hospital Clínico San Carlos Madrid Spain
| | - María Carmen Muñoz‐Turrillas
- Centro Comunitario de Sangre y Tejidos de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Robert Mitchell
- School of Biological Sciences University of Reading Reading UK
| | - Ahmed Aburima
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| | - Ketan Patel
- School of Biological Sciences University of Reading Reading UK
| | - Laura Gutiérrez
- Department of Medicine Universidad de Oviedo and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School University of Hull Hull UK
| |
Collapse
|
10
|
Scully D, Naseem KM, Matsakas A. Platelet biology in regenerative medicine of skeletal muscle. Acta Physiol (Oxf) 2018; 223:e13071. [PMID: 29633517 DOI: 10.1111/apha.13071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Platelet-based applications such as platelet-rich plasma (PRP) and platelet releasate have gained unprecedented attention in regenerative medicine across a variety of tissues as of late. The rationale behind utilizing PRP originates in the delivery of key cytokines and growth factors from α-granules to the targeted area, which in turn act as cell cycle regulators and promote the healing process across a variety of tissues. The aim of the present review is to assimilate current experimental evidence on the role of platelets as biomaterials in tissue regeneration, particularly in skeletal muscle, by integrating findings from human, animal and cell studies. This review is composed of 3 parts: firstly, we review key aspects of platelet biology that precede the preparation and use of platelet-related applications for tissue regeneration. Secondly, we critically discuss relevant evidence on platelet-mediated regeneration in skeletal muscle focusing on findings from (i) clinical trials, (ii) experimental animal studies and (iii) cell culture studies; and thirdly, we discuss the application of platelets in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. Finally, we review key technical variations in platelet preparation that may account for the large discrepancy in outcomes from different studies. This review provides an up-to-date reference tool for biomedical and clinical scientists involved in platelet-mediated tissue regenerative applications.
Collapse
Affiliation(s)
- D. Scully
- Molecular Physiology Laboratory; Centre for Atherothrombotic & Metabolic Disease; Hull York Medical School; University of Hull; Hull UK
| | - K. M. Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine; University of Leeds; Leeds UK
| | - A. Matsakas
- Molecular Physiology Laboratory; Centre for Atherothrombotic & Metabolic Disease; Hull York Medical School; University of Hull; Hull UK
| |
Collapse
|
11
|
Horinouchi T, Hoshi A, Harada T, Higa T, Karki S, Terada K, Higashi T, Mai Y, Nepal P, Mazaki Y, Miwa S. Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells. Br J Pharmacol 2016; 173:1018-32. [PMID: 26660861 DOI: 10.1111/bph.13406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. EXPERIMENTAL APPROACH We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). KEY RESULTS In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. CONCLUSIONS AND IMPLICATIONS Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Akimasa Hoshi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Takuya Harada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunaki Higa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Sarita Karki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Koji Terada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yosuke Mai
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Prabha Nepal
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| |
Collapse
|
12
|
Endothelin-1 activates extracellular signal-regulated kinases 1/2 via transactivation of platelet-derived growth factor receptor in rat L6 myoblasts. Life Sci 2014; 104:24-31. [DOI: 10.1016/j.lfs.2014.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/29/2014] [Accepted: 04/03/2014] [Indexed: 12/30/2022]
|
13
|
Abstract
Skeletal muscle continuously adapts to changes in its mechanical environment through modifications in gene expression and protein stability that affect its physiological function and mass. However, mechanical stresses commonly exceed the parameters that induce adaptations, producing instead acute injury. Furthermore, the relatively superficial location of many muscles in the body leaves them further vulnerable to acute injuries by exposure to extreme temperatures, contusions, lacerations or toxins. In this article, the molecular, cellular, and mechanical factors that underlie muscle injury and the capacity of muscle to repair and regenerate are presented. Evidence shows that muscle injuries that are caused by eccentric contractions result from direct mechanical damage to myofibrils. However, muscle pathology following other acute injuries is largely attributable to damage to the muscle cell membrane. Many feaures in the injury-repair-regeneration cascade relate to the unregulated influx of calcium through membrane lesions, including: (i) activation of proteases and hydrolases that contribute muscle damage, (ii) activation of enzymes that drive the production of mitogens and motogens for muscle and immune cells involved in injury and repair, and (iii) enabling protein-protein interactions that promote membrane repair. Evidence is also presented to show that the myogenic program that is activated by acute muscle injury and the inflammatory process that follows are highly coordinated, with myeloid cells playing a central role in modulating repair and regeneration. The early-invading, proinflammatory M1 macrophages remove debris caused by injury and express Th1 cytokines that play key roles in regulating the proliferation, migration, and differentiation of satellite cells. The subsequent invasion by anti-inflammatory, M2 macrophages promotes tissue repair and attenuates inflammation. Although this system provides an effective mechanism for muscle repair and regeneration following acute injury, it is dysregulated in chronic injuries. In this article, the process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury, to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA.
| |
Collapse
|
14
|
Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials 2010; 31:4880-8. [PMID: 20346499 PMCID: PMC2925240 DOI: 10.1016/j.biomaterials.2010.02.055] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 01/08/2023]
Abstract
Neuromuscular junction (NMJ) formation, occurring between motoneurons and skeletal muscle, is a complex multistep process involving a variety of signaling molecules and pathways. In vitro motoneuron-muscle co-cultures are powerful tools to study the role of different growth factors, hormones and cellular structures involved in NMJ formation. In this study, a serum-free culture system utilizing defined temporal growth factor application and a non-biological substrate resulted in the formation of robust NMJs. The system resulted in long-term survival of the co-culture and selective expression of neonatal myosin heavy chain, a marker of myotube maturation. NMJ formation was verified by colocalization of dense clusters of acetylcholine receptors visualized using alpha-bungarotoxin and synaptophysin containing vesicles present in motoneuron axonal terminals. This model will find applications in basic NMJ research and tissue engineering applications such as bio-hybrid device development for limb prosthesis and regenerative medicine as well as for high-throughput drug and toxin screening applications.
