1
|
Vikram A, Jena GB, Ramarao P. Increased cell proliferation and contractility of prostate in insulin resistant rats: linking hyperinsulinemia with benign prostate hyperplasia. Prostate 2010; 70:79-89. [PMID: 19790233 DOI: 10.1002/pros.21041] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Obesity, dyslipidemia, Hyperinsulinemia, and insulin resistance (IR) are key features of metabolic syndrome and are considered as risk factors for benign prostatic hyperplasia (BPH) as well as type 2 diabetes. The present study was aimed to determine whether or not IR associated hyperinsulinemia contributes to the BPH. METHODS Sprague-Dawley rats (9 weeks) were used in the study. Rats were kept on high fat diet (HFD) for the induction of hyperinsulinemia while hypoinsulinemia was induced by streptozotocin. Effect of HFD feeding on the testosterone-induced prostatic growth was evaluated. Pioglitazone (PG, 20 mg/kg) was used for the reversal of compensatory hyperinsulinemia and to examine the subsequent effect on the prostatic growth. RESULTS Prostatic enlargement was observed in the HFD-fed rats. Significant increase in the cell proliferation markers confirmed the occurrence of cellular hyperplasia in the prostate of hyperinsulinemic rat. Enhanced alpha-adrenoceptor mediated contraction in the prostate of HFD-fed rats indicates augmented contractility of the gland. Higher level of phosphorylated-ERK suggests enhanced MEK/ERK signaling. HFD feeding has not led to change in the plasma testosterone level. However, testosterone treatment further augmented the prostatic growth in HFD-fed rats. PG treatment led to improved insulin sensitivity, decreased plasma insulin level and prostate weight, indicating the role of compensatory hyperinsulinemia in the prostate growth. CONCLUSIONS The present investigation reports that HFD-feeding induced hyperinsulinemic condition leads to increased cellular proliferation, enhanced alpha-adrenoceptor mediated contraction, and enlargement of the prostate in rats.
Collapse
Affiliation(s)
- A Vikram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | | |
Collapse
|
2
|
Lapinski PE, Bauler TJ, Brown EJ, Hughes ED, Saunders TL, King PD. Generation of mice with a conditional allele of the p120 Ras GTPase-activating protein. Genesis 2008; 45:762-7. [PMID: 18064675 DOI: 10.1002/dvg.20354] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
p120 Ras GTPase-activating protein (RasGAP) encoded by the rasa1 gene in mice is a prototypical member of the RasGAP family of proteins involved in negative-regulation of the p21 Ras proto-oncogene. RasGAP has been implicated in signal transduction through a number of cell surface receptors. In humans, inactivating mutations in the coding region of the RASA1 gene cause capillary malformation arteriovenous malformation. In mice, generalized disruption of the rasa1 gene results in early embryonic lethality associated with defective vasculogenesis and increased apoptosis of neuronal cells. The early lethality in this mouse model precludes its use to further study the importance of RasGAP as a regulator of cell function. Therefore, to circumvent this problem, we have generated a conditional rasa1 knockout mouse. In this mouse, an exon that encodes a part of the RasGAP protein essential for catalytic activity has been flanked by loxP recognition sites. With the use of different constitutive and inducible Cre transgenic mouse lines, we show that deletion of this exon from the rasa1 locus results in effective loss of expression of catalytically-active RasGAP from a variety of adult tissues. The conditional rasa1 mouse will be useful for the analysis of the role of RasGAP in mature cell types.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
3
|
Verspohl EJ. Effect of PAO (phenylarsine oxide) on the inhibitory effect of insulin and IGF-1 on insulin release from INS-1 cells. Endocr J 2006; 53:21-6. [PMID: 16543668 DOI: 10.1507/endocrj.53.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phenylarsine oxide (PAO) which complexes vicinal thiol groups is a valuable pharmacological tool to investigate the interaction of peptides such as insulin with their receptors and the signal transduction from the receptor to the cell interior. This tool was now used to elucidate the inhibitory effects of insulin and IGF-1 on insulin secretion via their receptors. Insulin and IGF-1 inhibited insulin release from INS-1 cells, an insulin secreting cell line. PAO was able to reverse this inhibitory effect of both hormones. Dimercaptopropanol (DMP), which is well known to antagonize PAO effects, inhibited the abolishment of PAO effect on the inhibitory effect of insulin and IGF-1 regarding insulin release. Membrane bound GLUT2 in INS-1 cells was increased by either insulin and IGF-1 which is counteracted by PAO. Thus the inhibitory effect of insulin and IGF-1 on insulin release is operative and can be disturbed by a thiol interacting compound such as PAO. This may happen at the receptor level or at the sub-receptor level.
