1
|
Gao G, Chen A, Yan Y, Sagor MIH, Lin W, Lin H, Lian G, Xie L, Luo L. Role of insulin signaling dysregulation in pulmonary vascular remodeling in rats with monocrotaline-induced pulmonary arterial hypertension. Front Cardiovasc Med 2025; 12:1543319. [PMID: 40196172 PMCID: PMC11973325 DOI: 10.3389/fcvm.2025.1543319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a severe disease marked by the remodeling of arteries due to the abnormal growth of vascular cells, including pulmonary arterial smooth muscle cells (PASMCs). The insulin receptor substrate-1 (IRS-1) plays a crucial role in the insulin signaling pathway; however, its function in PAH is still not fully understood. The objective of this research was to explore the role of the protein kinase C (PKC)/IRS-1/ERK signaling pathway in the progression of PAH and its influence on the proliferation and migration of PASMCs. Methods To establish the PAH model, low-dose Monocrotaline (MCT) was intraperitoneally administered to male SD rats twice a week. Four weeks following the initial treatment, measurements of mean pulmonary arterial pressure (mPAP) and the right ventricular hypertrophy index (RVHI) were conducted. Additionally, calculations were performed to determine the percentage of wall area (WA%) and wall thickness (WT%). The protein levels of PKC, p-PKC, IRS-1, p-IRS-1 (Ser318), ERK, and p-ERK in lung tissues were assessed. in vitro experiments involved stimulating PASMCs with platelet-derived growth factor-BB (PDGF-BB) to promote proliferation and migration. The impact of the PKC inhibitor Gö 6983 and IRS-1 overexpression via adenoviral vectors (AdIRS-1) on the PKC/IRS-1/ERK signaling pathway and PASMCs behavior was analyzed through Western blotting, EdU incorporation assay, and wound healing assay. Results In PAH rats, there was a significant rise in mPAP and RVHI (p < 0.05), accompanied by notable pulmonary vascular remodeling. Analysis of lung tissues revealed enhanced levels of p-PKC, p-IRS-1(Ser318), and p-ERK, whereas the expression of total IRS-1 decreased significantly (p < 0.05). In PASMCs stimulated with PDGF-BB, a similar trend of increased p-PKC, p-IRS-1(Ser318), and p-ERK levels was observed, along with a decrease in IRS-1 expression. The administration of Gö 6983 or the overexpression of IRS-1 effectively inhibited the activation of the PKC/IRS-1/ERK signaling pathway, leading to reduced proliferation and migration of PASMCs compared to stimulation with PDGF-BB alone (p < 0.05). Conclusions The PKC/IRS-1/ERK signaling pathway is implicated in the abnormal proliferation and migration of PASMCs, contributing to pulmonary vascular remodeling in PAH. Targeting this pathway through PKC inhibition or IRS-1 stabilization may offer novel therapeutic strategies for PAH management.
Collapse
Affiliation(s)
- Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Yan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Mohammad Ismail Hajary Sagor
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Weijun Lin
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Huakan Lin
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Wang K, Papadopoulos N, Hamidi A, Lennartsson J, Heldin CH. SUMOylation of PDGF receptor α affects signaling via PLCγ and STAT3, and cell proliferation. BMC Mol Cell Biol 2023; 24:19. [PMID: 37193980 DOI: 10.1186/s12860-023-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The platelet-derived growth factor (PDGF) family of ligands exerts their cellular effects by binding to α- and β-tyrosine kinase receptors (PDGFRα and PDGFRβ, respectively). SUMOylation is an important posttranslational modification (PTM) which regulates protein stability, localization, activation and protein interactions. A mass spectrometry screen has demonstrated SUMOylation of PDGFRα. However, the functional role of SUMOylation of PDGFRα has remained unknown. RESULTS In the present study, we validated that PDGFRα is SUMOylated on lysine residue 917 as was previously reported using a mass spectrometry approach. Mutation of lysine residue 917 to arginine (K917R) in PDGFRα substantially decreased SUMOylation, indicating that this amino acid residue is a major SUMOylation site. Whereas no difference in the stability of wild-type and mutant receptor was observed, the K917R mutant PDGFRα was less ubiquitinated than wild-type PDGFRα. The internalization and trafficking of the receptor to early and late endosomes were not affected by the mutation, neither was the localization of the PDGFRα to Golgi. However, the K917R mutant PDGFRα showed delayed activation of PLC-γ and enhanced activation of STAT3. Functional assays showed that the mutation of K917 of PDGFRα decreased cell proliferation in response to PDGF-BB stimulation. CONCLUSIONS SUMOylation of PDGFRα decreases ubiquitination of the receptor and affects ligand-induced signaling and cell proliferation.
