1
|
Babio L, Damsteegt EL, Lokman PM. Lipoprotein receptors in ovary of eel, Anguilla australis: molecular characterisation of putative vitellogenin receptors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:117-137. [PMID: 36648592 PMCID: PMC9935665 DOI: 10.1007/s10695-023-01169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lipoprotein receptors, including low-density lipoprotein receptor (LDLr) relatives (Lrs) and LDLr-related proteins (Lrps), belong to the LDLr supergene family and participate in diverse physiological functions. In this study, novel sequences of lr and lrp genes expressed in the ovary of the short-finned eel, Anguilla australis, during early gonadal development are presented. The genes encoding the LDLr-like, Lrp1-like, Lrp1b-like, Lrp3, Lrp4-like, Lrp5-like, Lrp6, Lrp10, Lrp11, Lrp12-like, and Lr11-like proteins were found and identified by sequence and structure analysis, in addition to phylogenetic analysis. Genes encoding proteins previously implicated in follicle development and vitellogenin (Vtg) uptake in oviparous vertebrates were also identified, i.e. lr8 (including lr8 + and lr8- variants) and lrp13; their identification was reinforced by conserved synteny with orthologues in other teleost fish. Compared to other lr/lrp genes, the genes encoding Lr8 + , Lr8-, and Lrp13 were highly expressed in ovary during early development, decreasing as oocyte development advanced when induced by hypophysation. Furthermore, lr8 + , lr8-, and lrp13 were dominantly expressed in the ovary when compared with 17 other tissues. Finally, this study successfully detected the expression of both lr8 variants, which showed different expression patterns to those reported in other oviparous vertebrates and provided the first characterisation of Lrp13 in Anguilla sp. We propose that lr8 + , lr8-, and lrp13 encode putative Vtg receptors in anguillid eels.
Collapse
Affiliation(s)
- Lucila Babio
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - Erin L. Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| | - P. Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, P.O. Box 56, Dunedin, Otago 9054 New Zealand
| |
Collapse
|
2
|
Scanes CG. Avian Physiology: Are Birds Simply Feathered Mammals? Front Physiol 2020; 11:542466. [PMID: 33240094 PMCID: PMC7680802 DOI: 10.3389/fphys.2020.542466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
There are marked differences between the physiology of birds and mammals. These reflect the evolutionary distance between the two classes with the last common ancestor estimated as existing 318 million years ago. There are analogous organ systems in birds and mammals. However, marked differences exist. For instance, in the avian gastro-intestinal tract, there is a crop at the lower end of the esophagus. This functions both to store feed and for microbial action. The avian immune system lacks lymph nodes and has a distinct organ producing B-lymphocytes, namely the bursa Fabricius. The important of spleen has been largely dismissed until recently. However, its importance in both innate and specific immunity is increasingly recognized. There is a major difference between birds and mammals is the female reproductive system as birds produce large yolk filled eggs. The precursors of the yolk are synthesized by the liver. Another difference is that there is a single ovary and oviduct in birds.
Collapse
Affiliation(s)
- Colin G. Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
He C, Hu X, Jung RS, Larsson M, Tu Y, Duarte-Vogel S, Kim P, Sandoval NP, Price TR, Allan CM, Raney B, Jiang H, Bensadoun A, Walzem RL, Kuo RI, Beigneux AP, Fong LG, Young SG. Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight 2017; 2:96783. [PMID: 29046479 DOI: 10.1172/jci.insight.96783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022] Open
Abstract
In mammals, GPIHBP1 is absolutely essential for transporting lipoprotein lipase (LPL) to the lumen of capillaries, where it hydrolyzes the triglycerides in triglyceride-rich lipoproteins. In all lower vertebrate species (e.g., birds, amphibians, reptiles, fish), a gene for LPL can be found easily, but a gene for GPIHBP1 has never been found. The obvious question is whether the LPL in lower vertebrates is able to reach the capillary lumen. Using purified antibodies against chicken LPL, we showed that LPL is present on capillary endothelial cells of chicken heart and adipose tissue, colocalizing with von Willebrand factor. When the antibodies against chicken LPL were injected intravenously into chickens, they bound to LPL on the luminal surface of capillaries in heart and adipose tissue. LPL was released rapidly from chicken hearts with an infusion of heparin, consistent with LPL being located inside blood vessels. Remarkably, chicken LPL bound in a specific fashion to mammalian GPIHBP1. However, we could not identify a gene for GPIHBP1 in the chicken genome, nor could we identify a transcript for GPIHBP1 in a large chicken RNA-seq data set. We conclude that LPL reaches the capillary lumen in chickens - as it does in mammals - despite an apparent absence of GPIHBP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tara R Price
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, Texas, USA
| | | | - Brian Raney
- University of California, Santa Cruz Genomics Institute and
| | - Haibo Jiang
- Department of Medicine and.,Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Western Australia, Perth, Australia
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, New York, USA
| | - Rosemary L Walzem
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Richard I Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Stephen G Young
- Department of Medicine and.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Elkin R, Bauer R, Schneider W. The restricted ovulator chicken strain: an oviparous vertebrate model of reproductive dysfunction caused by a gene defect affecting an oocyte-specific receptor. Anim Reprod Sci 2012; 136:1-13. [PMID: 23123285 PMCID: PMC3521959 DOI: 10.1016/j.anireprosci.2012.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/23/2012] [Accepted: 10/12/2012] [Indexed: 01/26/2023]
Abstract
A unique non-laying strain of chickens with heritable hyperlipidemia and aortic atherosclerosis was first described in 1974. Subsequent work established that the phenotype results from a naturally occurring point mutation in the gene specifying the very low density lipoprotein (VLDL) receptor, a 95-kDa membrane protein which normally mediates the massive uptake of the main circulating hepatically-synthesized yolk precursors, VLDL and vitellogenin. As a result, hens of the mutant strain termed "restricted ovulator" (R/O) have approximately 5-fold elevations in circulating cholesterol and triglyceride concentrations compared with normal layers, and hepatic lipogenesis and cholesterogenesis are markedly attenuated due to feedback inhibition. R/O hens also exhibit hyperestrogenemia, hypoprogesteronemia, elevated circulating gonadotropins, and up-regulated pituitary progesterone receptor mRNA and isoforms. The ovaries of R/O hens are abnormal in that they lack a follicular hierarchy and contain many small preovulatory follicles of various colors, shapes, and sizes. However, since R/O hens occasionally lay eggs, it is possible that endocytic receptors other than the VLDL receptor may be able to facilitate oocyte growth and/or that yolk precursor uptake can occur via a nonspecific bulk process. A mammalian model of impaired fecundity with abnormal lipoprotein metabolism also has been described, but different mechanisms are likely responsible for its reproductive dysfunction. Nevertheless, as our understanding of the molecular physiology and biochemistry of avian oocyte growth continues to expand, in part due to studies of the R/O model, new analogies may emerge between avian and mammalian systems, which ultimately could help to answer important questions in reproductive biology.
Collapse
Affiliation(s)
- R.G. Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - R. Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | - W.J. Schneider
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| |
Collapse
|
5
|
Schenk S, Hoeger U. Lipid accumulation and metabolism in polychaete spermatogenesis: Role of the large discoidal lipoprotein. Mol Reprod Dev 2010; 77:710-9. [PMID: 20544837 DOI: 10.1002/mrd.21208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In most oviparous animals, lipoprotein-mediated lipid transport plays an important role in the nutrient supply for the oocyte. In male gametes, lipids are used as energy substrates in spermatozoa but nothing is yet known about their origin and metabolism throughout spermatogenesis. The lipid profiles analyzed from different stages of male germ cell development in the marine annelid Nereis virens were found to undergo a dramatic change from primary triacylglycerides at the beginning of germ cell development to cholesterol and phospholipids at the end of development as demonstrated by HPLC with evaporative light scattering detection and mass spectrometry. The uptake of a large discoidal lipoprotein into the developing germ cells could be demonstrated by fluorescence labeling and electron microscopic techniques as well as by the presence of a lipoprotein receptor in the germ cells, thus establishing its role in lipid supply. The incorporated lipoprotein discs were found to be stored as intact complexes indicating that they are not readily degraded upon endocytotic uptake. The change in lipid composition during germ cell development reflects their metabolic activity, especially in spermatogonia. The high concentration of lipids maintained by spermatogonia during the early phase of gametogenesis seems to be required for the later rapid processes of meiosis and spermatocyte differentiation. At times when peak demand of lipids arises for membrane synthesis and increased metabolism, this may be met more efficiently by a rapid on-site mobilization of lipids instead of an external supply.
