1
|
Zhuang A, Yap FYT, Borg DJ, McCarthy D, Fotheringham A, Leung S, Penfold SA, Sourris KC, Coughlan MT, Schulz BL, Forbes JM. The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinol Diabetes Metab 2021; 4:e00278. [PMID: 34277994 PMCID: PMC8279619 DOI: 10.1002/edm2.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
| | | | - Danielle J. Borg
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Domenica McCarthy
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Amelia Fotheringham
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Sherman Leung
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | | | - Karly C. Sourris
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Melinda T. Coughlan
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQldAustralia
| | - Josephine M. Forbes
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
2
|
Zhuang A, Yap FY, Bruce C, Leung C, Plan MR, Sullivan MA, Herath C, McCarthy D, Sourris KC, Kantharidis P, Coughlan MT, Febbraio MA, Hodson MP, Watt MJ, Angus P, Schulz BL, Forbes JM. Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Sci Rep 2017; 7:12292. [PMID: 28947796 PMCID: PMC5612946 DOI: 10.1038/s41598-017-12548-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
The protein oligosaccharyltransferase-48 (OST48) is integral to protein N-glycosylation in the endoplasmic reticulum (ER) but is also postulated to act as a membrane localised clearance receptor for advanced glycation end-products (AGE). Hepatic ER stress and AGE accumulation are each implicated in liver injury. Hence the objective of this study was to increase the expression of OST48 and examine the effects on hepatic function and structure. Groups of 8 week old male mice (n = 10-12/group) over-expressing the gene for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-), were followed for 24 weeks, while randomised to diets either low or high in AGE content. By week 24 of the study, either increasing OST48 expression or consumption of high AGE diet impaired liver function and modestly increased hepatic fibrosis, but their combination significantly exacerbated liver injury in the absence of steatosis. DDOST+/- mice had increased both portal delivery and accumulation of hepatic AGEs leading to central adiposity, insulin secretory defects, shifted fuel usage to fatty and ketoacids, as well as hepatic glycogen accumulation causing hepatomegaly along with hepatic ER and oxidative stress. This study revealed a novel role of the OST48 and AGE axis in hepatic injury through ER stress, changes in fuel utilisation and glucose intolerance.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Australia
- School of Medicine, University of Queensland, St Lucia, Australia
| | - Felicia Yt Yap
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Immunology and Medicine, Central and Eastern Clinical School, AMREP Precinct, Monash University, Clayton, Australia
| | - Clinton Bruce
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Burwood, Australia
| | - Chris Leung
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Manuel R Plan
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Mitchell A Sullivan
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Australia
| | - Chandana Herath
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Domenica McCarthy
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Karly C Sourris
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Immunology and Medicine, Central and Eastern Clinical School, AMREP Precinct, Monash University, Clayton, Australia
| | - Phillip Kantharidis
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Melinda T Coughlan
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Immunology and Medicine, Central and Eastern Clinical School, AMREP Precinct, Monash University, Clayton, Australia
| | - Mark A Febbraio
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Mark P Hodson
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, Australia
| | - Matthew J Watt
- Biomedicine Discovery Program and the Department of Physiology, Monash University, Clayton, Australia
| | - Peter Angus
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Australia.
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Australia.
- Mater Clinical School, University of Queensland, St Lucia, Australia.
| |
Collapse
|
3
|
Cornejo-Corona I, Thapa HR, Browne DR, Devarenne TP, Lozoya-Gloria E. Stress responses of the oil-producing green microalga Botryococcus braunii Race B. PeerJ 2016; 4:e2748. [PMID: 27957393 PMCID: PMC5144741 DOI: 10.7717/peerj.2748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022] Open
Abstract
Plants react to biotic and abiotic stresses with a variety of responses including the production of reactive oxygen species (ROS), which may result in programmed cell death (PCD). The mechanisms underlying ROS production and PCD have not been well studied in microalgae. Here, we analyzed ROS accumulation, biomass accumulation, and hydrocarbon production in the colony-forming green microalga Botryococcus braunii in response to several stress inducers such as NaCl, NaHCO3, salicylic acid (SA), methyl jasmonate, and acetic acid. We also identified and cloned a single cDNA for the B. braunii ortholog of the Arabidopsis gene defender against cell death 1 (DAD1), a gene that is directly involved in PCD regulation. The function of B. braunii DAD1 was assessed by a complementation assay of the yeast knockout line of the DAD1 ortholog, oligosaccharyl transferase 2. Additionally, we found that DAD1 transcription was induced in response to SA at short times. These results suggest that B. braunii responds to stresses by mechanisms similar to those in land plants and other organisms.
Collapse
Affiliation(s)
- Ivette Cornejo-Corona
- Genetic Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato , Irapuato , Guanajuato , Mexico
| | - Hem R Thapa
- Department of Biochemistry and Biophysics, Texas A&M University , College Station , TX , United States
| | - Daniel R Browne
- Department of Biochemistry and Biophysics, Texas A&M University , College Station , TX , United States
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University , College Station , TX , United States
| | - Edmundo Lozoya-Gloria
- Genetic Engineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato , Irapuato , Guanajuato , Mexico
| |
Collapse
|
4
|
Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J 2016; 33:645-52. [PMID: 27270766 DOI: 10.1007/s10719-016-9693-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/07/2023]
Abstract
Diabetic patients are postulated to be in a perpetual state of oxidative stress and inflammation at sites where chronic complications occur. The accumulation of AGEs derived from both endogenous and exogenous sources (such as the diet) have been implicated in the development and progression of diabetic complications, particularly nephropathy. There has been some interest in investigating the potential for reducing the AGE burden in chronic disease, through the action of AGE "clearance" receptors, such as the advanced glycation end-product receptor 1 (AGE-R1). Reducing the burden of AGEs has been linked to attenuation of inflammation, slower progression of diabetic complications (in particular vascular and renal complications) and has been shown to extend lifespan. To date, however, there have been no direct investigations into whether AGE-R1 has any role in modulating normal kidney function, or specifically during the development and progression of diabetes. This mini-review will focus on the recent advances in knowledge around the mechanistic function of AGE-R1 and the implications of this for the pathogenesis of diabetic kidney disease.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute, Translational Research Institute, The University of Queensland, South Brisbane, Queensland, Australia. .,Mater Clinical School, The University of Queensland, South Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Abstract
In vivo modification of proteins by molecules with reactive carbonyl groups leads to intermediate and advanced glycation end products (AGE). Glucose is a significant glycation reagent due to its high physiological concentration and poorly controlled diabetics show increased albumin glycation. Increased levels of glycated and AGE-modified albumin have been linked to diabetic complications, neurodegeneration, and vascular disease. This review discusses glycated albumin formation, structural consequences of albumin glycation on drug binding, removal of circulating AGE by several scavenger receptors, as well as AGE-induced proinflammatory signaling through activation of the receptor for AGE. Analytical methods for quantitative detection of protein glycation and AGE formation are compared. Finally, the use of glycated albumin as a novel clinical marker to monitor glycemic control is discussed and compared to glycated hemoglobin (HbA1c) as long-term indicator of glycemic status.
Collapse
|
6
|
Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol 2014; 2:411-29. [PMID: 24624331 PMCID: PMC3949097 DOI: 10.1016/j.redox.2013.12.016] [Citation(s) in RCA: 858] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022] Open
Abstract
Improvements in health care and lifestyle have led to an elevated lifespan and increased focus on age-associated diseases, such as neurodegeneration, cardiovascular disease, frailty and arteriosclerosis. In all these chronic diseases protein, lipid or nucleic acid modifications are involved, including cross-linked and non-degradable aggregates, such as advanced glycation end products (AGEs). Formation of endogenous or uptake of dietary AGEs can lead to further protein modifications and activation of several inflammatory signaling pathways. This review will give an overview of the most prominent AGE-mediated signaling cascades, AGE receptor interactions, prevention of AGE formation and the impact of AGEs during pathophysiological processes.
