1
|
Chanakul W, Mukhopadhyay A, Awasthi S, Protopopova AD, Ianiro A, Mayer M. Large and Stable Nanopores Formed by Complement Component 9 for Characterizing Single Folded Proteins. ACS NANO 2025; 19:5240-5252. [PMID: 39871506 PMCID: PMC11823641 DOI: 10.1021/acsnano.4c11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm. These poly(C9) pores remain stable for up to 30 min without indications of gating, flickering, or clogging across a range of transmembrane voltages (-150 to +150 mV) and ionic strengths (50 to 1000 mM). At physiologic pH, the ring-shaped distribution of negative and positive surface charges in the lumen of the pore enables capture of analyte proteins by electro-osmotic flow and leads to residence times of analyte proteins whose most probable values can exceed 300 μs. We used poly(C9) nanopores to determine the volume and shape of unlabeled folded proteins with molecular weights between 9 and 230 kDa with unprecedented accuracy in the context of resistive pulse recordings. Finally, poly(C9) pores made it possible to distinguish between the open and closed conformations of adenylate kinase based on differences in current modulations within resistive pulses and the corresponding differences in approximations of their shape. Thus, poly(C9) nanopores enable highly sensitive and accurate characterization of a wide range of natively folded proteins on a single molecule level.
Collapse
Affiliation(s)
- Wachara Chanakul
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Anasua Mukhopadhyay
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
- National
Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg 1700, Switzerland
| | - Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Anna D. Protopopova
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Alessandro Ianiro
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
- National
Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg 1700, Switzerland
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
- National
Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
2
|
Kang JM, Lê HG, Võ TC, Yoo WG, Sohn WM, Na BK. Mapping of the Complement C9 Binding Region on Clonorchis sinensis Paramyosin. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:255-259. [PMID: 36041487 PMCID: PMC9441447 DOI: 10.3347/kjp.2022.60.4.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022]
Abstract
Heliminthic paramyosin is a multifunctional protein that not only acts as a structural protein in muscle layers but as an immune-modulatory molecule interacting with the host immune system. Previously, we found that paramyosin from Clonorchis sinensis (CsPmy) is bound to human complement C9 protein (C9). To analyze the C9 binding region on CsPmy, overlapping recombinant fragments of CsPmy were produced and their binding activity to human C9 was investigated. The fragmental expression of CsPmy and C9 binding assays revealed that the C9 binding region was located at the C-terminus of CsPmy. Further analysis of the C-terminus of CsPmy to narrow the C9 binding region on CsPmy indicated that the region flanking731Leu–780 Leu was a potent C9 binding region. The CsPmy fragments corresponding to the region effectively inhibited human C9 polymerization. These results provide a precise molecular basis for CsPmy as a potent immunomodulator to evade host immune defenses by inhibiting complement attack.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Corresponding author ()
| |
Collapse
|
3
|
Doorduijn DJ, Heesterbeek DAC, Ruyken M, de Haas CJC, Stapels DAC, Aerts PC, Rooijakkers SHM, Bardoel BW. Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores. PLoS Pathog 2021; 17:e1010051. [PMID: 34752492 PMCID: PMC8604303 DOI: 10.1371/journal.ppat.1010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/19/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Complement proteins can form membrane attack complex (MAC) pores that directly kill Gram-negative bacteria. MAC pores assemble by stepwise binding of C5b, C6, C7, C8 and finally C9, which can polymerize into a transmembrane ring of up to 18 C9 monomers. It is still unclear if the assembly of a polymeric-C9 ring is necessary to sufficiently damage the bacterial cell envelope to kill bacteria. In this paper, polymerization of C9 was prevented without affecting binding of C9 to C5b-8, by locking the first transmembrane helix domain of C9. Using this system, we show that polymerization of C9 strongly enhanced damage to both the bacterial outer and inner membrane, resulting in more rapid killing of several Escherichia coli and Klebsiella strains in serum. By comparing binding of wildtype and ‘locked’ C9 by flow cytometry, we also show that polymerization of C9 is impaired when the amount of available C9 per C5b-8 is limited. This suggests that an excess of C9 is required to efficiently form polymeric-C9. Finally, we show that polymerization of C9 was impaired on complement-resistant E. coli strains that survive killing by MAC pores. This suggests that these bacteria can specifically block polymerization of C9. All tested complement-resistant E. coli expressed LPS O-antigen (O-Ag), compared to only one out of four complement-sensitive E. coli. By restoring O-Ag expression in an O-Ag negative strain, we show that the O-Ag impairs polymerization of C9 and results in complement-resistance. Altogether, these insights are important to understand how MAC pores kill bacteria and how bacterial pathogens can resist MAC-dependent killing. In this paper, we focus on how complement proteins, an essential part of the immune system, kill Gram-negative bacteria via so-called membrane attack complex (MAC) pores. The MAC is a large pore that consists of five different proteins. The final component, C9, assembles a ring of up to 18 C9 molecules that damages the bacterial cell envelope. Here, we aimed to better understand if this polymeric-C9 ring is necessary to kill bacteria and if bacteria can interfere in its assembly. We uncover that polymerization of C9 increased the damage to the entire bacterial cell envelope, which resulted in more rapid killing of several Gram-negative species. We also show that some clinical Escherichia coli strains can block polymerization of C9 and survive MAC-dependent killing by modifying sugars in the bacterial cell envelope, namely the O-antigen of lipopolysaccharide. These insights help us to better understand how the immune system kills bacteria and how pathogenic bacteria can survive killing.
Collapse
Affiliation(s)
- Dennis J. Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dani A. C. Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daphne A. C. Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart W. Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Thomson JJ, Plecha SC, Krukonis ES. Ail provides multiple mechanisms of serum resistance to Yersinia pestis. Mol Microbiol 2018; 111:82-95. [PMID: 30260060 DOI: 10.1111/mmi.14140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Ail, a multifunctional outer membrane protein of Yersinia pestis, confers cell binding, Yop delivery and serum resistance activities. Resistance to complement proteins in serum is critical for the survival of Y. pestis during the septicemic stage of plague infections. Bacteria employ a variety of tactics to evade the complement system, including recruitment of complement regulatory factors, such as factor H, C4b-binding protein (C4BP) and vitronectin (Vn). Y. pestis Ail interacts with the regulatory factors Vn and C4BP, and Ail homologs from Y. enterocolitica and Y. pseudotuberculosis recruit factor H. Using co-sedimentation assays, we demonstrate that two surface-exposed amino acids, F80 and F130, are required for the interaction of Y. pestis Ail with Vn, factor H and C4BP. However, although Ail-F80A/F130A fails to interact with these complement regulatory proteins, it still confers 10,000-fold more serum resistance than a Δail strain and prevents C9 polymerization, potentially by directly interfering with MAC assembly. Using site-directed mutagenesis, we further defined this additional mechanism of complement evasion conferred by Ail. Finally, we find that at Y. pestis concentrations reflective of early-stage septicemic plague, Ail weakly recruits Vn and fails to recruit factor H, suggesting that this alternative mechanism of serum resistance may be essential during plague infection.