Collapse
Affiliation(s)
- Kehuan Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Box 582, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Box 582, Sweden
| | - Anahita Hamidi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Box 582, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Box 582, Sweden.
| |
Collapse
|
4
|
Novak S, Madunic J, Shum L, Vucetic M, Wang X, Tanigawa H, Ghosh M, Sanjay A, Kalajzic I. PDGF inhibits BMP2-induced bone healing. NPJ Regen Med 2023; 8:3. [PMID: 36631491 PMCID: PMC9834334 DOI: 10.1038/s41536-023-00276-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Bone regeneration depends on a pool of bone/cartilage stem/progenitor cells and signaling mechanisms regulating their differentiation. Using in vitro approach, we have shown that PDGF signaling through PDGFRβ inhibits BMP2-induced osteogenesis, and significantly attenuates expression of BMP2 target genes. We evaluated outcomes of treatment with two anabolic agents, PDGF and BMP2 using different bone healing models. Targeted deletion of PDGFRβ in αSMA osteoprogenitors, led to increased callus bone mass, resulting in improved biomechanical properties of fractures. In critical size bone defects BMP2 treatment increased proportion of osteoprogenitors, while the combined treatment of PDGF BB with BMP2 decreased progenitor number at the injury site. BMP2 treatment induced significant bone formation and increased number of osteoblasts, while in contrast combined treatment with PDGF BB decreased osteoblast numbers. This is in vivo study showing that PDGF inhibits BMP2-induced osteogenesis, but inhibiting PDGF signaling early in healing process does not improve BMP2-induced bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Josip Madunic
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA ,grid.414681.e0000 0004 0452 3941Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Laura Shum
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Milan Vucetic
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Xi Wang
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Hitoshi Tanigawa
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Mallika Ghosh
- grid.208078.50000000419370394Center for Vascular Biology, UConn Health, Farmington, CT USA
| | - Archana Sanjay
- grid.208078.50000000419370394Department of Orthopeadic Surgery, UConn Health, Farmington, CT USA
| | - Ivo Kalajzic
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| |
Collapse
|
5
|
Cai M, Wang Z, Luu TTT, Zhang D, Finke B, He J, Tay LWR, Di Paolo G, Du G. PLD1 promotes reactive oxygen species production in vascular smooth muscle cells and injury-induced neointima formation. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159062. [PMID: 34610470 PMCID: PMC11960192 DOI: 10.1016/j.bbalip.2021.159062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Phospholipase D (PLD) generates the signaling lipid phosphatidic acid (PA) and has been known to mediate proliferation signal in vascular smooth muscle cells (VSMCs). However, it remains unclear how PLD contributes to vascular diseases. VSMC proliferation directly contributes to the development and progression of cardiovascular disease, such as atherosclerosis and restenosis after angioplasty. Using the mouse carotid artery ligation model, we find that deletion of Pld1 gene inhibits neointima formation of the injuried blood vessels. PLD1 deficiency reduces the proliferation of VSMCs in both injured artery and primary cultures through the inhibition of ERK1/2 and AKT signals. Immunohistochemical staining of injured artery and flow cytometry analysis of VSMCs shows a reduction of the levels of reactive oxygen species (ROS) in Pld1-/- VSMCs. An increase of intracellular ROS by hydrogen peroxide stimulation restored the reduced activities of ERK and AKT in Pld1-/- VSMCs, whereas a reduction of ROS by N-acetyl-l-cysteine (NAC) scavenger lowered their activity in wild-type VSMCs. These results indicate that PLD1 plays a critical role in neointima, and that PLD1 mediates VSMC proliferation signal through promoting the production of ROS. Therefore, inhibition of PLD1 may be used as a therapeutic approach to suppress neointimal formation in atherosclerosis and restenosis after angioplasty.
