1
|
Conformational plasticity and navigation of signaling proteins in antigen-activated B lymphocytes. Adv Immunol 2008; 97:251-81. [PMID: 18501772 DOI: 10.1016/s0065-2776(08)00005-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past two decades our view of the B cell antigen receptor (BCR) has fundamentally changed. Being initially regarded as a mute antibody orphan of the B cell surface, the BCR turned out to be a complex multimolecular machine monitoring almost all stages of B cell development, selection, and activation through a plethora of ubiquitously and cell-type-specific effector proteins. A comprehensive understanding of the many BCR signaling facets is still out but a few common biochemical principles outlined in this review operate at the level of receptor activation and orchestrate specific wiring of intracellular transducer cascades. First, initiation and processing of antigen-induced signal transduction relies on transient conformational changes in the signaling proteins to trigger their physical interaction with downstream elements. Second, this dynamic assembly of signalosomes occurs at distinct subcellular locations, most prominently the plasma membrane, which requires dynamic relocalization of one or more of the engaged molecules. For both, precise complex formation and efficient subcellular targeting, B cell signaling components are equipped with a variety of protein interaction domains. Here we provide an overview on how these simple rules are applied by a limited number of transmembrane and cytosolic proteins to convert BCR ligation into Ca(2+) mobilization and Ras activation in an adjustable manner.
Collapse
|
2
|
Storch B, Meixlsperger S, Jumaa H. The Ig-alpha ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur J Immunol 2007; 37:252-60. [PMID: 17163454 DOI: 10.1002/eji.200636667] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signals from the pre-B cell receptor (pre-BCR) mediated by the cytoplasmic tails of Ig-alpha/Ig-beta are essential for developing B cells. To analyze the role of Ig-alpha ITAM and non-ITAM tyrosines in pre-BCR signaling, we reconstituted individual tyrosine mutants of Ig-alpha in src homology 2 domain-containing leukocyte protein of 65 kDa (SLP-65)/Ig-alpha double-deficient pre-B cells. We show that the Ig-alpha mutants led to comparable pre-BCR expression on the cell surface, while the pre-BCR-induced tyrosine phosphorylation was different. We further show that the reconstitution of Ig-alpha and the resulting pre-BCR expression led to enrichment of the pre-BCR-expressing cells in vitro irrespective of the introduced Ig-alpha mutation. We show that, even though the enrichment rate increased by lowering the IL-7 concentration, residual amounts of IL-7 were required for optimal enrichment. Our results indicate that surface IL-7 receptor expression is modulated by the pre-BCR, thereby increasing the IL-7 sensitivity of the respective cells. In contrast to the comparable pre-B cell proliferation, however, the Ig-alpha mutants differed in their capacity to induce calcium flux and activate efficient pre-B cell differentiation. Together, our data suggest that ITAM tyrosines and Y204 are required for efficient pre-B cell differentiation but not proliferation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/genetics
- Amino Acid Motifs/genetics
- Animals
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- CD79 Antigens/deficiency
- CD79 Antigens/genetics
- CD79 Antigens/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Proliferation
- Cells, Cultured
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Site-Directed
- Phosphorylation
- Pre-B Cell Receptors
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Stem Cells/cytology
- Stem Cells/immunology
- Stem Cells/metabolism
- Tyrosine/genetics
Collapse
Affiliation(s)
- Bettina Storch
- Institute for Biologie III, Albert Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
3
|
Niederberger N, Buehler LK, Ampudia J, Gascoigne NRJ. Thymocyte stimulation by anti-TCR-beta, but not by anti-TCR-alpha, leads to induction of developmental transcription program. J Leukoc Biol 2005; 77:830-841. [PMID: 15661827 DOI: 10.1189/jlb.1004608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/15/2004] [Accepted: 12/29/2004] [Indexed: 12/19/2022] Open
Abstract
Anti-T cell receptor (aTCR) antibody (Ab) stimulation of T cells results in TCR down-modulation and T cell activation. Differences in the effect of anti-alpha-chain and beta-chain Ab have been reported on thymocytes. Anti-beta-chain Ab but not anti-alpha-chain reagents cause long-term TCR down-modulation. However, both types of Ab result in TCR cross-linking and activate early steps in signal transduction. In this study, we show that TCR internalization and calcium flux, hallmarks of T cell activation, are similar with aValpha and aVbeta treatment. Therefore, we have compared the gene expression profiles of preselection thymocytes stimulated with these reagents. We find that aValpha treatment does not cause any significant change in gene expression compared with control culture conditions. In contrast, aVbeta stimulation results in numerous changes in gene expression. The alterations of expression of genes known to be expressed in thymocytes are similar to changes caused by positive thymic selection, suggesting that the expression of some of the genes without known roles in thymocyte development and of novel genes whose expression is found to be altered may also be involved in this process.
