1
|
Yan H, Hales BF. Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicol Sci 2021; 180:62-75. [PMID: 33367866 PMCID: PMC7916738 DOI: 10.1093/toxsci/kfaa180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers but much remains unknown about their potential toxicity. Previously, we reported that 4 individual OPEs suppress endochondral ossification in murine limb bud cultures. However, real-life exposure is to complex OPE mixtures. In the present study, we tested the hypothesis that a Canadian household dust-based OPE mixture will affect endochondral ossification in gestation day 13 CD1 mouse embryo limb buds expressing fluorescent markers for the major cell populations involved in the process: collagen type II alpha 1-enhanced cyan fluorescent protein (proliferative chondrocytes), collagen type X alpha 1-mCherry (hypertrophic chondrocytes), and collagen type I alpha 1-yellow fluorescent protein (osteoblasts). Limbs were cultured for 6 days in the presence of vehicle or dilutions of the OPE mixture (1/1 000 000, 1/600 000, and 1/300 000). All 3 OPE mixture dilutions affected cartilage template development and the progression of endochondral ossification, as indicated by the fluorescent markers. The expression of Sox9, the master regulator of chondrogenesis, was unchanged, but the expression of Runx2 and Sp7, which drive chondrocyte hypertrophy and osteoblastogenesis, was dilution-dependently suppressed. RNA-seq revealed that exposure to the 1/300 000 dilution of the OPE mixture for 24 h downregulated 153 transcripts and upregulated 48 others by at least 1.5-fold. Downregulated transcripts were enriched for those related to the immune system and bone formation. In contrast, upregulated transcripts were enriched for those with stress response functions known to be regulated by ATF4 activation. Thus, exposure to the mixture of OPEs commonly found in house dust may have adverse effects on bone formation.
Collapse
Affiliation(s)
- Han Yan
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
2
|
Vasudevan D, Neuman SD, Yang A, Lough L, Brown B, Bashirullah A, Cardozo T, Ryoo HD. Translational induction of ATF4 during integrated stress response requires noncanonical initiation factors eIF2D and DENR. Nat Commun 2020; 11:4677. [PMID: 32938929 PMCID: PMC7495428 DOI: 10.1038/s41467-020-18453-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5' leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5' leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sarah D Neuman
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amy Yang
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lea Lough
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Brian Brown
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Arash Bashirullah
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 2019; 294:1710-1720. [PMID: 30710018 PMCID: PMC6364763 DOI: 10.1074/jbc.tm118.004166] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herbert "Herb" Tabor, who celebrated his 100th birthday this past year, served the Journal of Biological Chemistry as a member of the Editorial Board beginning in 1961, as an Associate Editor, and as Editor-in-Chief for 40 years, from 1971 until 2010. Among the many discoveries in biological chemistry during this period was the identification of RNA modification by C6 deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA. This posttranscriptional RNA modification by adenosine deamination, known as A-to-I RNA editing, diversifies the transcriptome and modulates the innate immune interferon response. A-to-I editing is catalyzed by a family of enzymes, adenosine deaminases acting on dsRNA (ADARs). The roles of A-to-I editing are varied and include effects on mRNA translation, pre-mRNA splicing, and micro-RNA silencing. Suppression of dsRNA-triggered induction and action of interferon, the cornerstone of innate immunity, has emerged as a key function of ADAR1 editing of self (cellular) and nonself (viral) dsRNAs. A-to-I modification of RNA is essential for the normal regulation of cellular processes. Dysregulation of A-to-I editing by ADAR1 can have profound consequences, ranging from effects on cell growth and development to autoimmune disorders.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
4
|
Design and synthesis of novel protein kinase R (PKR) inhibitors. Mol Divers 2016; 20:805-819. [PMID: 27480630 DOI: 10.1007/s11030-016-9689-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
Protein kinase RNA-activated (PKR) plays an important role in a broad range of intracellular regulatory mechanisms and in the pathophysiology of many human diseases, including microbial and viral infections, cancer, diabetes and neurodegenerative disorders. Recently, several potent PKR inhibitors have been synthesized. However, the enzyme's multifunctional character and a multitude of PKR downstream targets have prevented the successful transformation of such inhibitors into effective drugs. Thus, the need for additional PKR inhibitors remains. With the help of computer-aided drug-discovery tools, we designed and synthesized potential PKR inhibitors. Indeed, two compounds were found to inhibit recombinant PKR in pharmacologically relevant concentrations. One compound, 6-amino-3-methyl-2-oxo-N-phenyl-2,3-dihydro-1H-benzo[d]imidazole-1-carboxamide, also showed anti-apoptotic properties. The novel molecules diversify the existing pool of PKR inhibitors and provide a basis for the future development of compounds based on PKR signal transduction mechanism.
Collapse
|
5
|
Kroczynska B, Mehrotra S, Arslan AD, Kaur S, Platanias LC. Regulation of interferon-dependent mRNA translation of target genes. J Interferon Cytokine Res 2014; 34:289-96. [PMID: 24559173 DOI: 10.1089/jir.2013.0148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.
Collapse
Affiliation(s)
- Barbara Kroczynska
- 1 Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School , Chicago, Illinois
| | | | | | | | | |
Collapse
|
6
|
Malzer E, Szajewska-Skuta M, Dalton LE, Thomas SE, Hu N, Skaer H, Lomas DA, Crowther DC, Marciniak SJ. Coordinate regulation of eIF2α phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J Cell Sci 2013; 126:1406-15. [PMID: 23418347 DOI: 10.1242/jcs.117614] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by the kinase GCN2 attenuates protein synthesis during amino acid starvation in yeast, whereas in mammals a family of related eIF2α kinases regulate translation in response to a variety of stresses. Unlike single-celled eukaryotes, mammals also possess two specific eIF2α phosphatases, PPP1R15a and PPP1R15b, whose combined deletion leads to a poorly understood early embryonic lethality. We report the characterisation of the first non-mammalian eIF2α phosphatase and the use of Drosophila to dissect its role during development. The Drosophila protein demonstrates features of both mammalian proteins, including limited sequence homology and association with the endoplasmic reticulum. Of note, although this protein is not transcriptionally regulated, its expression is controlled by the presence of upstream open reading frames in its 5'UTR, enabling induction in response to eIF2α phosphorylation. Moreover, we show that its expression is necessary for embryonic and larval development and that this is to oppose the inhibitory effects of GCN2 on anabolic growth.
Collapse
Affiliation(s)
- Elke Malzer
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dalton LE, Healey E, Irving J, Marciniak SJ. Phosphoproteins in stress-induced disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:189-221. [PMID: 22340719 DOI: 10.1016/b978-0-12-396456-4.00003-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integrated stress response (ISR) is an evolutionarily conserved homeostatic program activated by specific pathological states. These include amino acid deprivation, viral infection, iron deficiency, and the misfolding of proteins within the endoplasmic reticulum (ER), the so-called ER stress. Although apparently disparate, each of these stresses induces phosphorylation of a translation initiation factor, eIF2α, to attenuate new protein translation while simultaneously triggering a transcriptional program. This is achieved by four homologous stress-sensing kinases: GCN2, PKR, HRI, and PERK. In addition to these kinases, mammals possess two specific eIF2α phosphatases, GADD34 and CReP, which play crucial roles in the recovery of protein synthesis following the initial insult. They are not only important in embryonic development but also appear to play important roles in disease, particularly cancer. In this chapter, we discuss each of the eIF2α kinases, in turn, with particular emphasis on their regulation and the new insights provided by recent structural studies. We also discuss the potential for developing novel drug therapies that target the ISR.