Collapse
Affiliation(s)
- Eugen J Verspohl
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Germany
| |
Collapse
|
4
|
Shah K, Shokat KM. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. CHEMISTRY & BIOLOGY 2002; 9:35-47. [PMID: 11841937 DOI: 10.1016/s1074-5521(02)00086-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using an ATP analog that is a specific substrate for an analog-specific allele of v-Src, we identified several novel cytoskeletal substrates that control actin assembly processes. A screen for less abundant v-Src substrates revealed the scaffolding protein Dok-1 as a direct substrate of v-Src. Further studies suggest that v-Src phosphorylation sites on Dok-1 are critical for its binding to RasGAP and Csk, negative regulators of Src signaling. This results in the downregulation of growth-promoting signals of the Src family kinases and the Ras pathway. Identification of the direct substrates of v-Src leads to a model for the precise order of assembly of a retrograde signaling pathway in v-Src-transformed cells and has provided new insight into the balance between those signals that promote cell transformation mediated by v-Src catalyzed tyrosine phosphorylation and those that inhibit it.
Collapse
Affiliation(s)
- Kavita Shah
- Genomics Institute of the Novartis Research Foundation, 3115 Merryfield Row, San Diego, CA 92121, USA
| | | |
Collapse
|
5
|
Czech MP, Van Renterghem B, Sleeman MW. Insulin Receptor Tyrosine Kinase. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Abstract
The 68 kDa Src substrate associated during mitosis (Sam68) is an RNA binding protein with Src homology (SH) 2 and 3 domain binding sites. We have recently found that Sam68 is a substrate of the insulin receptor (IR) and that Tyr-phosphorylated Sam68 associates with the SH2 domains of p85 PI3K. In the present work, using HTC-IR cells, we have found that insulin stimulation promotes the relocalization of Sam68 from the nucleus to the cytoplasm, and we have further studied the role of Sam68 in insulin receptor signaling complexes, by co-precipitating experiments. Thus, Sam68 is co-precipitated with p85 PI3K, IRS-1 and IR. The association of Sam68 with these complexes is mediated by the SH2 domains of PI3K. Moreover, we have found that Sam68 is a p120GAP associated protein after Tyr-phosphorylation by the IR. This association is mediated by the SH2 domains of GAP (preferentially the C-terminal SH2). Thus, Sam68 is linking p120GAP to PI3K signaling pathway. In fact, PI3K activity was increased in both anti-Sam68 and anti-GAP immmunoprecipitates upon insulin stimulation. We propose that the recruitment of the docking protein Sam68 to the PI3K pathway may serve to allow the association of other signaling molecules, i.e. p120GAP. In this way, these signaling complexes may modulate other signaling cascades of IR, such as p21Ras pathway.
Collapse
Affiliation(s)
- V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, University of Seville and Investigation Unit, University Hospital Virgen Macarena, Av. Sanchez Pizjuan 4, 41009 Seville, Spain.
| | | |
Collapse
|
7
|
Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001; 107:181-9. [PMID: 11160134 PMCID: PMC199174 DOI: 10.1172/jci10934] [Citation(s) in RCA: 450] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Serine/threonine phosphorylation of IRS-1 might inhibit insulin signaling, but the relevant phosphorylation sites are difficult to identify in cultured cells and to validate in isolated tissues. Recently, we discovered that recombinant NH2-terminal Jun kinase phosphorylates IRS-1 at Ser307, which inhibits insulin-stimulated tyrosine phosphorylation of IRS-1. To monitor phosphorylation of Ser307 in various cell and tissue backgrounds, we prepared a phosphospecific polyclonal antibody designated alphapSer307. This antibody revealed that TNF-alpha, IGF-1, or insulin stimulated phosphorylation of IRS-1 at Ser307 in 3T3-L1 preadipocytes and adipocytes. Insulin injected into mice or rats also stimulated phosphorylation of Ser307 on IRS-1 immunoprecipitated from muscle; moreover, Ser307 was phosphorylated in human muscle during the hyperinsulinemic euglycemic clamp. Experiments in 3T3-L1 preadipocytes and adipocytes revealed that insulin-stimulated phosphorylation of Ser307 was inhibited by LY294002 or wortmannin, whereas TNF-alpha-stimulated phosphorylation was inhibited by PD98059. Thus, distinct kinase pathways might converge at Ser307 to mediate feedback or heterologous inhibition of IRS-1 signaling to counterregulate the insulin response.