Collapse
Affiliation(s)
| | | | - Neelima Bhargava
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, 12424 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Maria Stancescu
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, 12424 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, 12424 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
15
|
Das M, Rumsey JW, Bhargava N, Stancescu M, Hickman JJ. Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials 2009; 30:5392-402. [PMID: 19625080 PMCID: PMC2851407 DOI: 10.1016/j.biomaterials.2009.05.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/25/2009] [Indexed: 01/17/2023]
Abstract
The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop several aspects of mature muscle including: sarcomere assembly, development of the excitation-contraction coupling apparatus and myosin heavy chain (MHC) class switching. Utilizing immunocytochemical analysis, anisotropic and isotropic band formation (striations) within the myotubes was established, indicative of sarcomere formation. In addition, clusters of ryanodine receptors were colocalized with dihydropyridine complex proteins which signaled development of the excitation-contraction coupling apparatus and transverse tubule biogenesis. The myotubes also exhibited MHC class switching from embryonic to neonatal MHC. Lastly, the myotubes survived significantly longer in culture (70-90 days) than myotubes from our previously developed system (20-25 days). These results were achieved by modifying the culture timeline as well as the development of a new medium formulation. This defined model system for skeletal muscle maturation supports the goal of developing physiologically relevant muscle constructs for use in tissue engineering and regenerative medicine as well as for high-throughput screening applications.
Collapse
Affiliation(s)
| | | | - Neelima Bhargava
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, Research Pavilion, 12424, Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Maria Stancescu
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, Research Pavilion, 12424, Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - James J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, Suite 402, Research Pavilion, 12424, Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
16
|
Tozer S, Bonnin MA, Relaix F, Di Savino S, García-Villalba P, Coumailleau P, Duprez D. Involvement of vessels and PDGFB in muscle splitting during chick limb development. Development 2007; 134:2579-91. [PMID: 17553906 DOI: 10.1242/dev.02867] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle formation and vascular assembly during embryonic development are usually considered separately. In this paper, we investigate the relationship between the vasculature and muscles during limb bud development. We show that endothelial cells are detected in limb regions before muscle cells and can organize themselves in space in the absence of muscles. In chick limbs, endothelial cells are detected in the future zones of muscle cleavage, delineating the cleavage pattern of muscle masses. We therefore perturbed vascular assembly in chick limbs by overexpressing VEGFA and demonstrated that ectopic blood vessels inhibit muscle formation, while promoting connective tissue. Conversely, local inhibition of vessel formation using a soluble form of VEGFR1 leads to muscle fusion. The endogenous location of endothelial cells in the future muscle cleavage zones and the inverse correlation between blood vessels and muscle suggests that vessels are involved in the muscle splitting process. We also identify the secreted factor PDGFB (expressed in endothelial cells) as a putative molecular candidate mediating the muscle-inhibiting and connective tissue-promoting functions of blood vessels. Finally, we propose that PDGFB promotes the production of extracellular matrix and attracts connective tissue cells to the future splitting site, allowing separation of the muscle masses during the splitting process.
Collapse
Affiliation(s)
- Samuel Tozer
- Biologie du Développement, CNRS, UMR 7622, Université P. et M. Curie, 9 Quai Saint-Bernard, Bât. C, 6 E, Case 24, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJB, den Dunnen JT, 't Hoen PAC. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 2005; 6:98. [PMID: 16011810 PMCID: PMC1190170 DOI: 10.1186/1471-2164-6-98] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 07/13/2005] [Indexed: 01/19/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is lethal. In contrast, dystrophin-deficient mdx mice recover due to effective regeneration of affected muscle tissue. To characterize the molecular processes associated with regeneration, we compared gene expression levels in hindlimb muscle tissue of mdx and control mice at 9 timepoints, ranging from 1–20 weeks of age. Results Out of 7776 genes, 1735 were differentially expressed between mdx and control muscle at at least one timepoint (p < 0.05 after Bonferroni correction). We found that genes coding for components of the dystrophin-associated glycoprotein complex are generally downregulated in the mdx mouse. Based on functional characteristics such as membrane localization, signal transduction, and transcriptional activation, 166 differentially expressed genes with possible functions in regeneration were analyzed in more detail. The majority of these genes peak at the age of 8 weeks, where the regeneration activity is maximal. The following pathways are activated, as shown by upregulation of multiple members per signalling pathway: the Notch-Delta pathway that plays a role in the activation of satellite cells, and the Bmp15 and Neuregulin 3 signalling pathways that may regulate proliferation and differentiation of satellite cells. In DMD patients, only few of the identified regeneration-associated genes were found activated, indicating less efficient regeneration processes in humans. Conclusion Based on the observed expression profiles, we describe a model for muscle regeneration in mdx mice, which may provide new leads for development of DMD therapies based on the improvement of muscle regeneration efficacy.