Collapse
Key Words
- ADAMST, a disintegrin and metalloproteinase with a thrombospondin type 1 motif
- AGE, advanced glycation end products
- AGE-receptors
- Advanced glycation end products
- Age-associated diseases
- Aggregates
- Aging
- E, from embryonic day
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal regulated kinase
- F3NK, fructosamine 3-phosphokinase
- FKHRL1, forkhead transcription factor
- HDL, high density lipoprotein
- HMGB1, high-mobility-group-protein B1
- HNE, 4-hydroxy-trans-2-nonenal
- Jak1/2, Janus kinase 1/2
- LDL, low density lipoprotein
- MDA, malondialdehyde
- MEKK, mitogen-activated protein/ERK kinase kinases
- MnSOD, manganese superoxide dismutase
- NF-κB
- Nf-κB, nuclear factor-light-chain-enhancer of activated B
- Oxidative stress
- PIK3, phosphoinositol 3 kinase
- RAGE
- RAGE, receptor of AGEs
- RCC, reactive carbonyl compounds
- Reactive carbonyl compounds
- S100B, S100 calcium binding protein B
- SIRt1, NAD+-dependent deacetylase and survival factor 1
- SR-A, scavenger receptor class A
- Signaling
- Stat 1/2, signal transducers and activators of transcription 1/2
- VSMC, vascular smooth muscle cells
Collapse
Affiliation(s)
- Christiane Ott
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kathleen Jacobs
- Clinic for Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, D-06120 Halle (Saale), Germany
| | - Elisa Haucke
- Institute for Anatomy and Cell Biology, Faculty of Medicine, Martin-Luther-University of Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute for Anatomy and Cell Biology, Faculty of Medicine, Martin-Luther-University of Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Andreas Simm
- Clinic for Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, D-06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Jackson LP, Lewis M, Kent HM, Edeling MA, Evans PR, Duden R, Owen DJ. Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 2012. [PMID: 23177648 PMCID: PMC3521961 DOI: 10.1016/j.devcel.2012.10.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
COPI mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) and within the Golgi stack, sorting transmembrane proteins bearing C-terminal KKxx or KxKxx motifs. The structure of KxKxx motifs bound to the N-terminal WD-repeat domain of β'-COP identifies electrostatic contacts between the motif and complementary patches at the center of the β'-COP propeller. An absolute requirement of a two-residue spacing between the terminal carboxylate group and first lysine residue results from interactions of carbonyl groups in the motif backbone with basic side chains of β'-COP. Similar interactions are proposed to mediate binding of KKxx motifs by the homologous α-COP domain. Mutation of key interacting residues in either domain or in their cognate motifs abolishes in vitro binding and results in mistrafficking of dilysine-containing cargo in yeast without compromising cell viability. Flexibility between β'-COP WD-repeat domains and the location of cargo binding have implications for COPI coat assembly.
Collapse
Affiliation(s)
- Lauren P Jackson
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | |
Collapse
|
8
|
Gangalum RK, Horwitz J, Kohan SA, Bhat SP. αA-crystallin and αB-crystallin reside in separate subcellular compartments in the developing ocular lens. J Biol Chem 2012; 287:42407-16. [PMID: 23071119 DOI: 10.1074/jbc.m112.414854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high expression of αA and αB in the lens and their co-fractionation from lens extracts as one multimeric entity, α-crystallin. To understand the biological function(s) of each of these two proteins, it is important to investigate the biological basis of this perceived dichotomy; in this report, we address the question whether αA and αB exist as independent proteins in the ocular lens. Discontinuous sucrose density gradient fractionation and immunoconfocal localization reveal that in early developing rat lens αA is a membrane-associated small heat shock protein similar to αB but with remarkable differences. Employing an established protocol, we demonstrate that αB predominantly sediments with rough endoplasmic reticulum, whereas αA fractionates with smooth membranes. These biochemical observations were corroborated with immunogold labeling and transmission electron microscopy. Importantly, in the rat heart also, which does not contain αA, αB fractionates with rough endoplasmic reticulum, suggesting that αA has no influence on the distribution of αB. These data demonstrate presence of αA and αB in two separate subcellular membrane compartments, pointing to their independent existence in the developing ocular lens.
Collapse
Affiliation(s)
- Rajendra K Gangalum
- Jules Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, California 90095-70019, USA
| | | | | | | |
Collapse
|
9
|
Mohorko E, Glockshuber R, Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 2011; 34:869-78. [PMID: 21614585 DOI: 10.1007/s10545-011-9337-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 01/07/2023]
Abstract
N-linked glycosylation is one of the most abundant modifications of proteins in eukaryotic organisms. In the central reaction of the pathway, oligosaccharyltransferase (OST), a multimeric complex located at the membrane of the endoplasmic reticulum, transfers a preassembled oligosaccharide to selected asparagine residues within the consensus sequence asparagine-X-serine/threonine. Due to the high substrate specificity of OST, alterations in the biosynthesis of the oligosaccharide substrate result in the hypoglycosylation of many different proteins and a multitude of symptoms observed in the family of congenital disorders of glycosylation (CDG) type I. This review covers our knowledge of human OST and describes enzyme composition. The Stt3 subunit of OST harbors the catalytic center of the enzyme, but the function of the other, highly conserved, subunits are less well defined. Some components seem to be involved in the recognition and utilization of glycosylation sites in specific glycoproteins. Indeed, mutations in the subunit paralogs N33/Tusc3 and IAP do not yield the pleiotropic phenotypes typical for CDG type I but specifically result in nonsyndromic mental retardation, suggesting that the oxidoreductase activity of these subunits is required for glycosylation of a subset of proteins essential for brain development.
Collapse
Affiliation(s)
- Elisabeth Mohorko
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmatt 20, CH, 8093, Zürich, Switzerland
| | | | | |
Collapse
|
10
|
Abstract
Persistently elevated oxidative stress and inflammation precede or occur during the development of type 1 or type 2 diabetes mellitus and precipitate devastating complications. Given the rapidly increasing incidence of diabetes mellitus and obesity in the space of a few decades, new genetic mutations are unlikely to be the cause, instead pointing to environmental initiators. A hallmark of contemporary culture is a preference for thermally processed foods, replete with pro-oxidant advanced glycation endproducts (AGEs). These molecules are appetite-increasing and, thus, efficient enhancers of overnutrition (which promotes obesity) and oxidant overload (which promotes inflammation). Studies of genetic and nongenetic animal models of diabetes mellitus suggest that suppression of host defenses, under sustained pressure from food-derived AGEs, may potentially shift homeostasis towards a higher basal level of oxidative stress, inflammation and injury of both insulin-producing and insulin-responsive cells. This sequence promotes both types of diabetes mellitus. Reducing basal oxidative stress by AGE restriction in mice, without energy or nutrient change, reinstates host defenses, alleviates inflammation, prevents diabetes mellitus, vascular and renal complications and extends normal lifespan. Studies in healthy humans and in those with diabetes mellitus show that consumption of high amounts of food-related AGEs is a determinant of insulin resistance and inflammation and that AGE restriction improves both. This Review focuses on AGEs as novel initiators of oxidative stress that precedes, rather than results from, diabetes mellitus. Therapeutic gains from AGE restriction constitute a paradigm shift.