Collapse
Affiliation(s)
- L Rui
- Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bhat A, Johnson KJ, Oda T, Corbin AS, Druker BJ. Interactions of p62(dok) with p210(bcr-abl) and Bcr-Abl-associated proteins. J Biol Chem 1998; 273:32360-8. [PMID: 9822717 DOI: 10.1074/jbc.273.48.32360] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 62-kDa Ras GTPase-activating protein (RasGAP)-associated protein is tyrosine-phosphorylated under a variety of circumstances including growth factor stimulation and in cells transformed by activated tyrosine kinases. A cDNA for p62(dok), reported to be the RasGAP-associated 62-kDa protein, was recently cloned from Abl-transformed cells. In this study, the interactions of p62(dok) with Bcr-Abl and associated proteins were examined. In 32D myeloid cells and Rat-1 fibroblasts transformed by p210(bcr-abl), p62(dok) is tyrosine-phosphorylated and co-immunoprecipitates with Bcr-Abl, RasGAP, and CrkL, a Src homology 2 (SH2) and SH3 domain-containing adaptor protein. Tyrosine-phosphorylated p62(dok) from cells expressing p210(bcr-abl) bound directly to the SH2 domains of Abl and CrkL in a gel overlay assay. Previous work has shown that an SH2 domain deletion mutant of Bcr-Abl is defective in transforming fibroblasts but remains capable of inducing myeloid growth factor independence. In both fibroblasts and myeloid cells expressing this mutant, p62(dok) is underphosphorylated as compared with cells expressing full-length p210(bcr-abl) but remains capable of associating with Bcr-Abl. However, in a gel overlay assay, p62(dok) from cells expressing the SH2 domain deletion was incapable of associating directly with SH2 domains of Abl and CrkL. Interestingly, no direct binding between Bcr-Abl and p62(dok) could be demonstrated in a yeast two-hybrid assay. These data suggest that indirect interactions mediate the interaction between Bcr-Abl and p62(dok) and that the SH2 domain of Bcr-Abl is required for hyperphosphorylation of p62(dok). Further, hyperphosphorylation of p62(dok) correlates with the ability of Bcr-Abl to transform fibroblasts but not with the induction of growth factor independence in myeloid cells.
Collapse
Affiliation(s)
- A Bhat
- Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
9
|
Jabado N, Jauliac S, Pallier A, Bernard F, Fischer A, Hivroz C. Sam68 association with p120GAP in CD4+ T cells is dependent on CD4 molecule expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1998; 161:2798-2803. [PMID: 9743338 DOI: 10.4049/jimmunol.161.6.2798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
p120 GTPase-activating protein (p120GAP) is a major negative regulator of p21ras activity in several cell types including T cells. Catalytic activity of this enzyme is regulated in part by its interaction with several associated tyrosine-phosphorylated proteins. Sam68 was initially described as associated with p120GAP. It has been further established that Sam68 is a substrate of src kinases in mitosis and that it is not associated with p120GAP in transformed fibroblasts. We describe herein that Sam68 associates with p120GAP and PLC gamma 1 in human mature T cells and in a T cell line expressing the CD4 molecule HUT78 CD4+. This association is present in nonactivated cells and increases after anti-CD3 activation. It is dependent on CD4 expression and, in part, on the association of CD4 with p56lck, as shown by the strongly decreased association of Sam68 with p120GAP in the CD4- mutants, HUT78 CD4-, and by the reduced association of Sam68 with both p120GAP and p56lck in the HUT78 T cell line expressing a CD4 mutant unable to interact with p56lck, HUT78 C420/22. We propose that recruitment of Sam68, via CD4/p56lck, to the inner face of the plasma membrane may permit, via its docking properties, the correct association of key signaling molecules including PLC gamma 1 and p120GAP. This formation of transduction modules will enable the activation of different signaling cascades including the p21ras pathway and an array of downstream events, ultimately leading to T cell activation.
Collapse
Affiliation(s)
- N Jabado
- Institut National de la Santé et de la Recherche Médicale, Unité 429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | |
Collapse
|
10
|
Khamzina L, Borgeat P. Correlation of alpha-fetoprotein expression in normal hepatocytes during development with tyrosine phosphorylation and insulin receptor expression. Mol Biol Cell 1998; 9:1093-105. [PMID: 9571242 PMCID: PMC25332 DOI: 10.1091/mbc.9.5.1093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the alpha-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP-) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+ clones and likewise for adult hepatocytes and AFP- clones. The tyrosine phosphorylation of several proteins, including the beta-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, and ras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP- clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor beta-subunit compared with adult hepatocytes and AFP- clones and, accordingly, that these AFP+ clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP- clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.
Collapse
Affiliation(s)
- L Khamzina
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL et Université Laval, Québec, Canada, G1V 4G2
| | | |
Collapse
|
11
|
Kurokawa T, Ozaki N, Ishibashi S. Difference between senescence-accelerated prone and resistant mice in response to insulin in the heart. Mech Ageing Dev 1998; 102:25-32. [PMID: 9663789 DOI: 10.1016/s0047-6374(98)00009-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of insulin on the translocation of GLUT4 (glucose transporter isoform 4) from the intracellular membranes to the plasma membranes was compared in the hearts of 4-8 week old SAMP8, a substrain of senescence-accelerated prone mouse and those of SAMR1, a substrain of senescence-accelerated resistant mouse. After 20 min of the intravenous injection of insulin, the blood glucose levels in SAMR1 and SAMP8 were decreased by 50 and 68%, respectively. Under this condition, the concentrations of GLUT4 protein in the plasma membranes in the hearts of SAMR1 and SAMP8 were increased 1.8- and 2.1-fold, respectively. Concomitantly, the concentrations of the GLUT4 protein in the intracellular membranes in the hearts of SAMR1 and SAMP8 were decreased by about 70 and 50%, respectively. These results suggest that the heart of 4-8 week old SAMP8 is more sensitive to insulin than that of age-matched SAMR1.