Collapse
Affiliation(s)
- Sven Schenk
- Institut für Zoologie, Johannes Gutenberg-Universität, Mainz, Germany.
| | | |
Collapse
|
6
|
Schneider WJ. Receptor-mediated mechanisms in ovarian follicle and oocyte development. Gen Comp Endocrinol 2009; 163:18-23. [PMID: 19523388 DOI: 10.1016/j.ygcen.2008.11.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 11/21/2022]
Abstract
The normal development of the chicken oocyte within the ovarian follicle depends on the coordinated expression and function of several members of the low density lipoprotein receptor gene family. The human low density lipoprotein receptor (LDLR) is the prototype of the gene family; since its discovery and the elucidation of the medical significance of mutations in the ldlr gene, many additional family members have been discovered and characterized, and some important advances have resulted from studies in the chicken. I describe the analogies as well as the differences that exist between the molecular genetics of the mammalian and avian members of this important gene family, with emphasis on receptor-mediated oocyte growth. Recent progress in the molecular characterization of the chicken genes whose products mediate oocyte growth, follicle development, and accessory pathways is described in detail, and emerging information of preliminary nature is included. As the availability of chicken genome sequence data has enhanced the rate of progress in the field, our understanding of the physiological roles of members of this receptor family in general has already gained from studies in the avian model system.
Collapse
Affiliation(s)
- Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/2, A-1030 Vienna, Austria.
| |
Collapse
|
7
|
Lipoprotein mediated lipid uptake in oocytes of polychaetes (Annelida). Cell Tissue Res 2009; 337:341-8. [PMID: 19533173 DOI: 10.1007/s00441-009-0817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/04/2009] [Indexed: 11/27/2022]
Abstract
The uptake of the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled sex-unspecific Nereis lipoprotein was investigated in oocytes of the nereidid polychaetes Nereis virens and Platynereis dumerilii. The fluorescence label was first observed in endocytic vesicles (<1 microm diameter), which later fused to larger vesicles (2-3 microm); these were finally incorporated into existing unlabeled yolk granules (5-6 microm). In Platynereis oocytes, the fusion of endocytic vesicles was delayed in oocytes at their final stage of development compared with those at an early stage of development. Lipoprotein double-labeled with fluorescein isothiocyanate (FITC) and DiI revealed that both the protein and the lipid moiety remained co-localized during incorporation into the yolk granules of the oocyte. No labeling of the cytoplasmic lipid droplets was observed. In N. virens, unlabeled Nereis lipoprotein was effective as a competitive inhibitor of DiI-labeled Nereis lipoprotein. Ligand blot experiments demonstrated the presence of a lipoprotein receptor with an apparent molecular mass of 120 kDa, which is different from that of the known yolk protein receptor. This indicates the presence, in the polychaete oocyte, of two distinct receptors mediating yolk protein and lipoprotein uptake, respectively. Thus, the sex-unspecific lipoprotein contributes to the lipid supply of the growing oocyte in addition to the known uptake of the yolk-protein-associated lipids. The absence of label in the cytoplasmic lipid droplets, even after prolonged incubation with labeled lipoprotein, suggests that these lipids arise either by the breakdown and resynthesis of lipoprotein-derived lipids and/or by de novo synthesis within the oocyte.
Collapse
|
8
|
Tufail M, Takeda M. Insect vitellogenin/lipophorin receptors: molecular structures, role in oogenesis, and regulatory mechanisms. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:87-103. [PMID: 19071131 DOI: 10.1016/j.jinsphys.2008.11.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 05/27/2023]
Abstract
Insect vitellogenin and lipophorin receptors (VgRs/LpRs) belong to the low-density lipoprotein receptor (LDLR) gene superfamily and play a critical role in oocyte development by mediating endocytosis of the major yolk protein precursors Vg and Lp, respectively. Precursor Vg and Lp are synthesized, in the majority of insects, extraovarially in the fat body and are internalized by competent oocytes through membrane-bound receptors (i.e., VgRs and LpRs, respectively). Structural analysis reveals that insect VgRs/LpRs and all other LDLR family receptors share a group of five structural domains: clusters of cysteine-rich repeats constituting the ligand-binding domain (LBD), epidermal growth factor (EGF)-precursor homology domain that mediates the acid-dependent dissociation of ligands, an O-linked sugar domain of unknown function, a transmembrane domain anchoring the receptor in the plasma membrane, and a cytoplasmic domain that mediates the clustering of the receptor into the coated pits. The sequence analysis indicates that insect VgRs harbor two LBDs with five repeats in the first and eight repeats in the second domain as compared to LpRs which have a single 8-repeat LBD. Moreover, the cytoplasmic domain of all insect VgRs contains a LI internalization signal instead of the NPXY motif found in LpRs and in the majority of other LDLR family receptors. The exception is that of Solenopsis invicta VgR, which also contains an NPXY motif in addition to LI signal. Cockroach VgRs still harbor another motif, NPTF, which is also believed to be a functional internalization signal. The expression studies clearly demonstrate that insect VgRs are ovary-bound receptors of the LDLR family as compared to LpRs, which are transcribed in a wide range of tissues including ovary, fat body, midgut, brain, testis, Malpighian tubules, and muscles. VgR/LpR mRNA and the protein were detected in the germarium, suggesting that the genes involved in receptor-endocytotic machinery are specifically expressed long before they are functionally required.
Collapse
Affiliation(s)
- Muhammad Tufail
- Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan.
| | | |
Collapse
|
9
|
Dashti N, Manchekar M, Liu Y, Sun Z, Segrest JP. Microsomal triglyceride transfer protein activity is not required for the initiation of apolipoprotein B-containing lipoprotein assembly in McA-RH7777 cells. J Biol Chem 2007; 282:28597-28608. [PMID: 17690102 DOI: 10.1074/jbc.m700229200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.
Collapse
Affiliation(s)
- Nassrin Dashti
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294; Department of Cell Biology, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294.
| | - Medha Manchekar
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Yanwen Liu
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Zhihuan Sun
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| | - Jere P Segrest
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Schneider WJ. Low density lipoprotein receptor relatives in chicken ovarian follicle and oocyte development. Cytogenet Genome Res 2007; 117:248-55. [PMID: 17675866 DOI: 10.1159/000103186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/08/2006] [Indexed: 11/19/2022] Open
Abstract
The normal development of the chicken oocyte within the ovarian follicle depends on the coordinated expression and function of several members of the low density lipoprotein receptor gene family. The human low density lipoprotein receptor is the prototype of the gene family; since its discovery and the elucidation of the medical significance of mutations in the LDLR gene, many additional family members have been discovered and characterized, and some important advances have resulted from studies in the chicken. I describe the analogies as well as the differences that exist between the molecular genetics of the mammalian and avian members of this important gene family, with emphasis on receptor-mediated oocyte growth. Recent progress in the molecular characterization of the chicken genes whose products mediate oocyte growth, follicle development, and accessory pathways is described in detail, and emerging information of preliminary nature is included. As the availability of chicken genome sequence data has enhanced the rate of progress in the field, our understanding of the physiological roles of members of this receptor family in general has already gained from studies in the avian model system.