Collapse
Affiliation(s)
- Lucy E Dalton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
8
|
Walker AK, Atkin JD. Stress signaling from the endoplasmic reticulum: A central player in the pathogenesis of amyotrophic lateral sclerosis. IUBMB Life 2011; 63:754-63. [PMID: 21834058 DOI: 10.1002/iub.520] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/24/2011] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the misfolding and aggregation of distinct proteins in affected tissues, however, the pathogenic cause of disease remains unknown. Recent evidence indicates that endoplasmic reticulum (ER) stress plays a central role in ALS pathogenesis. ER stress activates the unfolded protein response (UPR), a homeostatic response to misfolded proteins. The UPR is initially protective by up-regulation of specific ER stress-regulated genes and inhibition of general protein translation. However, long-term ER stress leads to cell death via apoptotic signaling, thus providing a link to neurodegeneration. Activation of the UPR is one of the earliest events in affected motor neurons of transgenic rodent models expressing ALS-linked mutant superoxide dismutase 1 (SOD1). Recently, genetic manipulation of ER stress in several different SOD1 mouse models was shown to alter disease onset and progression, implicating an active role for the UPR in disease mechanisms. Furthermore, mutations to vesicle-associated membrane protein-associated protein B (VAPB), an ER transmembrane protein involved in ER stress regulation, also cause some cases of familial ALS. ER stress also occurs in spinal cord tissues of human sporadic ALS patients, and recent evidence suggests that perturbation of the ER could occur in ALS cases associated with TAR DNA binding protein 43 (TDP-43), fused in sarcoma (FUS) and valosin containing protein (VCP). Together these findings implicate ER stress as a potential upstream mechanism involved in both familial and sporadic forms of ALS.
Collapse
Affiliation(s)
- Adam K Walker
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | | |
Collapse
|
9
|
The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood 2007; 111:2280-9. [PMID: 18042799 DOI: 10.1182/blood-2007-07-100032] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogene latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) without a ligand drives proliferation of EBV-infected B cells. Its levels vary in cells of clonal populations by more than 100-fold, which leads to multiple distinct activities of the oncogene. At intermediate levels it drives proliferation, and at high levels it inhibits general protein synthesis by inducing phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha). We have found that LMP1 activates PERK to induce phosphorylation of eIF2alpha, which upregulates activating transcription factor 4 (ATF4) expression. ATF4, in turn, transactivates LMP1's own promoter. LMP1 activates not only PERK but also inositol requiring kinase 1 (IRE1) and ATF6, 3 pathways of the unfolded protein response (UPR). Increasing expression levels of LMP1 induced a dose-dependent increase in IRE1 activity, as measured by its "splicing" of XBP-1. These infected B cells secrete immunoglobins independent of the levels of LMP1, indicating that only a threshold level of XBP-1 is required for the secretion. These findings indicate that LMP1's activation of the UPR is a normal event in a continuum of LMP1's expression that leads both to stimulatory and inhibitory functions and regulates the physiology of EBV-infected B cells in multiple, unexpected modes.
Collapse
|
10
|
Toth AM, Zhang P, Das S, George CX, Samuel CE. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. ACTA ACUST UNITED AC 2007; 81:369-434. [PMID: 16891177 DOI: 10.1016/s0079-6603(06)81010-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ann M Toth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
11
|
Shogren KL, Turner RT, Yaszemski MJ, Maran A. Double-stranded RNA-dependent protein kinase is involved in 2-methoxyestradiol-mediated cell death of osteosarcoma cells. J Bone Miner Res 2007; 22:29-36. [PMID: 17014383 PMCID: PMC1955766 DOI: 10.1359/jbmr.060914] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We studied the involvement of interferon-regulated, PKR on 2-ME-mediated actions in human osteosarcoma cells. Our results show that PKR is activated by 2-ME treatment and is necessary for 2-ME-mediated induction of osteosarcoma cell death. INTRODUCTION Osteosarcoma is the most common primary bone tumor and most frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a metabolite of 17beta-estradiol, induces interferon gene expression and apoptosis in human osteosarcoma cells. In this report, we studied the role of interferon-regulated double-stranded (ds)RNA-dependent protein kinase (PKR) protein on 2-ME-mediated cell death in human osteosarcoma cells. MATERIALS AND METHODS Western blot analyses were used to measure PKR protein and phosphorylation levels. Cell survival and apoptosis assays were measured using trypan blue exclusion and Hoechst dye methods, respectively. A transient transfection protocol was used to express the dominant negative PKR mutants. RESULTS AND CONCLUSIONS PKR was increased in 2-ME-treated MG63 cells, whereas 17beta-estradiol, 4-hydroxyestradiol, and 16alpha-hydroxyestradiol, which do not induce cell death, had no effect on PKR protein levels. Also, 2-ME treatment induced PKR kinase activity as indicated by increased autophosphorylation and phosphorylation of the endogenous substrate, eukaryotic initiation factor (eIF)-2alpha. dsRNA poly (I).poly (C), an activator of PKR protein, increased cell death when osteosarcoma cells were treated with a submaximal concentration of 2-ME. In contrast, a serine-threonine kinase inhibitor SB203580 and a specific PKR inhibitor 2-aminopurine (2-AP) blocked the 2-ME-induced cell death in MG63 cells. A dominant negative PKR mutant protein conferred resistance to 2-ME-induced cell death to MG63 osteosarcoma and 2-ME-mediated PKR regulation did not require interferon gene expression. PKR protein is activated in cell free extracts by 2-ME treatment, resulting in autophosphorylation and in the phosphorylation of the substrate eIF-2alpha. We conclude from these results that PKR is regulated by 2-ME independently of interferon and is essential for 2-ME-mediated cell death in MG63 osteosarcoma cells.
Collapse
Affiliation(s)
- Kristen L Shogren
- Department of Orthopedics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The extracellular space is an environment hostile to unmodified polypeptides. For this reason, many eukaryotic proteins destined for exposure to this environment through secretion or display at the cell surface require maturation steps within a specialized organelle, the endoplasmic reticulum (ER). A complex homeostatic mechanism, known as the unfolded protein response (UPR), has evolved to link the load of newly synthesized proteins with the capacity of the ER to mature them. It has become apparent that dysfunction of the UPR plays an important role in some human diseases, especially those involving tissues dedicated to extracellular protein synthesis. Diabetes mellitus is an example of such a disease, since the demands for constantly varying levels of insulin synthesis make pancreatic beta-cells dependent on efficient UPR signaling. Furthermore, recent discoveries in this field indicate that the importance of the UPR in diabetes is not restricted to the beta-cell but is also involved in peripheral insulin resistance. This review addresses aspects of the UPR currently understood to be involved in human disease, including their role in diabetes mellitus, atherosclerosis, and neoplasia.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
13
|
Wouters BG, van den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C. Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol 2006; 16:487-501. [PMID: 15896987 DOI: 10.1016/j.semcdb.2005.03.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hypoxia is a common feature of most solid tumors which negatively impacts their treatment response. This is due in part to the biological changes that result from a coordinated cellular response to hypoxia. A large part of this response is driven by a transcriptional program initiated via stabilization of HIF, promoting both angiogenesis and cell survival. However, hypoxia also results in a rapid inhibition of protein synthesis which occurs through the repression of the initiation step of mRNA translation. This inhibition is fully reversible and occurs in all cell lines tested to date. Inhibition of translation is mediated by two distinct mechanisms during hypoxia. The first is through phosphorylation and inhibition of an essential eukaryotic initiation factor, eIF2alpha. Phosphorylation of this factor occurs through activation of the PERK kinase as part of a coordinated ER stress response program known as the UPR. Activation of this program promotes cell survival during hypoxia and facilitates tumor growth. Translation during hypoxia can also be inhibited through the inactivation of a second eukaryotic initiation complex, eIF4F. At least part of this inhibition is mediated through a REDD1 and TSC1/TSC2 dependent inhibition of the mTOR kinase. Inhibition of mRNA translation is hypothesized to affect the cellular tolerance to hypoxia in part by promoting energy homeostasis. However, regulation of translation also results in a specific increase in the synthesis of a subset of hypoxia induced proteins. Consequently, both arms of translational control during hypoxia influence hypoxia induced gene expression and the hypoxic phenotype.