Collapse
Affiliation(s)
- T Kurokawa
- Department of Physiological Chemistry, Hiroshima University School of Medicine, Japan.
| | | | | |
Collapse
|
12
|
Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F. Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 1997; 9:153-8. [PMID: 9113414 DOI: 10.1016/s0898-6568(96)00135-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One attractive candidate for a Ras effector protein, other than the Raf kinases, is Ras-GAP. Indeed, recent literature suggests that besides the Raf/MAP kinase cascade, additional pathways must be stimulated to elicit a full biological response to Ras. Ras binds the COOH terminal domain of Ras-GAP, while the NH2 terminal domain appears to be essential for triggering downstream signals. Since Ras-GAP itself has no obvious enzymatic function that might explain a role in processes associated with proliferation, differentiation or apoptosis, candidates for downstream Ras-GAP effectors that fulfill this role remain to be identified. The newly found GAP-SH3 domain Binding Protein (G3BP) may be one of these. This review will briefly overview the candidates Ras effectors and discuss the results that position Ras-GAP as a critical effector downstream of Ras.
Collapse
Affiliation(s)
- B Tocque
- RPR Gene Medicine, CRVA, Vitry/Seine, France
| | | | | | | | | | | |
Collapse
|
13
|
Lamothe B, Bucchini D, Jami J, Joshi RL. Reexamining interaction of the SH2 domains of SYP and GAP with insulin and IGF-1 receptors in the two-hybrid system. Gene 1996; 182:77-80. [PMID: 8982070 DOI: 10.1016/s0378-1119(96)00479-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Direct interaction of effector proteins such as the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI 3-kinase), SYP (SH2-domain-containing tyrosine phosphatase) and GAP (Ras-GTPase activating protein) with the insulin receptor (IR) and insulin-like growth factor-1 (IGF-1) type 1 receptor (IGF-1R) has been reported in some studies. Interaction of SYP and GAP with IR and IGF-1R was re-investigated here in the two-hybrid system by assessing his3/lacZ activation in S. cerevisiae. The experiments were performed with the cytoplasmic beta domain of IR and IGF-1R and various SH2-subdomains of SYP and GAP. None of the subdomains of SYP and GAP tested were able to activate his3/lacZ, whereas these reporter genes were strongly activated when p85 was used as we have recently shown. Thus, interaction of SYP and GAP with IR and IGF-1R, if any, would be weak and/or transient as compared to that of p85.
Collapse
Affiliation(s)
- B Lamothe
- Institut Cochin de Génétique Moléculaire, INSERM U257, Paris, France
| | | | | | | |
Collapse
|
14
|
Manganiello VC, Degerman E, Taira M, Kono T, Belfrage P. Type III cyclic nucleotide phosphodiesterases and insulin action. CURRENT TOPICS IN CELLULAR REGULATION 1996; 34:63-100. [PMID: 8646851 DOI: 10.1016/s0070-2137(96)80003-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- V C Manganiello
- Laboratory of Cellular Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Lamothe B, Bucchini D, Jami J, Joshi RL. Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by using the two-hybrid system. FEBS Lett 1995; 373:51-5. [PMID: 7589433 DOI: 10.1016/0014-5793(95)01011-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interaction of the p85 subunit of PI 3-kinase with the insulin receptor (IR) and the IGF-1 receptor (IGF-1R) was investigated using the two-hybrid system by assessing for his3 and lacZ activation in S. cerevisiae. The experiments were performed with the cytoplasmic beta domain (wild type or mutated) of IR and IGF-1R and p85 or its subdomains (N + C-SH2, N-SH2, C-SH2, SH3 + N-SH2). The results of his3 activation indicated that p85, N + C-SH2 and C-SH2 interact with both IR beta and IGF-1R beta, whereas N-SH2 and SH3 + N-SH2 interact only with IR beta. Interaction of p85 and N+C-SH2 with IR beta (delta C-43) or IGF-1R beta(delta C-43) in which the C-terminal 43 amino acids (including the YXXM motif) were deleted, persisted. The internal binding site thus revealed was not altered by further mutating Y960/F for IR or Y950/F for IGF-1R. Activation of lacZ upon interaction of p85 with IR beta(delta C-43) was 4-fold less as compared to IR beta. This activation with p85 and IGF-1R beta was 4-fold less as compared to IR beta and was somewhat increased (2-fold) for IGF-1R beta (delta C-43). Thus, the C-terminal domain in IGF-1R appears to exert a negative control on binding of p85 thereby providing a possible regulatory mechanism for direct activation of the PI 3-kinase pathway.