Collapse
Affiliation(s)
- W J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Hummel S, Christian S, Osanger A, Heid H, Nimpf J, Schneider WJ. Identification of a novel chondroitin-sulfated collagen in the membrane separating theca and granulosa cells in chicken ovarian follicles: the granulosa-theca cell interface is not a bona fide basement membrane. J Biol Chem 2007; 282:8011-8. [PMID: 17204479 DOI: 10.1074/jbc.m606029200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membranous structure separating the granulosa from theca cells in the developing ovarian follicles of birds is generally perceived as a genuine basement membrane (BM). Previously, we suggested that this membrane is unusual in that it lacks several typical BM components, e.g. collagen IV, laminin B, perlecan, and fibronectin (Hummel, S., Osanger, A., Bajari, T. M., Balasubramani, M., Halfter, W., Nimpf, J., and Schneider, W. J. (2004) J. Biol. Chem. 279, 23486-23494). We have now identified a novel chondroitin sulfate-modified collagen, tentatively termed ggBM1 (Gallus gallus basement membrane protein1) as a major component of the border between the vascularized theca and the epitheloid granulosa cells. In biosynthetic experiments using [3H]proline and [35S]sulfate, ggBM1 was shown to be synthesized by and secreted from the granulosa cells that support the developing oocyte. The acidic heterogeneous 135-kDa proteoglycan was converted to a protein with an apparent Mr of 95,000 by treatment with chondroitinase ABC and was completely degraded by collagenase. Sequencing of tryptic fragments revealed peptides typical of collagens. The follicular BM accumulated apolipoprotein B and apo-VLDLII, the major resident proteins of the yolk precursor very low density lipoprotein. Interestingly, and likely indicating an analogous situation to the follicle, ggBM1 is also a component of Bruch's membrane of the eye, which separates the vascularized choroid from retinal pigmented epithelial cells. Based on our data we propose that in addition to thecal perlecan, ggBM1 is involved in the transfer of yolk precursors from the thecal capillary bed to oocyte surface lipoprotein receptors mediating their uptake into oocytes.
Collapse
Affiliation(s)
- Susanna Hummel
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
12
|
Schenk S, Harris JR, Hoeger U. A discoidal lipoprotein from the coelomic fluid of the polychaete Nereis virens. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:236-43. [PMID: 16378741 DOI: 10.1016/j.cbpb.2005.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/28/2022]
Abstract
A discoidal lipoprotein was isolated from the coelomic fluid of the polychaete, Nereis virens, by density gradient centrifugation. The lipoprotein was present in both sexes and moved as a uniform band in an agarose gel. The average diameter of the lipoprotein particles determined by electron microscopy was 42 nm with a thickness of 10 nm. SDS electrophoresis showed two apoprotein subunits with molecular masses of 247 and 85 kDa, respectively. In lectin blots, both apoproteins were reactive with Concanavalin A indicating the presence of N-glycans. The small subunit was also reactive with peanut lectin, indicating additional O-glycosylation. The total lipid content was 48% and consisted mainly of phospholipids and some diglycerides as judged by thin layer chromatography. The estimated native molecular mass of N. virens lipoprotein ( approximately 675 kDa) lies in the range of vertebrate high-density lipoprotein and insect lipophorins. The size of the apoproteins is similar to those found in insects, while the composition of the lipid fraction is more similar to that of crustacean lipoproteins.
Collapse
Affiliation(s)
- Sven Schenk
- Institut für Zoologie, Universität Mainz, D-55099 Mainz, Germany.
| | | | | |
Collapse
|
13
|
Matsuyama H, Sato K, Nakamura Y, Suzuki K, Akiba Y. Modulation of regulatory factors involved in cholesterol metabolism in response to feeding of pravastatin- or cholesterol-supplemented diet in chickens. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:136-42. [PMID: 15904870 DOI: 10.1016/j.bbalip.2005.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
mRNA transcripts encoding multiple proteins from the cholesterol biosynthetic and uptake pathways in livers are controlled by sterol regulatory element binding protein-2 (SREBP-2), a membrane-bound mammalian transcription factor. The aims of the present study were to investigate whether SREBP-2 responds to plasma cholesterol levels and modulates expression of factors involved in the cholesterol metabolism of chickens. Supplementing the diets of chickens with 0.1% pravastatin, a drug used to control hypercholesterolemia, decreased plasma LDL-cholesterol concentrations. It also increased levels of the nuclear forms of SREBP-2 and increased gene expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) and low-density lipoprotein receptor (LDLr) in livers, relative to a control group. In contrast, feeding of 3% cholesterol-supplemented diet increased plasma total- and LDL-cholesterol concentrations but decreased levels of nuclear forms of SREBP-2 and reduced gene expression of HMGR and LDLr. However, the LDL-binding activities of chicken liver membranes were not affected by plasma cholesterol concentrations or by hepatic levels of the nuclear form of SREBP-2. LDL-binding proteins were detected as bands of 90 and 515 kDa on a ligand blot and the intensity of these bands was unaffected by pravastatin and cholesterol supplementation. These findings suggest that the cholesterol biosynthetic pathway is regulated by the nuclear form of SREBP-2 in chickens as well as in mammals, but that there may be species-specific differences in the regulatory mechanisms of hepatic cholesterol uptake.
Collapse
Affiliation(s)
- Hironori Matsuyama
- Animal Nutrition, Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555 Japan
| | | | | | | | | |
Collapse
|
14
|
Manchekar M, Richardson PE, Forte TM, Datta G, Segrest JP, Dashti N. Apolipoprotein B-containing lipoprotein particle assembly: lipid capacity of the nascent lipoprotein particle. J Biol Chem 2004; 279:39757-66. [PMID: 15254032 DOI: 10.1074/jbc.m406302200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously proposed that the N-terminal 1000-residue betaalpha(1) domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin. In support of this "lipid pocket" hypothesis, we demonstrated that apoB:1000 (residues 1-1000) is secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with high density lipoprotein 3 (HDL(3)) density. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to lipovitellin, was secreted as a particle considerably more dense than HDL(3). In the present study we have determined the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. The secreted [(3)H]glycerol-labeled apoB:1000 particles, isolated by nondenaturing gradient gel electrophoresis, contained 50 phospholipid (PL) and 11 triacylglycerol (TAG) molecules/particle. In contrast, apoB:931 particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000 particles, isolated by immunoaffinity chromatography, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules/particle. The surface to core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by oleate supplementation. Although very small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000 particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which (i) the first 1000 amino acid residues of apoB are competent to complete the lipid pocket without a structural requirement for MTP; (ii) a portion, or perhaps all, of the amino acid residues between 931 and 1000 of apoB-100 are critical for the formation of a stable, bulk lipid-containing nascent lipoprotein particle, and (iii) the lipid pocket created by the first 1000 residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 50 molecules of phospholipid.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Medicine, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hummel S, Lynn EG, Osanger A, Hirayama S, Nimpf J, Schneider WJ. Molecular characterization of the first avian LDL receptor: role in sterol metabolism of ovarian follicular cells. J Lipid Res 2003; 44:1633-42. [PMID: 12777474 DOI: 10.1194/jlr.m300014-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low levels of expression and sluggish sterol-mediated regulation have been likely reasons for the failure to molecularly characterize a bona fide LDL receptor (LDLR) in egg-laying species to date. The overall structure of the chicken LDLR, delineated here by cDNA cloning, has been conserved in evolution, since hallmark properties of mammalian LDLRs are already present in the avian protein. The chicken receptor appears to prefer LDL over VLDL as ligand, in compliance with its main role in providing lipoprotein-derived cholesterol for steroid production in ovarian follicular cells. This is also compatible with the fact that estrogen administration increased hepatic LDLR expression in roosters despite dramatically stimulated VLDL production. In cultured chicken embryo fibroblasts, expression of the receptor was induced by incubation with cholesterol synthesis inhibitors such as a statin. Furthermore, preincubation of induced cells with a specific anti-receptor antibody blocks LDL endocytosis, demonstrating that the receptor is ligand-endocytosis competent. Finally, the distribution of LDLRs among the extraoocytic cell populations lends support to a three-cell model for estrogen production within the ovarian follicle. In summary, the molecular characterization of the first avian LDLR reveals novel information about evolutionary, structural, and functional aspects of members of the supergene family of LDLR-related proteins.