Collapse
Affiliation(s)
- Bradly G Wouters
- Department of Radiation Oncology, Maastricht Radiation Oncology (Maastro) Lab, GROW Research Institute, USN50/23 University of Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Parker N, Porter ACG. Identification of a novel gene family that includes the interferon-inducible human genes 6-16 and ISG12. BMC Genomics 2004; 5:8. [PMID: 14728724 PMCID: PMC343271 DOI: 10.1186/1471-2164-5-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 01/19/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human 6-16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN). The predicted products of these genes are small (12.9 and 11.5 kDa respectively), hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins. RESULTS We have used in silico analyses to identify a novel family of genes (the ISG12 gene family) related to both the human 6-16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif). So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6-16 gene at chromosome 1p35 and three genes (ISG12(a), ISG12(b) and ISG12(c)) clustered at chromosome 14q32. Mice have three family members (ISG12(a), ISG12(b1) and ISG12(b2)) clustered at chromosome 12F1 (syntenic with human chromosome 14q32). There does not appear to be a murine 6-16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b) and ISG12(c)) being upregulated in response to type I IFN in the cell lines tested. CONCLUSIONS Members of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of approximately 80 amino-acids (the ISG12 motif). In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of functional redundancy between family-members. Genetic studies in organisms (e.g. Dictyostelium discoideum) with just one family member so far identified may be particularly helpful in this respect.
Collapse
Affiliation(s)
- Nadeene Parker
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Present address: Department of Clinical Biochemistry, Addenbooke's Hospital, Cambridge, CB2 2QR, UK
| | - Andrew CG Porter
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
15
|
Abstract
Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9610, USA.
| |
Collapse
|
16
|
Tanaka H, Samuel CE. Mouse interferon-inducible RNA-dependent protein kinase Pkr gene: cloning and sequence of the 5'-flanking region and functional identification of the minimal inducible promoter. Gene 2000; 246:373-82. [PMID: 10767560 DOI: 10.1016/s0378-1119(00)00080-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RNA-dependent protein kinase (PKR) is implicated in the antiviral and antiproliferative actions of interferon (IFN). As an extension of our structural characterization of the exon-intron organization of the mouse Pkr gene, we now have isolated and characterized the mouse Pkr promoter region required for IFN-inducible transcription. Transient transfection analyses, using reporter constructs possessing various 5'-flanking fragments of the Pkr gene, led to the identification of a functional IFN-inducible promoter. A single IFN-stimulated response element (ISRE) was present in a minimal 44-nt TATA-less promoter identified by deletion analysis; the 13-nt ISRE differed from previously described ISRE elements in that the 3'-nt was a purine instead of a pyrimidine. The sequence immediately upstream of the ISRE possessed the 15-nt KCS element that was exactly conserved in sequence and position between the mouse and human Pkr promoters. A single gamma IFN-activated sequence (GAS)-like element and multiple recognition sites for factors including NF-kappaB and NF-IL6 involved in responses to various cytokine and hormone signals in inflammatory responses were also present in the 5'-flanking region. Northern blot analysis showed efficient IFN-alpha induced accumulation of 2.4kb, 4.5kb and approx. 6kb Pkr transcripts, but neither IFN-gamma nor IL-6 induced detectable Pkr mRNA accumulation in L cells.
Collapse
Affiliation(s)
- H Tanaka
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
17
|
Demarchi F, Gutierrez MI, Giacca M. Human immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol 1999; 73:7080-6. [PMID: 10400814 PMCID: PMC112801 DOI: 10.1128/jvi.73.8.7080-7086.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The transactivator protein of human immunodeficiency virus type 1 (HIV-1) (Tat) is a powerful activator of nuclear factor-kappaB (NF-kappaB), acting through degradation of the inhibitor IkappaB-alpha (F. Demarchi, F. d'Adda di Fagagna, A. Falaschi, and M. Giacca, J. Virol. 70:4427-4437, 1996). Here, we show that this activity of Tat requires the function of the cellular interferon-inducible protein kinase PKR. Tat-mediated NF-kappaB activation and transcriptional induction of the HIV-1 long terminal repeat were impaired in murine cells in which the PKR gene was knocked out. Both functions were restored by cotransfection of Tat with the cDNA for PKR. Expression of a dominant-negative mutant of PKR specifically reduced the levels of Tat transactivation in different human cell types. Activation of NF-kappaB by Tat required integrity of the basic domain of Tat; previous studies have indicated that this domain is necessary for specific Tat-PKR interaction.
Collapse
Affiliation(s)
- F Demarchi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34012 Trieste, Italy
| | | | | |
Collapse
|
18
|
Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397:271-4. [PMID: 9930704 DOI: 10.1038/16729] [Citation(s) in RCA: 2547] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein synthesis and the folding of the newly synthesized proteins into the correct three-dimensional structure are coupled in cellular compartments of the exocytosis pathway by a process that modulates the phosphorylation level of eukaryotic initiation factor-2alpha (eIF2alpha) in response to a stress signal from the endoplasmic reticulum (ER). Activation of this process leads to reduced rates of initiation of protein translation during ER stress. Here we describe the cloning of perk, a gene encoding a type I transmembrane ER-resident protein. PERK has a lumenal domain that is similar to the ER-stress-sensing lumenal domain of the ER-resident kinase Ire1, and a cytoplasmic portion that contains a protein-kinase domain most similar to that of the known eIF2alpha kinases, PKR and HRI. ER stress increases PERK's protein-kinase activity and PERK phosphorylates eIF2alpha on serine residue 51, inhibiting translation of messenger RNA into protein. These properties implicate PERK in a signalling pathway that attenuates protein translation in response to ER stress.
Collapse
Affiliation(s)
- H P Harding
- Skirball Institute of Biomolecular Medicine, Department of Medicine, NYU School of Medicine, New York 10016, USA
| | | | | |
Collapse
|
19
|
Jacobs BL, Langland JO. Reovirus sigma 3 protein: dsRNA binding and inhibition of RNA-activated protein kinase. Curr Top Microbiol Immunol 1998; 233:185-96. [PMID: 9599927 DOI: 10.1007/978-3-642-72092-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B L Jacobs
- Department of Microbiology, Arizona State University, Tempe 85287-2701, USA
| | | |
Collapse
|
20
|
Abstract
Reovirus induces IFN, and reovirus is sensitive to the antiviral actions of IFN. The characteristics of the IFN-inducing capacity of reovirus, and the antiviral actions of IFN exerted against reovirus, are dependent upon the specific combination of reovirus strain, host cell line, and IFN type. Responses, both IFN induction and IFN action, differ quantitatively if not qualitatively and are dependent upon the virus, cell, and IFN combination. Stable natural dsRNA, identified as the form of nucleic acid that constitutes the reovirus genome, is centrally involved in the function of at least three IFN-induced enzymes. Protein phosphorylation by PKR, RNA editing by the ADAR adenosine deaminase, and RNA degradation by the 2',5'-oligoA pathway all involve dsRNA either as an effector or as a substrate. Considerable evidence implicates PKR as a particularly important contributor to the IFN-induced antiviral state displayed at the level of the single virus-infected cell, where the translation of viral mRNA is often observed to be inhibited following treatment with IFN-alpha/beta. In the whole animal infected with reovirus, elevated cellular immune responses mediated by enhanced expression of MHC class I and class II antigens induced by IFN-alpha/beta or IFN-gamma may contribute significantly to the overall antiviral response.