Collapse
Affiliation(s)
- Nathalie Niederberger
- Department of Immunology, IMM1, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
4
|
Reichlin A, Gazumyan A, Nagaoka H, Kirsch KH, Kraus M, Rajewsky K, Nussenzweig MC. A B cell receptor with two Igalpha cytoplasmic domains supports development of mature but anergic B cells. J Exp Med 2004; 199:855-65. [PMID: 15024049 PMCID: PMC2212724 DOI: 10.1084/jem.20031140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 02/02/2004] [Indexed: 12/17/2022] Open
Abstract
B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)alpha and Igbeta a membrane-bound heterodimer. Igalpha and Igbeta are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igalpha-Igbeta in mature B cells in vivo we exchanged the cytoplasmic domain of Igalpha for the cytoplasmic domain of Igbeta by gene targeting (Igbetac-->alphac mice). Igbetac-->alphac B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igbetac-->alphac B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Blotting, Southern
- Blotting, Western
- Bone Marrow/immunology
- Bromodeoxyuridine
- Calcium/metabolism
- Cell Differentiation/immunology
- Cell Differentiation/physiology
- Clonal Anergy/immunology
- DNA Primers
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Genetic Vectors
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Mice
- Mice, Transgenic
- Protein Structure, Tertiary/physiology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/physiology
- Spleen/immunology
Collapse
Affiliation(s)
- Amy Reichlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Pike KA, Baig E, Ratcliffe MJH. The avian B-cell receptor complex: distinct roles of Igalpha and Igbeta in B-cell development. Immunol Rev 2004; 197:10-25. [PMID: 14962183 DOI: 10.1111/j.0105-2896.2004.0111.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The bursa of Fabricius has evolved in birds as a gut-associated site of B-cell lymphopoiesis that is segregated from the development of other hematopoietic lineages. Despite differences in the developmental progression of chicken as compared to murine B-cell lymphopoiesis, cell-surface immunoglobulin (sIg) expression has been conserved in birds as an essential checkpoint in B-cell development. B-cell precursors that express an sIg complex that includes the evolutionarily conserved Igalpha/beta heterodimer colonize lymphoid follicles in the bursa, whereas B-cell precursors that fail to express sIg due to non-productive V(D)J recombination are eliminated. Productive retroviral gene transfer has allowed us to introduce chimeric receptor constructs into developing B-cell precursors in vivo. Chimeric proteins comprising the extracellular and transmembrane regions of murine CD8alpha fused to the cytoplasmic domain of chicken Igalpha efficiently supported B-cell development in precursors that lacked endogenous sIg expression. By contrast, expression of an equivalent chimeric receptor containing the cytoplasmic domain of Igbeta actively inhibited B-cell development. Consequently, the cytoplasmic domains of Igalpha and Igbeta play functionally distinct roles in chicken B-cell development.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto,Toronto, Ontario, Canada
| | | | | |
Collapse
|
6
|
Abstract
Expression of surface immunoglobulin (sIg) related receptors has been conserved in phylogenetically distinct species as a critical checkpoint in B cell development. The sIg receptor comprises extracellular IgM heavy and light chains, with the potential for ligand binding, complexed to the Igalpha/Igbeta heterodimer that is responsible for signal transduction through sIg. Experimental systems, from both avian and murine models of B cell development, have been designed to identify the function of individual receptor components in B cell development. In this review, we assess the regulatory functions of different components of the sIg receptor complex during early development in experimental systems from evolutionarily distinct species.