Collapse
Affiliation(s)
- Susanna Hummel
- Institute of Medical Biochemistry, Department of Molecular Genetics, University and BioCenter Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Nöhammer C, Brunner F, Wölkart G, Staber PB, Steyrer E, Gonzalez FJ, Zechner R, Hoefler G. Myocardial dysfunction and male mortality in peroxisome proliferator-activated receptor alpha knockout mice overexpressing lipoprotein lipase in muscle. J Transl Med 2003; 83:259-69. [PMID: 12594240 DOI: 10.1097/01.lab.0000053916.61772.ca] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Free fatty acids (FFA) are liberated from triglyceride-rich lipoproteins by lipoprotein lipase (LPL) and are considered to be a principal energy source for the heart. The peroxisome proliferator-activated receptor alpha (PPARalpha) is a key regulator of FFA catabolism. To investigate its role in cardiac muscle metabolism, transgenic mice overexpressing LPL in skeletal and cardiac muscle were bred on a PPARalpha knockout background. Fifty-five percent of male animals lacking PPARalpha and overexpressing LPL died within 4 months after birth. In contrast, females of this genotype stayed alive. Deceased animals exhibited cardiopulmonary congestion but had no increase of neutral lipids in the heart. Changes in plasma glucose, FFA, lactate, and triglycerides did not clearly account for gender-specific differences in mortality; however, they indicated a critical role for PPARalpha during fasting. Analysis of cardiac function revealed that in isolated perfused hearts, left ventricular developed pressure (a measure of contractility) was markedly lower in PPARalpha knockout mice overexpressing LPL compared with controls. Glucose uptake of isolated perfused hearts was significantly higher in PPARalpha knockout mice with both normal or increased LPL expression. However, uptake of FFA was not different among genotypes. In contrast, fasted FFA levels were significantly lower in cardiac muscle of PPARalpha knockout mice with normal LPL expression (-26%) and PPARalpha knockout mice overexpressing LPL (-38%) compared with controls. Our results indicate a critical role for PPARalpha in myocardial pump function and suggest that mouse models combining different genetic effects such as PPARalpha knockout mice overexpressing muscle LPL may be useful to study cardiomyopathies.
Collapse
Affiliation(s)
- Christa Nöhammer
- Department of Pathology, Pharmacology and Toxicology, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dashti N, Gandhi M, Liu X, Lin X, Segrest JP. The N-terminal 1000 residues of apolipoprotein B associate with microsomal triglyceride transfer protein to create a lipid transfer pocket required for lipoprotein assembly. Biochemistry 2002; 41:6978-87. [PMID: 12033930 DOI: 10.1021/bi011757l] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein (apo) B, the major protein component of the atherogenic low-density lipoprotein (LDL), has a pentapartite structure, NH2-betaalpha1-beta1-alpha2-beta2-alpha3-COOH, the beta domains containing multiple amphipathic beta strands and the alpha domains containing multiple amphipathic alpha helixes. We recently reported that the first 1000 residues of human apoB-100 have sequence and amphipathic motif homologies to the lipid-pocket of lamprey lipovitellin (LV) [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416]. The lipid-pocket of LV is a small triangular space lined by three antiparallel amphipathic beta sheets, betaA, betaB, and betaD. The betaA and betaB sheets are joined together by an antiparallel alpha helical bundle, alpha domain. We proposed [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416] that formation of a LV-like lipid-pocket is necessary for lipid-transfer to apoB-containing lipoprotein particles and that this pocket is formed by association of the region of the betaalpha1 domain homologous to the betaA and betaB sheets of LV with a betaD-like amphipathic beta sheet from microsomal triglyceride transfer protein (MTP). To test this hypothesis, we generated four truncated cDNA constructs terminating at or near the juncture of the betaalpha1 and beta1 domains: Residues 1-800 (apoB:800), 1-931 (apoB:931), 1-1000 (apoB:1000), and 1-1200 (apoB:1200). Characterization of particles secreted by stable transformants of the McA-RH7777 cell line demonstrated that (i) ApoB:800, missing the betaB domain, was secreted as a lipid-poor aggregate. (ii) ApoB:931, containing most, but not all, of the betaB domain, was secreted as lipid-poor particles unassociated with MTP. (iii) ApoB:1000, containing the entire betaB domain, was secreted as a relatively lipid-rich particle associated hydrophobically with MTP. (iv) ApoB:1200, containing the betaalpha1 domain plus 200 residues of the beta1 domain, was secreted predominantly as a lipid-poor particle but also as a minor relatively lipid-rich, MTP-associated particle. We thus have captured an intermediate in apoB-containing particle assembly, a lipid transfer competent pocket formed by association of the complete betaalpha1 domain of apoB with MTP.
Collapse
Affiliation(s)
- Nassrin Dashti
- Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
18
|
Lipoprotein receptors. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0167-7306(02)36023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30267-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Prattes S, Hörl G, Hammer A, Blaschitz A, Graier WF, Sattler W, Zechner R, Steyrer E. Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci 2000; 113 ( Pt 17):2977-89. [PMID: 10934037 DOI: 10.1242/jcs.113.17.2977] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to their central role in triglyceride storage, fat cells are a primary depot of unesterified cholesterol (FC) in the body. In comparison, peripheral cells contain very little FC. This difference in adipocytes versus peripheral tissues is inconsistent with the current theory of cholesterol homeostasis. Attempting to resolve this discrepancy, we examined intracellular storage sites of FC in murine 3T3-F442A adipocytes. Using the cholesterol-binding antibiotic, filipin, in combination with high resolution fluorescence microscopy, intense fluorescent staining characteristically decorated the periphery of triglyceride droplets (TGD) as well as the plasma membrane (PM) of fat cells. Filipin-staining was not visible inside the lipid droplets. Purification of TGD by subcellular fractionation demonstrated that the rise in total FC content of adipocytes upon differentiation was attributable to an increase in TGD-FC, which contributed up to one third of the total cellular FC. The protein component of purified TGD from cultured adipocytes as well as from murine adipocytes obtained from fresh tissues contained the lumenal endoplasmic reticulum (ER) immunoglobulin binding protein (BiP) and the integral ER membrane protein calnexin. Efflux experiments using the extracellular FC acceptors (β)-cyclodextrin or apolipoprotein A-I demonstrated that TGD-associated FC was releasable from TGD. Whereas FC efflux from adipocytes was unaffected in the presence of brefeldin A or monensin, the secretion of a control protein, lipoprotein lipase, was effectively reduced. In summary, our findings identify the TGD surface layer as primary intracellular storage site for FC within adipocytes. We suggest that the structural role of ER-resident proteins in this adipocyte TGD envelope has been previously neglected. Our findings support the suggestion that an ER-like structure, albeit of modified lipid composition, constitutes the lipid droplets' surface layer. Finally, the efflux process of FC from adipocytes upon extracellular stimulation with (beta)-cyclodextrin provides evidence for an energy-dependent intracellular trafficking route between the TGD-FC pool and the PM-FC sites which is distinct from the secretory pathway of proteins.
Collapse
Affiliation(s)
- S Prattes
- Department of Medical Biochemistry and Medical Molecular Biology, University of Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schneider WJ, Nimpf J, Brandes C, Drexler M. The low-density lipoprotein receptor family: genetics, function, and evolution. Curr Atheroscler Rep 1999; 1:115-22. [PMID: 11122700 DOI: 10.1007/s11883-999-0007-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With ever increasing sophistication in molecular biological approaches, the low-density lipoprotein receptor supergene family continues to grow rapidly. From the well-defined key role of these receptors in lipoprotein metabolism, the new members move the field into many different and diverse physiologic and developmental areas. We observe an expansion of the functional spectrum of the family members, which is due to 1) the binding to their extracellular domains of more and more components lacking homology to apolipoproteins, and 2) the recently uncovered interaction of the receptors' cytoplasmic tails with adaptor proteins that are part of signaling pathways. As this review attempts to describe, the task of delineation of the evolutionary history of the gene family may be aided by concepts that consider events, both divergent and convergent, within and between the intra- and extracellular domains.