Collapse
Affiliation(s)
- Helen Vlassara
- Division of Experimental Diabetes and Aging, Brookdale Department of Geriatrics, Mount Sinai School of Medicine, New York, NY 10029, USA. helen.vlassara@ mssm.edu
| | | |
Collapse
|
11
|
Modulation of the cellular expression of circulating advanced glycation end-product receptors in type 2 diabetic nephropathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2010:974681. [PMID: 21318189 PMCID: PMC3034946 DOI: 10.1155/2010/974681] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/29/2010] [Accepted: 11/03/2010] [Indexed: 01/11/2023]
Abstract
Background. Advanced glycation end-products (AGEs) and their receptors are prominent contributors to diabetic kidney disease. Methods. Flow cytometry was used to measure the predictive capacity for kidney impairment of the AGE receptors RAGE, AGE-R1, and AGE-R3 on peripheral blood mononuclear cells (PBMCs) in experimental models of type 2 diabetes (T2DM) fed varied AGE containing diets and in obese type 2 diabetic and control human subjects. Results. Diets high in AGE content fed to diabetic mice decreased cell surface RAGE on PBMCs and in type 2 diabetic patients with renal impairment (RI). All diabetic mice had elevated Albumin excretion rates (AERs), and high AGE fed dbdb mice had declining Glomerular filtration rate (GFR). Cell surface AGE-R1 expression was also decreased by high AGE diets and with diabetes in dbdb mice and in humans with RI. PBMC expression of AGE R3 was decreased in diabetic dbdb mice or with a low AGE diet. Conclusions. The most predictive PBMC profile for renal disease associated with T2DM was an increase in the cell surface expression of AGE-R1, in the context of a decrease in membranous RAGE expression in humans, which warrants further investigation as a biomarker for progressive DN in larger patient cohorts.
Collapse
|
12
|
Abstract
In eukaryotic cells, N-glycosylation is typically the most common protein modification that occurs in the endoplasmic reticulum (ER) lumen. N-glycosylation is facilitated by a large heterologous protein complex called the oligosaccharyltransferase (OST) that allows the attachment of a high mannose oligosaccharide from a dolichol pyrophosphate donor en bloc onto suitable asparagine residues of newly synthesized nascent chains during translocation into the ER lumen (1). While the complexity of the OST is highly conserved in eukaryotes, the role of its different subunits is poorly defined. We have investigated the function of three OST subunits, the ER translocon-associated component ribophorin I, and two isoforms of the presumptive catalytic subunit, STT3. We use a combination of siRNA-mediated knockdown of individual proteins combined with a semi-permeabilized mammalian cell system to provide a robust read out for OST subunit function during N-glycosylation of model substrates in vitro. This approach is equally applicable to the study of other cellular components.
Collapse
|
13
|
Christis C, Lubsen NH, Braakman I. Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 2008; 275:4700-27. [DOI: 10.1111/j.1742-4658.2008.06590.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Wilson CM, High S. Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J Cell Sci 2007; 120:648-57. [PMID: 17264154 DOI: 10.1242/jcs.000729] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian oligosaccharyltransferase (OST) complex is composed of about eight subunits and mediates the N-glycosylation of nascent polypeptide chains entering the endoplasmic reticulum (ER). The conserved STT3 subunit of eukaryotic OST complexes has been identified as its catalytic centre, yet although many other subunits are equally well conserved their functions are unknown. We used RNA interference to investigate the function of ribophorin I, an ER-translocon-associated subunit of the OST complex previously shown to associate with newly synthesised membrane proteins. We show that ribophorin I dramatically enhances the N-glycosylation of selected membrane proteins and provide evidence that it is not essential for N-glycosylation per se. Parallel studies confirm that STT3 is essential for transferase activity of the complex, but reveal that the two mammalian isoforms are not functionally equivalent when modifying bona fide polypeptide substrates. We propose a new model for OST function where ribophorin I acts as a chaperone or escort to promote the N-glycosylation of selected substrates by the catalytic STT3 subunits.
Collapse
Affiliation(s)
- Cornelia M Wilson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
15
|
Chavan M, Chen Z, Li G, Schindelin H, Lennarz WJ, Li H. Dimeric organization of the yeast oligosaccharyl transferase complex. Proc Natl Acad Sci U S A 2006; 103:8947-52. [PMID: 16754853 PMCID: PMC1482546 DOI: 10.1073/pnas.0603262103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme complex oligosaccharyl transferase (OT) catalyzes N-glycosylation in the lumen of the endoplasmic reticulum. The yeast OT complex is composed of nine subunits, all of which are transmembrane proteins. Several lines of evidence, including our previous split-ubiquitin studies, have suggested an oligomeric organization of the OT complex, but the exact oligomeric nature has been unclear. By FLAG epitope tagging the Ost4p subunit of the OT complex, we purified the OT enzyme complex by using the nondenaturing detergent digitonin and a one-step immunoaffinity technique. The digitonin-solubilized OT complex was catalytically active, and all nine subunits were present in the enzyme complex. The purified OT complex had an apparent mass of approximately 500 kDa, suggesting a dimeric configuration, which was confirmed by biochemical studies. EM showed homogenous individual particles and revealed a dimeric structure of the OT complexes that was consistent with our biochemical studies. A 3D structure of the dimeric OT complex at 25-A resolution was reconstructed from EM images. We suggest that the dimeric structure of OT might be required for effective association with the translocon dimer and for its allosteric regulation during cotranslational glycosylation.
Collapse
Affiliation(s)
- Manasi Chavan
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Zhiqiang Chen
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Guangtao Li
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Hermann Schindelin
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, 97078 Würzburg, Germany
| | - William J. Lennarz
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
- To whom correspondence may be addressed. E-mail:
or
| | - Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
16
|
Black VH, Sanjay A, van Leyen K, Lauring B, Kreibich G. Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of proteins associated with the translocation channel. Endocrinology 2005; 146:4234-49. [PMID: 15947003 DOI: 10.1210/en.2005-0372] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steroid-secreting cells are characterized by abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. Yet they have relatively little morphologically identifiable rough endoplasmic reticulum, presumably required for synthesis and maintenance of the smooth membranes. In this study, we demonstrate that adrenal smooth microsomal subfractions enriched in smooth endoplasmic reticulum membranes contain high levels of translocation apparatus and oligosaccharyltransferase complex proteins, previously thought confined to rough endoplasmic reticulum. We further demonstrate that these smooth microsomal subfractions are capable of effecting cotranslational translocation, signal peptide cleavage, and N-glycosylation of newly synthesized polypeptides. This shifts the paradigm for distinction between smooth and rough endoplasmic reticulum. Confocal microscopy revealed the proteins to be distributed throughout the abundant tubular endoplasmic reticulum in these cells, which is predominantly smooth surfaced. We hypothesize that the broadly distributed translocon and oligosaccharyltransferase proteins participate in local synthesis and/or quality control of membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally regulated manner.
Collapse
Affiliation(s)
- Virginia H Black
- Department of Cell Biology and Kaplan Cancer Center, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
17
|
Shibatani T, David LL, McCormack AL, Frueh K, Skach WR. Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 2005; 44:5982-92. [PMID: 15835887 DOI: 10.1021/bi047328f] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligosaccharyltransferase (OST) catalyzes the cotranslational transfer of high-mannose sugars to nascent polypeptides during N-linked glycosylation in the rough endoplasmic reticulum lumen. Nine OST subunits have been identified in yeast. However, the composition and organization of mammalian OST remain unclear. Using two-dimensional Blue Native polyacrylamide gel electrophoresis/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry, we now demonstrate that mammalian OST can be isolated from solubilized, actively engaged ribosomes as multiple distinct protein complexes that range in size from approximately 500 to 700 kDa. These complexes exhibit different ribosome affinities and subunit compositions. The major complex, OSTC(I), had an apparent size of approximately 500 kDa and was readily released from ribosome translocon complexes after puromycin treatment under physiological salt conditions. Two additional complexes were released only after treatment with high salt: OSTC(II) ( approximately 600 kDa) and OSTC(III) ( approximately 700 kDa). Both remained stably associated with heterotrimeric Sec61alphabetagamma, while OSTC(III) also contained the tetrameric TRAP complex. All known mammalian OST subunits (STT3-A, ribophorin I, ribophorin II, OST48, and DAD1) were present in all complexes. In addition, two previously uncharacterized proteins were also copurified with OST. Mass spectrometry identified a 17 kDa protein as DC2 which is weakly homologous to the C-terminal half of yeast Ost3p and Ost6p. The second protein (14 kDa) was tentatively identified as keratinocyte-associated protein 2 (KCP2) and has no previously known function. Our results identify two potential new subunits of mammalian OST and demonstrate a remarkable heterogeneity in OST composition that may reflect a means for controlling nascent chain glycosylation.