Collapse
Affiliation(s)
- Kelly A Pike
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
7
|
Wienands J, Engels N. Multitasking of Ig-alpha and Ig-beta to regulate B cell antigen receptor function. Int Rev Immunol 2002; 20:679-96. [PMID: 11913945 DOI: 10.3109/08830180109045585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since their discovery as signaling subunits of the B cell antigen receptor (BCR), Ig-alpha and Ig-beta are discussed to serve either a redundant or distinct function for B cell development, maintenance, and activation. Dependent upon the experimental system that has been used to address this issue, evidence could be provided to support both possibilities. Only recently has it become clear that Ig-alpha and Ig-beta possess a unique signaling identity but that both together are required to orchestrate proper B cell function in vivo. Here we discuss some of the underlying mechanisms that may involve direct coupling to discrete subsets of BCR effector proteins, such as protein tyrosine kinases or the intracellular adaptor SLP-65/BLNK.
Collapse
Affiliation(s)
- J Wienands
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Germany.
| | | |
Collapse
|
8
|
Kraus M, Pao LI, Reichlin A, Hu Y, Canono B, Cambier JC, Nussenzweig MC, Rajewsky K. Interference with immunoglobulin (Ig)alpha immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation modulates or blocks B cell development, depending on the availability of an Igbeta cytoplasmic tail. J Exp Med 2001; 194:455-69. [PMID: 11514602 PMCID: PMC2193498 DOI: 10.1084/jem.194.4.455] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To determine the function of immunoglobulin (Ig)alpha immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation, we generated mice in which Igalpha ITAM tyrosines were replaced by phenylalanines (Igalpha(FF/FF)). Igalpha(FF/FF) mice had a specific reduction of B1 and marginal zone B cells, whereas B2 cell development appeared to be normal, except that lambda1 light chain usage was increased. The mutants responded less efficiently to T cell-dependent antigens, whereas T cell-independent responses were unaffected. Upon B cell receptor ligation, the cells exhibited heightened calcium flux, weaker Lyn and Syk tyrosine phosphorylation, and phosphorylation of Igalpha non-ITAM tyrosines. Strikingly, when the Igalpha ITAM mutation was combined with a truncation of Igbeta, B cell development was completely blocked at the pro-B cell stage, indicating a crucial role of ITAM phosphorylation in B cell development.
Collapse
Affiliation(s)
- M Kraus
- Institute for Genetics, University of Cologne, D-50931 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Engels N, Wollscheid B, Wienands J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-alpha. Eur J Immunol 2001; 31:2126-34. [PMID: 11449366 DOI: 10.1002/1521-4141(200107)31:7<2126::aid-immu2126>3.0.co;2-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytoplasmic adaptor protein SLP-65 (BLNK or BASH) is a critical downstream effector of the B cell antigen receptor (BCR). Tyrosine-phosphorylated SLP-65 assembles intracellular signaling complexes such as the Ca(2 +) initiation complex encompassing phospholipase C-gamma2 and Bruton's tyrosine kinase. It is, however, unclear how the SLP-65 signaling module can be recruited to the plasma membrane. Here we show that following B cell stimulation, SLP-65 associates directly with the BCR signaling subunit, the Ig-alpha / Ig-beta heterodimer. The interaction is mediated by the Src homology 2 domain of SLP-65 and the phosphorylated Ig-alpha tyrosine 204, which is located outside of the immunoreceptor tyrosine-based activation motif. Our data identify an unexpected BCR phosphorylation pattern and indicate that Ig-alpha has the capability to serve as transmembrane adaptor in BCR signaling.
Collapse
Affiliation(s)
- N Engels
- Institute of Biology III, University of Freiburg and Max Planck Institute of Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
10
|
Reichlin A, Hu Y, Meffre E, Nagaoka H, Gong S, Kraus M, Rajewsky K, Nussenzweig MC. B cell development is arrested at the immature B cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin beta. J Exp Med 2001; 193:13-23. [PMID: 11136817 PMCID: PMC2195879 DOI: 10.1084/jem.193.1.13] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The B cell receptor (BCR) regulates B cell development and function through immunoglobulin (Ig)alpha and Ig beta, a pair of membrane-bound Ig superfamily proteins, each of which contains a single cytoplasmic immunoreceptor tyrosine activation motif (ITAM). To determine the function of Ig beta, we produced mice that carry a deletion of the cytoplasmic domain of Ig beta (Ig beta Delta C mice) and compared them to mice that carry a similar mutation in Ig alpha (MB1 Delta C, herein referred to as Ig alpha Delta C mice). Ig beta Delta C mice differ from Ig alpha Delta C mice in that they show little impairment in early B cell development and they produce immature B cells that respond normally to BCR cross-linking as determined by Ca(2+) flux. However, Ig beta Delta C B cells are arrested at the immature stage of B cell development in the bone marrow and die by apoptosis. We conclude that the cytoplasmic domain Ig beta is required for B cell development beyond the immature B cell stage and that Ig alpha and Ig beta have distinct biologic activities in vivo.