Collapse
Affiliation(s)
- R Turk
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa, 400 Eckstein Medical Research Building, Iowa City, IA52240-1101, U.S.A
| | - E Sterrenburg
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - EJ de Meijer
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - G-JB van Ommen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - JT den Dunnen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
- Leiden Genome Technology Center, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - PAC 't Hoen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| |
Collapse
|
18
|
Ricaud S, Vernus B, Duclos M, Bernardi H, Ritvos O, Carnac G, Bonnieu A. Inhibition of autocrine secretion of myostatin enhances terminal differentiation in human rhabdomyosarcoma cells. Oncogene 2003; 22:8221-32. [PMID: 14614446 DOI: 10.1038/sj.onc.1207177] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcomas (RMSs) are one of the most common solid tumor of childhood. Rhabdomyosarcoma (RMS) cells fail to both complete the skeletal muscle differentiation program and irreversibly exit the cell cycle as a consequence of an active repression exerted on the muscle-promoting factor MyoD. Myostatin is a negative regulator of normal muscle growth, we have thus studied its possible role in RMS cells. Here, we present evidence that overexpression of myostatin is a common feature of RMS since both subtypes of RMS (embryonal RD and alveolar Rh30 cells) express high levels of myostatin when compared to nontumoral skeletal muscle cells. Interestingly, we found that inactivation of myostatin through overexpression of antisense myostatin or of follistatin (a myostatin antagonist) constructs enhanced differentiation of RD cells. In addition, RD and Rh30 cells treated with blocking antimyostatin antibodies progress into the myogenic terminal differentiation program. Finally, our results suggest that high levels of myostatin could impair MyoD function in RMS cells. These results show that an autocrine myostatin loop contributes to maintain RMS cells in an undifferentiating stage and suggest that new therapeutic approaches could be exploited for the treatment of RMS based on inactivation of myostatin protein.
Collapse
Affiliation(s)
- Stéphanie Ricaud
- INRA, UMR 866-Differenciation Cellulaire et Croissance, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhao Y, Haginoya K, Sun G, Dai H, Onuma A, Iinuma K. Platelet-derived growth factor and its receptors are related to the progression of human muscular dystrophy: an immunohistochemical study. J Pathol 2003; 201:149-59. [PMID: 12950028 DOI: 10.1002/path.1414] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study has examined the immunological localization of platelet-derived growth factor (PDGF)-A, PDGF-B, and PDGF receptor (PDGFR) alpha and beta to clarify their role in the progression of muscular dystrophy. Biopsied frozen muscles from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD) were analysed immunohistochemically using antibodies raised against PDGF-A, PDGF-B, and PDGFR alpha and beta. Muscles from two dystrophic mouse models (dy and mdx mice) were also immunostained with antibodies raised against PDGFR alpha and beta. In normal human control muscle, neuromuscular junctions and vessels were positively stained with antibodies against PDGF-A, PDGF-B, PDGFR alpha and PDGFR beta. In human dystrophic muscles, PDGF-A, PDGF-B, PDGFR alpha and PDGFR beta were strongly immunolocalized in regenerating muscle fibres and infiltrating macrophages. PDGFR alpha was also immunolocalized to the muscle fibre sarcolemma and necrotic fibres. The most significant finding in this study was a remarkable overexpression of PDGFR beta and, to a lesser extent, PDGFR alpha in the endomysium of DMD and CMD muscles. PDGFR was also overexpressed in the interstitium of muscles from dystrophic mice, particularly dy mice. Double immunolabelling revealed that activated interstitial fibroblasts were clearly positive for PDGFR alpha and beta. However, DMD and CMD muscles with advanced fibrosis showed very poor reactivity against PDGF and PDGFR. Those findings were confirmed by immunoblotting with PDGFR beta. These findings indicate that PDGF and its receptors are significantly involved in the active stage of tissue destruction and are associated with the initiation or promotion of muscle fibrosis. They also have roles in muscle fibre regeneration and signalling at neuromuscular junctions in both normal and diseased muscle.
Collapse
Affiliation(s)
- Yajuan Zhao
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Yoshiko Y, Hirao K, Maeda N. Differentiation in C(2)C(12) myoblasts depends on the expression of endogenous IGFs and not serum depletion. Am J Physiol Cell Physiol 2002; 283:C1278-86. [PMID: 12225990 DOI: 10.1152/ajpcell.00168.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic differentiation in vitro has been usually viewed as being negatively controlled by serum mitogens. A depletion of critical serum components from medium has been considered to be essential for permanent withdrawal from the cell cycle and terminal differentiation of myoblasts. Removal of serum mitogens induces the expression of insulin-like growth factors (IGFs), whereas it inhibits that of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta in myoblasts. These responses of growth factors to medium conditioning seem to be well matched to their functions in proliferation/differentiation. In the present study, we showed that C(2)C(12) myoblasts differentiated actively, even in mitogen-rich medium, and that this medium offered an advantage over mitogen-poor medium in terms of increasing differentiation. Our attention focused on endogenous growth factors, as described above, especially IGFs in mitogen-rich medium. During differentiation, IGF-I and IGF-II mRNA levels increased, but bFGF and TGF-beta(1) mRNAs decreased. Differentiation was commensurable with IGF mRNA levels and suppressed by antisense oligodeoxynucleotides and neutralizing monoclonal antibodies against IGFs. These results suggest that an autocrine/paracrine loop of IGFs, bFGF, and TGF-beta(1) is active in proliferating and differentiating C(2)C(12) cells without a depletion of serum and that endogenous IGFs actively override the negative control of differentiation by serum mitogens.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 734-8553, Japan
| | | | | |
Collapse
|
21
|
Zhao Y, Haginoya K, Iinuma K. Strong immunoreactivity of platelet-derived growth factor and its receptor at human and mouse neuromuscular junctions. TOHOKU J EXP MED 1999; 189:239-44. [PMID: 10739160 DOI: 10.1620/tjem.189.239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Platelet-derived growth factor (PDGF) and its alpha-receptor were localized at human and mouse neuromuscular junctions (NMJs) using specific polyclonal antibodies against each, anti-PDGF-A and anti-PDGF alpha-receptor, respectively. By applying double fluorescence labeling, immunoreactivity for PDGF and its receptor was closely co-localized with acetylcholine receptors, which were identified with alpha-bungarotoxin. PDGF might be involved in the interaction between the presynaptic and postsynaptic components. This is the first demonstration of PDGF and its receptor concentrated at human and mouse NMJs.