Collapse
Affiliation(s)
- W J Schneider
- Department of Molecular Genetics, University and Biocenter Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, AUSTRIA
| | | | | | | |
Collapse
|
22
|
Abstract
The discovery in 1992 of a member of the low density lipoprotein receptor (LDLR) family with eight ligand binding repeats (LR8) has raised more questions than have been answered to date. Here, we summarize the current status of knowledge about this intriguing molecule, generally termed VLDL receptor, at the molecular biological, cell biological, and physiological levels. On one hand, the wealth of reports concerning the role(s) of this receptor in lipoprotein metabolism in mammalian systems has revealed partially conflicting details, particularly in regards to its natural ligand(s) and site of action. On the other hand, molecular genetic and biochemical studies in the chicken have clearly demonstrated the multiple roles of LR8 in the physiology and reproduction of egg-laying species, and have generated insights into the evolutionary aspects of the LDLR gene family.
Collapse
Affiliation(s)
- J Nimpf
- Department of Molecular Genetics, University and Biocenter of Vienna, Austria.
| | | |
Collapse
|
23
|
Magrané J, Reina M, Pagan R, Luna A, Casaroli-Marano RP, Angelin B, Gåfvels M, Vilaró S. Bovine aortic endothelial cells express a variant of the very low density lipoprotein receptor that lacks the O-linked sugar domain. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32472-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Bajari TM, Lindstedt KA, Riepl M, Mirsky VM, Nimpf J, Wolfbeis OS, Dresel HA, Bautz EK, Schneider WJ. A minimal binding domain of the low density lipoprotein receptor family. Biol Chem 1998; 379:1053-62. [PMID: 9792438 DOI: 10.1515/bchm.1998.379.8-9.1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As more relatives of the low density lipoprotein receptor (LDLR) are discovered, defining their minimal binding domain(s) becomes a challenge. Here we have chosen the multifunctional chicken oocyte receptor for yolk deposition (termed LR8), and the pan-receptor ligand, receptor associated protein (RAP), as model systems to characterize a minireceptor using the phage display approach. Displayed fragments derived from the entire 819 residue LR8 molecule, followed by selection via panning on RAP, led to the definition of an 80 residue stretch LR8 minireceptor. It contains 12 cysteines, and represents parts of the second, the entire third, and parts of the fourth, of the eight clustered 'ligand binding repeats' in LR8; only two of the eight stretches of negatively charged residues of LR8, i.e., EDGSDE and DSGEDEE, are present. The latter sequence is reminiscent of that in the fifth repeat of the human LDLR, thought to be most critical for interaction with positive charge clusters in ligands. Baculovirus-mediated expression of the soluble minireceptor in insect cells showed it to fold as a monomer, and sulfhydryl-reduction-sensitive interaction with RAP was demonstrated for immobilized as well as soluble minireceptor. Furthermore, the LR8-derived minireceptor provided a RAP-responsive surface when covalently coupled to the surface of a gold electrode. In addition to its use in defining minimal binding domains, the phage display approach provides powerful tools for dissection, and consequently, manipulation, of the function of receptors so as to direct their binding activity toward ligands of diagnostic and/or therapeutic interest.
Collapse
Affiliation(s)
- T M Bajari
- Department of Molecular Genetics, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Steinmetz A, Hermann M, Nimpf J, Aebersold R, Ducret A, Weinberg RB, Schneider WJ. Expression and conservation of apolipoprotein AIV in an avian species. J Biol Chem 1998; 273:10543-9. [PMID: 9553114 DOI: 10.1074/jbc.273.17.10543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In birds, intestinally derived lipoproteins are thought to be secreted directly into the portal vein rather than to enter the circulation via the lymphatic system as in mammals. Hepatic clearance of these so-called portomicrons must be rapid, but the protein(s) mediating their catabolism, presumably analogues of the 36-kDa mammalian apolipoprotein E, have not been identified. In searching for such a mediator(s), we have isolated a hitherto unknown 38-kDa protein from chicken serum, which we identified by microsequencing and molecular cloning as a counterpart to mammalian apolipoprotein AIV (apoAIV). Mature chicken apoAIV consists of 347 amino acids, lacks cysteine residues, and displays 57% sequence identity with human apoAIV and, to a significantly lesser extent, with apoAIVs of rodents. This first nonmammalian apoAIV characterized is the smallest homologue reported so far, because of the lack of repeated motifs at the carboxyl terminus with the consensus sequence Glu-Gln-Glu/Ala-Gln, a hallmark of mammalian apoAIVs. Chicken apoAIV (isoelectric point, 4.65) is also considerably more acidic than its human counterpart. Agarose gel electrophoresis revealed that unlike human apoAIV, which migrates to a pre-alpha-position, chicken apoAIV shows fast alpha migration. Functional characterization demonstrated that the avian protein is able to activate the enzyme lecithin:cholesterol acyltransferase. Roosters and hens express apoAIV predominantly in the gut, one-fifth as much in the liver, and no other sites of expression are identifiable by Northern blot analysis. Although pronounced intestinal synthesis is common to apoAIVs, the features of the avian protein support the notion that it represents a prototype of an apoprotein that evolved to acquire possibly distinct functions in mammals and birds.
Collapse
Affiliation(s)
- A Steinmetz
- Department of Molecular Genetics, University and Biocenter Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Lindstedt KA, Mahon MG, Foisner R, Hermann M, Nimpf J, Schneider WJ. Receptor-associated protein in an oviparous species is correlated with the expression of a receptor variant. J Biol Chem 1997; 272:30221-7. [PMID: 9374506 DOI: 10.1074/jbc.272.48.30221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The biosynthesis of proteins containing cysteine-rich domains requires chaperones for their correct folding. For instance, the 39-kDa receptor-associated protein (RAP) aides in the cell-surface targeting of newly synthesized members of the mammalian low density lipoprotein receptor (LDLR) gene family, which contains tandemly arranged clusters of hexacysteine repeats. In the chicken, an LDLR relative with eight such repeats is expressed as two different splice variant forms in cell type-specific fashion (Bujo, H., Lindstedt, K. A., Hermann, M., Mola Dalmau, L., Nimpf, J., and Schneider, W. J. (1995) J. Biol. Chem. 270, 23546-23551). To learn more about evolutionary aspects of RAP, its role in escorting of these different receptor splice variants, and other potential functions, we have extended our studies on the avian LDLR family to RAP. cDNA cloning, determination of tissue expression at both the transcript and the protein level, stable expression in COS cells, and binding studies with chicken RAP revealed that mammalian RAPs have retained many features of the non-amniotic proteins. However, structural details, e.g. the well defined internal triplicate repeats in the chicken protein, have been somewhat diluted during evolution. Interestingly, chicken RAP was found to correlate positively with the expression levels in somatic cells of the larger splice variant of the eight-cysteine repeat receptor, but not with those of the smaller variant, expressed only in germ cells. This is compatible with the possibility that RAP may play a role in receptor biology that could be complementing its function in assisting folding. Chicken RAP in crude extracts of the stable expressor COS cells is able to bind to LDLR relatives in ligand blots without requirement for prior purification of the ligand. Thus, in conjunction with the avian model of massive lipid transport to germ cells, these cells provide a novel comparative system amenable to investigation of the biological functions of RAP.
Collapse
Affiliation(s)
- K A Lindstedt
- Department of Molecular Genetics, University and Biocenter Vienna, Dr. Bohr Gasse 9/2, A-1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
27
|
Bujo H, Hermann M, Lindstedt KA, Nimpf J, Schneider WJ. Low density lipoprotein receptor gene family members mediate yolk deposition. J Nutr 1997; 127:801S-804S. [PMID: 9164240 DOI: 10.1093/jn/127.5.801s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yolk represents the last growth stage of a single cell, the oocyte, which contains, besides bona fide cytoplasm, endocytosed serum-derived lipoproteins and minor components essential for normal embryo development. Transport of bulk lipoproteins, micronutrients, and morphogens to oocytes in parallel with maintenance of somatic homeostasis is achieved by ligand targeting via cell-specific expression of receptors and subtle differences in ligand structure. Lipoprotein metabolism is the prime example of these regulatory principles, in which receptors belonging to the low density lipoprotein receptor gene family play key roles. Here, we present the laying hen's features that make it an attractive model system to dissect macromolecular transport processes at the molecular level. In addition to the characterization of a family of yolk precursor receptors, studies on systemic vs. oocyte-directed transport have uncovered new aspects of the biological rationale for simultaneous expression of closely related genes in a single organism.