Collapse
Affiliation(s)
- C E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106-9610, USA.
| |
Collapse
|
21
|
Cai R, Williams BR. Mutations in the double-stranded RNA-activated protein kinase insert region that uncouple catalysis from eIF2alpha binding. J Biol Chem 1998; 273:11274-80. [PMID: 9556619 DOI: 10.1074/jbc.273.18.11274] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase, PKR, inhibits protein synthesis via phosphorylation of the alpha subunit of the translation initiation factor eIF2. A kinase insert region N-terminal of PKR kinase subdomain V, which is conserved among eIF2alpha kinases, has been proposed to determine substrate specificity of these kinases. To investigate the function of this kinase insert region, selective PKR mutants were generated, and kinase activities and eIF2alpha affinities were analyzed in vitro. The in vivo function was investigated by growth inhibitory assays in yeast and translational assays in COS cells. Among the 13 mutations, 5 lost kinase activity and 3 exhibited less than 30% of wild-type eIF2alpha binding activity. The deletion of the conserved sequence (amino acids 362-370) resulted in a protein that had no kinase activity and only about 25% of wild-type eIF2alpha binding, suggesting that this sequence is not only required for PKR kinase activity but also is important for substrate interaction. It was determined that the hydrophobicity of the conserved sequence of PKR is required for kinase activity but is not crucial for eIF2alpha binding. The amino acid residue Glu-367 in the conserved motif was shown to be directly involved in substrate binding but was not important for kinase activity. These results suggest that the activation of PKR is not a prerequisite for its binding to the substrate and that the conserved motif in subdomain V contributes to the interaction of PKR and eIF2alpha.
Collapse
Affiliation(s)
- R Cai
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
22
|
Gale M, Katze MG. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 1998; 78:29-46. [PMID: 9593328 DOI: 10.1016/s0163-7258(97)00165-4] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interferon (IFN)-induced cellular antiviral response is the first line of defense against viral infection within an animal host. In order to establish a productive infection, eukaryotic viruses must first overcome the IFN-induced blocks imposed on viral replication. The double-stranded RNA-activated protein kinase (PKR) is a key component mediating the antiviral actions of IFN. This IFN-induced protein kinase can restrict viral replication through its ability to phosphorylate the protein synthesis initiation factor eukaryotic initiation factor-2 alpha-subunit and reduce levels of viral protein synthesis. Viruses, therefore, must block the function of PKR in order to avoid these deleterious antiviral effects associated with PKR activity. Indeed, many viruses have developed effective measures to repress PKR activity during infection. This review will focus primarily on an overview of the different molecular mechanisms employed by these viruses to meet a common goal: the inhibition of PKR function, uncompromised viral protein synthesis, and unrestricted virus replication. The past few years have seen exciting new advances in this area. Rather unexpectedly, this area of research has benefited from the use of the yeast system to study PKR. Other recent advances include studies on PKR regulation by the herpes simplex viruses and data from our laboratory on the medically important hepatitis C viruses. We speculate that IFN is ineffective as a therapeutic agent against hepatitis C virus because the virus can effectively repress PKR function. Finally, we will discuss briefly the future directions of this PKR field.
Collapse
Affiliation(s)
- M Gale
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
23
|
Rende-Fournier R, Ortega LG, George CX, Samuel CE. Interaction of the human protein kinase PKR with the mouse PKR homolog occurs via the N-terminal region of PKR and does not inactivate autophosphorylation activity of mouse PKR. Virology 1997; 238:410-23. [PMID: 9400613 DOI: 10.1006/viro.1997.8824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RNA-dependent protein kinase (PKR) is implicated in the antiviral and antiproliferative actions of interferon. Mutant forms of human PKR display a transdominant behavior when expressed in transfected cells. The potential for the human PKR protein to physically interact with the mouse PKR homolog has therefore been examined. The yeast two-hybrid system was used to probe the association between mouse and human PKR proteins as measured by activation of two Gal4-responsive reporter genes, HIS3 and IacZ. Expression of full-length wild-type mouse PKR(1-515)WT as a Gal4 fusion protein did not exhibit the growth suppression phenotype in yeast characteristic of wild-type human PKR(1-551)WT. Coexpression of mouse PKR(1-515)WT as a Gal4 DNA-binding domain fusion with either the catalytic-deficient human PKR(1-551) K296R mutant, the RNA-binding-deficient human PKR(1-551)K64E/K296R double mutant, or wild-type mouse PKR(1-515)WT as full-length PKR-Gal4 activation domain fusions resulted in activation of the HIS3 and lacZ reporters. The N-terminal RNA-binding region of human PKR, both WT and the K64E RNA-binding-deficient mutant, also interacted with mouse PKR(1-515)WT sufficiently to activate the reporters but the human catalytic region did not. Mouse and human full-length PKR proteins expressed as glutathione S-transferase (GST) fusions in Escherichia coli were purified on Sepharose beads. Using GST-PKR fusion chromatography, direct physical interaction between the mouse and human PKR homologs was established. Intraspecies PKR interactions were more efficient than interspecies PKR interactions, and interactions between RNA-binding-sufficient PKR proteins were more efficient than those involving an RNA-binding mutant as measured by binding to GST-PKR protein Sepharose beads. The N-terminal region of human PKR within amino acids 1-184 was sufficient for binding mouse PKR. Purified mouse full-length PKR(1-515)WT GST fusion protein retained kinase activity on Sepharose beads, but the activity was not impaired by association with either the full-length or the N-terminal region of human PKR.
Collapse
Affiliation(s)
- R Rende-Fournier
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | |
Collapse
|
24
|
Zhu S, Romano PR, Wek RC. Ribosome targeting of PKR is mediated by two double-stranded RNA-binding domains and facilitates in vivo phosphorylation of eukaryotic initiation factor-2. J Biol Chem 1997; 272:14434-41. [PMID: 9162083 DOI: 10.1074/jbc.272.22.14434] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein kinase PKR is activated in mammalian cells during viral infection, leading to phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha) and inhibition of protein synthesis. This antiviral response is thought to be mediated by association of double-stranded RNA (ds-RNA), a by-product of viral replication, with two ds-RNA-binding domains (DRBDs) located in the amino terminus of PKR. Recent studies have observed that expression of mammalian PKR in yeast leads to a slow growth phenotype due to hyperphosphorylation of eIF-2alpha. In this report, we observed that while DRBD sequences are required for PKR to function in the yeast model system, these sequences are not required for in vitro phosphorylation of eIF-2alpha. To explain this apparent contradiction, we proposed that these sequences are required to target the kinase to the translation machinery. Using sucrose gradient sedimentation, we found that wild-type PKR was associated with ribosomes, specifically with 40 S particles. Deletions or residue substitutions in the DRBD sequences blocked kinase interaction with ribosomes. These results indicate that in addition to mediating ds-RNA control of PKR, the DRBD sequences facilitate PKR association with ribosomes. Targeting to ribosomes may enhance in vivo phosphorylation of eIF-2alpha, by providing PKR access to its substrate.