Collapse
Affiliation(s)
- Joshua J Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Sarah C Plecha
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Eric S Krukonis
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA.,Department of Immunology, Microbiology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Ohashi A, Murata A, Cho Y, Ichinose S, Sakamaki Y, Nishio M, Hoshi O, Fischer S, Preissner KT, Koyama T. The expression and localization of RNase and RNase inhibitor in blood cells and vascular endothelial cells in homeostasis of the vascular system. PLoS One 2017; 12:e0174237. [PMID: 28329009 PMCID: PMC5362223 DOI: 10.1371/journal.pone.0174237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/06/2017] [Indexed: 02/02/2023] Open
Abstract
RNA may be released from vascular cells including endothelial cells in the event of injury and in vascular disease. Extracellular RNAs have been recognized as novel procoagulant and permeability-increasing factors. Extracellular RNA may function as inflammatory host alarm signals that serve to amplify the defense mechanism, but it may provide important links to thrombus formation. Extracellular RNA is degraded by RNase. We propose that RNase and its inhibitor RNase inhibitor (RI) act as modulators of homeostasis in the vasculature to control the functions of extracellular RNA. We aimed to investigate the expression and localization of RNase 1 and RI in cells that contact blood, such as platelets, mononuclear cells, polymorphonuclear cells, and red blood cells. RNase 1 and RI expression and localization in blood cells were compared with those in the human umbilical vein endothelial cell line, EAhy926. Additionally, we further investigated the effect of thrombin on the expression of RNase 1 and RI in platelets. We used an RNase activity assay, reverse transcription-polymerase chain reaction, western blot, immunocytochemistry, transmission electron microscopy, and immunoelectron microscopy (pre- and post-embedding methods). RNase activity in the supernatant from EAhy926 cells was 50 times than in blood cells (after 60 min). RNase 1 mRNA and protein expression in EAhy926 cells was highest among the cells examined. However, RI mRNA and protein expression was similar in most cell types examined. Furthermore, we observed that RNase 1 and von Willebrand factor were partially colocalized in EAhy926 cells and platelets. In conclusion, we propose that high RNase activity is ordinarily released from endothelial cells to support anticoagulation in the vasculature. On the other hand, platelets and leukocytes within thrombi at sites of vascular injury show very low RNase activity, which may support hemostatic thrombus formation. However, activated platelets and leukocytes may accelerate pathologic thrombus formation.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Laboratory Molecular Genetics of Hematology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aya Murata
- Laboratory Molecular Genetics of Hematology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichiro Cho
- Anatomy and Physiological Science, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shizuko Ichinose
- Instrumental Analysis Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Sakamaki
- Instrumental Analysis Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miwako Nishio
- Laboratory Molecular Genetics of Hematology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Hoshi
- Anatomy and Physiological Science, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Silvia Fischer
- Institute for Biochemistry, Medical Faculty, Justus-Liebig-Universität, Giessen, Germany
| | - Klaus T. Preissner
- Institute for Biochemistry, Medical Faculty, Justus-Liebig-Universität, Giessen, Germany
| | - Takatoshi Koyama
- Laboratory Molecular Genetics of Hematology, Field of Applied Laboratory Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Podack ER, Munson GP. Killing of Microbes and Cancer by the Immune System with Three Mammalian Pore-Forming Killer Proteins. Front Immunol 2016; 7:464. [PMID: 27857713 PMCID: PMC5093134 DOI: 10.3389/fimmu.2016.00464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
Immunology is the science of biological warfare between the defenses of our immune systems and offensive pathogenic microbes and cancers. Over the course of his scientific career, Eckhard R. Podack made several seminal discoveries that elucidated key aspects of this warfare at a molecular level. When Eckhard joined the complement laboratory of Müller-Eberhard in 1974, he was fascinated by two questions: (1) what is the molecular mechanism by which complement kills invasive bacteria? and (2) which one of the complement components is the killer molecule? Eckhard’s quest to answer these questions would lead to the discovery C9 and later, two additional pore-forming killer molecules of the immune system. Here is a brief account of how he discovered poly-C9, the pore-forming protein of complement in blood and interstitial fluids: Perforin-1, expressed by natural killer cells and cytotoxic T lymphocytes; and Perforin-2 (MPEG1), expressed by all cell types examined to date. All the three killing systems are crucial for our survival and health.