Collapse
Affiliation(s)
- Amy Reichlin
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Yun Hu
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Eric Meffre
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Hitoshi Nagaoka
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Shiaoching Gong
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| | - Manfred Kraus
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Klaus Rajewsky
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021
| |
Collapse
|
11
|
Abstract
The development of B cells requires the expression of an antigen receptor at distinct points during maturation. The Ig-alpha/beta heterodimer signals for these receptors, and mice harboring a truncation of the Ig-alpha intracellular domain (mb-1(delta(c)/delta(c)) have severely reduced peripheral B cell numbers. Here we report that immature mb-1(delta(c)/delta(c) B cells are activated despite lacking a critical Ig-alpha-positive signaling motif. As a consequence of abnormal activation, transitional immature IgMhighIgDlow B cells are largely absent in mb-1delta(c)/delta(c) mutants, accounting for the paucity of mature B cells. Thus, Ig-alpha cytoplasmic tail truncation yields an antigen receptor complex on immature B cells that signals constitutively. These data illustrate a role for Ig-alpha in negatively regulating antigen receptor signaling during B cell development.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- B-Lymphocytes/cytology
- B7-2 Antigen
- CD79 Antigens
- Dimerization
- Immunoglobulin M/biosynthesis
- Immunophenotyping
- Liver/cytology
- Liver/embryology
- Lymphocyte Count
- Lymphoid Tissue/pathology
- Membrane Glycoproteins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Sequence Deletion
- Signal Transduction
- Specific Pathogen-Free Organisms
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- R M Torres
- Basel Institute for Immunology, Switzerland.
| | | |
Collapse
|
12
|
Kraus M, Saijo K, Torres RM, Rajewsky K. Ig-alpha cytoplasmic truncation renders immature B cells more sensitive to antigen contact. Immunity 1999; 11:537-45. [PMID: 10591179 DOI: 10.1016/s1074-7613(00)80129-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To study the function of Ig-alpha in the selection of autoreactive B cells, we have analyzed mb-1 cytoplasmic truncation mutant mice (mb-1delta(c)/delta(c)), which coexpress transgenes encoding hen egg lysozyme (HEL) and HEL-specific immunoglobulin. We demonstrate that in the presence of soluble HEL (sHEL) and dependent on the mb-1delta(c) mutation, most immature B cells bearing the HEL-specific Ig transgene undergo rearrangements of endogenous kappa light chains, resulting in loss of HEL specificity. Moreover, immature B cells from Ig-alpha mutant mice respond to BCR cross-linking with an exaggerated and prolonged calcium response and induction of protein tyrosine phosphorylation. Our data imply a negative signaling role for Ig-alpha in immature B cells.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/immunology
- Apoptosis
- Autoantigens/genetics
- Autoantigens/immunology
- CD79 Antigens
- Calcium Signaling/immunology
- Clonal Deletion
- Crosses, Genetic
- Gene Rearrangement, B-Lymphocyte, Light Chain
- Immunoglobulin kappa-Chains/immunology
- Immunologic Capping
- Lymphocyte Activation/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muramidase/genetics
- Muramidase/immunology
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Processing, Post-Translational/immunology
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Sequence Deletion
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- M Kraus
- Department of Immunology, Institute for Genetics, University of Cologne, Germany.
| | | | | | | |
Collapse
|
13
|
Wienands J. The B-cell antigen receptor: formation of signaling complexes and the function of adaptor proteins. Curr Top Microbiol Immunol 1999; 245:53-76. [PMID: 10533310 DOI: 10.1007/978-3-642-57066-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Wienands
- Department for Molecular Immunology, Biology III, University of Freiburg, Germany.