Collapse
Affiliation(s)
- S Zhu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- J M Hardwick
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
26
|
Abstract
We showed previously that type I interferon causes a down-regulation of mitochondrial gene expression. We show here that IFN treatment leads to functional impairment of mitochondria. Western blot analysis indicated that interferon treatment reduces the steady-state level of cytochrome b in murine L-929 cells. Interferon produced a reduction in cytochrome c oxidase and NADH-cytochrome c reductase activities of isolated mitochondria as well as inhibiting electron transport in isolated mitochondria and in intact cells. Several mitochondrial mRNAs are affected by interferon treatment in human Daudi lymphoblastoid cells, which are highly sensitive to the antiproliferative effects of interferon. Electron transport in Daudi cells was also inhibited by interferon both in intact cells and isolated mitochondria with a dose response identical to that for the antiproliferative response. In contrast, a Daudi strain resistant to the antiproliferative effects of interferon showed no down-regulation of mRNA expression and no inhibition of electron transport. Possibly as a consequence of the inhibitory effect on mitochondrial gene expression, treatment with interferon causes a reduction in cellular ATP levels. The inhibition of cellular growth by interferon may thus be partly a consequence of a reduction in cellular ATP levels.
Collapse
Affiliation(s)
- J A Lewis
- Department of Anatomy and Cell Biology, SUNY Health Science Center at Brooklyn, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
27
|
Haines GK, Ghadge GD, Becker S, Kies M, Pelzer H, Thimmappaya B, Radosevich JA. Correlation of the expression of double-stranded RNA-dependent protein kinase (p68) with differentiation in head and neck squamous cell carcinoma. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1993; 63:289-95. [PMID: 8100099 DOI: 10.1007/bf02899275] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
p68 is an inducible protein kinase which is believed to be an important factor in the regulation of both viral and cellular protein synthesis. We have produced a monoclonal antibody (TJ4C4) which specifically detects p68, and which can be used to detect this antigen in formalin-fixed, paraffin-embedded tissues. Because p68 plays an important role in cellular protein synthesis, we hypothesized that it may correlate with normal and neoplastic cellular differentiation. One hundred and seventy-seven head and neck squamous cell carcinoma specimens, representing 82 patients, were studied. The relative amount, frequency, and distribution of p68 expression were determined by microscopic evaluation of ABC immunoperoxidase-stained specimens. A spectrum of immunoreactivity was detected in 156 of 177 tumors, as well as within the normal squamous epithelium. Normal, actively proliferating cells, such as the basal layer of squamous epithelium, expressed comparatively little p68. Increased p68 expression was noted to parallel the morphologic features of cellular differentiation. In neoplastic tissue, p68 expression also increased with the degree of cellular differentiation. These data demonstrate that the expression of p68 parallels the degree of cellular differentiation in squamous cell carcinoma of the head and neck region, as well as within normal squamous mucosa. Therefore, p68 may provide an objective biologic measure of cellular differentiation which does not depend on morphologic features.
Collapse
Affiliation(s)
- G K Haines
- Department of Pathology, Northwestern University/VA Lakeside Medical Center, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
28
|
Haines GK, Ghadge G, Thimmappaya B, Radosevich JA. Expression of the protein kinase p-68 recognized by the monoclonal antibody TJ4C4 in human lung neoplasms. ACTA ACUST UNITED AC 1992; 62:151-8. [PMID: 1357815 DOI: 10.1007/bf02899677] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
P68 is a protein kinase expressed by eukaryotic cells, which is inducible by alpha interferon, and is believed to be an important factor in the regulation of viral and cellular protein synthesis. We have previously reported on a monoclonal antibody, TJ4C4, which is able to specifically detect p68 in formalin-fixed, paraffin-embedded tissue. Because of its important role in regulating cellular protein synthesis, we hypothesized that p68 expression would vary among lung neoplasms with level of differentiation and degree of biosynthetic activity. A total of 246 untreated primary pulmonary and pleural neoplasms were studied. The frequency and relative intensity of p68 expression was determined by light microscopic evaluation of ABC immunoperoxidase stained specimens. All categories of tumors studied demonstrated a spectrum of p68 expression. Expression of p68 correlated well with degree of differentiation in squamous cell carcinomas (SQCC) and acinar adenocarcinomas (AAC). Papillary adenocarcinoma (PAC) and bronchioalveolar carcinoma (BAC) expressed low levels of p68, despite their well differentiated appearance. Expression of the antigen in large cell carcinoma (LCC) was higher than that seen in either poorly differentiated AAC or SQCC. Neuroendocrine tumors generally showed low levels of p68 expression with the intermediate variant of small cell carcinoma expressing higher levels of p68 than the classic "oat cell" form (SCC). Carcinoid tumors expressed higher levels of p68 than did atypical carcinoid tumors. Mesotheliomas showed weak expression of p68, limited primarily to areas of glandular differentiation in the epithelioid form.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G K Haines
- Department of Pathology, Northwestern University/VA Lakeside Medical Center, Chicago, Il
| | | | | | | |
Collapse
|
29
|
Patel RC, Sen GC. Construction and Expression of an Enzymatically Active Human–Mouse Chimeric Double-Stranded RNA-Dependent Protein Kinase. ACTA ACUST UNITED AC 1992; 12:389-93. [PMID: 1358989 DOI: 10.1089/jir.1992.12.389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The interferon (IFN)-inducible double-stranded (ds) RNA-activated protein kinase (p68 kinase) is a physiologically important enzyme that regulates the rate of cellular and viral protein synthesis by phosphorylating and thereby inactivating the peptide chain initiation factor 2. We have generated a partial cDNA clone, which probably represents the murine p68 kinase, by reverse transcription-polymerase chain reaction (RT-PCR) using sequence information of the human p68 kinase. The 725-bp cDNA clone encoded the carboxyl-terminal 238 amino acid residues of the mouse kinase. It has 67% overall identity with the corresponding region of the human kinase. All the protein kinase catalytic domains are conserved in the mouse protein. Moreover, there are additional stretches of residues that are totally conserved between the two proteins. The functional equivalence of the two proteins was tested by constructing a chimeric cDNA that encoded a protein whose amino-terminal 364 residues were of human origin and carboxyl-terminal 187 residues were of mouse origin. The chimeric protein was as efficient as the human p68 kinase in binding to the dsRNA, autophosphorylating and phosphorylating exogenous substrate.
Collapse
Affiliation(s)
- R C Patel
- Department of Molecular Biology, Cleveland Clinic Foundation, OH 44195-5285
| | | |
Collapse
|
30
|
Katze MG. The war against the interferon-induced dsRNA-activated protein kinase: can viruses win? JOURNAL OF INTERFERON RESEARCH 1992; 12:241-8. [PMID: 1385552 DOI: 10.1089/jir.1992.12.241] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M G Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195
| |
Collapse
|
31
|
Cytosolic double-stranded RNA-dependent protein kinase is likely a dimer of partially phosphorylated Mr = 66,000 subunits. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50079-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
McCormack SJ, Thomis DC, Samuel CE. Mechanism of interferon action: identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2 alpha protein kinase. Virology 1992; 188:47-56. [PMID: 1373554 DOI: 10.1016/0042-6822(92)90733-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A molecular cDNA clone of the human RNA-dependent P1/eIF-2 alpha protein kinase was expressed in Escherichia coli. Mutant P1 proteins were examined for RNA binding activity by Northwestern blot analysis using the reovirus s1 mRNA, an activator of the kinase; the adenovirus VAI RNA, an inhibitor of kinase activation; or human immunodeficiency virus (HIV) TAR RNA as probe. Analysis of TrpE-P1 deletion mutant fusion proteins revealed that the 11-kDa N-terminal region of the P1 protein bound reovirus s1 mRNA, adenovirus VAI RNA, and HIV TAR RNA. Neither s1 RNA, VAI RNA, nor TAR RNA was bound by truncated P1 proteins which lacked the N-terminal 98 amino acids. Computer analysis revealed that the human protein P1 sequence corresponding to amino acid residues within the N-terminal RNA binding domain displays high homology (greater than 54% identity; 61 to 94% similarity) with two animal virus proteins which possess RNA binding activity (vaccinia virus E3L; rotavirus VP2) and two proteins of unknown function (murine TIK; rotavirus NS34), but which are likely RNA binding proteins.