Collapse
Affiliation(s)
- Toru Shibatani
- Division of Molecular Medicine, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
18
|
Yan A, Ahmed E, Yan Q, Lennarz WJ. New findings on interactions among the yeast oligosaccharyl transferase subunits using a chemical cross-linker. J Biol Chem 2003; 278:33078-87. [PMID: 12805367 DOI: 10.1074/jbc.m305337200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At present, there is very limited knowledge about the structural organization of the yeast oligosaccharyl transferase (OT) complex and the function of each of its nine subunits. Because of the failure of the yeast two-hybrid system to reveal interactions between luminal domains of these subunits, we utilized a membrane permeable, thiocleavable cross-linking reagent dithiobis-succinimidyl propionate to biochemically study the interactions of various OT subunits. Four essential gene products, Ost1p, Wbp1p, Swp1p, and Stt3p were shown to be cross-linked to each other in a pairwise fashion. In addition, Ost1p was found to be cross-linked to all other eight OT subunits individually. This led us to propose that Ost1p may reside in the core of the OT complex and could play an important role in its assembly. Ost4p and Ost5p were found to only interact with specific components of the OT complex and may function as an additional anchor for optimal stability of Stt3p and Ost1p in the membrane, respectively. Interestingly, Ost3p and Ost6p subunits exhibited a surprisingly identical pattern of cross-linking to other subunits, which is consistent with their proposed redundant function. Based on these findings, we analyzed the distribution of the lysine residues that are likely to be involved in cross-linking of OT subunits and propose that the OT subunits interact with each other through either their transmembrane domains and/or a region proximal to it, rather than through their luminal or cytoplasmic domains.
Collapse
Affiliation(s)
- Aixin Yan
- Department of Biochemistry and Cell Biology and the Institute for Cell and Developmental Biology, State University of New York at Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
19
|
Hardt B, Bause E. Lysine can be replaced by histidine but not by arginine as the ER retrieval motif for type I membrane proteins. Biochem Biophys Res Commun 2002; 291:751-7. [PMID: 11866428 DOI: 10.1006/bbrc.2002.6515] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The OST48 subunit of the oligosaccharyltransferase complex is a type I membrane protein containing three lysines in its cytosolic domain. The two lysines in positions 3 and 5 from the C-terminus are able to direct protein localisation within the endoplasmic reticulum (ER) by COPI-mediated retrieval. Substitution of these lysines by arginine resulted in cell-surface expression of OST48, whereas ER residency was maintained when either Lys-5 or Lys-3 but not both was replaced with arginine. Localisation of OST48 was not affected by substitution of the two lysines by histidine, indicating that a His-Xaa-His sequence, in contrast to Arg-Xaa-Arg, contains ER-specific targeting information. These differences show that simple charge interactions are not sufficient for ER retention and that other structural factors also play a role. The His-Xaa-His sequence could represent a new and independent signal for directing ER localisation differing from both the arginine motif in type II proteins and the lysine motif in type I proteins. Our data do not exclude, however, that the histidine sequence simply mimics the lysine motif as a sorting signal, being recognised by and interacting with the same receptor subunit(s) in COP-I-coated vesicles. Conclusions arising from this assumption involving the conformation of lysine at the putative COP-I binding site and the failure of Arg-Xaa-Arg to mediate ER localisation for type I proteins are discussed.
Collapse
Affiliation(s)
- Birgit Hardt
- Institut für Physiologische Chemie, Universität Bonn, Nussallee 11, 53115 Bonn, Germany
| | | |
Collapse
|
20
|
Abstract
Native glucose-derived glycation derivatives (advanced glycation end products, AGE) in vascular, renal and neuronal tissues contribute to organ damage. Glycation derivatives include a number of chemically and cell-reactive substances, also termed glycoxidation products or glycotoxins (GT). Cell-associated AGE-specific receptors (AGE-Rs), AGE-R1-3, RAGE, as well as the scavenger receptors ScR-II and CD-36 that are present on vascular, renal, hemopoietic, and neuronal/glial cells, serve in the regulation of AGE uptake and removal. AGE-Rs also modulate cell activation, growth-related mediators, and cell proliferation, consequently influencing organ structure/function. This occurs via oxidant stress triggered via receptor-dependent or -independent pathways, and leads to signal activation pathways, resulting in pro-inflammatory responses. In susceptible individuals, the AGE-R expression/function may be subject to environmental or gene-related modulation, which in turn may influence tissue-specific gene functions. In this context, altered expression and activity of AGE-R components has recently been found in both mouse diabetes models and humans with diabetic complications. Although several gene polymorphisms are detected in most AGE-R components, no significant correlation to diabetic complications has as yet been found. Further investigation is underway to define whether primary or secondary genetic links of pathogenic significance exist in this system. Various AGE-binding peptides or soluble receptors have emerged as potential sequestering agents for toxic AGEs as potential therapies for diabetic complications.
Collapse
Affiliation(s)
- H Vlassara
- Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
21
|
Fu J, Kreibich G. Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem 2000; 275:3984-90. [PMID: 10660554 DOI: 10.1074/jbc.275.6.3984] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48.
Collapse
Affiliation(s)
- J Fu
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
22
|
Knauer R, Lehle L. The oligosaccharyltransferase complex from Saccharomyces cerevisiae. Isolation of the OST6 gene, its synthetic interaction with OST3, and analysis of the native complex. J Biol Chem 1999; 274:17249-56. [PMID: 10358084 DOI: 10.1074/jbc.274.24.17249] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The key step of N-glycosylation of proteins, an essential and highly conserved protein modification, is catalyzed by the hetero-oligomeric protein complex oligosaccharyltransferase (OST). So far, eight genes have been identified in Saccharomyces cerevisiae that are involved in this process. Enzymatically active OST preparations from yeast were shown to be composed of four (Ost1p, Wbp1p, Ost3p, Swp1p) or six subunits (Ost2p and Ost5p in addition to the four listed). Genetic studies have disclosed Stt3p and Ost4p as additional proteins needed for N-glycosylation. In this study we report the identification and functional characterization of a new OST gene, designated OST6, that has homology to OST3 and in particular a strikingly similar membrane topology. Neither gene is essential for growth of yeast. Disruption of OST6 or OST3 causes only a minor defect in N-glycosylation, but an Deltaost3Deltaost6 double mutant displays a synthetic phenotype, leading to a severe underglycosylation of soluble and membrane-bound glycoproteins in vivo and to a reduced OST activity in vitro. Moreover, each of the two genes has also a specific function, since agents affecting cell wall biogenesis reveal different growth phenotypes in the respective null mutants. By blue native electrophoresis and immunodetection, a approximately 240-kDa complex was identified consisting of Ost1p, Stt3p, Wbp1p, Ost3p, Ost6p, Swp1p, Ost2p, and Ost5p, indicating that probably all so far identified OST proteins are constituents of the OST complex. It is also shown that disruption of OST3 and OST6 leads to a defect in the assembly of the complex. Hence, the function of these genes seems to be essential for recruiting a fully active complex necessary for efficient N-glycosylation.