| |
Collapse
|
14
|
Justement LB. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 1999; 245:1-51. [PMID: 10533309 DOI: 10.1007/978-3-642-57066-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antigens/metabolism
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium/metabolism
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Enzyme Activation
- Enzyme Precursors/metabolism
- Gene Expression Regulation
- Humans
- Immunoglobulin M/metabolism
- Intracellular Signaling Peptides and Proteins
- Lectins
- Oncogene Proteins/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
- Signal Transduction/physiology
- Syk Kinase
- Type C Phospholipases/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- L B Justement
- Department of Microbiology, University of Alabama at Birmingham 35294-3300, USA
| |
Collapse
|
15
|
Pao LI, Famiglietti SJ, Cambier JC. Asymmetrical Phosphorylation and Function of Immunoreceptor Tyrosine-Based Activation Motif Tyrosines in B Cell Antigen Receptor Signal Transduction. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.7.3305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD79a and CD79b function as transducers of B cell antigen receptor signals via a cytoplasmic sequence, termed the immunoreceptor tyrosine-based activation motif (ITAM). ITAMs contain two conserved tyrosines that may become phosphorylated upon receptor aggregation and bind distinct effectors by virtue of the distinct preference of phosphotyrosyl-containing sequences for SH2 domains. To explore the function of CD79a and CD79b ITAM tyrosines, we created membrane molecules composed of MHC class II I-Ak extracellular and transmembrane domains, and CD79a or CD79b cytoplasmic domains in which one or both of the ITAM tyrosines were mutated to phenylalanine. Functional analysis revealed that both ITAM tyrosines are required for ligand-induced Syk phosphorylation. However CD79a-ITAM and CD79b-ITAM tyrosine phosphorylations were asymmetrical, with >80% of phosphorylation occurring on the N-terminal tyrosine (Y-E-G-L). Thus, these findings suggest that following receptor ligation, only a minor proportion of phosphorylated ITAMs are doubly phosphorylated and thus can engage Syk. Only the N-terminal ITAM tyrosine of CD79a was required for ligand-mediated phosphorylation of the receptor and a subset of downstream substrates, including p62, p110, and Shc, and for Ca2+ mobilization. However, responses mediated through CD79b exhibited a greater dependence on the presence of both tyrosines. Neither tyrosine in CD79a or CD79b appeared absolutely essential for Src family kinase phosphorylation. These results indicate that phosphorylations of the tyrosines in CD79a and CD79b occur with very different stoichiometry, and the respective tyrosyl residues have distinct functions.
Collapse
Affiliation(s)
- Lily I. Pao
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Sara J. Famiglietti
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - John C. Cambier
- Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| |
Collapse
|
16
|
Role of Immunoreceptor Tyrosine-Based Activation Motif in Signal Transduction from Antigen and Fc Receptors**Received for publication October 7, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60608-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Teh YM, Neuberger MS. The immunoglobulin (Ig)alpha and Igbeta cytoplasmic domains are independently sufficient to signal B cell maturation and activation in transgenic mice. J Exp Med 1997; 185:1753-8. [PMID: 9151700 PMCID: PMC2196318 DOI: 10.1084/jem.185.10.1753] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/1997] [Revised: 03/13/1997] [Indexed: 02/04/2023] Open
Abstract
The B cell antigen receptor, composed of membrane immunoglobulin (Ig) sheathed by the Igalpha/Igbeta heterodimer plays a critical role in mediating B cell development and responses to antigen. The cytoplasmic tails of Igalpha and Igbeta differ substantially but have been well conserved in evolution. Transfection experiments have revealed that, while these tails share an esssential tyrosine-based activation motif (ITAM), they perform differently in some but not all assays and have been proposed to recruit distinct downstream effectors. We have created transgenic mouse lines expressing chimeric receptors comprising an IgM fused to the cytoplasmic domain of each of the sheath polypeptides. IgM/alpha and IgM/beta chimeras (but not an IgM/beta with mutant ITAM) are each independently sufficient to mediate allelic exclusion, rescue B cell development in gene-targeted Igmu- mice that lack endogenous antigen receptors, as well as signal for B7 upregulation. While the (IgM/alpha) x (IgM/beta) double-transgenic mouse revealed somewhat more efficient allelic exclusion, our data indicate that each of the sheath polypeptides is sufficient to mediate many of the essential functions of the B cell antigen receptor, even if the combination gives optimal activity.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD
- Antigens, Differentiation/metabolism
- B-Lymphocytes/immunology
- CTLA-4 Antigen
- Dimerization
- Flow Cytometry
- Immunoconjugates
- Immunoglobulin M/biosynthesis
- Interleukin-2/biosynthesis
- Lymphocyte Activation
- Lymphoma, B-Cell
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/biosynthesis
- Signal Transduction
- Transfection
- Tumor Cells, Cultured
- Tyrosine
Collapse
Affiliation(s)
- Y M Teh
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | |
Collapse
|
18
|
Jensen WA, Pleiman CM, Beaufils P, Wegener AM, Malissen B, Cambier JC. Qualitatively distinct signaling through T cell antigen receptor subunits. Eur J Immunol 1997; 27:707-16. [PMID: 9079813 DOI: 10.1002/eji.1830270320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell antigen receptors (TCR) contain several subunits including CD3gamma, delta, and epsilon, and TCRzeta and eta which are capable of mediating signal transduction. It is unclear whether the signaling function of these subunits is completely redundant. To assess the relative signaling capabilities of TCR subunits, we compared proximal events in signal transduction by wild-type TCR complexes and TCR devoid of functional zeta subunits, as well as chimeric receptors containing the cytoplasmic domains of TCRzeta or CD3epsilon. Results demonstrate that in BW5147 wild-type TCR, tail-less zeta TCR, CD3epsilon, and TCRzeta transduce signals leading to tyrosine phosphorylation of similar sets of cellular substrates, including the receptor subunits, Fyn, ZAP-70, and phospholipase Cgamma1 (PLCgamma1). Surprisingly, unlike wild-type TCR, tail-less zeta TCR, and CD3epsilon, TCRzeta was incapable of transducing signals resulting in inositol triphosphate (IP3) generation or intracellular free calcium ([Ca2+]i) mobilization. These data indicate that tyrosine phosphorylation of PLCgamma1 is not sufficient to drive IP3 production and [Ca2+]i mobilization. Most importantly, data presented indicate that TCRzeta and CD3epsilon engage partially distinct signaling pathways.
Collapse
Affiliation(s)
- W A Jensen
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Current models of signal transduction from the antigen receptors on B and T cells still resemble equations with several unknown elements. Data from recent knockout experiments in cell lines and mice contradict the assumption that Src-family kinase and tyrosine kinases of the Syk/Zap-70 family are the transducer elements that set signaling from these receptors in motion. Using a functional definition of signaling elements, we discuss the current knowledge of signaling events from the BCR and suggest the existence of an as-yet-unknown BCR transducer complex.
Collapse
Affiliation(s)
- M Reth
- Department of Molecular Immunology, Biology III, University Freiburg, Germany.
| | | |
Collapse
|
20
|
Cassard S, Choquet D, Fridman WH, Bonnerot C. Regulation of ITAM signaling by specific sequences in Ig-beta B cell antigen receptor subunit. J Biol Chem 1996; 271:23786-91. [PMID: 8798606 DOI: 10.1074/jbc.271.39.23786] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
B cell antigen receptors (BCR) are composed of an antigen binding subunit, the membrane Ig, and Ig-alpha/Ig-beta heterodimers, that contain a transducing motif named ITAM for "immuno-receptor tyrosine-based activation motif." Ig-alpha and Ig-beta ITAMs only differ by four amino acids located before the second conserved tyrosine (DCSM in Ig-alpha and QTAT in Ig-beta), which determine the in vitro association of Ig-alpha with the src kinase fyn. We have previously shown that Ig-alpha and Ig-beta BCR subunits activate different signaling pathways by expressing, in B cells, FcgammaRII chimeras containing the cytoplasmic tails of Ig-alpha or Ig-beta. We report here that the signaling capacity of Ig-beta ITAM is regulated by peptide sequences located inside (QTAT region) or outside the ITAM (flanking sequences). Furthermore, when isolated, Ig-alpha and Ig-beta ITAM have similar abilities as the entire Ig-alpha tail and the whole BCR in triggering tyrosine kinase activation, an increase of intracellular calcium concentration as well as late events of cell activation as assessed by cytokine secretion. These data show that alterations that modify the ability of Ig-alpha and Ig-beta to interact in vitro with the src kinase fyn (switch between QTAT and DCSM) also determine signal transduction capabilities of these molecules expressed in B cells.