Collapse
Affiliation(s)
- B Lamothe
- Institut Cochin de Génétique Moléculaire, INSERM U257, Paris, France
| | | | | | | |
Collapse
|
16
|
Seely BL, Reichart DR, Staubs PA, Jhun BH, Hsu D, Maegawa H, Milarski KL, Saltiel AR, Olefsky JM. Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein. J Biol Chem 1995; 270:19151-7. [PMID: 7642582 DOI: 10.1074/jbc.270.32.19151] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Potential signaling substrates for the insulin-like growth factor I (IGF-I) receptor are SH2 domain proteins including the p85 subunit of phosphatidylinositol 3-kinase, the tyrosine phosphatase Syp, GTPase activating protein (GAP), and phospholipase C-gamma (PLC-gamma). In this study, we demonstrate an association between the IGF-I receptor and p85, Syp, and GAP, but not with PLC-gamma in lysates of cells overexpressing the human IGF-I receptor. We further investigated these interactions using glutathione S-transferase (GST) fusion proteins containing the amino-terminal SH2 domains of p85 or GAP, or both SH2 domains of Syp or PLC-gamma to precipitate the IGF-I receptor from purified receptor preparations and from whole cell lysates. p85-, Syp-, and GAP-GSTs precipitated the IGF-I receptor, whereas the PLC-gamma-GST did not. Using phosphopeptides corresponding to IGF-I receptor phosphorylation sites, we determined that the p85- and Syp-GST association with the IGF-I receptor could be inhibited by a carboxyl-terminal peptide containing pY1316 and that the GAP-GST association could be inhibited by a NPXY domain peptide. The GAP-GST binding site was confirmed by showing that a mutant IGF-I receptor with a deletion of the NPXY domain including tyrosine 950 was poorly precipitated by the GAP-GST. We conclude that p85 and Syp may bind directly to the IGF-I receptor at tyrosine 1316, and that GAP may bind to the IGF-I receptor at and PLC-gamma was not evident. p85, Syp, and GAP are potential modulators of IGF-I receptor signal transduction.
Collapse
Affiliation(s)
- B L Seely
- Department of Medicine, University of California at San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Najjar SM, Philippe N, Suzuki Y, Ignacio GA, Formisano P, Accili D, Taylor SI. Insulin-stimulated phosphorylation of recombinant pp120/HA4, an endogenous substrate of the insulin receptor tyrosine kinase. Biochemistry 1995; 34:9341-9. [PMID: 7626603 DOI: 10.1021/bi00029a009] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Insulin binding to the alpha-subunit of its receptor stimulates the receptor tyrosine kinase to phosphorylate the beta-subunit and several endogenous protein substrates, including pp120/HA4, a liver-specific plasma membrane glycoprotein of M(r) 20,000. Analysis of the deduced amino acid sequence of rat liver pp120/HA4 revealed two potential sites for tyrosine phosphorylation in the cytoplasmic domain (Tyr488 and Tyr513), as well as a potential cAMP-dependent protein kinase phosphorylation site (Ser503). To determine which of these sites is phosphorylated in response to insulin, each of these amino acid residues was altered by site-directed mutagenesis. Mutant cDNAs were then expressed by stable transfection in NIH 3T3 cells. Two mutations (Phe488 and Ala503) impaired insulin-induced phosphorylation of pp120/HA4, suggesting that pp120/HA4 undergoes multisite phosphorylation. It seems likely that Tyr488 is phosphorylated by the insulin receptor kinase, and phosphorylation of Ser513 may contribute to the regulation of tyrosine phosphorylation. Since pp120/HA4 is believed to be associated with a Ca2+/Mg(2+)-dependent ecto-ATPase activity, we determined the effects of insulin-induced phosphorylation on this enzymatic activity. In NIH 3T3 cells co-expressing the insulin receptor and pp120/HA4, insulin caused a 2-fold increase in ecto-ATPase activity. Moreover, elimination of the phosphorylation sites of pp120/HA4 impaired the ability of insulin to stimulate the ecto-ATPase activity. These data suggest that tyrosine phosphorylation of pp120/HA4 may regulate Ca2+/Mg(2+)-dependent ecto-ATPase activity.