Collapse
Affiliation(s)
- Y Zhao
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
22
|
Uruno T, Oki J, Ozawa K, Miyakawa K, Ueno H, Imamura T. Distinct regulation of myoblast differentiation by intracellular and extracellular fibroblast growth factor-1. Growth Factors 1999; 17:93-113. [PMID: 10595310 DOI: 10.3109/08977199909103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We studied the role of fibroblast growth factor (FGF)-1 in the physiology of myoblast differentiation. We found that, while endogenous FGF-1 in L6-10 rat myoblasts did not suppress the progress of differentiation, the addition of FGF-1 to the culture medium suppressed it. Moreover, L6-10 cells stably transfected with full length FGF-1 undergo enhanced differentiation. The latter was well correlated with myogenin expression and myotube formation. Constitutive expression of a mutant FGF-1 (FGF-1U) that lacked a nuclear localization signal, promoted the differentiation of the myoblasts even more strongly. Furthermore, the expression of FGF-1U in an inducible expression system enhanced myogenin expression promptly. In L6-10 transfectants expressing a dominant-negative mutant of FGF receptor, stable transfection of FGF-1 promoted differentiation as it did in parent cells. Studies with FGF receptors and MAP kinase suggest that both are involved in the effect of FGF-1 when it is supplemented to culture medium but not during the effect of endogenous FGF-1 synthesized in cells. We conclude that intracellular (endogenous) and extracellular (exogenous) FGF-1 have differential effects on the regulation of myogenic differentiation of L6-10 cells.
Collapse
Affiliation(s)
- T Uruno
- Biosignaling Department, National Institute of Bioscience and Human Technology, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Epstein JA, Song B, Lakkis M, Wang C. Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol Cell Biol 1998; 18:4118-30. [PMID: 9632796 PMCID: PMC108996 DOI: 10.1128/mcb.18.7.4118] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
The t(2;13) chromosomal translocation occurs at a high frequency in alveolar rhabdomyosarcoma, a common pediatric tumor of muscle. This translocation results in the production of a chimeric fusion protein derived from two developmentally regulated transcription factors, PAX3 and FKHR. The two DNA binding modules, the paired domain and the homeodomain, of PAX3 are fused in frame to the transactivation domain of FKHR. Previously, tumor-specific PAX3-FKHR has been shown to bind to DNA sequences normally recognized by wild-type PAX3 and to exhibit relatively enhanced transcriptional activity. The DNA binding sites used to demonstrate that PAX3-FKHR is a more potent transcriptional activator than PAX3 have included recognition sequences for the paired domain of PAX3. In this report, we demonstrate the ability of PAX3-FKHR to activate the product of a growth control gene, platelet-derived growth factor alpha receptor (PDGFalphaR), by recognizing a paired-type homeodomain binding site located in the PDGFalphaR promoter. PAX3 alone cannot mediate transcriptional activation of this promoter under the conditions tested. This provides the first evidence that chromosomal translocation results in altered target gene specificity of PAX3-FKHR and suggests a transcriptional target that may play a significant role in oncogenic activity and rhabdomyosarcoma development.
Collapse
Affiliation(s)
- J A Epstein
- Cardiovascular Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
24
|
Crosby JR, Seifert RA, Soriano P, Bowen-Pope DF. Chimaeric analysis reveals role of Pdgf receptors in all muscle lineages. Nat Genet 1998; 18:385-8. [PMID: 9537425 DOI: 10.1038/ng0498-385] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood vessels originate as simple endothelial cell tubes. It has been proposed that platelet-derived growth factor B polypeptide (Pdgfb) secreted by these endothelial cells drives the formation of the surrounding muscular wall by recruiting nearby mesenchymal cells. However, targetted inactivation of the Pdgfb gene or the Pdgf receptor beta (Pdgfrb) gene, by homologous recombination, does not prevent the development of apparently normal large arteries and connective tissue. We have used an in vivo competition assay in which we prepared chimaeric blastocysts, composed of a mixture of wild-type (Pdgfrb[+/+]) and Pdgfrb(+/-) or wild-type and Pdgfrb(-/-) cells, and quantified the relative success of cells of the two component genotypes in competing for representation in different cell lineages as the chimaeric embryos developed. This study revealed that the participation of Pdgfrb(-/-) cells in all muscle lineages (smooth, cardiac, skeletal and pericyte) was reduced by eightfold compared with Pdgfrb(+/+) cells, and that participation of Pdgfrb(+/-) cells was reduced by twofold (eightfold for pericytes). Pdgfrb inactivation did not affect cell contribution to non-muscle mesodermal lineages, including fibroblasts and endothelial cells. Chimaera competition is therefore a sensitive, quantitative method for determining developmental roles of specific genes, even when those roles are not apparent from analysis of purebred mutants; most likely because they are masked by homeostatic mechanisms.