Collapse
Affiliation(s)
- Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| |
Collapse
|
7
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Zhao X, Hao Y, Yang J, Gu Y, Zhu X. Mapping of the complement C9 binding domain on Trichinella spiralis paramyosin. Parasit Vectors 2014; 7:80. [PMID: 24564979 PMCID: PMC3937825 DOI: 10.1186/1756-3305-7-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/16/2014] [Indexed: 12/20/2022] Open
Abstract
Background Trichinellosis is an important foodborne zoonosis that is distributed worldwide. Trichinella spiralis may evade host complement-mediated attack by expressing complement inhibitory proteins, such as paramyosin (Pmy). Previous studies have shown that Trichinella spiralis paramyosin (Ts-Pmy) is able to bind to the human complement component C9 to inhibit the complement activation and protect the parasite from complement-mediated attack. Further determination of the complement-binding domain on Ts-pmy will enable us to better understand the Ts-Pmy’s biofunction in the immune evasion and provide feasible approach to develop epitope-based subunit vaccine against trichinellosis. Methods The complement C9 binding region on Ts-Pmy was determined by expression of overlapped fragments of Ts-Pmy and their binding activities to C9. The exact binding site was further narrowed-down to a 14-amino acid peptide at C-terminus using synthesized peptides with different size of amino acid sequence. The C9 complement-binding of the 14-amino acid peptide and its interference in the C9 polymerization and the complement-mediated lysis of rabbit erythrocytes was investigated. Results The protein interaction between human C9 and native Ts-Pmy was further confirmed by immunoprecipitation with T. spiralis lysates. The fragmental expression and C9 binding assays identified that the binding region of Ts-Pmy to C9 is located within 831–885 of Ts-Pmy C-terminus. The exact binding site on Ts-Pmy to C9 was narrowed down to 14 amino acid residues (866Val-879Met) by using different sizes of synthesized peptides. In the presence of the synthesized 14-amino acid peptide, human C9 polymerization and the hemolytic activity of the human complement was inhibited. Conclusions Our results revealed the precise molecular basis for T. spiralis to produce Ts-Pmy as an immunomodulator to evade the attack of the host complement system as a survival mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Xinping Zhu
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Abstract
The complement system is an intricate network of serum proteins that mediates humoral innate immunity through an amplification cascade that ultimately leads to recruitment of inflammatory cells or opsonisation or killing of pathogens. One effector arm of this network is the terminal pathway of complement, which leads to the formation of the membrane attack complex (MAC) composed of complement components C5b, C6, C7, C8 and C9. Upon formation of C5 convertases via the classical or alternative pathways of complement activation, C5b is generated from C5 by proteolytic cleavage, nucleating a series of association and polymerisation reactions of the MAC-constituting complement components that culminate in pore formation of pathogenic membranes. Recent structures of MAC components and homologous proteins significantly increased our understanding of oligomerisation, membrane association and integration, shedding light onto the molecular mechanism of this important branch of the innate immune system.
Collapse
|
10
|
Berends ETM, Dekkers JF, Nijland R, Kuipers A, Soppe JA, van Strijp JAG, Rooijakkers SHM. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol 2013; 15:1955-68. [PMID: 23869880 DOI: 10.1111/cmi.12170] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/13/2013] [Accepted: 07/14/2013] [Indexed: 02/05/2023]
Abstract
The plasma proteins of the complement system fulfil important immune defence functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via the Membrane Attack Complex (MAC or C5b-9). The MAC is comprised of C5b, C6, C7, C8, and multiple copies of C9 that generate lytic pores in cellular membranes. Gram-positive bacteria are protected from MAC-dependent lysis by their thick peptidoglycan layer. Paradoxically, several Gram-positive pathogens secrete small proteins that inhibit C5b-9 formation. In this study, we found that complement activation on Gram-positive bacteria in serum results in specific surface deposition of C5b-9 complexes. Immunoblotting revealed that C9 occurs in both monomeric and polymeric (SDS-stable) forms, indicating the presence of ring-structured C5b-9. Surprisingly, confocal microscopy demonstrated that C5b-9 deposition occurs at specialized regions on the bacterial cell. On Streptococcus pyogenes, C5b-9 deposits near the division septum whereas on Bacillus subtilis the complex is located at the poles. This is in contrast to C3b deposition, which occurs randomly on the bacterial surface. Altogether, these results show a previously unrecognized interaction between the C5b-9 complex and Gram-positive bacteria, which might ultimately lead to a new model of MAC assembly and functioning.
Collapse
Affiliation(s)
- Evelien T M Berends
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Kalchishkova N, Fürst CM, Heinegård D, Blom AM. NC4 Domain of cartilage-specific collagen IX inhibits complement directly due to attenuation of membrane attack formation and indirectly through binding and enhancing activity of complement inhibitors C4B-binding protein and factor H. J Biol Chem 2011; 286:27915-26. [PMID: 21659506 DOI: 10.1074/jbc.m111.242834] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Collagen IX containing the N-terminal noncollagenous domain 4 (NC4) is unique to cartilage and a member of the family of fibril-associated collagens with both collagenous and noncollagenous domains. Collagen IX is located at the surface of fibrils formed by collagen II and a minor proportion of collagen XI, playing roles in tissue stability and integrity. The NC4 domain projects out from the fibril surface and provides sites for interaction with other matrix components such as cartilage oligomeric matrix protein, matrilins, fibromodulin, and osteoadherin. Fragmentation of collagen IX and loss of the NC4 domain are early events in cartilage degradation in joint diseases that precedes major damage of collagen II fibrils. Our results demonstrate that NC4 can function as a novel inhibitor of the complement system able to bind C4, C3, and C9 and to directly inhibit C9 polymerization and assembly of the lytic membrane attack complex. NC4 also binds the complement inhibitors C4b-binding protein and factor H and enhances their cofactor activity in degradation of activated complement components C4b and C3b. NC4 interactions with fibromodulin and osteoadherin inhibited binding to C1q and complement activation by these proteins. Taken together, our results suggest that collagen IX and its interactions with matrix components are important parts of a machinery that protects the cartilage from complement activation and chronic inflammation seen in diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Nikolina Kalchishkova
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, Lund University, S-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
12
|
Singh B, Jalalvand F, Mörgelin M, Zipfel P, Blom AM, Riesbeck K. Haemophilus influenzae protein E recognizes the C-terminal domain of vitronectin and modulates the membrane attack complex. Mol Microbiol 2011; 81:80-98. [PMID: 21542857 DOI: 10.1111/j.1365-2958.2011.07678.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Haemophilus influenzae protein E (PE) is a 16 kDa adhesin that induces a pro-inflammatory immune response in lung epithelial cells. The active epithelial binding region comprising amino acids PE 84-108 also interferes with complement-mediated bacterial killing by capturing vitronectin (Vn) that prevents complement deposition and formation of the membrane attack complex (MAC). Here, the interaction between PE and Vn was characterized using site-directed mutagenesis. Protein E variants were produced both in soluble forms and in surface-expressed molecules on Escherichia coli. Mutations within PE(84-108) in the full-length molecule revealed that K85 and R86 residues were important for the Vn binding. Bactericidal activity against H. influenzae was higher in human serum pre-treated with full-length PE as compared with serum incubated with PE(K85E, R86D) , suggesting that PE quenched Vn. A series of truncated Vn molecules revealed that the C-terminal domain comprising Vn(353-363) harboured the major binding region for PE. Interestingly, MAC deposition was significantly higher on mutants devoid of PE due to a decreased Vn-binding capacity when compared with wild-type H. influenzae. Our results define a fine-tuned interaction between H. influenzae and the innate immune system, and identify the mode of control of the MAC that is important for pathogen complement evasion.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology and Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJP, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 2009; 30:684-95. [PMID: 19446473 DOI: 10.1016/j.immuni.2009.03.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/24/2008] [Accepted: 03/06/2009] [Indexed: 01/30/2023]
Abstract
Perforin, a pore-forming protein secreted by cytotoxic lymphocytes, is indispensable for destroying virus-infected cells and for maintaining immune homeostasis. Perforin polymerizes into transmembrane channels that inflict osmotic stress and facilitate target cell uptake of proapoptotic granzymes. Despite this, the mechanism through which perforin monomers self-associate remains unknown. Our current study establishes the molecular basis for perforin oligomerization and pore assembly. We show that after calcium-dependent membrane binding, direct ionic attraction between the opposite faces of adjacent perforin monomers was necessary for pore formation. By using mutagenesis, we identified the opposing charges on residues Arg213 (positive) and Glu343 (negative) to be critical for intermolecular interaction. Specifically, disrupting this interaction had no effect on perforin synthesis, folding, or trafficking in the killer cell, but caused a marked kinetic defect of oligomerization at the target cell membrane, severely disrupting lysis and granzyme B-induced apoptosis. Our study provides important insights into perforin's mechanism of action.