Collapse
Affiliation(s)
- Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thi Thu Trang Luu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Biochemistry and Cell Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Dakai Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian Finke
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jingquan He
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Kansakar U, Jankauskas SS, Gambardella J, Santulli G. Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 2021; 324:117-120. [PMID: 33832772 PMCID: PMC8195811 DOI: 10.1016/j.atherosclerosis.2021.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Urna Kansakar
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States
| | - Stanislovas S Jankauskas
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States; Department of Medicine (Division of Cardiology), Albert Einstein College of Medicine - Montefiore University Hospital, New York City, 10461, NY, United States
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States; Department of Medicine (Division of Cardiology), Albert Einstein College of Medicine - Montefiore University Hospital, New York City, 10461, NY, United States; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, 80131, Italy
| | - Gaetano Santulli
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, 10461, NY, United States; Department of Medicine (Division of Cardiology), Albert Einstein College of Medicine - Montefiore University Hospital, New York City, 10461, NY, United States; Department of Advanced Biomedical Sciences, "Federico II" University, Naples, 80131, Italy; International Translational Research and Medical Education (ITME), Naples, 80100, Italy.
| |
Collapse
|
7
|
Wang Z, Cai M, Tay LWR, Zhang F, Wu P, Huynh A, Cao X, Di Paolo G, Peng J, Milewicz DM, Du G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation. FASEB J 2019; 33:6713-6725. [PMID: 30811216 DOI: 10.1096/fj.201800390rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Very little is known about how lipid signaling regulates intima hyperplasia after vascular injury. Herein, we report that deletion and pharmacological inhibition of phospholipase D (PLD)2, which generates the signaling lipid phosphatidic acid (PA), reduced neointimal formation in the mouse carotid artery ligation model. PLD2 deficiency inhibits migration of vascular smooth muscle cells (VSMCs) into the intima in mice as well as migration and formation of membrane ruffles in primary VSMCs. PA specifically binds to the IQ motif-containing guanosine triphosphatase-activating protein 1 (IQGAP1) scaffold protein. The binding between PA and IQGAP is required for the plasma membrane recruitment of IQGAP1. Similar to PLD2 inhibition, knockdown of IQGAP1 blocks ruffle formation and migration in VSMCs, which are rescued by expression of the exogenous IQGAP1 but not the PA binding-deficient mutant. These data reveal that the PLD2-PA-IQGAP1 pathway plays an important role in VSMC migration and injury-induced vascular remodeling, and implicate PLD2 as a candidate target for therapeutic interventions.-Wang, Z., Cai, M., Tay, L. W. R., Zhang, F., Wu, P., Huynh, A., Cao, X., Di Paolo, G., Peng, J., Milewicz, D. M., Du, G. Phosphatidic acid generated by PLD2 promotes the plasma membrane recruitment of IQGAP1 and neointima formation.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ming Cai
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Gastrointestinal Surgery, Union Hospital-Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wei Rachel Tay
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Feng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anh Huynh
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiumei Cao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; and
| | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
8
|
Ye Q, Pang S, Zhang W, Guo X, Wang J, Zhang Y, Liu Y, Wu X, Jiang F. Therapeutic Targeting of RNA Polymerase I With the Small-Molecule CX-5461 for Prevention of Arterial Injury-Induced Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2017; 37:476-484. [PMID: 28062495 DOI: 10.1161/atvbaha.116.308401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE RNA polymerase I (Pol I)-dependent rRNA synthesis is a determinant factor in ribosome biogenesis and thus cell proliferation. The importance of dysregulated Pol I activity in cardiovascular disease, however, has not been recognized. Here, we tested the hypothesis that specific inhibition of Pol I might prevent arterial injury-induced neointimal hyperplasia. APPROACH AND RESULTS CX-5461 is a novel selective Pol I inhibitor. Using this tool, we demonstrated that local inhibition of Pol I blocked balloon injury-induced neointima formation in rat carotid arteries in vivo. Neointimal development was associated with augmented rDNA transcriptional activity as evidenced by the increased phosphorylation of upstream binding factor-1. The beneficial effect of CX-5461 was mainly mediated by inducing G2/M cell cycle arrest of proliferating smooth muscle cells without obvious apoptosis. CX-5461 did not induce p53 stabilization but increased p53 phosphorylation and acetylation and activated the ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related (ATR) pathway. Inhibition of ATR, but not of ataxia telangiectasia mutated, abolished the cytostatic effect of CX-5461 and p53 phosphorylation. In addition, inhibition of p53 or knockdown of the p53 target GADD45 mimicked the effect of ATR inhibition. In vivo experiments showed that the levels of phospho-p53 and acetyl-p53, and activity of the ataxia telangiectasia mutated/ATR pathway were all augmented in CX-5461-treated vessels. CONCLUSIONS Pol I can be therapeutically targeted to inhibit the growth of neointima, supporting that Pol I is a novel biological target for preventing arterial restenosis. Mechanistically, Pol I inhibition elicited G2/M cell cycle arrest in smooth muscle cells via activation of the ATR-p53 axis.