Collapse
Affiliation(s)
- J R Crosby
- Department of Pathology, University of Washington, Seattle 98195-7470, USA
| | | | | | | |
Collapse
|
25
|
el Oakley RM, Brand NJ, Burton PB, McMullen MC, Adams GB, Poznansky MC, Barton PJ, Yacoub MH. Efficiency of a high-titer retroviral vector for gene transfer into skeletal myoblasts. J Thorac Cardiovasc Surg 1998; 115:1-8. [PMID: 9451039 DOI: 10.1016/s0022-5223(98)70436-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Genetic transformation of skeletal myoblasts for myocardial repair is dependent on an efficient gene transfer system that integrates the genes of interest into the genome of the target cell and its progeny. The aim of this investigation was to evaluate the use of a new retrovirally based gene transfer system for this purpose. METHODS MFGnlslacZ retroviral vector, packaged in high-titer, split-genome packaging cell line (FLYA4) was used to transduce the skeletal myoblast cell line L6. L6 cells, cultured in 10% fetal calf serum, were transduced with the MFGnlslacZ vector by means of filtered supernatant from FLYA4 cells. Transduced L6 cells were divided into four groups. Group I cells were fixed as myoblasts 3 days after transduction. Group II cells were allowed to differentiate into myotubes. Group III cells were split every 3 days for 4 months. Group IV cells were split as in group III but then allowed to differentiate into myotubes. All samples were fixed and stained for beta-galactosidase activity. The effects on gene transfer of transforming growth factor-beta, insulin-like growth factor-I, and platelet-derived growth factor were determined by spectrophotometric assay of beta-galactosidase activity in cells transduced in the presence or absence of serum with 0 to 200 ng/ml of each growth factor. RESULTS Morphometric analysis showed that 66.3% +/- 3% to 69.6% +/- 6% of cells in group I to IV expressed the lacZ reporter gene. In the presence of serum, transforming growth factor-beta significantly inhibited gene transfer, whereas insulin-like growth factor-I and platelet-derived growth factor significantly enhanced gene transfer. In absence of serum, however, only platelet-derived growth factor enhanced retrovirally mediated gene transfer into skeletal myoblasts. CONCLUSION MFG retroviral vectors packaged in FLYA4 cells are efficient in gene transfer into skeletal myoblasts and result in transgenic expression that is maintained after repeated cell division, differentiation, or both. Platelet-derived growth factor enhances retrovirally mediated gene transfer into skeletal myoblasts.
Collapse
Affiliation(s)
- R M el Oakley
- Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart and Lung Institute, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 1997; 272:6653-62. [PMID: 9045696 DOI: 10.1074/jbc.272.10.6653] [Citation(s) in RCA: 493] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is well established that mitogens inhibit differentiation of skeletal muscle cells, but the insulin-like growth factors (IGFs), acting through a single receptor, stimulate both proliferation and differentiation of myoblasts. Although the IGF-I mitogenic signaling pathway has been extensively studied in other cell types, little is known about the signaling pathway leading to differentiation in skeletal muscle. By using specific inhibitors of the IGF signal transduction pathway, we have begun to define the signaling intermediates mediating the two responses to IGFs. We found that PD098059, an inhibitor of mitogen-activated protein (MAP) kinase kinase activation, inhibited IGF-stimulated proliferation of L6A1 myoblasts and the events associated with it, such as phosphorylation of the MAP kinases and elevation of c-fos mRNA and cyclin D protein. Surprisingly, PD098059 caused a dramatic enhancement of differentiation, evident both at a morphological (fusion of myoblasts into myotubes) and biochemical level (elevation of myogenin and p21 cyclin-dependent kinase inhibitor expression, as well as creatine kinase activity). In sharp contrast, LY294002, an inhibitor of phosphatidylinositol 3-kinase, and rapamycin, an inhibitor of the activation of p70 S6 kinase (p70(S6k)), completely abolished IGF stimulation of L6A1 differentiation. We found that p70(S6k) activity increased substantially during differentiation, and this increase was further enhanced by PD098059. Our results demonstrate that the MAP kinase pathway plays a primary role in the mitogenic response and is inhibitory to the myogenic response in L6A1 myoblasts, while activation of the phosphatidylinositol 3-kinase/p70(S6k) pathway is essential for IGF-stimulated differentiation. Thus, it appears that signaling from the IGF-I receptor utilizes two distinct pathways leading either to proliferation or differentiation.
Collapse
Affiliation(s)
- S A Coolican
- Biology Department, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | | | |
Collapse
|
27
|
Albrecht DE, Tidball JG. Platelet-derived growth factor-stimulated secretion of basement membrane proteins by skeletal muscle occurs by tyrosine kinase-dependent and -independent pathways. J Biol Chem 1997; 272:2236-44. [PMID: 8999929 DOI: 10.1074/jbc.272.4.2236] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The basement membrane of skeletal muscle is produced by the muscle cells it ensheathes and by nonmuscle cells located in the surrounding extracellular matrix. In this study, we have shown that platelet-derived growth factor (PDGF) stimulates secretion of three basement membrane components of skeletal muscle: laminin (70% increase), fibronectin (30%), and type IV collagen (70%). Furthermore, we have found using the signal transduction inhibitors, genistein (tyrosine kinase inhibitor), phorbol 12-myristate 13-acetate (protein kinase C (PKC) inhibitor), thapsigargin (depletes intracellular Ca2+ stores), and H89 (protein kinase A inhibitor), that PDGF-stimulated secretion of these proteins occurs through distinct signaling pathways. Densitometry of Western blots of L6 myoblast supernatant indicates that the PDGF-induced increase in secretion of laminin and type IV collagen is tyrosine kinase-dependent. The increase in type IV collagen secretion also shows dependence on PKC, as well as the release of intracellular Ca2+. Inhibition of either of these pathways reduces the increase in type IV collagen secretion to 20%. In contrast, the PDGF-induced increase in laminin secretion is unaffected by inhibition of either PKC or intracellular Ca2+ release. The increase in fibronectin secretion by PDGF uses yet a third set of signals. PDGF-induced fibronectin secretion is not dependent on tyrosine kinase activity but is dependent on protein kinase A as well as the release of intracellular Ca2+. These divergent signaling pathways provide for independent regulation of basement membrane protein secretion, allowing a muscle cell to modify both the quantity and composition of its basement membrane in response to its environment.