Collapse
Affiliation(s)
- R Knauer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
23
|
Stitt AW, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem Biophys Res Commun 1999; 256:549-56. [PMID: 10080935 DOI: 10.1006/bbrc.1999.0291] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated as causal factors in the vascular complications of diabetes and it is known that these products interact with cells through specific receptors. The AGE-receptor complex, originally described as p60 and p90, has been characterised in hemopoietic cells and the component proteins identified and designated AGE-R1, -R2 and -R3. In the current study we have characterised this receptor in human umbilical vein endothelial cells (HUVECs) and elucidated several important biological properties which may impact on AGE mediated vascular disease. 125I-AGE-BSA binding to HUVEC monolayers was determined with and without various cold competitors. The synthetic AGE, 2-(2-furoyl)-4(5)-furanyl-1H-imidazole (FFI)-BSA, failed to compete with AGE-BSA binding unlike observations already reported in hemopoietic cells. The ability of 125I-AGE-BSA to bind to separated HUVEC plasma membrane (PM) proteins was also examined and the binding at specific bands inhibited by antibodies to each component of the AGE-receptor complex. Western blotting of whole cell and PM fractions, before and after exposure to AGE-BSA, revealed that AGE-R1, -R2 and -R3 are subject to upregulation upon exposure to their ligand, a phenomenon which was also demonstrated by immunofluorescence of non-permeabilised cells. mRNA expression of each AGE-receptor component was apparent in HUVECs, with the AGE-R2 and -R3 gene expression being upregulated upon exposure to AGEs in a time-dependent manner. A phosporylation assay in combination with AGE-R2 immunoprecipitation demonstrated that this component of the receptor complex is phosphorylated by acute exposure to AGE-BSA. These results indicate the presence of a conserved AGE-receptor complex in vascular endothelium which demonstrates subtle differences to other cell-types. In response to AGE-modified molecules, this complex is subject to upregulation, while the AGE-R2 component also displays increased phosphorylation possibly leading to enhanced signal transduction.
Collapse
MESH Headings
- Binding Sites/drug effects
- Blotting, Western
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/pharmacology
- Humans
- Immunohistochemistry
- Membrane Proteins/metabolism
- Molecular Weight
- Phosphorylation
- Precipitin Tests
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Receptor for Advanced Glycation End Products
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Serum Albumin, Bovine/metabolism
- Serum Albumin, Bovine/pharmacology
- Umbilical Veins/cytology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- A W Stitt
- Department of Opthalmology, Queen's University of Belfast, Royal Victoria Hospital, Belfast, BT12 6BA, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
24
|
Sano H, Nagai R, Matsumoto K, Horiuchi S. Receptors for proteins modified by advanced glycation endproducts (AGE)--their functional role in atherosclerosis. Mech Ageing Dev 1999; 107:333-46. [PMID: 10360686 DOI: 10.1016/s0047-6374(99)00011-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term incubation of proteins with glucose leads, through the formation of early stage products such as Schiff base and Amadori rearrangement products, to the formation of advanced glycation end products (AGE). Recent studies of AGE-structures as well as the receptor for AGE-proteins (AGE-receptors) have emphasized the involvement of protein modification by AGE in aging and age-enhanced disease processes. Immunohistochemical analyses of human atherosclerotic lesions using a monoclonal anti-AGE antibody have demonstrated diffuse extracellular AGE-deposition as well as dense intracellular AGE-deposition in macrophage- and vascular smooth muscle cell (SMC)-derived foam cells. In vitro experiments using both CHO cells overexpressing macrophage scavenger receptor-A (MSR-A) and peritoneal macrophages from MSR-A-knockout mice have shown that the MSR-A plays a major role in endocytic uptake of AGE-proteins by macrophages. Furthermore, in vitro experiments with rabbit arterial SMCs demonstrated a novel AGE-receptor mediating endocytosis of AGE-proteins. These in vivo and in vitro experiments suggest that AGE-proteins formed extracellularly in atherosclerotic lesions are endocytosed by macrophages through MSR-A in the early stage, and by SMCs through the novel AGE-receptor in the advanced stage, implicating functional contribution of the AGE-receptor-mediated interaction of AGE-proteins with these cells to atherosclerotic processes in arterial walls.
Collapse
Affiliation(s)
- H Sano
- Department of Biochemistry, Kumamoto University School of Medicine, Japan
| | | | | | | |
Collapse
|
25
|
Knauer R, Lehle L. The oligosaccharyltransferase complex from yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:259-73. [PMID: 9878773 DOI: 10.1016/s0304-4165(98)00128-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Glycosylation of eukaryotic secretory and membrane-bound proteins is an essential and highly conserved protein modification. The key step of this pathway is the en bloc transfer of the high mannose core oligosaccharide Glc3Man9GlcNAc2 from the lipid carrier dolichyl phosphate to selected Asn-X-Ser/Thr sequences of nascent polypeptide chains during their translocation across the endoplasmic reticulum membrane. The reaction is catalysed by the enzyme oligosaccharyltransferase (OST). Recent biochemical and molecular genetic studies in yeast have yielded novel insights into this enzyme with multiple tasks. Nine proteins have been shown to be OST components. These are assembled into a heterooligomeric membrane-bound complex and are required for optimal expression of OST activity in vivo in wild type cells. In accord with the evolutionary conservation of core N-glycosylation, there are significant homologies between the protein sequences of OST subunits from yeast and higher eukaryotes, and OST complexes from different sources show a similar organisation as well.
Collapse
Affiliation(s)
- R Knauer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
26
|
Sanjay A, Fu J, Kreibich G. DAD1 is required for the function and the structural integrity of the oligosaccharyltransferase complex. J Biol Chem 1998; 273:26094-9. [PMID: 9748289 DOI: 10.1074/jbc.273.40.26094] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asparagine-linked glycosylation is a highly conserved protein modification reaction that occurs in all eukaryotic organisms. The oligosaccharyltransferase (OST), which has its active site exposed on the luminal face of the endoplasmic reticulum (ER), catalyzes the transfer of preassembled high mannose oligosaccharides onto certain asparagine residues of nascent polypeptides. The mammalian OST complex was initially thought to be composed of three transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Most recently, a small integral membrane protein of 12 kDa called DAD1 has been identified as an additional member of the mammalian OST complex. A point mutation in the DAD1 gene is responsible for the temperature-sensitive phenotype of a baby hamster kidney-derived cell line (tsBN7) that undergoes apoptosis at the non-permissive temperature. Furthermore, the mutant protein DAD1 is not detectable in tsBN7 cells 6 h after shifting the cells to the non-permissive temperature. This temperature-sensitive cell line offered unique opportunities to study the effects caused by the loss of one OST subunit on the other three subunits and also on N-linked glycosylation. Western blot analysis of cell lysates showed that after 6 h at the non-permissive temperature, steady-state levels of the ribophorins were reduced by about 50%, and OST48 was barely detectable. On the other hand, steady-state levels of other components of the rough ER, such as the alpha-subunits of the TRAP (translocon-associated membrane protein) and the Sec61 complex, which are components of the translocation apparatus, are not affected by the instability of the OST subunits. Furthermore, N-glycosylation of the ribophorins was seriously affected 6 h after shifting the cells to the non-permissive temperature, and after 12 h they were synthesized only in the non-glycosylated form. As may be expected, this defect in the OST complex at the non-permissive temperature caused also the underglycosylation of a secretory glycoprotein. We concluded that degradation of DAD1 at the non-permissive temperature not only affects the stability of OST48 and the ribophorins but also results in the functional inactivation of the OST complex.