Collapse
Affiliation(s)
- Qing Ye
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Shu Pang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Wenjing Zhang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Xiaotong Guo
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Jianli Wang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Yongtao Zhang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Yang Liu
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Xiao Wu
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Fan Jiang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.).
| |
Collapse
|
9
|
Papke CL, Cao J, Kwartler CS, Villamizar C, Byanova KL, Lim SM, Sreenivasappa H, Fischer G, Pham J, Rees M, Wang M, Chaponnier C, Gabbiani G, Khakoo AY, Chandra J, Trache A, Zimmer W, Milewicz DM. Smooth muscle hyperplasia due to loss of smooth muscle α-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-β. Hum Mol Genet 2013; 22:3123-37. [PMID: 23591991 DOI: 10.1093/hmg/ddt167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown. Here, we show that the loss of Acta2 in mice recapitulates the SMC hyperplasia observed in ACTA2 mutant SMCs and determine the cellular pathways responsible for SMC hyperplasia. Acta2(-/-) mice showed increased neointimal formation following vascular injury in vivo, and SMCs explanted from these mice demonstrated increased proliferation and migration. Loss of α-SMA induced hyperplasia through focal adhesion (FA) rearrangement, FA kinase activation, re-localization of p53 from the nucleus to the cytoplasm and increased expression and ligand-independent activation of platelet-derived growth factor receptor beta (Pdgfr-β). Disruption of α-SMA in wild-type SMCs also induced similar cellular changes. Imatinib mesylate inhibited Pdgfr-β activation and Acta2(-/-) SMC proliferation in vitro and neointimal formation with vascular injury in vivo. Loss of α-SMA leads to SMC hyperplasia in vivo and in vitro through a mechanism involving FAK, p53 and Pdgfr-β, supporting the hypothesis that SMC hyperplasia contributes to occlusive lesions in patients with ACTA2 missense mutations.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Internal Medicine, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 6.100, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Park HS, Choi GH, Hahn S, Yoo YS, Lee JY, Lee T. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms. Biochem Biophys Res Commun 2013; 431:326-31. [PMID: 23291168 DOI: 10.1016/j.bbrc.2012.12.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a growing problem worldwide, yet there is no known medical therapy. The pathogenesis involves degradation of the elastic lamina by two combined mechanisms: increased degradation of elastin by matrix metalloproteinases (MMP) and decreased formation of elastin due to apoptosis of vascular smooth muscle cells (VSMC). In this study, we set out to examine the potential role of stem cells in the attenuation of AAA formation by inhibition of these pathogenetic mechanisms. Muscle-derived stem cells from murine skeletal muscles were isolated and stimulated with PDGF-BB in vitro for differentiation to VSMC-like progenitor cells (VSMC-PC). These cells were implanted in to elastase-induced AAAs in rats. The cell therapy group had decreased rate of aneurysm formation compared to control, and MMP expression at the genetic, protein and enzymatic level were also significantly decreased. Furthermore, direct implantation of VSMC-PCs in the intima of harvested aortas was visualized under immunofluorescent staining, suggesting that these cells were responsible for the inhibition of MMPs and consequent attenuation of AAA formation. These results show a promising role of stem cell therapy for the treatment of AAAs, and with further studies, may be able to reach clinical significance.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Zhao Q, Niu Y, Matsumoto K, Tsuneyama K, Tanaka K, Miyata T, Yokozawa T. Chotosan ameliorates cognitive and emotional deficits in an animal model of type 2 diabetes: possible involvement of cholinergic and VEGF/PDGF mechanisms in the brain. Altern Ther Health Med 2012; 12:188. [PMID: 23082896 PMCID: PMC3564934 DOI: 10.1186/1472-6882-12-188] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/18/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetes is one of the risk factors for cognitive deficits such as Alzheimer's disease. To obtain a better understanding of the anti-dementia effect of chotosan (CTS), a Kampo formula, we investigated its effects on cognitive and emotional deficits of type 2 diabetic db/db mice and putative mechanism(s) underlying the effects. METHODS Seven-week-old db/db mice received daily administration of CTS (375 - 750 mg/kg, p.o.) and the reference drug tacrine (THA: 2.5 mg/kg, i.p.) during an experimental period of 7 weeks. From the age of 9-week-old, the animals underwent the novel object recognition test, the modified Y-maze test, and the water maze test to elucidate cognitive performance and the elevated plus maze test to elucidate anxiety-related behavior. After completing behavioral studies, Western blotting and immunohistochemical studies were conducted. RESULTS Compared with age-matched non-diabetic control strain (m/m) mice, db/db mice exhibited impaired cognitive performance and an increased level of anxiety. CTS ameliorated cognitive and emotional deficits of db/db mice, whereas THA improved only cognitive performance. The phosphorylated levels of Akt and PKCα in the hippocampus were significantly lower and higher, respectively, in db/db mice than in m/m mice. Expression levels of the hippocampal cholinergic marker proteins and the number of the septal cholinergic neurons were also reduced in db/db mice compared with those in m/m mice. Moreover, the db/db mice had significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2, platelet-derived growth factor-B, and PDGF receptor β, in the hippocampus. CTS and THA treatment reversed these neurochemical and histological alterations caused by diabetes. CONCLUSION These results suggest that CTS ameliorates diabetes-induced cognitive deficits by protecting central cholinergic and VEGF/PDGF systems via Akt signaling pathway and that CTS exhibits the anxiolytic effect via neuronal mechanism(s) independent of cholinergic or VEGF/PDGF systems in db/db mice.