Collapse
Affiliation(s)
- Katherine Baran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Deng J, Gold D, LoVerde PT, Fishelson Z. Mapping of the complement C9 binding domain in paramyosin of the blood fluke Schistosoma mansoni. Int J Parasitol 2006; 37:67-75. [PMID: 17123534 DOI: 10.1016/j.ijpara.2006.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 12/22/2022]
Abstract
Schistosomes are believed to evade complement-mediated damage by expression of complement inhibitory proteins. Our previous results [Deng, J., Gold, D., LoVerde, P.T., Fishelson, Z., 2003. Inhibition of the complement membrane attack complex by Schistosoma mansoni paramyosin. Infect. Immun. 71, 6402-6410.] have demonstrated that paramyosin (Pmy) of the blood fluke S. mansoni binds to the human complement proteins C8 and C9, inhibits complement activation at the terminal stage and protects the parasite from complement-mediated damage. In order to locate the Pmy binding site to C8 and C9, various fragments of Pmy cDNA were PCR-cloned into a pET28a bacterial expression vector. Recombinant His-tagged Pmy fragments were expressed in BL21 Escherichia coli and purified over a nickel-nitrilotriacetic acid column. Binding assays by Western blotting with monoclonal anti-His antibody demonstrated that PmyCC (Pmy amino acids (744)Asp-(866)Met) was the only Pmy fragment that bound to human C8 and C9. Functional analyses demonstrated that PmyCC inhibited hemolysis of rabbit erythrocytes and of antibody-sensitized sheep erythrocytes by human complement. Importantly, PmyCC inhibited in vitro killing of trypsin-sensitized schistosomula of S. mansoni by human complement. In the presence of PmyCC, Zn(2+)-induced C9 polymerization was inhibited. Most of the immunodominant B-cell antigenic epitopes of Pmy are present in the PmyCC region, as antibodies collected from mice immunized with recombinant Pmy bound primarily to PmyCC. Taken together, this study has mapped the complement regulatory domain in Pmy, capable of binding to C8 and C9 and preventing polyC9 formation, to its C-terminal region.
Collapse
Affiliation(s)
- Jiusheng Deng
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
15
|
Bhakdi S, Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol 2005; 107:147-223. [PMID: 3303271 DOI: 10.1007/bfb0027646] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Deng J, Gold D, LoVerde PT, Fishelson Z. Inhibition of the complement membrane attack complex by Schistosoma mansoni paramyosin. Infect Immun 2003; 71:6402-10. [PMID: 14573661 PMCID: PMC219572 DOI: 10.1128/iai.71.11.6402-6410.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Larvae and adults of the parasitic blood fluke Schistosoma mansoni are resistant to killing by human complement. An earlier search by Parizade et al. for a schistosome complement inhibitor identified a 94-kDa surface protein which was named SCIP-1 (M. Parizade, R. Arnon, P. J. Lachmann, and Z. Fishelson, J. Exp. Med. 179:1625-1636, 1994). Following partial purification and analysis by mass spectrometry, we have determined SCIP-1 to be a surface-exposed form of the muscle protein paramyosin. As shown by immunofluorescence, anti-paramyosin antibodies label the surface of live schistosomula and adult worms. Like SCIP-1, purified native paramyosin reacts with a polyclonal rabbit anti-human CD59 antiserum, as shown by Western blot analysis. Also, the human complement components C8 and C9 bind to recombinant and native paramyosin. Analysis of paramyosin binding to fragments of C9 generated by thrombin or trypsin has demonstrated that paramyosin binds to C9 at a position located between Gly245 and Arg391. Paramyosin inhibited Zn(2+)-induced C9 polymerization and poly-C9 deposition onto rabbit erythrocytes (E(R)). In addition, paramyosin inhibited lysis of E(R) and of sensitized sheep erythrocytes by human complement. Finally, anti-paramyosin antibodies enhanced in vitro killing of schistosomula by normal and C4-depleted human complement. Taken together, these findings suggest that an exogenous form of S. mansoni paramyosin inhibits activation of the terminal pathway of complement and thus has an important immunomodulatory role in schistosomiasis.
Collapse
Affiliation(s)
- Jiusheng Deng
- Departments of Human Microbiology. Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
17
|
Edwards KM, Davis JE, Browne KA, Sutton VR, Trapani JA. Anti-viral strategies of cytotoxic T lymphocytes are manifested through a variety of granule-bound pathways of apoptosis induction. Immunol Cell Biol 1999; 77:76-89. [PMID: 10101689 DOI: 10.1046/j.1440-1711.1999.00799.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic T cells and natural killer cells together constitute a major defence against virus infection, through their ability to induce apoptotic death in infected cells. These cytolytic lymphocytes kill their targets through two principal mechanisms, and one of these, granule exocytosis, is essential for an effective in vivo immune response against many viruses. In recent years, the authors and other investigators have identified several distinct mechanisms that can induce death in a targeted cell. In the present article, it is postulated that the reason for this redundancy of lethal mechanisms is to deal with the array of anti-apoptotic molecules elaborated by viruses to extend the life of infected cells. The fate of such a cell therefore reflects the balance of pro-apoptotic (immune) and anti-apoptotic (viral) strategies that have developed over eons of evolutionary time.