Collapse
Affiliation(s)
- A Sanjay
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
27
|
Kumar V, Heinemann FS, Ozols J. Interleukin-2 induces N-glycosylation in T-cells: characterization of human lymphocyte oligosaccharyltransferase. Biochem Biophys Res Commun 1998; 247:524-9. [PMID: 9642163 DOI: 10.1006/bbrc.1998.8780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the enzyme mediating N-glycosylation in "resting" and activated lymphocytes. Normal peripheral blood lymphocytes (PBLs) were found to have low activity for glycosylation of a synthetic glycan acceptor peptide. N-glycosylation activity increased 10-fold after mitogen activation of PBLs. N-glycosylation activity remained elevated during long-term culture and expansion of human lymphocytes when growth was supported by interleukin-2. To our knowledge, this is the first biochemical evidence for induction of endoplasmic reticulum functions during T-cell activation. The enzyme mediating N-glycosylation in lymphocytes was localized predominantly but not entirely to a microsomal organelle by subcellular fractionation. After solubilization and 85-fold purification from salt-washed microsomes, the enzyme preparation contained four predominant proteins. N-terminal sequence analysis identified the proteins as ribophorin I, ribophorin II (doublet), and a 50-kDa homologue of Wbp1, a yeast protein essential for N-glycosylation.
Collapse
Affiliation(s)
- V Kumar
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, 06030, USA.
| | | | | |
Collapse
|
28
|
Fu J, Ren M, Kreibich G. Interactions among subunits of the oligosaccharyltransferase complex. J Biol Chem 1997; 272:29687-92. [PMID: 9368036 DOI: 10.1074/jbc.272.47.29687] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian oligosaccharyltransferase (OST) is an oligomeric complex composed of three membrane proteins of the endoplasmic reticulum: ribophorin I (RI), ribophorin II (RII), and OST48. In addition, sequence homology between the Ost2 subunit of the yeast OST complex and Dad1 (defender against apoptotic death) suggests that Dad1 may represent a fourth subunit of the mammalian OST complex. In attempts to elucidate the structural organization of this complex, we have studied the interactions among its subunits. Using the yeast two-hybrid system, we have shown that the luminal domains of RI and RII (RIL and RIIL, respectively) interacted with the luminal domain of OST48 (OST48L), but no direct interaction was observed between RIL and RIIL. These results were confirmed by biochemical assays. Deletion analyses using the yeast two-hybrid system showed that subdomain of RIL or RIIL adjacent to the respective transmembrane domains interacted with OST48L. Of the three equal length subdomains of OST48L, the one at the N terminus and the one next to the transmembrane domain interacted with RIL. None of these three subdomains of OST48L interacted with RIIL. The yeast two-hybrid assay also revealed affinity between the cytoplasmically located N-terminal region of Dad1 and the short cytoplasmic tail of OST48, thus placing Dad1 firmly into the OST complex. In addition, we found a homotypic interaction between the cytoplasmic domains of RI, which may play a role in the formation of the oligomeric array formed by components of the translocation machinery.
Collapse
Affiliation(s)
- J Fu
- Department of Cell Biology, New York Medical Center, New York, New York 10016, USA
| | | | | |
Collapse
|
29
|
Yamagata T, Tsuru T, Momoi MY, Suwa K, Nozaki Y, Mukasa T, Ohashi H, Fukushima Y, Momoi T. Genome organization of human 48-kDa oligosaccharyltransferase (DDOST). Genomics 1997; 45:535-40. [PMID: 9367678 DOI: 10.1006/geno.1997.4966] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The enzyme oligosaccharyltransferase (dolichyl-diphosphooligosaccharide-protein glycosyltransferase; EC 2. 4.1.119) (DDOST) catalyzes the transfer of a high-mannose oligosaccharide (GlcNac2Man9Glc3) from a dolichol-linked oligosaccharide donor (dolichol-P-GlcNac2Man9Glc3) onto the asparagine acceptor site within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains across the membrane of the endoplasmic reticulum. We isolated mouse and human DDOST cDNAs from retinoic acid-treated mouse P19 EC cells and human NT-2 cells, respectively. DDOST mRNA is expressed intensely in heart and pancreas, but at lower levels in brain. Here we show that the human DDOST 48-kDa subunit gene (HGMW-approved symbol DDOST) is organized into 11 exons expanding about 9 kb. This DDOST subunit gene is localized on chromosome 1p36.1 by fluorescence in situ hybridization analysis.
Collapse
Affiliation(s)
- T Yamagata
- Department of Pediatrics, Jichi Medical School, Minamikawachi-machi, Kawachi-gun, Tochigi, 329-04, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kelleher DJ, Gilmore R. DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci U S A 1997; 94:4994-9. [PMID: 9144178 PMCID: PMC24619 DOI: 10.1073/pnas.94.10.4994] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DAD1, the defender against apoptotic cell death, was initially identified as a negative regulator of programmed cell death in the BHK21-derived tsBN7 cell line. Of interest, the 12.5-kDa DAD1 protein is 40% identical in sequence to Ost2p, the 16-kDa subunit of the yeast oligosaccharyltransferase (OST). Although the latter observation suggests that DAD1 may be a mammalian OST subunit, biochemical evidence to support this hypothesis has not been reported. Previously, we showed that canine OST activity is associated with an oligomeric complex of ribophorin I, ribophorin II, and OST48. Here, we demonstrate that DAD1 is a tightly associated subunit of the OST both in the intact membrane and in the purified enzyme. Sedimentation velocity analyses of detergent-solubilized WI38 cells and canine rough microsomes show that DAD1 cosediments precisely with OST activity and with the ribophorins and OST48. Radioiodination of the purified OST reveals that DAD1 is present in roughly equimolar amounts relative to the other subunits. DAD1 can be crosslinked to OST48 in intact microsomes with dithiobis(succinimidylpropionate). Crosslinked ribophorin II-OST48 heterodimers, DAD1-ribophorin II-OST48 heterotrimers and DAD1-ribophorin I-ribophorin II-OST48 heterotetramers also were detected. The demonstration that DAD1 is a subunit of the OST suggests that induction of a cell death pathway upon loss of DAD1 in the tsBN7 cell line reflects the essential nature of N-linked glycosylation in eukaryotes.
Collapse
Affiliation(s)
- D J Kelleher
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01655-0103, USA
| | | |
Collapse
|
31
|
Bookstein R, Bova GS, MacGrogan D, Levy A, Isaacs WB. Tumour-suppressor genes in prostatic oncogenesis: a positional approach. BRITISH JOURNAL OF UROLOGY 1997; 79 Suppl 1:28-36. [PMID: 9088270 DOI: 10.1111/j.1464-410x.1997.tb00798.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic alterations, such as mutation, methylation and aneuploidy, are thought to underlie the multistep genesis and progression of many human cancers. However, the genetic events occurring in prostatic oncogenesis are still relatively poorly understood. This is especially so in early-stage tumours, in which mutations of known oncogenes or tumour-suppressor genes appear to be quite infrequent. Allelic losses of chromosome arms 7q, 8p, 10, 16q and 18q suggest the involvement of novel suppressor loci on these chromosomes; allelic losses of chromosome arm 8p are especially frequent and may be detected even in early-stage tumours. We have used a positional approach to seek novel genetic targets in prostate cancer, including allelic-loss mapping of chromosome 8p and physical mapping of chromosome band 8p22 around the MSR gene. A homozygous somatic deletion in one prostatic nodal metastasis was mapped in this region and spanned 730-970 kb. This region was then examined in detail for expressed sequences. One novel gene, called N33, was found to be silenced by a methylation mechanism in most colon cancer cell lines and some primary colorectal tumours. Characterization of additional chromosome 8p22 candidates is in progress.