Collapse
Affiliation(s)
- S M Najjar
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Staddon JM, Herrenknecht K, Smales C, Rubin LL. Evidence that tyrosine phosphorylation may increase tight junction permeability. J Cell Sci 1995; 108 ( Pt 2):609-19. [PMID: 7769005 DOI: 10.1242/jcs.108.2.609] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tight junction permeability control is important in a variety of physiological and pathological processes. We have investigated the role of tyrosine phosphorylation in the regulation of tight junction permeability. MDCK epithelial cells and brain endothelial cells were grown on filters and tight junction permeability was determined by transcellular electrical resistance (TER). The tyrosine phosphatase inhibitor pervanadate caused a concentration- and time-dependent decrease in TER in both MDCK and brain endothelial cells. However, as expected, pervanadate resulted in the tyrosine phosphorylation of many proteins; hence interpretation of its effects are extremely difficult. Phenylarsine oxide, a more selective tyrosine phosphatase inhibitor, caused the tyrosine phosphorylation of relatively few proteins as analyzed by immunoblotting of whole cell lysates. This inhibitor, like pervanadate, also elicited a decrease in TER in the two cell types. In the MDCK cells, the action of phenylarsine oxide could be reversed by the subsequent addition of the reducing agent 2,3-dimercaptopropanol. Immunocytochemistry revealed that phenylarsine oxide rapidly stimulated the tyrosine phosphorylation of proteins associated with intercellular junctions. Because of the known influence of the adherens junction on tight junctions, we analyzed immunoprecipitates of the E-cadherin/catenin complex from MDCK cells treated with phenylarsine oxide. This revealed an increase in the tyrosine phosphorylation of beta-catenin, but not of alpha-catenin. However, the tight junction associated protein ZO-1 was also tyrosine phosphorylated after PAO treatment. These data indicate that tight junction permeability may be regulated via mechanisms involving tyrosine phosphorylation of adherens junction and tight junction proteins.
Collapse
Affiliation(s)
- J M Staddon
- Eisai London Research Laboratories Ltd, University College London, UK
| | | | | | | |
Collapse
|
19
|
Holden RJ, Mooney PA. Schizophrenia is a diabetic brain state: an elucidation of impaired neurometabolism. Med Hypotheses 1994; 43:420-35. [PMID: 7739417 DOI: 10.1016/0306-9877(94)90020-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper a detailed argument will be advanced in support of the notion that schizophrenia is fundamentally a diabetic brain state, henceforth referred to as 'cerebral diabetes'. Many extraneous features of cerebral diabetes have been observed, including positron emission tomography (PET) scans which reflect abnormal distribution patterns and diminished supplies of glucose in the brain. Equally, empirical research has demonstrated that plasma levels of essential fatty acids and prostaglandins are abnormally low, and low levels of glycoproteins in the urine of cerebral diabetics have also been observed. In addition, cerebral diabetics manifest a wide range of disturbing physical symptoms, such as, impaired sexual function, temperature control, low blood pressure, disrupted sleep patterns, excessive thirst, poor memory, insensitivity to pain, and chronic unhappiness, all of which can be attributed to disrupted neuroendocrine function. Thus, in order to persuasively assert the redefinition of schizophrenia as 'cerebral diabetes', we shall first explicate glucose regulation and transport in the brain and then outline how this interacts with essential fatty acids and prostaglandins, neurotransmission, and the neuroendocrine system. In so doing, we shall provide a metabolic explanation for all the prominent symptoms currently known to be associated with cerebral diabetes and indicate some future therapeutic interventions.
Collapse
Affiliation(s)
- R J Holden
- Medical Research Unit, University of Wollongong, NSW, Australia
| | | |
Collapse
|
20
|
Localization of the insulin receptor binding sites for the SH2 domain proteins p85, Syp, and GAP. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46967-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Lewis RE, Volle DJ, Sanderson SD. Phorbol ester stimulates phosphorylation on serine 1327 of the human insulin receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47188-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
22
|
Mollat P, Fournier A, Yang CZ, Alsat E, Zhang Y, Evain-Brion D, Grassi J, Thang MN. Species specificity and organ, cellular and subcellular localization of the 100 kDa Ras GTPase activating protein. J Cell Sci 1994; 107 ( Pt 3):427-35. [PMID: 8006063 DOI: 10.1242/jcs.107.3.427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A p100-GAP isoform, generated by an alternative splicing mechanism that eliminates the 180 hydrophobic amino acids at the amino terminus of p120-GAP, has been described in human placenta, in addition to the known p120GAP and neurofibromin. This p100-GAP possesses full Ras-GTPase stimulating activity. p120-GAP is ubiquitously localized in the cytosol while the localization of p100-GAP is unknown. Here we have explored the precise localization of p100-GAP and show that p100-GAP is present only in extracts of primate placenta. It is abundant in both human and Maccaca Rhesus placentae, where it is present in far larger amounts than p120-GAP. The p100-GAP is species-specific since it was not detected in the placenta of pig, sheep, mouse or rat. p100-GAP was also found to be organ-specific, since it was not detectable in organs other than the placenta. In this connection, we substantiated our previous finding that p100-GAP is mainly localized in the trophoblasts. Both subcellular trophoblast fractionation and immunofluorescence analyses showed that this protein was distributed between the cytosol, plasma membrane and a fraction bound to the nucleus, but not inside it. This highly restrictive specificity of p100-GAP localization in relation to species, organ and cell type, confirms the extreme singularity of this protein, and strongly suggests a particular specific function in the trophoblast.