Collapse
Affiliation(s)
- S J McCormack
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
33
|
Thomis DC, Doohan JP, Samuel CE. Mechanism of interferon action: cDNA structure, expression, and regulation of the interferon-induced, RNA-dependent P1/eIF-2 alpha protein kinase from human cells. Virology 1992; 188:33-46. [PMID: 1373553 DOI: 10.1016/0042-6822(92)90732-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A molecular cDNA clone (P1 KIN) was isolated that encodes the human RNA-dependent P1/eIF-2 alpha protein kinase. The complete cDNA sequence of the P1 KIN cDNA was determined; the longest open reading frame (ORF) encoded a 551 amino acid protein with a deduced molecular weight of 62055 Da. Transcripts prepared from the P1 KIN cDNA by transcription in vitro with T7 RNA polymerase programmed the cell-free synthesis of a protein indistinguishable by immunoprecipitation and immunoblot gel analyses from the authentic 67-kDa P1 protein synthesized in human U cells treated with interferon (IFN). Furthermore, by use of a sensitive primer extension assay with T7 DNA polymerase, the major site of translation initiation within the deduced ORF of the P1 KIN cDNA was directly identified. Northern RNA gel-blot analysis revealed that the P1 KIN cDNA strongly hybridized to two IFN-induced mRNAs present in both human amnion U cells and HeLa cells; their sizes were 2.5 and 6 kb. Both transcripts were efficiently induced by IFN-alpha, but poorly by IFN-gamma. Polyclonal antibody was prepared against the product of the P1 KIN cDNA expressed in Escherichia coli. In Western blot analysis the antibody recognized a 67-kDa protein induced in human cells by IFN-alpha and, in addition, a 90-kDa protein whose level was not greatly altered by IFN treatment. The IFN-induced 67-kDa protein was found associated with the ribosomal salt-wash fraction of IFN-treated human cells, whereas the 90-kDa protein was predominantly in the S100 soluble fraction. The time course for the induction by IFN-alpha of RNA-dependent protein P1 kinase activity measured by immunoprecipitation was comparable to the time course for protein P1 induction measured by Western immunoblot analysis. The amino acid sequence of P1/eIF-2 alpha protein kinase deduced from the cDNA was 62% identical with the 518-residue murine TIK kinase and contained, within the carboxy-terminal half of the protein, the motifs commonly conserved among protein-serine/threonine kinases. The amino-terminal half of the P1 protein did not possess conserved kinase motifs, but did show extensive homology with vaccinia virus-predicted protein E3L.
Collapse
Affiliation(s)
- D C Thomis
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
34
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
35
|
Hovanessian AG. Interferon-induced and double-stranded RNA-activated enzymes: a specific protein kinase and 2',5'-oligoadenylate synthetases. JOURNAL OF INTERFERON RESEARCH 1991; 11:199-205. [PMID: 1717615 DOI: 10.1089/jir.1991.11.199] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of cells with interferon (IFN) results in the induction of two double-stranded RNA (dsRNA)-activated enzymes: a specific protein kinase and 2'-5' linked oligoadenylate [pppA(2'p5'A)n referred to as 2-5A] synthetases. The protein kinase, when activated by dsRNA, becomes autophosphorylated and catalyzes and phosphorylation of the protein synthesis initiation factor, eIF2. The 2-5A synthetases, when activated by dsRNA, form 2-5A molecules capable of activating a latent endoribonuclease that degrades RNA. By inhibiting initiation of protein synthesis or by degrading of RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis.
Collapse
|
36
|
Samuel CE. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 1991; 183:1-11. [PMID: 1711253 DOI: 10.1016/0042-6822(91)90112-o] [Citation(s) in RCA: 492] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Considerable progress has been made in the understanding of the molecular biology of the human interferon system. The genes encoding the interferons, their receptors, and the proteins that mediate many of their biological effects have been molecularly cloned and characterized. The availability of complete cDNA clones of components of the interferon systems has contributed significantly to our understanding of both the biology and the biochemistry of the antiviral actions of interferons. At the biological level, the antiviral effects of interferon may be viewed to be virus-type nonspecific. That is, treatment of cells with one type or even subspecies of interferon often leads to the generation of an antiviral state effective against a wide array of different RNA and DNA animal viruses. However, at the biochemical level, the antiviral action of interferon is often virus-type selective. That is, the apparent molecular mechanism which is primarily responsible for the inhibition of virus replication may differ considerably between virus types, and even host cells. For example, the IFN-regulated Mx protein selectively inhibits influenza virus but not other viruses when constitutively expressed in mouse cells. The IFN-regulated 2',5'-oligoadenylate synthetase selectively inhibits EMC and mengo viruses, two picornaviruses, but not viruses of other families when constitutively expressed in transfected cells. Some viruses are typically insensitive to the antiviral effects of interferon, both in cell culture and in intact animals. This lack of sensitivity to IFN may result from a virus-mediated direct antagonism of the interferon system. For example, in the case of adenovirus, the activation of the IFN-regulated RNA-dependent P1/elF-2 protein kinase is blocked by the virus-associated VA RNA. The relative sensitivity to interferon of different animal viruses varies appreciably. All three of the basic components required to measure an antiviral response may play a role in determining the relative effectiveness of the antiviral response: the species of interferon administered; the kind of cell treated; and, the type of virus used to challenge the interferon-treated host cell. Thus, the relative sensitivity to interferon observed for a particular interferon-cell-virus combination is likely the result of the equilibrium between the many agonists and antagonists which contribute to the overall response. That is, the relative sensitivity of a virus to the inhibitory action of IFN is governed by the qualitative nature and quantitative amount of the individual IFN-regulated cell proteins that may collectively contribute to the inhibition of virus replication.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C E Samuel
- Department of Biological Sciences, University of California, Santa Barbara 93106
| |
Collapse
|
37
|
Dubois MF, Hovanessian AG. Modified subcellular localization of interferon-induced p68 kinase during encephalomyocarditis virus infection. Virology 1990; 179:591-8. [PMID: 1700539 DOI: 10.1016/0042-6822(90)90126-c] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The double-stranded (ds) RNA-activated protein kinase from human cells is a 68,000 Mr protein (p68 kinase) induced by interferon. When autophosphorylated, p68 kinase catalyzes the phosphorylation of the protein synthesis eukaryotic initiation factor-2, thus mediating inhibition of protein synthesis. The level of p68 kinase is dramatically reduced in nonionic detergent NP-40 extracts, obtained from interferon-treated cells during infection with encephalomyocarditis virus (EMCV) (A. G. Hovanessian, J. Galabru, E. Meurs, C. Buffet-Janvresse, J. Svab and N. Robert, Virology 159, 126-136, 1987). Here we show that such reduction of p68 kinase is in fact due to its reduced NP-40 solubility occurring during EMCV infection. However, p68 kinase can be recovered by extraction with an ionic detergent. Reduced NP-40 extractibility of p68 kinase is dependent on the multiplicity of virus infection and seems to be specific, since other cellular proteins as well as the 100-kDa 2',5'-oligoadenylate synthetase also induced by interferon are not modified. Immunofluorescence studies using specific antibodies demonstrated that p68 kinase which is distributed evenly in the cytoplasm of HeLa cells becomes concentrated around the nuclei after EMCV infection. As a consequence of aggregating around the nuclei, p68 kinase might then resist extraction by NP-40. The aggregated kinase is found to be already activated probably due to binding to the replicative form and/or to replicative intermediates of EMCV RNA. Through this process, the functioning of p68 kinase might be guaranteed by a localized activation in the replication complexes of EMCV.