Collapse
Affiliation(s)
- H Bujo
- Department of Molecular Genetics, Biocenter and University of Vienna, Austria
| | | | | | | | | |
Collapse
|
28
|
Hiesberger T, Hodits R, Ullrich R, Exner M, Kerjaschki D, Schneider WJ, Nimpf J. Receptor-associated protein and members of the low density lipoprotein receptor family share a common epitope. An extended model for the development of passive Heymann nephritis. J Biol Chem 1996; 271:28792-7. [PMID: 8910522 DOI: 10.1074/jbc.271.46.28792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heymann nephritis is an experimental rat model for human membranous glomerulonephritis. Two target antigens have been identified in the proximal tubule brush border of rat kidneys. One of them is megalin, a 600-kDa membrane protein that belongs to the family of low density lipoprotein receptor (LDLR)-related proteins. The other one is receptor-associated protein (RAP), a polypeptide of 40 kDa that associates with members of the LDLR family. Here we show that antibodies produced against recombinant human RAP strongly cross-react with the chicken oocyte receptor for very low density lipoprotein and vitellogenin (LR8), and with two other members of the LDLR family, LDLR-related protein and megalin. The interaction of this antibody with LR8 showed binding characteristics exactly as those demonstrated for the physiological ligands of this receptor, in that binding of the antibody: (i) is Ca2+-dependent; (ii) is abolished by unfolding of the cysteine-rich binding domain by reduction; and (iii) interferes with the binding of very low density lipoprotein and vitellogenin. Immunopurification of the LR8-specific subpopulation of the polyclonal antiserum yielded an IgG fraction strongly reacting with LR8 as well as with RAP. Using recombinant fragments of RAP and peptide mapping, the cross-reacting epitope(s) could be narrowed down to three short sequences (5-7 residues) in the COOH-terminal part of the protein. After immunization with RAP, anti-LR8 antibodies and anti-RAP antibodies arise simultaneously, indicating that the receptor-specific activity is not due to anti-idiotypic antibodies. These findings suggest the existence of a common epitope(s) on RAP and members of the LDL receptor family. Based on these results, we present an extended molecular model for the development of passive Heymann nephritis.
Collapse
Affiliation(s)
- T Hiesberger
- Department of Molecular Genetics, Biocenter and University of Vienna, Dr. Bohrgasse 9/2, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
29
|
Takahashi S, Oida K, Ookubo M, Suzuki J, Kohno M, Murase T, Yamamoto T, Nakai T. Very low density lipoprotein receptor binds apolipoprotein E2/2 as well as apolipoprotein E3/3. FEBS Lett 1996; 386:197-200. [PMID: 8647281 DOI: 10.1016/0014-5793(96)00439-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The VLDL receptor, a newly identified lipoprotein receptor, recognizes apoE containing lipoproteins. The human VLDL receptor was overexpressed in 1d1A-7, a mutant Chinese hamster ovary cells lacking LDL receptors. Each VLDL obtained from a normolipidemic subject with two epsilon3 or epsilon2 alleles similarly competed for the binding of radiolabeled rabbit beta-VLDL to the VLDL receptors. The anti-apoE monoclonal antibody 1D7, which inhibited binding of apoE3 to the LDL receptors, failed to compete for the binding of VLDL (apoE3 or apoE2) to the VLDL receptors. Results indicate that the binding site of apoE on the VLDL receptor may differ from its binding site on the LDL receptor.
Collapse
Affiliation(s)
- S Takahashi
- Third Department of Internal Medicine, Fukui Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Novak S, Hiesberger T, Schneider WJ, Nimpf J. A new low density lipoprotein receptor homologue with 8 ligand binding repeats in brain of chicken and mouse. J Biol Chem 1996; 271:11732-6. [PMID: 8662771 DOI: 10.1074/jbc.271.20.11732] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier necessitates disparate macromolecular transport systems in the brain and central nervous system. We now report the discovery of a new member of the low density lipoprotein receptor (LDLR) family whose expression is highly restricted to the brain. The full-length cDNA specifying the chicken receptor (open reading frame, 2754 base pairs) as well as a cDNA for the major portion of its murine homologue have been obtained. The novel receptor shows the greatest similarity to the group of LDLR relatives with 8 ligand binding repeats, in chicken termed LR8 and in mammals, very low density lipoprotein receptors. Thus, in addition to 8 tandemly arranged ligand binding repeats, the five-domain receptor contains an O-linked sugar region and the internalization signal, Phe-Asp-Asn-Pro-Val-Tyr, typical for all LDLR gene family members. In chicken, the 6.5-kb receptor transcript is present at high levels in brain and at much lower levels in extraoocytic cells of the ovary; in mouse, the same transcript of 6.5 kb was detected in brain, but not in heart (the major site of very low density lipoprotein receptor expression), lung, liver, kidney, and ovary. An antibody directed against the predicted carboxyl terminus of the avian receptor detected a 130-kDa protein in brain extracts. The apparent size of the immunoreactive protein is compatible with extensive glycosylation of the 894-residue mature form of the receptor. The presence of this novel receptor in brain of a bird and a rodent suggests an important and evolutionary conserved function.
Collapse
Affiliation(s)
- S Novak
- Department of Molecular Genetics, Biocenter and University of Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Schneider WJ. Vitellogenin receptors: oocyte-specific members of the low-density lipoprotein receptor supergene family. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 166:103-37. [PMID: 8881774 DOI: 10.1016/s0074-7696(08)62507-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Receptors that transport vitellogenin (VTG) into oocytes are of vital importance to egg-laying species, because they mediate a key step of oocyte maturation, a prerequisite to reproduction. Vitellogenins are lipophosphoglycoproteins that are produced under female hormonal control in large central organs (fat body in insects; liver in higher animals) and are transported in the circulation to the female gonads. VTG receptors localized in coated pits on the surface of growth-competent oocytes are able to accumulate in the yolk high concentrations of VTG and other ligands they recognize. The study of VTG receptors and their ligands has identified genes that specify related ligands, and a family of receptors. To date, all molecularly characterized VTG receptors belong to the low-density lipoprotein receptor supergene family, which ranges from a 600-kDa receptor in Caenorhabditis elegans to the 100-kDa so-called very-low-density lipoprotein receptors in mammals. These receptors, by and large, recognize ligands with similarities in structural elements first defined in the human apoplipoproteins B-100 and E. Recent studies on the receptor family have added VTG and lipoprotein lipase to the list of co-evolved ligands and have revealed that VTG receptors are able to interact with ligands other than VTG and also with some unrelated to lipoprotein metabolism. For example, the chicken VTG receptor also imports very-low-density lipoprotein, riboflavin-binding protein, and alpha-2-macroglobulin into growing oocytes. Such multifunctionality of receptors is likely the result of evolutionary pressure to provide the female germ cell with a highly economical machinery for vitellogenesis.