Collapse
Affiliation(s)
- D E Albrecht
- Department of Physiological Science, UCLA, Los Angeles, California 90024-1527, USA
| | | |
Collapse
|
28
|
Yablonka-Reuveni Z, Rivera AJ. Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts. Growth Factors 1997; 15:1-27. [PMID: 9401815 PMCID: PMC4096310 DOI: 10.3109/08977199709002109] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously demonstrated that PDGF-BB enhances proliferation of C2 myoblasts. This has led us to examine whether the mitogenic influence of PDGF-BB in the C2 model correlates with modulation of specific steps associated with myogenic differentiation. C2 myoblasts transiting through these differentiation specific steps were monitored via immunocytochemistry. We show that the influence of PDGF on enhancing cell proliferation correlates with a delay in the emergence of cells positive for sarcomeric myosin. We further monitored the influence of PDGF-BB on differentiation steps preceding the emergence of myosin+ cells. We demonstrate that mononucleated C2 cells first express MyoD (MyoD+/myogenin- cells) and subsequently, myogenin. Cells negative for both MyoD and myogenin (the phenotype preceding the MyoD+ state) were present at all times in culture and comprised the majority, if not all, of the cells which responded mitogenically to PDGF. Additionally, the frequency of the MyoD+/myogenin+ cell phenotype was reduced in cultures receiving PDGF, suggesting that PDGF can modulate the transition of the cells into the myogenin+ state. We determined that many of the myogenin+ cells subsequently become MEF2A+ and this phenomenon is not influenced by PDGF-BB. FGF-2 also enhanced the proliferation of C2 myoblasts and suppressed the appearance of the myogenin+ cells, but did not influence the subsequent transition into the MEF2A+ state. The study raises the possibility that PDGF-BB and FGF-2 might delay the transition of the C2 cells into the MyoD+/myogenin+ state by depressing a paracrine signal that enhances differentiation.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
29
|
Abstract
The myogenic precursor cells of postnatal and adult skeletal muscle are situated underneath the basement membrane of the myofibers. It is because of their unique positions that these precursor cells are often referred to as satellite cells. Such defined satellite cells can first be detected following the formation of a distinct basement membrane around the fiber, which takes place in late stages of embryogenesis. Like myoblasts found during development, satellite cells can proliferate, differentiate, and fuse into myofibers. However, in the normal, uninjured adult muscle, satellite cells are mitotically quiescent. In recent years several important questions concerning the biology of satellite cells have been asked. One aspect has been the relationship between satellite cells and myoblasts found in the developing muscle: are these myogenic populations identical or different? Another aspect has been the physiological cues that control the quiescent, proliferative, and differentiative states of these myogenic precursors: what are the growth regulators and how do they function? These issues are discussed, referring to previous work by others and further emphasizing our own studies on avian and rodent satellite cells. Collectively, the studies presented indicate that satellite cells represent a distinct myogenic population that becomes dominant in late stages of embryogenesis. Moreover, although satellite cells are already destined to be myogenic precursors, they do not express any of the four known myogenic regulatory genes unless their activation is induced in the animal or in culture. Furthermore, multiple growth factors are important regulators of satellite cell proliferation and differentiation. Our work on the role of one of these growth factors [platelet-derived growth factor (PDGF)] during proliferation of adult myoblasts is further discussed with greater detail and the possibility that PDGF is involved in the transition from fetal to adult myoblasts in late embryogenesis is brought forward.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
30
|
Ewton DZ, Roof SL, Magri KA, McWade FJ, Florini JR. IGF-II is more active than IGF-I in stimulating L6A1 myogenesis: greater mitogenic actions of IGF-I delay differentiation. J Cell Physiol 1994; 161:277-84. [PMID: 7962112 DOI: 10.1002/jcp.1041610212] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitogens are generally thought to inhibit myogenesis, and many cell biologists have found it hard to interpret observations that the insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of muscle cells in culture. Our previous studies suggested that the Type I IGF receptor mediates these actions. However, IGF-II and insulin treatment caused myoblasts to differentiate much more extensively, suggesting that more complex mechanisms may be involved. Here we present evidence that the greater mitogenic activity of IGF-I (compared to IGF-II and insulin) delays L6A1 myoblast differentiation. Under conditions in which the mitogenic actions of IGF-I are suppressed, the stimulation of myogenesis by IGF-I approached that by IGF-II: (1) in L6A1 cultures plated at a higher cell density; (2) in L6A1 cultures in which cell proliferation was inhibited by cytosine arabinoside or aphidicolin; and (3) in cultures of primary human muscle cells, which exhibit a smaller mitogenic response to IGF-I. Further evidence that the Type I receptor plays a major role in relaying the signal for differentiation was obtained by using IGF-I and IGF-II analogs. Analogs which have reduced affinity for the Type I receptor showed a dramatic decrease in activity, while an analog with increased affinity for the Type II receptor was no more active than native IGF-I. Our results indicate that both mitogenic and myogenic actions of IGF-I are mediated by the Type I receptor. We conclude that IGF-I delays the onset of myogenesis as a result of its mitogenic actions, and only subsequently stimulates myogenesis. These observations reconcile the apparent conflict between our results with the IGFs and other investigators' reports of effects of other mitogens.