Collapse
Affiliation(s)
- M F Dubois
- Hopital St. Vincent de Paul (INSERM U43), Paris, France
| | | |
Collapse
|
38
|
Tsao H, Aletta J, Greene L. Nerve growth factor and fibroblast growth factor selectively activate a protein kinase that phosphorylates high molecular weight microtubule-associated proteins. Detection, partial purification, and characterization in PC12 cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55420-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
DeStefano J, Olmsted E, Panniers R, Lucas-Lenard J. The alpha subunit of eucaryotic initiation factor 2 is phosphorylated in mengovirus-infected mouse L cells. J Virol 1990; 64:4445-53. [PMID: 2166823 PMCID: PMC247914 DOI: 10.1128/jvi.64.9.4445-4453.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infection of mouse L cells with mengovirus resulted in the activation of a protein kinase (PK) that selectively phosphorylated the small, 38,000-molecular-weight alpha subunit of eucaryotic initiation factor 2 (eIF-2) in vitro. The mengovirus-activated kinase was detected in vitro approximately 3 h after virus adsorption. The ratio of phosphorylated to unphosphorylated eIF-2 also increased in vivo between 3 and 7 h after adsorption. The virus-activated kinase fractionated with the ribosomal pellet and had a high affinity for DEAE-cellulose and Mono Q ion-exchange columns. Gel electrophoresis of the kinase activity eluting from the Mono Q column and silver staining of the gel revealed only one protein band with a molecular mass of 70 kilodaltons. The optimal assay conditions for the mengovirus-activated kinase paralleled those of the double-stranded RNA-activated PK (dsRNA-PK). Lysates from infected cells contained elements capable of activating partially purified dsRNA-PK. These elements were identified as double-stranded RNA by their sensitivity to double-stranded RNase. The phosphorylation of the alpha subunit of eIF-2 coincided with the synthesis of dsRNA in infected cells, suggesting that the mengovirus-activated kinase is the dsRNA-PK. The phosphorylation of the alpha subunit of eIF-2 correlated with the global inhibition of protein synthesis that occurs at late times after infection.
Collapse
Affiliation(s)
- J DeStefano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125
| | | | | | | |
Collapse
|
40
|
Samuel CE, Brody MS. Biosynthesis of reovirus-specified polypeptides. 2-aminopurine increases the efficiency of translation of reovirus s1 mRNA but not s4 mRNA in transfected cells. Virology 1990; 176:106-13. [PMID: 2330670 DOI: 10.1016/0042-6822(90)90235-j] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of 2-aminopurine (2AP), an inhibitor of the RNA-dependent P1/eIF-2 protein kinase, on the expression of the reovirus serotype 1 Lang strain S1 and S4 genes in transfected simian COS cells was examined. In the absence of 2AP, the s4-encoded sigma 3 gene product was expressed about five times more efficiently than the s1-encoded sigma 1 gene product. When COS cells were treated with 2AP, the synthesis of the sigma 1 polypeptide was increased about fivefold compared to that in untreated cells even though s1 mRNA levels were not detectably altered. In contrast to the increased translational efficiency of the s1 mRNA observed in 2AP-treated cells, the translational efficiency of the s4 mRNA was not affected by 2AP treatment. However, the cytoplasmic accumulation of s4 mRNA was transiently decreased by 2AP treatment. These results demonstrate that the expression of the reovirus S1 and S4 genes in transient transfection assays is differentially affected by 2AP. Furthermore, when considered together with the prior observation that the reovirus s1 mRNA is a potent activator of the RNA-dependent protein kinase relative to the s4 mRNA which is a very poor activator, the results are consistent with the suggestion that the differential translational efficiency of the reovirus s1 and s4 mRNAs in vivo may be attributed in part to their differential ability to activate the P1/eIF-2 protein kinase.
Collapse
Affiliation(s)
- C E Samuel
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
41
|
Affiliation(s)
- P Staeheli
- Institute for Immunology and Virology, University of Zürich, Switzerland
| |
Collapse
|
42
|
Hovanessian AG. The double stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. JOURNAL OF INTERFERON RESEARCH 1989; 9:641-7. [PMID: 2481698 DOI: 10.1089/jir.1989.9.641] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Bischoff JR, Samuel CE. Mechanism of interferon action. Activation of the human P1/eIF-2 alpha protein kinase by individual reovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology 1989; 172:106-15. [PMID: 2475969 DOI: 10.1016/0042-6822(89)90112-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of pure viral and cellular single-strand (ss) RNAs to activate the interferon-induced, double-stranded (ds) RNA-dependent P1/eIF-2 protein kinase purified from human amnion U cells was examined. In addition to the well-established activation of P1 kinase autophosphorylation in vitro by reovirus genome dsRNA, the P1 kinase was also efficiently activated by certain reovirus ssRNAs. The reovirus s1 mRNA was a potent activator of the kinase. By contrast, the reovirus s4 mRNA was a poor activator of the kinase. Likewise, adenovirus VAI RNA, transfer RNA, 5 S ribosomal RNA, and rabbit globin mRNA were not activators or were very poor activators of the purified P1/eIF-2 protein kinase. Analysis of hybrid ssRNAs produced between the reovirus s1 and s4 mRNAs revealed that both the 5' and the 3' portions of the s1 mRNA possessed nucleotide sequences capable of mediating kinase activation. Subsequent deletion analysis of the 5' portion of the s1 mRNA identified a 161-nucleotide region located between positions 416 and 576 which was sufficient for P1 kinase activation. Treatment of reovirus s1 mRNA transcripts with either ssRNA- or dsRNA-specific ribonucleases, but not with heat, destroyed the ability of s1 mRNA transcripts to activate the kinase. These results suggest that P1 kinase autophosphorylation in vitro may be selectively activated by individual ssRNAs in a differential manner, and that a secondary or higher-ordered ssRNA structure(s) may be important in mediating the activation.
Collapse
Affiliation(s)
- J R Bischoff
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
44
|
Galabru J, Katze MG, Robert N, Hovanessian AG. The binding of double-stranded RNA and adenovirus VAI RNA to the interferon-induced protein kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 178:581-9. [PMID: 2912723 DOI: 10.1111/j.1432-1033.1989.tb14485.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The protein kinase from human cells dependent on double-stranded (ds) RNA is a 68-kDa protein (p68 kinase), the level of which is enhanced significantly in cells treated with interferon. When activated by low concentrations of dsRNA, the p68 kinase becomes phosphorylated and thereby catalyzes the phosphorylation of the protein-synthesis initiation factor, eIF2. Here, we have purified the p68 kinase to homogeneity using a specific monoclonal antibody to investigate its capacity to bind dsRNA, poly(I).poly(C). Our study suggest that p68 kinase has high- and low-affinity binding sites: the high-affinity binding site is responsible for the activation and the low-affinity binding site for the inhibition of kinase activity. This is in accord with the fact that autophosphorylation of p68 kinase occurs at low concentrations of dsRNA whereas high concentrations of dsRNA inhibit its autophosphorylation. We have also investigated the binding of adenoviral VAI RNA to the purified p68 kinase and have found that the affinity of this binding is lower than that of poly(I).poly(C). We show that VAI RNA can activate or inhibit autophosphorylation of p68 kinase in a dose-dependent manner, i.e. activation at less than or equal to 1 microgram/ml or inhibition at greater than 1 microgram/ml of VAI RNA. In spite of its lower affinity of binding, VAI RNA cannot be displaced by poly(I).poly(C) or reovirus dsRNA. These data confirm our previous results to illustrate that VAI RNA can bind p68 kinase and cause its inactivation irreversably.