Collapse
Affiliation(s)
- S Cassard
- CJF 95-01, INSERM, Institut Curie, 75231 Paris cedex 05, France
| | | | | | | |
Collapse
|
21
|
Abstract
Receptor tyrosine kinases (RTK), like the PDGF-receptor, translate information from the extracellular environment into cytoplasmic signals that regulate a spectrum of cellular functions. RTK molecules consist of ligand binding extracellular domains, cytoplasmic kinase domains and tyrosine phosphorylation sites [Ullrich and Schlessinger, 1990 (Cell 61, 203-212); Heldin, 1992 (EMBO J. 11, 4251-4259)]. Upon ligand-induced RTK oligomerization, the kinase domains will become activated and induce auto(trans)phosphorylation of a number of cytoplasmic tyrosine residues. These phosphorylated tyrosine residues are incorporated in distinct sequence motifs and act as specific docking sites for SH2 domain-containing proteins [Songyang et al., 1993 (Cell 72, 767-778)]. In contrast to single- or oligo-chain RTK, immunological receptors such as antigen receptors, FcR and cytokine receptors are multi-chain complexes in which distinct receptor functions appear to be compartmentalized in distinct polypeptides. Here, we summarize current knowledge on the structural and functional characteristics of the B-cell antigen receptor complex (BCR) and address the specific ability of accessory molecules to recruit intracellular signaling intermediates towards the activated receptor complex.
Collapse
Affiliation(s)
- A C Lankester
- Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | |
Collapse
|
22
|
Saouaf SJ, Kut SA, Fargnoli J, Rowley RB, Bolen JB, Mahajan S. Reconstitution of the B cell antigen receptor signaling components in COS cells. J Biol Chem 1995; 270:27072-8. [PMID: 7592958 DOI: 10.1074/jbc.270.45.27072] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate interactions occurring between B cell protein tyrosine kinases and the signaling components of the B cell antigen receptor, we have co-transfected into COS cells individual tyrosine kinases together with chimeric cell surface receptors containing the cytoplasmic domains of Ig alpha or Ig beta. Of the tyrosine kinases transfected (Lyn, Blk, Hck, Syk, Fyn), only Blk was able to phosphorylate and subsequently associate with cotransfected Ig alpha and Ig beta chimeras in vivo. Association between Blk and the Ig alpha and Ig beta cytoplasmic domains was shown by mutational analyses to be the result of an SH2-phosphotyrosine interaction. We identified the tyrosine residues of the Ig alpha and Ig beta cytoplasmic domains was shown by mutational analyses to be the result of an SH2-phosphotyrosine interaction. We identified the tyrosine residues of the Ig alpha and Ig beta cytoplasmic domains phosphorylated by Blk. The enzymatic activity and membrane association of Blk were required for the observed phosphorylation of the Ig alpha and Ig beta chimeras. Sequences within the amino-terminal unique domain of Blk are responsible for recognition and subsequent phosphorylation of the Ig alpha chimera since transfer of the unique region of Blk to Fyn results in the chimeric kinase's ability to phosphorylate the cytoplasmic domain of Ig alpha. These findings indicate that the unique domain of Src family kinases may direct recognition of certain substrates leading to their phosphorylation.
Collapse
Affiliation(s)
- S J Saouaf
- Department of Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA
| | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- M Reth
- Max-Planck-Institut für Immunobiologie, Freiburg, Germany
| |
Collapse
|
24
|
Abstract
The specificity of immune responses depends upon the activation of only those lymphocytes that recognize the introduced antigen. In recent years, a great deal has been learned about the structure of lymphocyte receptors for antigens and about their signal transduction mechanism. These receptors activate intracellular protein tyrosine kinases of at least two families, the Src family and the Syk/ZAP-70 family. Recent studies have given us considerable insight into the interactions of these two types of kinases and how they mediate antigen receptor signaling.