Collapse
Affiliation(s)
- W J Schneider
- Department of Molecular Genetics, University of Vienna, Austria
| |
Collapse
|
32
|
Removal of lipoproteins from plasma. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
33
|
Hodits RA, Nimpf J, Pfistermueller DM, Hiesberger T, Schneider WJ, Vaughan TJ, Johnson KS, Haumer M, Kuechler E, Winter G. An antibody fragment from a phage display library competes for ligand binding to the low density lipoprotein receptor family and inhibits rhinovirus infection. J Biol Chem 1995; 270:24078-85. [PMID: 7592608 DOI: 10.1074/jbc.270.41.24078] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently antibodies with a wide range of binding specificities have been isolated from large repertoires of antibody fragments displayed on filamentous phage, including those that are difficult to raise by immunization. We have used this approach to isolate an antibody fragment against chicken very low density lipoprotein (VLDL) receptor. It binds to the receptor with good affinity (Kaff = 2 x 10(8) M-1) as measured by plasmon surface resonance, and competes for binding of natural ligands (vitellogenin, VLDL, and receptor-associated protein). The antibody also binds to other members of the low density lipoprotein (LDL) receptor family including rat LDL receptor and human and rat low density lipoprotein receptor-related protein (LRP/alpha 2MR), and it competes for binding of receptor-associated protein to LRP/alpha 2MR. Moreover, the antibody fragment inhibits infection of human fibroblasts deficient in LDL-R but expressing LRP/alpha 2MR by human rhinovirus. Binding of the antibody is abolished upon reduction of the receptors and is strictly Ca2+ dependent. The phage antibody thus recognizes the ligand binding site(s) of several members of the LDL receptor family, in contrast to antibodies produced by hybridoma technology.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Specificity
- Binding, Competitive
- Blotting, Western
- Cell Line
- Chickens
- Chlorocebus aethiops
- Cloning, Molecular
- Coliphages
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli
- Female
- Gene Library
- Humans
- Immunoglobulin Fragments/metabolism
- Kinetics
- Lipoproteins, VLDL/blood
- Lipoproteins, VLDL/isolation & purification
- Lipoproteins, VLDL/metabolism
- Molecular Sequence Data
- Oviposition
- Rats
- Receptors, LDL/immunology
- Receptors, LDL/isolation & purification
- Receptors, LDL/metabolism
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Rhinovirus/immunology
- Rhinovirus/pathogenicity
- Rhinovirus/physiology
- Species Specificity
- Transfection
Collapse
Affiliation(s)
- R A Hodits
- Institute of Biochemistry, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bujo H, Lindstedt KA, Hermann M, Dalmau LM, Nimpf J, Schneider WJ. Chicken oocytes and somatic cells express different splice variants of a multifunctional receptor. J Biol Chem 1995; 270:23546-51. [PMID: 7559519 DOI: 10.1074/jbc.270.40.23546] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An abundant 95-kDa protein belonging to the low density lipoprotein receptor supergene family is essential for chicken oocyte growth by mediating the uptake of multiple plasma-borne yolk precursors. This receptor harbors at the amino terminus a cluster of eight tandemly arranged repeats typical of the ligand binding domains of members of this family and is designated low density lipoprotein receptor relative with 8 repeats (LR8). Here, we demonstrate by reverse transcriptase-polymerase chain reaction, Northern, and Western blot analyses that the chicken expresses two forms of LR8, which are generated by differential splicing of an exon encoding a serine- and threonine-rich region characteristic of LRs, termed O-linked sugar domain. The female germ cell of the chicken expresses extremely high levels of the short form of LR8 (LR8-), i.e. the 95-kDa protein; in contrast, somatic cells express lower but detectable levels of the form containing the O-linked sugar domain (LR8+). The main sites of LR8+ expression in the chicken are the heart and skeletal muscle, i.e. the same tissues were LR8 mRNAs predominate in mammals; in addition, in situ hybridization demonstrates that a significant amount of LR8+ is produced in the hen's ovarian follicular granulosa cells. We found no apparent functional difference between the two receptor forms; however, cell type-specific targeting of the multiple ligands of these receptors possibly relates to their respective expression on the cell surface.
Collapse
Affiliation(s)
- H Bujo
- Department of Molecular Genetics, Biocenter, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Hiesberger T, Hermann M, Jacobsen L, Novak S, Hodits RA, Bujo H, Meilinger M, Hüttinger M, Schneider WJ, Nimpf J. The chicken oocyte receptor for yolk precursors as a model for studying the action of receptor-associated protein and lactoferrin. J Biol Chem 1995; 270:18219-26. [PMID: 7543099 DOI: 10.1074/jbc.270.31.18219] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Receptor-associated protein (RAP) was originally described as a 39-kDa intracellular protein copurifying with mammalian low density lipoprotein (LDL) receptor-related protein/alpha 2-macroglobulin receptor (LRP/alpha 2MR). RAP has a high affinity for LRP/alpha 2MR and interferes with the receptor's ability to bind a variety of ligands. The laying hen expresses, in a tissue-specific manner, at least four different proteins which belong to the same family of receptors as LRP/alpha 2MR. Here we show that the chicken also produces RAP, so far thought to be expressed only in mammals. Studies on the interaction of recombinant human RAP with the LDL receptor family in the chicken revealed that RAP binds with high affinity to the abundant oocyte receptor for yolk precursors (OVR) as well as to the somatic cell-specific LRP/alpha 2MR. Significantly, RAP interacts with a lower affinity with the LDL receptor, but does not bind to the oocyte-specific form of LRP. Binding of RAP to OVR inhibits the interaction of the receptor with all known physiological ligands, i.e. the yolk precursors very low density lipoprotein, vitellogenin, and alpha 2-macroglobulin. In COS cells transfected with OVR, RAP is internalized and degraded in a concentration-dependent and saturable manner. Lactoferrin, another protein with a high affinity for mammalian LRP/alpha 2MR, also binds to OVR and abolishes its interaction with yolk precursors. Cross-competition experiments show that RAP and lactoferrin recognize sites different from those involved in yolk precursor binding. The availability of pure OVR and LDLR enable us to determine kinetic parameters for the binding of RAP and lactoferrin to these receptors by surface plasmon resonance. Taken together, our results strongly suggest that chicken OVR, which is easily accessible and highly abundant in growing oocytes, represents a superior system for studying mechanistic and structural aspects of the interaction of ligands and modulating proteins with members of the LDL receptor gene family.
Collapse
Affiliation(s)
- T Hiesberger
- Department of Molecular Genetics, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jacobsen L, Hermann M, Vieira PM, Schneider WJ, Nimpf J. The chicken oocyte receptor for lipoprotein deposition recognizes alpha 2-macroglobulin. J Biol Chem 1995; 270:6468-75. [PMID: 7534764 DOI: 10.1074/jbc.270.12.6468] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
alpha 2-Macroglobulin (alpha 2M), a major plasma component in all vertebrates, is proposed to function as a broad spectrum protease inhibitor. The alpha 2M-proteinase complex (activated alpha 2M; alpha 2M*) is removed rapidly by receptor-mediated endocytosis in the liver. Here we demonstrate by Western blotting that alpha 2M is also present in the yolk of chicken oocytes. Plasma levels of alpha 2M are increased by estrogen, and yolk alpha 2M is partially proteolyzed, consistent with the action of cathepsin D on endocytosed alpha 2M. Two known estrogen-induced ligands of the oocyte-specific 95-kDa very low density lipoprotein/vitellogenin receptor (OVR) are also fragmented by yolk cathepsin D (Retzek, H., Steyrer, E., Sanders, E. J., Nimpf, J., and Schneider, W. J. (1992) DNA Cell Biol. 11, 661-672). Since these findings suggested a common uptake mechanism for lipoproteins and alpha 2M by oocytes, we investigated whether OVR, a member of the low density lipoprotein receptor family, functions in the metabolism of alpha 2M. Ligand blotting of oocyte membrane extracts with chicken alpha 2M* revealed that it binds to OVR. Surprisingly, the oocyte receptor also recognizes native alpha 2M, in sharp contrast to the hepatic receptor, which only binds alpha 2M*. Receptor interaction of both forms requires Ca2+; however, competition experiments suggest that alpha 2M and alpha 2M* interact with slightly different, or overlapping, sites on the receptor. Colocalization of alpha 2M and OVR in coated vesicles isolated from growing oocytes, and internalization and degradation of methylamine-activated alpha 2M by COS-7 cells transfected with OVR, strongly suggest that alpha 2M is transported into growing oocytes via OVR. We propose that this multifunctional receptor mediates pathways at the metabolic crossroads of lipoproteins and protease inhibitor complexes.