Collapse
Affiliation(s)
- K M Edwards
- John Connell Laboratory, Austin Research Institute, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
18
|
Bomstein Y, Fishelson Z. Enhanced sensitivity of P-glycoprotein-positive multidrug resistant tumor cells to complement-mediated lysis. Eur J Immunol 1997; 27:2204-11. [PMID: 9341760 DOI: 10.1002/eji.1830270913] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction of KB-V1, a multidrug resistant (MDR) variant of the KB-3-1 human oral carcinoma, with human complement was investigated. KB-V1 cells were found to be more sensitive than KB-3-1 cells to complement-mediated lysis. Detailed analysis of the capacity of KB cells to activate human complement demonstrated that both C3b deposition and formation of the membrane attack complex (MAC) are higher on KB-V1 than on KB-3-1 cells. Furthermore, the MAC formed on KB-V1 cells, but not on KB-3-1 cells, was found to be resistant to trypsin treatment, i.e. more stably inserted into the plasma membrane. Immunofluorescence analysis by flow cytometry showed that KB-V1 cells express less decay-accelerating factor (DAF, CD55) than KB-3-1 cells. Two other complement regulatory proteins, membrane cofactor protein (MCP, CD46) and CD59 are expressed to a similar extent on both KB-V1 and KB-3-1 cells. Treatment of KB-V1 cells with neutralizing anti-P-glycoprotein (P-gp) monoclonal antibodies reduced their sensitivity to complement. In addition, KB-V1 revertants which cease to express P-gp become more resistant to complement. These results indicate that multiple factors, such as reduced expression of DAF, enhanced deposition of C3b and increased binding and stability of the MAC may contribute to the increased complement sensitivity of KB-V1 cells. It is suggested that P-gp is responsible for the complement-sensitive phenotype of KB-V1 cells.
Collapse
Affiliation(s)
- Y Bomstein
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel
| | | |
Collapse
|
19
|
Lange S, Nüssler F, Kauschke E, Lutsch G, Cooper EL, Herrmann A. Interaction of earthworm hemolysin with lipid membranes requires sphingolipids. J Biol Chem 1997; 272:20884-92. [PMID: 9252415 DOI: 10.1074/jbc.272.33.20884] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lytic activity in the coelomic fluid of earthworm (Eisenia fetida fetida) has been ascribed to eiseniapore, a hemolytic protein of 38 kDa. Since receptors for eiseniapore on target cell membranes are not known, we used lipid vesicles of various composition to determine whether specific lipids may serve as receptors. Lytic activity of eiseniapore was probed by the relief of fluorescence dequenching from the fluorophore 8-aminonaphthalene-1,3, 6-trisulfonic acid originally incorporated into the vesicle lumen as a complex with p-xylene-bis-pyridinium bromide. Hemolysin binds to and disturbs the lipid bilayer only when distinct sphingolipids consisting of a hydrophilic head group as phosphorylcholine or galactosyl as well as the ceramide backbone, e.g. sphingomyelin, are present. Cholesterol enhances eiseniapore lytic activity toward sphingomyelin-containing vesicles probably due to interaction with sphingomyelin. Leakage of vesicles was most efficient when the lipid composition resembled that of the outer leaflet of human erythrocytes. Presumably, an oligomeric protein pore formed by six monomers is responsible for leakage of sphingomyelin-containing vesicles. The secondary structure of eiseniapore did not change upon binding to lipid membranes. The lytic activity of eiseniapore was completely abolished after its denaturation or after preincubation with polyclonal antibodies. Our results suggest that the presence of specific sphingolipids is sufficient to mediate lytic activity of eiseniapore. This action contributes to our understanding of earthworm immune responses.
Collapse
Affiliation(s)
- S Lange
- Universität Greifswald, Zoologisches Institut und Museum, Bachstrasse 11/12, D-17489 Greifswald, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
20
|
Christiansen VJ, Sims PJ, Hamilton KK. Complement C5b-9 increases plasminogen binding and activation on human endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:164-71. [PMID: 9012652 DOI: 10.1161/01.atv.17.1.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Deposition of the terminal complement proteins (C5b-9) on human endothelial cells can result in cell lysis or nonlytic alterations of cell function including procoagulant responses. Because regulation of fibrinolysis is a central endothelial function and because C9 contains a carboxyl-terminal lysine similar to other proteins that bind and facilitate activation of plasminogen (PG), the effects of complement injury on PG binding and activation on these cells were investigated. Activation of complement through deposition of C5b67 complexes on endothelial cells resulted in a small increase (approximately 20%) in PG binding. Incorporation of C8 into C5b-8 resulted in no further increase in binding; however, specific 125I-PG binding was increased by approximately 100% after C5b-9 deposition. Moreover, PG was found to bind specifically to C7 and C9. The PG bound to endothelial cells after C5b-9 deposition was readily activated by tissue-type plasminogen activator (TPA). In a cell-free system, complement C9 and a synthetic peptide composed of the 20 carboxyl-terminal amino acids of C9 enhanced PG activation by TPA. Removal of the carboxyl-terminal lysine of C9 abolished the enhancement of PG activation without diminishing PG binding. We conclude that membrane C9 may comprise a binding site for PG and serve to enhance activation of this zymogen by TPA. These findings suggest that immune injury to the endothelium may enhance both the fibrin-generating and fibrinolytic capacity of the vessel wall.
Collapse
Affiliation(s)
- V J Christiansen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | |
Collapse
|
21
|
van der Goot FG, Pattus F, Parker M, Buckley JT. The cytolytic toxin aerolysin: from the soluble form to the transmembrane channel. Toxicology 1994; 87:19-28. [PMID: 7512760 DOI: 10.1016/0300-483x(94)90152-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aerolysin is a cytolytic toxin which forms channels in the plasma membranes of eucaryotic cells. The protein is secreted by Aeromonas hydrophila as an inactive protoxin. Its stability and water solubility are conferred by its ability to dimerize. Maturation of the protein occurs through proteolytic removal of a C-terminal peptide outside the secreting cell. Although the aerolysin which is so produced is still a dimer, it then has the ability to oligomerize. The oligomer is the active form of the toxin, capable of forming the transmembrane channels that disrupt cells. We review here the present knowledge about the structure of aerolysin in relation to the various steps in channel formation.