Collapse
|
32
|
Abstract
The late rearrangements of the covalent nonenzymatic modification of proteins by glucose, called advanced glycation end-products (AGEs), have been shown to accumulate in diabetic and ageing tissues. AGEs elicit a wide range of cell-mediated responses leading to vascular dysfunction, matrix expansion and athero- and glomerulosclerosis. Cellular responses are thought to be largely induced through an AGE-specific cell-surface receptor complex (AGEr). Interaction of AGE-modified proteins with these cells may serve diverse purposes, including disposal of senescent AGE-modified molecules and initiation of tissue repair and protein turnover. In humans, the normal renal clearance rate for the AGE-degradation products found in serum, AGE peptides (AGEp), correlates inversely with renal creatinine clearance rate. Of note, circulating AGEp include reactive intermediates which readily attach covalently to either insoluble matrix collagen or serum proteins, e.g. low-density lipoproteins (LDL), to form AGEp collagen and AGEp-LDL. Consistent with this, diabetic and nondiabetic patients with renal failure (a group highly susceptible to accelerated atherosclerosis) exhibit markedly elevated AGE-modified serum LDL. In summary, in addition to glucose-derived AGEs, the endogenously produced degradation products, AGE peptides, can amplify tissue damage and thus account as distinct toxins. The effects may particularly accelerate glucose toxicity in certain individuals that are genetically susceptible to diabetic renal and extrarenal disease.
Collapse
Affiliation(s)
- H Vlassara
- Picower Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
33
|
Affiliation(s)
- H Vlassara
- Picower Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
34
|
von Heijne G. Principles of membrane protein assembly and structure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 66:113-39. [PMID: 9175426 DOI: 10.1016/s0079-6107(97)85627-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- G von Heijne
- Department of Biochemistry, Stockholm University, Sweden
| |
Collapse
|
35
|
Imperiali B, Hendrickson TL. Asparagine-linked glycosylation: specificity and function of oligosaccharyl transferase. Bioorg Med Chem 1995; 3:1565-78. [PMID: 8770382 DOI: 10.1016/0968-0896(95)00142-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B Imperiali
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
36
|
Kumar V, Korza G, Heinemann FS, Ozols J. Human oligosaccharyltransferase: isolation, characterization, and the complete amino acid sequence of 50-kDa subunit. Arch Biochem Biophys 1995; 320:217-23. [PMID: 7625827 DOI: 10.1016/0003-9861(95)90003-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oligosaccharyltransferase (OT) catalyzes the glycosylation of asparagine residues in nascent polypeptides in the endoplasmic reticulum. In a previous communication we reported the purification and characterization of this enzyme from chicken oviduct. Here we describe the purification and sequence analysis of OT from human liver microsomes. Oligosaccharyltransferase copurified with three proteins designated 50-kDa, 65-I and 65-II based on their molecular weights by gel electrophoresis. The N-terminal sequence of the 50-kDa component was homologous to the 50-kDa subunit of avian OT. The N-terminal sequences of 65-I and 65-II were identical to the primary structures of human ribophorins I and II, respectively, predicted by cDNA sequencing. The complete amino acid sequence of the 50-kDa subunit of human OT was determined by chemical sequencing of peptides isolated from chemical and enzymatic digests. The 50-kDa subunit of human OT is 98% identical to its canine homolog, 93% identical to its avian homolog, and 25% identical to the beta subunit of yeast OT. These data indicate that structural features of oligosaccharyltransferase are conserved in all eukaryotes.
Collapse
Affiliation(s)
- V Kumar
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | |
Collapse
|
37
|
Picard V, Ersdal-Badju E, Bock SC. Partial glycosylation of antithrombin III asparagine-135 is caused by the serine in the third position of its N-glycosylation consensus sequence and is responsible for production of the beta-antithrombin III isoform with enhanced heparin affinity. Biochemistry 1995; 34:8433-40. [PMID: 7599134 DOI: 10.1021/bi00026a026] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two antithrombin III (ATIII) isoforms occur naturally in human plasma. The alpha-ATIII isoform has four N-linked oligosaccharides attached to asparagines 96, 135, 155, and 192. The beta-ATIII isoform lacks carbohydrate on asparagine-135 (N135), which is near the heparin binding site, and binds heparin with higher affinity than does alpha-ATIII. Two isoforms are also produced when the normal human ATIII cDNA sequence is expressed in baculovirus-infected insect cells, and the recombinant beta' isoform similarly binds heparin with higher affinity than the recombinant alpha' isoform. Consensus sequences (CSs) of the ATIII N-glycosylation sites are N-X-S for 135 and N-X-T for 96, 155, and 192. On the basis of database and in vitro glycosylation studies suggesting that N-X-S CSs are utilized less efficiently than N-X-T CSs, we hypothesized that the beta-ATIII isoform might result from inefficient core glycosylation of the N135 N-X-S CS due to the presence of a serine, rather than a threonine, in the third position. ATIIIs with N-X-S, N-X-T, and N-X-A consensus sequences were expressed in baculovirus-infected insect cells. In contrast to the N-X-S sequence, which expressed a mixture of alpha' and beta' molecules, the N-X-T variant produced alpha' exclusively, while the N-X-A variant produced beta' exclusively. Thus, serine in the third position of the N135 CS is responsible for its "partial" glycosylation and leads to production of beta-ATIII.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Picard
- Microbiology & Immunology Department, Temple University Medical School, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
38
|
Young JC, Ursini J, Legate KR, Miller JD, Walter P, Andrews DW. An amino-terminal domain containing hydrophobic and hydrophilic sequences binds the signal recognition particle receptor alpha subunit to the beta subunit on the endoplasmic reticulum membrane. J Biol Chem 1995; 270:15650-7. [PMID: 7797564 DOI: 10.1074/jbc.270.26.15650] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The signal recognition particle receptor consists of two subunits of 72 kDa (SR alpha) and 30 kDa (SR beta). Assembly of SR alpha on the endoplasmic reticulum membrane can occur independent of the signal recognition particle-mediated translocation pathway. To identify the sequences within SR alpha necessary for membrane binding, a series of amino-terminal and internal deletion mutants was constructed and translated in a cell-free system. In addition, nascent SR alpha polypeptides of varying lengths were generated by cycloheximide treatment of translation reactions. Microsome binding assays performed on these polypeptides revealed a membrane binding domain consisting of the amino-terminal 140 residues of SR alpha. This domain includes the two hydrophobic sequences originally proposed to bind to membranes and a highly charged region not previously implicated in membrane assembly. Furthermore, the domain forms a protease-resistant folding unit that after proteolysis can target and anchor onto microsomes. Extraction of microsomal SR alpha at high pH supplemented with 1 M NaSCN suggests that SR alpha and the membrane binding domain are not integrated in the endoplasmic reticulum membrane. The membrane binding domain is also the major site of tight binding with SR beta, suggesting that SR beta plays a role in the membrane assembly of SR alpha.
Collapse
Affiliation(s)
- J C Young
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Stagljar I, Aebi M, te Heesen S. PCR-mediated cloning and sequencing of the DmOST50 gene, a WBP1/AvOST50/OST48 homologue, from Drosophila melanogaster. Gene 1995; 158:209-12. [PMID: 7607543 DOI: 10.1016/0378-1119(95)00172-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oligodeoxyribonucleotides were used in a PCR reaction to amplify the conserved region of the DmOST50 cDNA encoding an oligosaccharyltransferase subunit from Drosophila melanogaster (Dm). The amplified fragment was cloned and sequenced, and was then used as a homologous probe to isolate a DmOST50 cDNA from a lambda ZAP library. The deduced amino acid (aa) sequence of DmOst50p shows 27.1% identity with the corresponding sequence of the yeast Wbp1p, 62.4% identity with the avian AvOst50p and 62.7% with the canine Ost48p sequences. 17% of all aa residues were found to be identical among all species tested, indicating a high degree of conservation during evolution.