Collapse
Affiliation(s)
- L Jacobsen
- Department of Molecular Genetics, University and Biocenter Vienna, Austria
| | | | | | | | | |
Collapse
|
37
|
Lindberg A, Olivecrona G. Lipase evolution: trout, Xenopus and chicken have lipoprotein lipase and apolipoprotein C-II-like activity but lack hepatic lipase-like activity. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1255:205-11. [PMID: 7696336 DOI: 10.1016/0005-2760(94)00233-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lipoprotein lipase and hepatic lipase are members of a gene family which also contains pancreatic lipase. High activity of lipoprotein lipase is present in extrahepatic tissues in all mammals studied and also in birds. The activity of hepatic lipase varies more. To investigate the evolutionary relationship, lipase activities in tissues of some lower vertebrates were measured. In fish and in frog, low activities with the characteristics of lipoprotein lipase were found. Serum from frog and from fish, and plasma from chicken, stimulated lipoprotein lipase in vitro, indicating that these species contain analogues to human apolipoprotein C-II. Little or no hepatic lipase-like activity was found in post-heparin plasma or in liver homogenates of chickens. In fish liver, lipase activity with an apparent heparin affinity similar to, or even higher than lipoprotein lipase was found. Frog liver contained a small amount of lipase activity with high heparin affinity. This activity was inhibited both by apolipoprotein C-II and by 1 M NaCl. It is not clear whether the low lipase activities in livers from fish and from frog are variants of hepatic lipase. Since lipoprotein lipase and apolipoprotein C-II are already present in fish, this lipase probably evolved before hepatic lipase.
Collapse
Affiliation(s)
- A Lindberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | |
Collapse
|
38
|
Van Leuven F, Umans L, Lorent K, Hilliker C, Serneels L, Overbergh L, Stas L, Raymakers L. Molecular analysis of the human and mouse alpha 2M family. Ann N Y Acad Sci 1994; 737:163-71. [PMID: 7524394 DOI: 10.1111/j.1749-6632.1994.tb44310.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- F Van Leuven
- Center for Human Genetics, University of Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nimpf J, Schneider WJ. The chicken LDL receptor-related protein/alpha 2-macroglobulin receptor family. Ann N Y Acad Sci 1994; 737:145-53. [PMID: 7944144 DOI: 10.1111/j.1749-6632.1994.tb44308.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Nimpf
- Department of Molecular Genetics, University and Biocenter of Vienna, Austria
| | | |
Collapse
|
40
|
Avian riboflavin binding protein binds to lipoprotein receptors in association with vitellogenin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51057-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
The somatic cell-specific low density lipoprotein receptor-related protein of the chicken. Close kinship to mammalian low density lipoprotein receptor gene family members. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42336-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
42
|
Shen X, Steyrer E, Retzek H, Sanders EJ, Schneider WJ. Chicken oocyte growth: receptor-mediated yolk deposition. Cell Tissue Res 1993; 272:459-71. [PMID: 8393385 DOI: 10.1007/bf00318552] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the rapid final stage of growth, chicken oocytes take up massive amounts of plasma components and convert them to yolk. The oocyte expresses a receptor that binds both major yolk lipoprotein precursors, vitellogenin (VTG) and very low density lipoprotein (VLDL). In the present study, in vivo transport tracing methodology, isolation of coated vesicles, ligand- and immuno-blotting, and ultrastructural immunocytochemistry were used for the analysis of receptor-mediated yolk formation. The VTG/VLDL receptor was identified in coated profiles in the oocyte periphery, in isolated coated vesicles, and within vesicular compartments both outside and inside membrane-bounded yolk storage organelles (yolk spheres). VLDL particles colocalized with the receptor, as demonstrated by ultrastructural visualization of VLDL-gold following intravenous administration, as well as by immunocytochemical analysis with antibodies to VLDL. Lipoprotein particles were shown to reach the oocyte surface by passage across the basement membrane, which possibly plays an active and selective role in yolk precursor accessibility to the oocyte surface, and through gaps between the follicular granulosa cells. Following delivery of ligands from the plasma membrane into yolk spheres, proteolytic processing of VTG and VLDL by cathepsin D appears to correlate with segregation of receptors and ligands which enter disparate sub-compartments within the yolk spheres. In small, quiescent oocytes, the VTG/VLDL receptor was localized to the central portion of the cell. At onset of the rapid growth phase, it appears that this pre-existing pool of receptors redistributes to the peripheral region, thereby initiating yolk formation. Such a redistribution mechanism would obliterate the need for de novo synthesis of receptors when the oocyte's energy expenditure is to be utilized for plasma membrane synthesis, establishment and maintenance of intracellular topography and yolk formation, and preparation for ovulation.
Collapse
Affiliation(s)
- X Shen
- Department of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
43
|
Gjøen T, Berg T. Interaction of low density lipoproteins with liver cells in rainbow trout. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 10:465-473. [PMID: 24214446 DOI: 10.1007/bf00004601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/1992] [Indexed: 06/02/2023]
Abstract
Liver is the main catabolic tissue for low density lipoprotein in rainbow trout (Gjøen and Berg 1992). We have investigated the interaction of LDL with isolated trout liver cells and liver membranes. (125)I-TC labelled trout LDL bound to isolated trout liver cells in a time dependent and saturable manner with an apparant Kd of 20.1 μg/ml, suggesting the existence of a specific binding site on the surface of these cells. The binding was Ca(2+) dependent assessed by the 50% reduction obtained by 5 mM EDTA. Saturable binding to isolated trout liver membranes could also be demonstrated, but with lower affinity as compared to intact cells. Degradation of (125)I-TC-LDL in hepatocytes was also saturable as degradation could be inhibited about 60% by a 100 fold surplus of unlabelled LDL. The rate of degradation increased with temperature up to 20°C. Both cell association (binding + uptake) and degradation were reduced down to 20% of control in the presence of microtubular and lysosomal inhibitors. Hepatic catabolism of trout LDL therefore seems to depend on receptormediated endocytosis, followed by lysosomal degradation.
Collapse
Affiliation(s)
- T Gjøen
- Department of Molecular Cell Biology, Institute of Biology, Box 1050, Blindern, N-0316, Oslo 3, Norway
| | | |
Collapse
|
44
|
Retzek H, Steyrer E, Sanders EJ, Nimpf J, Schneider WJ. Molecular cloning and functional characterization of chicken cathepsin D, a key enzyme for yolk formation. DNA Cell Biol 1992; 11:661-72. [PMID: 1418623 DOI: 10.1089/dna.1992.11.661] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Upon receptor-mediated endocytosis of very-low-density lipoprotein (VLDL) and vitellogenin into growing chicken oocytes, the protein moieties of these lipoproteins are proteolytically cleaved. Unlike the complete lysosomal degradation in somatic cells, enzymatic ligand breakdown in oocytes generates a characteristic set of polypeptides, which enter yolk storage compartments for subsequent utilization by the embryo. Here, we demonstrate directly that the catalyst for the intraoocytic processing of both apolipoprotein B and vitellogenin is cathepsin D. The enzyme was purified from oocytic yolk, preovulatory follicle homogenates, and liver by affinity chromatography. When plasma VLDL and vitellogenin were incubated with the purified enzyme, fragments indistinguishable from those found in yolk were generated from both precursors under identical, mildly acidic conditions. Amino-terminal sequencing of the pure enzyme demonstrated 88% identity with mammalian cathepsin Ds over 34 residues. On the basis of this information, a full-length clone specifying chicken preprocathepsin D was isolated from a chicken follicle cDNA library by screening with a human cathepsin D probe. Whereas previous studies have demonstrated that the receptors for lipoproteins in somatic cells and oocytes, respectively, of the chicken are the products of different genes, Southern and Northern blot hybridization experiments showed that the enzymes expressed in oocytes and liver are the product of a single gene, giving rise to a 3.3-kb transcript. The primary structure of the 335-residue mature protein suggests a high degree of conservation of known crucial features of aspartyl proteases; however, the absence of the so-called processing region and of an aromatic residue in a region thought to partake in catalysis raise questions with possible evolutionary implications.
Collapse
Affiliation(s)
- H Retzek
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
45
|
Barber D, Sanders E, Aebersold R, Schneider W. The receptor for yolk lipoprotein deposition in the chicken oocyte. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55128-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Stifani S, Barber D, Aebersold R, Steyrer E, Shen X, Nimpf J, Schneider W. The laying hen expresses two different low density lipoprotein receptor-related proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55175-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
|
48
|
Mehta K, Brown M, Bilheimer D, Goldstein J. The low density lipoprotein receptor in Xenopus laevis. II. Feedback repression mediated by conserved sterol regulatory element. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99241-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|