Collapse
|
22
|
Taylor KM, Luzio JP, Campbell AK. A method for in vitro synthesis of unglycosylated recombinant complement component C9. J Immunol Methods 1994; 167:129-37. [PMID: 8308271 DOI: 10.1016/0022-1759(94)90082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A method for in vitro synthesis of human complement component C9 has been established in order to generate unglycosylated normal and mutant proteins without the need to sub-clone. One or two step polymerase chain reaction (PCR) was used to add the T7 RNA polymerase promoter and introduce multiple mutations within the cDNA. The cDNA was then transcribed by T7 RNA polymerase and the mRNA translated in a rabbit reticulocyte lysate or wheat germ system. Successful synthesis was confirmed by: the correct size of PCR product DNA on agarose gel electrophoresis, incorporation of [alpha-32P]UTP into mRNA, and formation of [35S]methionine-labelled protein of the correct molecular mass for full length C9. The wheat germ extract generated up to 1.5 micrograms of recombinant C9. This unglycosylated C9 had at least 10% of the haemolytic activity of native C9. Unglycosylated C9 polymerised more readily than the native protein. This spontaneous polymerisation was increased by removal of the first 23 amino acids or mutating two cysteines at positions 33 and 36. This therefore provides a rapid method for screening the effect of multiple mutations on the biological activity and polymerisation of pore forming proteins.
Collapse
Affiliation(s)
- K M Taylor
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | |
Collapse
|
23
|
Abstract
Electron microscopy of specimens of C9 tilted through 90 degrees visualized this protein to be a globular ellipsoid with dimensions of 77 x 70 x 52 A. To check the congruence of this observation with physical properties of the molecule, hydrodynamic parameters for C9 were determined. From this work a frictional ratio of 1.32 was calculated. C9 was compared with several other proteins of similar frictional ratios whose tertiary structures are known. All examples found of such proteins whose frictional ratios were between 1.26 and 1.37 are either heart-shaped or globular ellipsoids, but none are prolate ellipsoids. By comparison the size and shape of C9 determined by electron microscopy are congruent with its hydrodynamic parameters. Both electron microscopy and physical measurements suggest that the length (110-120 A) of C9 determined by neutron and X-ray scattering experiments is an overestimate. The source of the discrepancy was identified by the demonstration that the high concns of C9 employed in neutron and X-ray scattering work lead to aggregation of the protein. Thus, investigations involving neutron and X-ray scattering were measuring polydisperse solutions of C9. The deduced value of the radius of gyration from that work (33-35 A) is now recognized as being statistical and significantly higher than the correct value of monomeric C9 (26 A), which was calculated from electron microscopy measurements. Also high-resolution electron microscopy clearly visualized poly(C9) to be a barrel-stave construct. These results suggest that monomeric C9 must undergo a major conformational alteration to extend by 55-70 A in order to self-associate laterally in order to fashion the cylindrical poly(C9).
Collapse
Affiliation(s)
- R G DiScipio
- Research Institute of Scripps Clinic, Department of Immunology IMM18, La Jolla, CA 92037
| |
Collapse
|
24
|
Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53740-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Kuta AE, Bashford CL, Pasternak CA, Reynolds CW, Henkart PA. Characterization of non-lytic cytolysin-membrane intermediates. Mol Immunol 1991; 28:1263-70. [PMID: 1961199 DOI: 10.1016/0161-5890(91)90013-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to understand the nature of cytolysin-membrane interactions, the characteristics of stable, non-lytic cytolysin-target cell intermediates formed at low ionic strength, neutral pH, and at physiological ionic strength, pH 6.0, were examined. Protease treatment of cytolysin-RBC intermediates formed at low ionic strength inhibited subsequent hemolysis when the intermediates were exposed to physiological ionic strength and pH. Similarly, when such intermediates were treated with anti-granule and anti-cytolysin antibodies a significant dose-dependent inhibition of hemolysis was observed. These results suggested that in this non-lytic state the cytolysin molecule was exposed on the RBC surface. If low ionic strength or pH 6.0 generated intermediates were washed in 0.5 M NaCl, hemolytic activity was greatly reduced and cytolysin activity could be recovered from the medium. In addition to RBC, both murine (Yac-1 and Lettre ascites) and human (K562) tumor targets formed cytolysin-target cell intermediates at low ionic strength and at low pH. Multilamellar vesicles composed of either phosphatidylcholine, sphingomyelin or phosphatidylserine inhibited the binding of cytolysin to RBC at both low ionic strength and pH 6.0 indicating a lack of polar head group specificity for cytolysin binding.
Collapse
Affiliation(s)
- A E Kuta
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
26
|
Young JDE, Liu CC, Kwon BS, Trapani JA, Young LHY. Lymphocyte-Mediated Cytolysis Role of Granule Mediators. BLOOD CELL BIOCHEMISTRY 1991. [DOI: 10.1007/978-1-4615-3796-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Andrews NW, Abrams CK, Slatin SL, Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell 1990; 61:1277-87. [PMID: 2194668 DOI: 10.1016/0092-8674(90)90692-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protozoan parasite T. cruzi invades cells within acidic vacuoles, but shortly afterward escapes into the cytosol. Exit from the phagosome is blocked by raising the pH of acidic compartments, suggesting that a previously described acid-active hemolysin secreted by T. cruzi might be involved in the membrane disruption process. Here we show that T. cruzi supernatants are cytotoxic for nucleated cells at pH 5.5 and contain a protein reactive with antibodies against reduced and alkylated human C9 (the ninth component of complement). The C9 cross-reactive protein (TC-TOX) copurified with the cytolytic activity, and the active fractions induced conductance steps characteristic of transmembrane ion channels in planar phospholipid bilayers. Immunocytochemical studies using antibodies against purified TC-TOX showed that the protein was localized to the luminal space of parasite-containing phagosomes. We postulate that TC-TOX, when secreted into the acidic environment of the phagosome, forms pores in the membrane, which contribute to its disruption.
Collapse
Affiliation(s)
- N W Andrews
- Department of Pathology, Kaplan Cancer Center, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|
28
|
Abstract
Invertebrates possess lytic molecules which lyse vertebrate erythrocytes. In all the species studied so far, hemolytic activity depends on proteins which possess a wide range of reactivity. It is generally calcium-dependent and heat-labile, although calcium-independent and heat-stable hemolysins have also been detected. The molecules interact with sugars or lipids which could represent the membrane receptors by which circular lesions on target membranes are produced. On the basis of some analogies with vertebrate lytic molecules it is conceivable that the hemolysins evolved from a common ancestral gene which also led to vertebrate pore-forming proteins.