Collapse
Affiliation(s)
- P Mollat
- Unité 245 INSERM, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Saville MK, Houslay MD. The role of polybasic compounds in determining the tyrosyl phosphorylation of calmodulin by the human insulin receptor. Cell Signal 1993; 5:709-25. [PMID: 8130075 DOI: 10.1016/0898-6568(93)90032-h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A highly purified human insulin receptor preparation was shown to effect receptor autophosphorylation and the phosphorylation of poly(GluTyr) but not that of calmodulin. Addition of poly-L-lysine allowed for the stoichiometric tyrosyl phosphorylation of calmodulin in a dose-dependent fashion (EC50 approximately 83 nM) with the single target residue identified at tyr99. Higher concentrations of poly-L-lysine elicited the dose-dependent inhibition of calmodulin phosphorylation (IC50 approximately 0.7 microM) by a process which did not apparently involve either stimulation of calmodulin phosphatase activity or diminished receptor kinase activity. Polybasic substances such as poly-L-arginine, histone H1 and protamine sulphate all promoted calmodulin phosphorylation by the insulin receptor in a similar biphasic dose-dependent fashion. Poly-lysine's actions proved to lack stereo-specificity in that both the D- and L-forms were equally as effective. Reduction in the chain length of poly-L-lysine species attenuated their ability to promote calmodulin phosphorylation with L-lysine proving to be ineffective. Optimal promotion of calmodulin phosphorylation was achieved at an apparently constant ratio of calmodulin to poly-L-lysine of approximately 1:4 over a 100-fold range of calmodulin concentrations. Poly-L-lysine promoted the precipitation and subsequent resolubilization of calmodulin in a fashion whose biphasic dose-dependence paralleled that seen for its action in promoting calmodulin's phosphorylation. NaCl attenuated, in apparently identical dose-dependent fashions, poly-L-lysine's ability to both elicit the precipitation of calmodulin and to promote its phosphorylation. The presence of added Ca2+ led to a small potentiation of poly-L-lysine-dependent calmodulin phosphorylation at low concentrations, with inhibition occurring at higher concentrations where Ca2+ was shown to block calmodulin precipitation by poly-L-lysine. It is suggested that calmodulin can be phosphorylated by the insulin receptor only when it is cross-linked in a multivalent fashion to a suitable polybasic substance so that it forms large multimeric aggregates. Such a requirement for the formation of an aggregate between calmodulin and a suitable polybasic species may place specific constraints on the ability of calmodulin to serve as a substrate for receptor tyrosyl kinases within the cell.
Collapse
Affiliation(s)
- M K Saville
- Department of Biochemistry, University of Glasgow, U.K
| | | |
Collapse
|
25
|
Merrall NW, Plevin R, Gould GW. Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cell Signal 1993; 5:667-75. [PMID: 8130071 DOI: 10.1016/0898-6568(93)90028-k] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The erythrocyte (or HepG2/brain) type glucose transporter (GLUT 1) was the first of the family of facilitative glucose transporter proteins to be cloned [M. Mueckler et al., Science 229, 941-945, 1985]. GLUT 1 is expressed in most tissue types, all cell lines, transformed cells and tumour cells. It is thought to be responsible for "housekeeping" levels of glucose transport, i.e. the uptake of glucose required for oxidative phosphorylation. The rate of glucose transport via GLUT 1 can be regulated under conditions in which the metabolic rate must be adjusted such as cell division (mitosis and meiosis), differentiation, transformation and nutrient starvation. Here we review the recent literature on the control of glucose transport of mitogens, growth factors and oncogenes, and discuss some of the implications for the integration of cellular signalling pathways and cell growth.
Collapse
Affiliation(s)
- N W Merrall
- Department of Biochemistry, University of Glasgow, U.K
| | | | | |
Collapse
|
26
|
Insulin activates p21Ras and guanine nucleotide releasing factor in cells expressing wild type and mutant insulin receptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80685-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Rozsnyay Z, Sarmay G, Gergely J. Phenylarsine oxide (PAO) blocks antigen receptor-induced calcium response and tyrosine phosphorylation of a distinct group of proteins. Immunol Lett 1993; 37:197-205. [PMID: 8258460 DOI: 10.1016/0165-2478(93)90031-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antigen receptor (AgR) crosslinking by antigens or AgR-specific antibodies induces a cascade of enzymatic events in lymphocytes which involves activation of several non-receptor tyrosine- and serine/threonine kinases, phosphatases, phospholipases, etc. Here we show data demonstrating that a thiol group-reactive protein tyrosine phosphatase (PTP) inhibitor, phenylarsine oxide (PAO), uncouples a crucial part of the signaling events induced by anti-IgM or anti-Leu-4 (CD3) in human tonsil B lymphocytes, BL41 and Daudi B cell lines and Jurkat T lymphoma cells. PAO treatment (10 microM) resulting in distinct modification of AgR-induced tyrosine phosphorylation pattern inhibited the AgR-mediated calcium response (Ca++ release and influx) of all of these cells completely. Since this treatment did not alter the cell viability and the binding capacity of the AgR crosslinking antibodies, alteration of the tyrosine phosphorylation pattern and blockage of the calcium response indicate prompt inactivation of essential signal transduction element(s).