Collapse
Affiliation(s)
- D Z Ewton
- Biology Department, Syracuse University, New York 13244
| | | | | | | | | |
Collapse
|
31
|
Hunter I, Lindh M, Obrink B. Differential regulation of C-CAM isoforms in epithelial cells. J Cell Sci 1994; 107 ( Pt 5):1205-16. [PMID: 7929630 DOI: 10.1242/jcs.107.5.1205] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C-CAM is a Ca(2+)-independent cell adhesion molecule (CAM) that mediates intercellular adhesion of isolated rat hepatocytes. It is widely distributed in epithelia, where its presence both at lateral cell borders and on apical cell surfaces suggests that it may have diverse biological functions. Two major isoforms, C-CAM1 and C-CAM2, which differ in the lengths of their cytoplasmic domains, have been identified. The lack of suitable in vitro systems has so far prevented a detailed study of the physiological role of C-CAM in epithelia. We now report on the identification, biochemical characterization and functional analysis of C-CAM isoforms in the established epithelial cell line NBT II, derived from a chemically induced carcinoma of rat bladder. C-CAM in NBT II cells is a 110–115 kDa cell surface glycoprotein located predominantly at sites of cell-cell contact but also present on the apical cell surface. Northern blotting analysis revealed the presence of both C-CAM1 and C-CAM2, with the major transcripts for both isoforms present within the 4.0 kb size range. The dissociation of NBT II cell colonies by anti-C-CAM antibodies indicated that at least one function of C-CAM in these cells is to mediate intercellular adhesion. The maintenance of extensive cell-cell contacts and the expression of C-CAM at the contact sites in cells grown in low Ca2+ medium suggested that, like its counterpart in hepatocytes, C-CAM in NBT II cells may be a Ca(2+)-independent cell-cell adhesion molecule. The co-localization and coordinate reorganization of both C-CAM and actin by anti-C-CAM antibodies indicated that these two proteins were associated and suggested that interactions with the cytoskeleton may be important for the regulation of C-CAM function. The specific upregulation of C-CAM1 in cells induced to undergo epithelial to mesenchymal-like transitions (EMT) by the serum substitute Ultroser G suggested that C-CAM isoforms are important modulators of the adhesive properties of these cells.
Collapse
Affiliation(s)
- I Hunter
- Department of Cell and Molecular Biology, Medical Nobel Institute, Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Thyberg J, Hultgårdh-Nilsson A. Fibronectin and the basement membrane components laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res 1994; 276:263-71. [PMID: 8020062 DOI: 10.1007/bf00306112] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A substrate of the extracellular matrix protein fibronectin has previously been found to promote the modulation of freshly isolated rat aortic smooth muscle cells from a contractile to a synthetic phenotype early in primary culture. In contrast, substrates of the basement membrane proteins laminin and collagen type IV were found to retain the cells in a contractile phenotype. Here, we have studied whether rat aortic smooth muscle cells tht have already adopted a synthetic phenotype are also affected differently by these proteins. For this sake, subcultured cells were detached with trypsin, seeded on substrates of either fibronectin or laminin plus collagen type IV, and incubated in a serum-free medium for one to three days. RNA blot and immunoblot analyses indicated that cells grown on laminin plus collagen type IV expressed smooth muscle alpha-actin transcripts and protein at higher levels than cells grown on fibronectin. Moreover, immunocytochemical and electron-microscopic analyses revealed that cells positively stained for smooth muscle alpha-actin and cells with a cytoplasm dominated by large microfilament bundles were more numerous on laminin plus collagen type IV than on fibronectin. Finally, thymidine autoradiography showed that the DNA synthetic response to stimulation with platelet-derived growth factor or serum was weaker in cells grown on laminin plus collagen type IV than in cells grown on fibronectin. These findings confirm the notion that a substrate of laminin and collagen type IV stimulates the in vitro expression of differentiated smooth muscle traits at a higher level than does a substrate of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
33
|
Olwin BB, Hannon K, Kudla AJ. Are fibroblast growth factors regulators of myogenesis in vivo? PROGRESS IN GROWTH FACTOR RESEARCH 1994; 5:145-58. [PMID: 7919221 DOI: 10.1016/0955-2235(94)90002-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent advances in understanding of skeletal muscle differentiation implicate fibroblast growth factors (FGFs) as regulators of myogenesis; however, the identity and actions of factors that repress myogenesis in vivo remain to be established. This review will focus on the fibroblast growth factor family and the evidence for its role in regulating myogenesis in culture and in vivo.
Collapse
Affiliation(s)
- B B Olwin
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
34
|
Sejersen T, Lendahl U. Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 1993; 106 ( Pt 4):1291-300. [PMID: 8126108 DOI: 10.1242/jcs.106.4.1291] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been established that skeletal muscle development is accompanied by changes in the composition of intermediate filaments: vimentin is expressed predominantly in myoblasts and desmin in adult myotubes. We show that the intermediate filament transitions during muscle development are more complex, and involve a transient expression of the recently discovered intermediate filament nestin. Nestin RNA is expressed predominantly early, in a biphasic pattern, and is markedly downregulated in adult rat muscle, whereas desmin RNA becomes more abundant throughout development. Nestin protein was found up to the postnatal myotube stage, where it colocalized with desmin in Z bands. The intracellular distribution of nestin, vimentin and desmin was analysed in the human myogenic cell line G6 before and after in vitro differentiation. Despite its more distant evolutionary and structural relationship to the other two intermediate filaments, nestin formed a cytoplasmic filamentous network indistinguishable from that of desmin and vimentin, both in undifferentiated myoblasts and after differentiation to multinuclear myotubes. In conclusion, our data suggest that nestin is an integrated component of the dynamic intermediate filament network during muscle development and that nestin copolymerizes with desmin and vimentin at stages of coexpression.