Collapse
Affiliation(s)
- C Canicatti
- Department of Biology, University of Lecce, Italy
| |
Collapse
|
29
|
Kontermann R, Deppisch R, Rauterberg EW. Several epitopes on native human complement C9 are involved in interaction with the C5b-8 complex and other C9 molecules. Eur J Immunol 1990; 20:623-8. [PMID: 1690659 DOI: 10.1002/eji.1830200324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ten monoclonal antibodies (mAb) against native human C9 exhibiting various inhibitory effects on the hemolytic activity of C9 (Bausback, J., Kontermann, R. and Rauterberg, E. W., Immunobiology 1988. 178: 58) were further analyzed regarding their reactivities with monomeric C9 (mC9), polymerized C9 (pC9), and the non-lytic SC5b-9 complex in enzyme-linked immunosorbent assay and with the membrane attack complex (MAC) generated on rabbit erythrocytes analyzed by flow cytometry. In addition, the inhibitory effects of mAb on zinc-induced C9 polymerization were investigated. One epitope of the C-terminal half of C9b exposed on the surface of pC9 and the MAC seems not to participate directly in lytic function or polymerization since no inhibitory effect of the respective mAb was observed. The nine other mAb directed against epitopes of the C9a part exhibit various inhibitory potentials. The mAb inhibit either hemolysis or polymerization, or both processes. Due to the reactivity with the tested antigens the mAb can be divided into two groups. mAb of the first group bind with nearly the same affinity to all four antigens, whereas mAb of the second group react preferentially with mC9 while their affinity to pC9, SC5b-9 and the MAC is reduced. Comparison of reaction patterns and inhibitory effects strongly suggest that different epitopes on the surface of native C9 are involved in interaction of C9 with C5b-8 and/or in C9-C9 interaction. The finding that mAb inhibiting polymerization of C9 in vitro have no inhibitory effect on hemolysis confirms that C9 polymers are no prerequisite for lysis.
Collapse
Affiliation(s)
- R Kontermann
- Institut für Immunologie, Universität Heidelberg, FRG
| | | | | |
Collapse
|
30
|
Marazziti D, Eggertsen G, Fey GH, Stanley KK. Relationships between the gene and protein structure in human complement component C9. Biochemistry 1988; 27:6529-34. [PMID: 3219351 DOI: 10.1021/bi00417a050] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human complement component C9 is a multidomain protein for which a large number of surface topographical features have been determined. We have analyzed the exon-intron boundaries of the human C9 gene and find a good correlation between splice sites and surface features of the protein but little correlation with the putative protein domain structure, even in the cysteine-rich sequence homology with the low-density lipoprotein (LDL) receptor which is likely to be an independently folded structural motif. This is surprising because in the LDL receptor the same sequence is precisely bounded by introns, and it has been assumed that this sequence is present in both proteins as a result of exon shuffling. We deduce that substantial rearrangement of the exon-intron structure of the C9 gene must have occurred before the exchange of cysteine-rich domains, possibly linked to the process of exon duplication which was required to generate the repeats in the LDL receptor.
Collapse
Affiliation(s)
- D Marazziti
- European Molecular Biology Laboratory, Heidelberg, FRG
| | | | | | | |
Collapse
|
31
|
|
32
|
Stanley KK. The molecular mechanism of complement C9 insertion and polymerisation in biological membranes. Curr Top Microbiol Immunol 1988; 140:49-65. [PMID: 2644075 DOI: 10.1007/978-3-642-73911-8_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
|
34
|
Canicatti C, Veuthey F. The membrane attack complex of Xenopus laevis complement. EXPERIENTIA 1987; 43:192-4. [PMID: 3817103 DOI: 10.1007/bf01942848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rabbit erythrocyte membranes lyzed by Xenopus laevis serum exhibited a typical ultrastructural complement lesion with an inner diameter of 80 +/- 9 A. The protein pattern associated with lyzed membrane is compared to a similar human preparation.
Collapse
|
35
|
Young JD, Cohn ZA. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol 1987; 41:269-332. [PMID: 2891261 DOI: 10.1016/s0065-2776(08)60033-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Differentiation, T-Lymphocyte/physiology
- CD3 Complex
- Cell Line
- Cell Membrane/physiology
- Colloids
- Complement Membrane Attack Complex
- Complement System Proteins/immunology
- Cytoplasmic Granules/physiology
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Cytotoxins/metabolism
- Entamoeba histolytica/physiology
- Enzymes/physiology
- Exocytosis
- Graft Rejection
- Immunity, Cellular
- Immunologic Surveillance
- Ion Channels
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphotoxin-alpha/physiology
- Membrane Glycoproteins
- Membrane Proteins/physiology
- Osmotic Pressure
- Peptides/physiology
- Perforin
- Pore Forming Cytotoxic Proteins
- Protozoan Proteins
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- J D Young
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
36
|
Malek TR, Ashwell JD, Germain RN, Shevach EM, Miller J. The murine interleukin-2 receptor: biochemical structure and regulation of expression. Immunol Rev 1986; 92:81-101. [PMID: 3091485 DOI: 10.1111/j.1600-065x.1986.tb01495.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
|
38
|
Tschopp J, Amiguet P, Schäfer S. Increased hemolytic activity of the trypsin-cleaved ninth component of complement. Mol Immunol 1986; 23:57-62. [PMID: 3960033 DOI: 10.1016/0161-5890(86)90171-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human C9 treated with trypsin is initially cleaved into two fragments with relative mol. wts of 53,000 and 20,000. This limited cleavage of C9 induces a 2.4-times increase in the hemolytic activity of C9 when compared to untreated C9. This difference diminishes when C9 activity is tested in an assay using a prolonged incubation time of C9 with C5b-8-bearing red blood cells. Trypsinization of C9 also promotes spontaneous C9 polymerization. SDS-resistant tubular C9 complexes are formed at a C9 concn of 1 mg/ml within 8 hr at 37 degrees C. Our data indicate that specific limited proteolysis of C9 not only induces spontaneous C9 polymerization but also increases the hemolytic activity of C9, suggesting that a similar molecular mechanism is involved in both processes.