Collapse
Affiliation(s)
- A L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0552, USA
| |
Collapse
|
25
|
Abstract
Receptors which induce immune system effector function bear similar intracellular sequences and respond to aggregation through a nonreceptor tyrosine kinase-dependent pathway. The mechanism by which receptor aggregation leads to cell activation is poorly understood, but recent experiments with chimeric receptors and kinases have begun to simplify the analysis.
Collapse
Affiliation(s)
- B Seed
- Massachusetts General Hospital, Boston 02114, USA
| |
Collapse
|
26
|
Gold MR, Matsuuchi L. Signal transduction by the antigen receptors of B and T lymphocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:181-276. [PMID: 7706020 DOI: 10.1016/s0074-7696(08)62159-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
B and T lymphocytes of the immune system recognize and destroy invading microorganisms but are tolerant to the cells and tissues of one's own body. The basis for this self/non-self-discrimination is the clonal nature of the B and T cell antigen receptors. Each lymphocyte has antigen receptors with a single unique antigen specificity. Multiple mechanisms ensure that self-reactive lymphocytes are eliminated or silenced whereas lymphocytes directed against foreign antigens are activated only when the appropriate antigen is present. The key element in these processes is the ability of the antigen receptors to transmit signals to the interior of the lymphocyte when they bind the antigen for which they are specific. Whether these signals lead to activation, tolerance, or cell death is dependent on the maturation state of the lymphocytes as well as on signals from other receptors. We review the role of antigen receptor signaling in the development and activation of B and T lymphocytes and also describe the biochemical signaling mechanisms employed by these receptors. In addition, we discuss how signal transduction pathways activated by the antigen receptors may alter gene expression, regulate the cell cycle, and induce or prevent programmed cell death.
Collapse
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
27
|
Abstract
Interaction of T- and B-cell antigen receptors with cytoplasmic non-receptor tyrosine protein kinases is critical to the activation of lymphocytes by antigen. Both the src-family tyrosine protein kinases Lck, Fyn, Lyn and Blk and the syk-family tyrosine protein kinases Syk and ZAP-70 play a role in lymphocyte activation. The antigen receptors are coupled to this cluster of kinases by the cytoplasmic tails of the gamma, delta, epsilon, zeta, and eta subunits of the T-cell receptor, and the Ig-alpha and Ig-beta subunits of the B-cell receptor. Each of these proteins contains one or more 'tyrosine based activation motifs', with the amino acid sequence D/EX7D/EXXYXXL/IX7YXXL/I. This motif appears to allow binding of one or more src-like kinases, via their unique amino termini, before the onset of lymphocyte activation. Invariant tyrosines in the motif become phosphorylated following the triggering of lymphocyte activation, and this modification induces the binding of the src- and syk-family tyrosine protein kinases, and potentially other signalling molecules, through SH2 domains to the antigen receptors.
Collapse
Affiliation(s)
- B M Sefton
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186
| | | |
Collapse
|
28
|
Taddie JA, Hurley TR, Sefton BM. B-cell activation by wild type and mutant Ig-beta cytoplasmic domains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 365:23-34. [PMID: 7887308 DOI: 10.1007/978-1-4899-0987-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In B lymphocytes, the cytoplasmic domains of the membrane immunoglobulin-associated heterodimeric Ig-alpha and Ig-beta proteins link membrane immunoglobulin to intracellular signalling molecules. We constructed chimeric genes encoding the extracellular and transmembrane domain of human CD8 alpha and the cytoplasmic domain of Ig-alpha or Ig-beta and examined the ability of the chimeric proteins to induce signalling in the murine B-cell lymphoma A20. Crosslinking of CD8/Ig-alpha or CD8/Ig-beta induced both calcium mobilization and protein tyrosine phosphorylation, although induction by CD8/Ig-alpha was somewhat stronger. We also carried out mutagenesis of residues within the "Reth" motif of the CD8/Ig-beta cytoplasmic domain and determined the effects of these mutations on signalling in the murine B-cell hybridoma LK 35.2. Mutants in which alanine was substituted for glutamine 202, threonine 205, and isoleucine 209 retained the ability to induce protein tyrosine phosphorylation and calcium mobilization. In contrast, substitution of alanine for leucine 198 abrogated these responses, suggesting a critical role for this residue in interaction with cytoplasmic signalling proteins.
Collapse
Affiliation(s)
- J A Taddie
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, CA 92186
| | | | | |
Collapse
|