Collapse
|
45
|
Sarre TF. The phosphorylation of eukaryotic initiation factor 2: a principle of translational control in mammalian cells. Biosystems 1989; 22:311-25. [PMID: 2679904 DOI: 10.1016/0303-2647(89)90053-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In eukaryotic cells, protein biosynthesis is controlled at the level of polypeptide chain initiation. During the initiation process, eukaryotic initiation factor 2 (eIF-2) catalyzes the binding of Met-tRNAf and GTP to the 40S ribosomal subunit. In a later step, eIF-2 is released from the ribosomal initiation complex, most likely as an eIF-2.GDP complex, and another initiation factor termed eIF-2B is necessary to recycle eIF-2 by displacing GDP by GTP. In rabbit reticulocytes, inhibition of protein synthesis is accompanied by the phosphorylation of the alpha-subunit of eIF-2, a process that does not render eIF-2 inactive, but prevents it from being recycled by eIF-2B. First described in rabbit reticulocytes as inhibitors of translation, two distinct eIF-2 alpha kinases are known: the haemin-controlled kinase (termed HCI) and the double-stranded RNA-activated kinase (termed DAI). eIF-2 alpha phosphorylation appears to be a reversible control mechanism since corresponding phosphatases have been described. Recent reports indicate a correlation between eIF-2 alpha phosphorylation and the inhibition of protein synthesis in several mammalian cell types under a range of physiological conditions. In this review, the physical and functional features of the known eIF-2 alpha kinases are described with respect to their role in mammalian cells and the mode of activation by cellular signals. Furthermore, the possible impact of the eIF-2/eIF-2B ratio and of the subcellular compartmentation of these factors (and the eIF-2 alpha kinases) on mammalian protein synthesis is discussed.
Collapse
Affiliation(s)
- T F Sarre
- Institut für Biologie III, Freiburg, F.R.G
| |
Collapse
|
46
|
George CX, Samuel CE. Mechanism of interferon action. Expression of reovirus S3 gene in transfected COS cells and subsequent inhibition at the level of protein synthesis by type I but not by type II interferon. Virology 1988; 166:573-82. [PMID: 2972114 DOI: 10.1016/0042-6822(88)90528-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of interferon on the expression of the reovirus serotype 1 Lang strain S3 gene was examined in simian COS cells transfected with the expression vector pSVS3 containing the S3 gene under the control of the SV40 late promoter. When COS cells were treated with type I interferon-alpha 24 hr after transfection, the synthesis of the reovirus S3-encoded sigma NS polypeptide was inhibited about 10-fold as compared to that in untreated control cells. By contrast, under the same conditions, neither the plasmid DNA copy number nor the S3 gene mRNA levels were significantly affected by interferon treatment. Type II interferon-gamma, unlike the type I interferons-alpha, did not affect the rate of synthesis of polypeptide sigma NS in pSVS3-transfected cells.
Collapse
Affiliation(s)
- C X George
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
47
|
Jacobs BL, Miyamoto NG, Samuel CE. Mechanism of interferon action: studies on the activation of protein phosphorylation and the inhibition of translation in cell-free systems. JOURNAL OF INTERFERON RESEARCH 1988; 8:617-31. [PMID: 2466912 DOI: 10.1089/jir.1988.8.617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe the ability of reovirus messenger RNA (mRNA) to serve as a template for translation and as an activator of protein phosphorylation in cell-free extracts prepared from untreated and from interferon (IFN)-treated mouse fibroblast L cells. In vitro transcribed reovirus mRNA was purified by column chromatography on CF-11 cellulose. This procedure removed trace amounts of double-stranded RNA (dsRNA) [0.01%-0.1%] present in mRNA preparations purified solely by extensive LiCl precipitation. In the absence of added dsRNA, CF-11 cellulose-purified reovirus mRNA did not detectably activate phosphorylation of either ribosome-associated protein P1 or the alpha subunit of protein synthesis initiation factor eIF-2 in S-10 extracts prepared from L cells; the CF-11 cellulose-purified reovirus mRNA was translated more efficiently than was LiCl-purified reovirus mRNA in these extracts. Highly purified CF-11 reovirus mRNA was, however, translated less efficiently by S-10 extracts prepared from IFN-treated L cells than by extracts prepared from untreated L cells, suggesting that the inefficient translation by IFN-treated extracts was an integral property of reovirus mRNA. Increasing the secondary structure of reovirus mRNA by substituting bromouridine (Br-uridine) for uridine in the mRNA caused an increased inhibition of mRNA binding to ribosomes in extracts prepared from IFN-treated as compared to untreated cells. The mechanism of inhibition of translation of CF-11 cellulose-purified reovirus mRNA in IFN-treated systems remains to be established.
Collapse
Affiliation(s)
- B L Jacobs
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
48
|
Taylor JL, Samuel CE, Grossberg SE. Antiviral and antidifferentiative activities of interferon beta and gamma in relation to their induction of double-stranded RNA-dependent protein kinase activity in 3T3-L1 cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57306-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Hovanessian AG, Galabru J, Meurs E, Buffet-Janvresse C, Svab J, Robert N. Rapid decrease in the levels of the double-stranded RNA-dependent protein kinase during virus infections. Virology 1987; 159:126-36. [PMID: 2440179 DOI: 10.1016/0042-6822(87)90355-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The double-stranded RNA-dependent protein kinase from human cells is a 68,000 molecular weight protein (p68 kinase), the level of which is enhanced significantly in cells treated with interferon. With a monoclonal antibody specific for p68 kinase, here we show the phosphorylation and steady-state levels of p68 kinase during virus infection. The p68 kinase is phosphorylated in interferon-treated cells during infection with encephalomyocarditis virus (EMCV), vesicular stomatitis virus (VSV), and vaccinia virus, thus indicating activation of p68 kinase during these virus infections, an essential step required for autophosphorylation of p68 kinase. However, in spite of this activation, the level of p68 kinase is rapidly decreased in virus-infected cells. The half-life of p68 kinase in uninfected cells is 6 to 7 hr, whereas in EMCV-infected cells it is 2 to 3 hr. This decrease in the level of p68 kinase is dependent on the multiplicity of virus infection and it seems to be specific since other cellular proteins as well as the activity of 2'-5'-oligoadenylate synthetase are not modified. Decreased levels of p68 kinase are also observed in cells infected with VSV and vaccinia virus. In the absence of virus infection, decreased levels of p68 kinase occur in cells following incubation with poly(I).poly(C).
Collapse
|
50
|
Kitajewski J, Schneider RJ, Safer B, Munemitsu SM, Samuel CE, Thimmappaya B, Shenk T. Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell 1986; 45:195-200. [PMID: 3698097 DOI: 10.1016/0092-8674(86)90383-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The VAI RNA of adenovirus is a small, RNA polymerase III-transcribed species required for efficient translation of host cell and viral mRNAs late after infection. The growth of a viral mutant that is unable to produce the RNA is inhibited by interferon, while wild-type virus is not affected. VAI RNA prevents activation of the interferon-induced P1/eIF-2 alpha kinase. This inhibition can be reproduced in extracts of interferon-treated cells where purified VAI RNA prevents activation of latent kinase by double-stranded RNA.
Collapse
|