Collapse
Affiliation(s)
- T Sejersen
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
35
|
Jin P, Farmer K, Ringertz NR, Sejersen T. Proliferation and differentiation of human fetal myoblasts is regulated by PDGF-BB. Differentiation 1993. [DOI: 10.1111/j.1432-0436.1993.tb01587.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Jin P, Farmer K, Ringertz NR, Sejersen T. Proliferation and differentiation of human fetal myoblasts is regulated by PDGF-BB. Differentiation 1993; 54:47-54. [PMID: 8405773 DOI: 10.1111/j.1432-0436.1993.tb00658.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A myoblast clone, G6, was obtained from thigh muscle of an 11 week old human fetus, and used to examine the effect of platelet-derived growth factor (PDGF) on cell multiplication and differentiation. G6 myoblasts showed extensive fusion, and expressed creatine phosphokinase activity and muscle specific gene mRNA (myosin heavy chain, alpha-actin) when switched to a differentiation medium. The cells expressed PDGF beta-receptor mRNA, and bound 125I-PDGF-BB specifically. Expression of PDGF beta-receptors declined during in vitro differentiation. Relative levels of transcripts for the myogenic regulatory factors Myf4 (myogenin), Myf5, and Myf6 (MRF4) increased during the differentiation process, whereas Myf3 (MyoD1) was preferentially expressed in undifferentiated myoblasts. Treatment of the myoblasts with PDGF-BB increased DNA synthesis and cell density. Myogenic differentiation, analyzed as number of nuclei present in myotubes and expression of creatine phosphokinase and myosin heavy chain, was partly inhibited by the presence of PDGF-BB in the differentiation medium. PDGF-BB may, therefore, have the potential of regulating human muscle development and muscle regeneration.
Collapse
Affiliation(s)
- P Jin
- Department of Medical Cell Genetics, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Marx M, Daniel TO, Kashgarian M, Madri JA. Spatial organization of the extracellular matrix modulates the expression of PDGF-receptor subunits in mesangial cells. Kidney Int 1993; 43:1027-41. [PMID: 8510381 DOI: 10.1038/ki.1993.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to test the hypothesis that changes in the extracellular matrix environment regulate rat mesangial cell growth by modulation of the expression of both PDGF-receptor alpha- and beta-subunits. We investigated the mitogenic effects of the PDGF isoforms AA, AB and BB in conventional two-dimensional (2D) culture on laminin, fibronectin, type I, IV and V collagen and in the different spatial organization of matrix in type I collagen gels in three-dimensional culture (3D). In 2D culture PDGF BB was a potent mitogen, AB elicited an intermediate response while AA had no effect on cell proliferation. Extracellular matrix did not modify the PDGF responsiveness in 2D-culture. The different effects of the three PDGF isoforms were due to differential expression and isoform specific association of the PDGF-receptor subunits. Specifically, the beta-receptor was strongly expressed, whereas the alpha-receptor was only barely detectable on the cell surface. Metabolic labeling revealed synthesis and intracellular accumulation of the complete alpha-receptor protein, and treatment with suramin increased its surface expression, suggesting continuous receptor down-regulation by endogenous PDGF. Morphological and ultrastructural analysis in 3D culture revealed a change in mesangial cell phenotype, forming a branching network of multicellular structures. Assessment of proliferation in 3D culture showed quiescent cells and PDGF unresponsiveness. Investigation of the PDGF beta-receptors revealed a rapid down-regulation in 3D culture; both receptor subunits were not detectable on the cell surface. We conclude that 3D culture promotes the induction of a different mesangial cell phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Marx
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
38
|
Grounds MD, Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1993; 3:210-56. [PMID: 8111541 DOI: 10.1007/978-94-011-1528-5_9] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M D Grounds
- Department of Pathology, University of Western Australia, Queen Elizabeth II Medical Centre, Perth
| | | |
Collapse
|
39
|
von Zglinicki T, Edwall C, Ostlund E, Lind B, Nordberg M, Ringertz NR, Wroblewski J. Very low cadmium concentrations stimulate DNA synthesis and cell growth. J Cell Sci 1992; 103 ( Pt 4):1073-81. [PMID: 1487490 DOI: 10.1242/jcs.103.4.1073] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake of cadmium into cultured cells and its effects on cell growth and DNA synthesis are measured over a range of Cd concentrations of seven orders of magnitude. Cd uptake is found to be proportional to the external Cd concentration and to incubation time over a very broad range of concentrations. At least 200 mmol cadmium per kg dry weight of cells can be accumulated in this way, leading to exhaustion of the major intracellular Cd binding sites before cell death. On the other hand, very low cadmium concentrations down to 100 pM stimulate cell growth and DNA synthesis significantly. Stimulation is found in all three mammalian cell types examined: namely L6J1, a rat permanent myoblast cell line, LLC-PK1 porcine renal epithelial cells, and a primary rat chondrocyte culture. Cd acts as a cofactor with serum in L6J1 cultures, but is stimulatory only in serum-free cultures of chondrocytes. Stimulation occurs at Cd concentrations too low to result in a measurable induction of metallothionein. This might implicate the action of response amplifiers in the chain of events leading to Cd-stimulated DNA replication and cell growth.
Collapse
Affiliation(s)
- T von Zglinicki
- Department of Medical Cell Genetics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Tidball JG, Spencer MJ, St Pierre BA. PDGF-receptor concentration is elevated in regenerative muscle fibers in dystrophin-deficient muscle. Exp Cell Res 1992; 203:141-9. [PMID: 1426037 DOI: 10.1016/0014-4827(92)90049-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.
Collapse
Affiliation(s)
- J G Tidball
- Department of Physiological Science, University of California, Los Angeles 90024-1527
| | | | | |
Collapse
|
41
|
Burton PB, Hauck A, Nehlsen-Cannarella SL, Gusewitch GA, Sorensen CM, Gundry SR, Bailey LL. Hypoplastic left heart syndrome: some clues to its aetiology. Lancet 1991; 338:1148. [PMID: 1682568 DOI: 10.1016/0140-6736(91)92006-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|