Collapse
Affiliation(s)
- Z Rozsnyay
- Laboratory of Immunoregulation, Vienna International Research Cooperation Center at SFI, Austria
| | | | | |
Collapse
|
28
|
Oh Y, Müller H, Lamson G, Rosenfeld R. Insulin-like growth factor (IGF)-independent action of IGF-binding protein-3 in Hs578T human breast cancer cells. Cell surface binding and growth inhibition. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82426-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
White GC, Crawford N, Fischer TH. Cytoskeletal interactions of Rap1b in platelets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 344:187-94. [PMID: 8209787 DOI: 10.1007/978-1-4615-2994-1_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have presented evidence that rap1b, a 22 kDa low molecular weight GTP binding protein, becomes associated with the cytoskeleton in thrombin-activated platelets. The initial incorporation is very rapid and occurs as fast as we can measure it. Thus, some rap1b is associated with the cytoskeleton as fast as it is formed. The remainder of the rap1b is incorporated more slowly. This biphasic incorporation of rap1b is similar to the incorporation of GPIIb/IIIa into the cytoskeleton, but no interaction between GPIIb/IIIa and rap1b could be demonstrated. Phosphorylation of rap1b by cAMP-dependent protein kinase did not inhibit its association with the cytoskeleton. We conclude that rap1b is one of an increasing number of proteins that associate with the cytoskeleton during cell activation. The function of rap1b in the cytoskeleton is unclear at this time. However, it is possible to speculate on potential roles. There is growing evidence that low molecular weight G proteins participate in the formation of multi-molecular aggregates. For example, p21rac promotes the assembly of a membrane-associated complex composed of NADPH oxidase, p47, and p67 and this complex is important for activation of NADPH oxidase in neutrophils. Similarly, in yeast, BUD1, a homolog of rap1, forms a complex with BUD5 (a homolog of GDI), BEMI, CDC24, and CDC42 (a homolog of G25K). This multi-protein aggregate may be important in cytoskeletal structure in yeast. In platelets, rad1b, which is membrane associated, may promote the assembly of a complex of proteins during cell activation and may localize this complex to the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G C White
- Center for Thrombosis and Hemostasis, University of North Carolina, Chapel Hill 27599-7035
| | | | | |
Collapse
|
30
|
Denker B, Schmidt C, Neer E. Promotion of the GTP-liganded state of the Go alpha protein by deletion of the C terminus. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50190-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Siddle K. The insulin receptor and type I IGF receptor: comparison of structure and function. PROGRESS IN GROWTH FACTOR RESEARCH 1992; 4:301-20. [PMID: 1340212 DOI: 10.1016/0955-2235(92)90013-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The insulin receptor and type I IGF receptor are closely related in structure and function. The receptors are heterotetrameric glycoproteins, of structure alpha beta beta alpha, which are widely distributed in mammalian tissues. A third member of this receptor family has been described, the insulin receptor-related receptor for which a ligand has still to be identified. It has also been demonstrated that the insulin receptor and IGF receptor form alpha beta beta alpha hybrids in cells expressing both receptors. The key elements in the function of any receptor are recognition of ligand and transmission of an intracellular signal. In the insulin and IGF receptors, determinants of binding specificity are contained within amino-terminal and cysteine-rich domains of the extracellular alpha-subunit. Intracellular signalling is dependent on ligand activated tyrosine kinase activity in the transmembrane beta-subunit, which phosphorylates both the receptor itself and the specific substrate insulin receptor substrate-1 (IRS-1). Phosphorylated IRS-1 binds the enzyme phosphatidylinositol 3-kinase and may act as a multivalent docking site for SH2 domains of other proteins involved in signalling. The possibility that some signalling molecules interact directly with the receptors has not been ruled out. The specificity of action of insulin and IGFs in vivo depends on differences between the respective receptors in tissue distribution, ligand binding specificity and intrinsic signalling capacity. However, the detailed aspects of gene and receptor structure which underly these functional differences are still poorly understood. Moreover, the issue of specificity is complicated by the existence of hybrid and atypical receptors, which in principle could bind and respond to both insulin and IGF-I, although the physiological significance of these receptor subtypes is at present unclear.
Collapse
Affiliation(s)
- K Siddle
- Department of Clinical Biochemistry, University of Cambridge Addenbrooke's Hospital, U.K
| |
Collapse
|