Collapse
|
39
|
|
40
|
Abstract
We have devised an enzyme-linked immunosorbent assay (ELISA) to quantitate fluid phase terminal complement pathway activation. Upon activation to form C5b-9, terminal complement components express neoantigens not present in the unassembled individual components. Expression of one of these neoantigens occurs at the step of C9 activation. C9 neoantigen is present in fluid phase SC5b-9 complexes, membrane-bound MC5b-9 complexes, and in in vitro polymerized C9. Under physiologic conditions, the presence of C9 neoantigen indicates that the terminal complement pathway is activated through the terminal component C9. In our assay for C9 neoantigen, we used rabbit antiserum to polymerized C9 rendered specific for C9 neoantigenic determinants by serial absorption with human serum, human C9, and other terminal complement components bound to Sepharose. Using the IgG from this antiserum, we devised a sandwich ELISA to bind SC5b-9 from solution onto polystyrene plates. The ELISA plates were developed with the use of goat antiserum to native C9 epitopes followed by a swine anti-goat IgG-alkaline phosphatase conjugate. Quantitation of SC5b-9 in solution was performed by comparing sample OD to a standard curve generated with human SC5b-9 that was purified from zymosan-activated serum. The assay was sensitive to as little as 100 ng of SC5b-9/ml and should be useful for screening plasma, serum, cerebrospinal fluid, or other biological fluids for the presence of terminal complement pathway activation.
Collapse
|
41
|
|
42
|
Mollnes TE, Lea T, Frøland SS, Harboe M. Quantification of the terminal complement complex in human plasma by an enzyme-linked immunosorbent assay based on monoclonal antibodies against a neoantigen of the complex. Scand J Immunol 1985; 22:197-202. [PMID: 2412280 DOI: 10.1111/j.1365-3083.1985.tb01871.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fluid-phase terminal complement complex (TCC), consisting of the components C5b, C6, C7, C8, C9, and the S-protein, has recently been detected in normal human plasma by using antibodies against native terminal complement components. Increased amounts of TCC were then found in several patients with in vivo activation of complement. We now describe a sensitive, specific, and reliable enzyme-linked immunosorbent assay for quantification of the TCC, based on monoclonal antibodies against a neoantigen of the complex. The results indicate that the TCC is present in normal human plasma and in increased amounts in patients with complement activation in vivo, thus confirming previously obtained results. The assay is easy to perform and can be used for examination of large numbers of plasma samples.
Collapse
|
43
|
Dankert JR, Shiver JW, Esser AF. Ninth component of complement: self-aggregation and interaction with lipids. Biochemistry 1985; 24:2754-62. [PMID: 4027224 DOI: 10.1021/bi00332a024] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated environmental conditions that might be of importance for the polymerization of the ninth component (C9) of human complement. In disagreement with earlier reports summarized by Tschopp et al. [Tschopp, J., Müller-Eberhard, H. J., & Podack, E. R. (1982) Nature (London) 298, 534-538] we find no evidence for significant aggregation or loss of hemolytic activity of C9 when incubated at 37 degrees C even after 12 days of incubation. Higher temperatures cause denaturation of the protein and formation of stringlike aggregates. In contrast, short-term proteolysis with 1% (w/w) trypsin at room temperature causes rapid polymerization of part of the C9 into tubular structures (poly-C9), and the remainder of the monomeric C9 is digested. This polymerization reaction is inhibitable by trypsin inhibitor; alpha-thrombin and proteinase K are ineffective in creating polymers. A second discrepancy to the earlier reports is our finding that monomeric C9 immediately interacts with small unilamellar lipid vesicles (SUV) without a required heating step. As a result of this interaction about half of the C9 aggregates to form strings and tubules, and these aggregates cause agglutination of vesicles. The other half of the C9 associates with a second population of SUV without causing a change in Stokes' radius of these vesicles, and no proteinaceous structures are detectable on the vesicle surface by electron microscopy. When these two vesicle populations are tested for their membrane integrity, no release of an encapsulated fluorescent marker can be detected, nor is there leakage of potassium ions across the bilayer membrane since a membrane diffusion potential can be developed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
44
|
Tobkes N, Wallace BA, Bayley H. Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 1985; 24:1915-20. [PMID: 4016091 DOI: 10.1021/bi00329a017] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The alpha-toxin of Staphylococcus aureus is secreted as a water-soluble, monomeric polypeptide (Mr 33 182) that can assemble into an oligomeric membrane channel. By chemical cross-linking, we have confirmed that the major form of the channel is a hexamer. The circular dichroism spectrum of this hexamer in detergent revealed that it contains a high proportion of beta-sheet that we deduce must lie within the lipid bilayer when the protein is associated with membranes. The circular dichroism spectrum of the monomeric toxin in the presence or absence of detergent was closely similar to the spectrum of the hexamer, suggesting that the secondary structure of the polypeptide is little changed on assembly. Results of experiments involving limited proteolysis of the monomer and hexamer are consistent with the idea that assembly involves the movement of two rigid domains about a hinge located near the midpoint of the polypeptide chain. The hydrophilic monomer is thereby converted to an amphipathic rod that becomes a subunit of the hexamer.
Collapse
|
45
|
Podack ER, Konigsberg PJ, Acha-Orbea H, Pircher H, Hengartner H. Cytolytic T-cell granules: biochemical properties and functional specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1985; 184:99-119. [PMID: 3875979 DOI: 10.1007/978-1-4684-8326-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Joiner KA. Studies on the mechanism of bacterial resistance to complement-mediated killing and on the mechanism of action of bactericidal antibody. Curr Top Microbiol Immunol 1985; 121:99-133. [PMID: 3910367 DOI: 10.1007/978-3-642-45604-6_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Tschopp J. Circular polymerization of the membranolytic ninth component of complement. Dependence on metal ions. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)91000-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)39778-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Abstract
Membrane attack by complement involves the self-assembly on membranes of five hydrophilic proteins (C5b, C6, C7, C8 and C9) to an amphiphilic tubular complex comprising approximately 20 subunits. The hydrophilic-amphiphilic transition of the precursor proteins is achieved by restricted unfolding and exposure of previously hidden hydrophobic domains. Restricted unfolding, in turn, is driven by high-affinity protein-protein interactions resulting in the formation of amphilic complexes. Circular polymerization of C9 to a tubular complex (poly C9) constitutes the molecular mechanism for transmembrane channel assembly and formation of ultrastructural membrane lesions.
Collapse
|
50
|
Tschopp J. Ultrastructure of the membrane attack complex of complement. Heterogeneity of the complex caused by different degree of C9 polymerization. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42872-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|