Collapse
Affiliation(s)
- I Stagljar
- Mikrobiologisches Institut, ETH Zürich, Switzerland
| | | | | |
Collapse
|
40
|
Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W. Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 1995; 38:586-600. [PMID: 7557364 DOI: 10.1139/g95-075] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We demonstrate that in Drosophila melanogaster the histone H3.3 replacement variant is encoded by two genes, H3.3A and H3.3B. We have isolated cDNA clones for H3.3A and cDNA and genomic clones for H3.3B. The genes encode exactly the same protein but are widely divergent in their untranslated regions (UTR). Both genes are expressed in embryos and adults; they are expressed in the gonads as well as in somatic tissues of the flies. However, only one of them, H3.3A, shows strong testes expression. The 3' UTR of the H3.3A gene is relatively short (approximately 250 nucleotides (nt)). H3.3B transcripts can be processed at several polyadenylation sites, the longest with a 3' UTR of more than 1500 nt. The 3' processing sites, preferentially used in the gonads and somatic tissues, are different. We have also isolated the Drosophila hydei homologues of the two H3.3 genes. They are quite similar to the D. melanogaster genes in their expression patterns. However, in contrast to their vertebrate counterparts, which are highly conserved in their noncoding regions, the Drosophila genes display only limited sequence similarity in these regions.
Collapse
Affiliation(s)
- A S Akhmanova
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Pathak R, Parker CS, Imperiali B. The essential yeast NLT1 gene encodes the 64 kDa glycoprotein subunit of the oligosaccharyl transferase. FEBS Lett 1995; 362:229-34. [PMID: 7720878 DOI: 10.1016/0014-5793(95)00253-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The yeast oligosaccharyl transferase catalyzes the glycosylation of asparagine residues in secreted, vesicular, and membrane proteins. A complex of at least four membrane-bound polypeptides is responsible for oligosaccharyl transferase activity. Amino acid sequences from the 64 kDa glycoprotein subunit of the complex were used to clone the essential NLT1 (N-linked oligosaccharyl transferase) gene. The Nlt1p gene product is a processed, multiply glycosylated type I membrane protein; it has an extensive amino-terminal soluble domain, a potential hydrophobic transmembrane domain, and a short carboxy-terminal soluble domain. The Nlt1p is significantly similar than the mammalian ribophorin I, a component of the mammalian oligosaccharyl transferase complex, and the enzyme is conserved throughout eukaryotic evolution.
Collapse
Affiliation(s)
- R Pathak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
42
|
Chapter 7 Protein Glycosylation in Yeast. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
43
|
Chapter 5 Biosynthesis 2b. From Glc3Man9GlcNAc2-protein to Man5GlcNAc2-protein: transfer ‘en bloc’ and processing. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Liu YL, Hoops GC, Coward JK. A comparison of proteins and peptides as substrates for microsomal and solubilized oligosaccharyltransferase. Bioorg Med Chem 1994; 2:1133-41. [PMID: 7757412 DOI: 10.1016/s0968-0896(00)82065-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A chemoenzymatic synthesis of homogeneous neoglycoproteins and glycopeptides was explored using oligosaccharyltransferase isolated from yeast. Neither the microsomal form nor the solubilized form of the enzyme catalyzed the transfer of the core Glc3Man9(GlcNAc)2 oligosaccharide to chemically modified ribonuclease A or alpha-lactalbumin. Similarly, no transfer was observed to the 32-amino acid peptide hormone, calcitonin, by either the membrane-bound or soluble form of oligosaccharyltransferase. However, a 17-amino acid fragment of yeast invertase with the unusual sequence containing two overlapping glycosylation sequons proved to be a good substrate, slightly less effective than the well studied tripeptide, Bz-Asn-Leu-Thr-NH2. Product analysis using gel permeation chromatography showed that the expected glycopeptides were formed and endo H-catalyzed cleavage of the oligosaccharide portion from the glycopeptides demonstrated that the glycopeptides contained the same carbohydrate moiety.
Collapse
Affiliation(s)
- Y L Liu
- Department of Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
45
|
Hartmann E, Prehn S. The N-terminal region of the alpha-subunit of the TRAP complex has a conserved cluster of negative charges. FEBS Lett 1994; 349:324-6. [PMID: 8050590 DOI: 10.1016/0014-5793(94)00693-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The alpha-subunit of the TRAP complex (TRAP alpha) is a single-spanning membrane protein of the endoplasmic reticulum (ER) which is found in proximity of nascent polypeptide chains translocating across the membrane. Here, we demonstrate the widespread occurrence of TRAP alpha in eukaryotes as indicated by its existence in man, fish and plants. Despite the fact that the sequence homology is much lower than for other proteins in the translocation site, the overall topology, the location of the glycosylation sites and, most interestingly, the distribution of charges are conserved. These data indicate that the TRAP complex has a ubiquitous function.
Collapse
Affiliation(s)
- E Hartmann
- Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
46
|
te Heesen S, Aebi M. The genetic interaction of kar2 and wbp1 mutations. Distinct functions of binding protein BiP and N-linked glycosylation in the processing pathway of secreted proteins in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:631-7. [PMID: 8020500 DOI: 10.1111/j.1432-1033.1994.tb18906.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The endoplasmic binding protein BiP and N-linked glycosylation are proposed to be essential components in the processing pathway of secreted protein. In Saccharomyces cerevisiae, BiP is encoded by the KAR2 gene; WBP1 encodes an essential component of the N-oligosaccharyltransferase complex. wbp1 mutations result in reduced oligosaccharyltransferase activity and a temperature-sensitive phenotype. We show that a combination of kar2 and wbp1 mutations results in a synthetic phenotype with a strongly reduced growth rate at the permissive temperature. To investigate the role of N-linked glycosylation in BiP function, the processing of non-glycosylated carboxypeptidase was followed in different kar2 strains at the permissive temperature. In all kar2 strains, the processing of non-glycosylated carboxypeptidase Y was drastically reduced. A specific BiP/non-glycosylated carboxypeptidase Y complex was detected in kar2-159 and kar2-203 cells whereas the kar2-1 mutation did not result in such a complex. Our data show that BiP and N-linked glycosylation are directly involved in the processing of secreted proteins. The results support the hypothesis that BiP stabilizes the folding-competent and assembly-competent state of a polypeptide, whereas N-linked oligosaccharides are structural components required in the folding process after the polypeptide is released from BiP.
Collapse
Affiliation(s)
- S te Heesen
- Institut für Molekularbiologie I, Universität Zürich, Switzerland
| | | |
Collapse
|
47
|
Abstract
N-Oligosaccharyltransferase catalyzes the N-glycosylation of asparagine residues of nascent polypeptide chains in the endoplasmic reticulum, a pathway highly conserved in all eukaryotes. An enzymatically active complex was isolated from microsomal membranes from Saccharomyces cerevisiae, which is composed of four proteins: Wbp1p and Swp1p (previously found to be encoded by two essential genes necessary for N-glycosylation in vivo and in vitro) and two additional proteins with a molecular mass of 60/62 kDa and 34 kDa. The 60/62 component represents differentially glycosylated forms of a protein that has sequence homology to ribophorin I. Wbp1p and Swp1p reveal homology to mammalian OST 48 and ribophorin II, respectively. Ribophorin I and II and OST 48 were recently shown to be constituents of the mammalian transferase from dog pancreas. The data reveal a high conservation of the organization of this enzyme activity.
Collapse
Affiliation(s)
- R Knauer
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany
| | | |
Collapse
|
48
|
Purification and characterization of avian oligosaccharyltransferase. Complete amino acid sequence of the 50-kDa subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36853-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Affiliation(s)
- N Jenkins
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
50
|
The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99962-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|