Collapse
|
12
|
Sadilkova L, Paluch Z, Mottlova J, Bednar F, Alusik S. The effect of selected pre-analytical phase variables on plasma thromboxane A₂ measurements in humans. Int J Lab Hematol 2012; 35:92-100. [PMID: 22908995 DOI: 10.1111/j.1751-553x.2012.01458.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/08/2012] [Indexed: 11/30/2022]
Abstract
AIMS Platelet function testing is often affected by the existence of different pre-analytical variables that can cause platelet activation. The aim of this study was to assess the effect of such variables that are present when samples are taken (different anticoagulants, incubation temperature, and storage conditions) to select those which enable to reach optimal range of measured plasma concentrations of the two stable thromboxane A₂ metabolites, that is, thromboxane B₂ (TxB₂) and 11-dehydrothromboxane B₂ (11-dTxB₂). MATERIALS AND METHODS For the purpose of this study, whole blood samples obtained from 20 volunteers were screened for TxB₂ and 11-dTxB₂ concentrations using commercial EIA kits (Cayman Chemicals™; Neogen™) in relation to the effect of different anticoagulants, using different incubation temperatures and storage conditions. RESULTS Trisodium citrate has been shown not to be affecting the TxB₂ and 11-dTxB₂ concentrations compared with the values measured in the serum. Incubation of the samples for 1 h at 37 °C and freezing at -20 °C or -80 °C give the most suitable concentration range of both thromboxanes in the used EIA measurement. CONCLUSION This study describes the setup of such pre-analytical phase conditions that enable the screening of platelet function in terms of the plasma concentrations of TxB₂ and 11-dTxB₂ in selected EIA measurement.
Collapse
Affiliation(s)
- L Sadilkova
- Division of Clinical Pharmacology of the Department of Medicine I, Thomayer Hospital, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
13
|
Zhang HW, Zhang T, Shen BZ, Liu M, Liu JR. Toxicological insight from AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. Cardiovasc Toxicol 2012; 12:25-38. [PMID: 21818553 DOI: 10.1007/s12012-011-9135-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There has an effective way to prevent intimal hyperplasia on vascular smooth muscle cell (VSMC) proliferation in grafted veins. The activator protein-1 (AP-1) transcription factor plays an important role in cardiovascular generation and angioplasty. Once activated, AP-1 binds its specific DNA sequence to promote the proliferation of VSMC, differentiation, and migration. The objectives of this study were to determine toxicological effects of AP-1 silencing study on proliferation, migration, and dedifferentiation of rat vascular smooth muscle cell. To suppress the expression of AP-1 gene, AP-1 siRNA was used to interfere post-transcription in rat primary VSMCs. To observe the expression of SM α-actin and downstream genes of AP-1, the activity of cell matrix metal proteinases and the migration ability of VSMC was examined by a modified Boyden chamber assay. Effects of AP-1 siRNA on proliferation and differentiation in rat VSMCs were evaluated by cell cycle analysis, DNA synthesis, MTT-test, and immunofluorescence. The results showed that the level of SM α-actin protein expression was increased. AP-1 siRNA also significantly decreased the MTT extinction value, DNA synthesis, PCNA expression, and the cell migration velocity when compared to the control group. AP-1 siRNA also clearly arrested cell cycle of VSM at the G0/G1 phase. Zymographic and Western blotting analyses showed that AP-1 siRNA suppressed serum-induced MMP-2 expression. These data suggest that the AP-1 siRNA was able to effectively inhibit the proliferation, migration, and dedifferentiation of smooth muscle cells. Thus, AP-1 siRNA provides a novel method to prevent intimal hyperplasia in blood vessel angioplasty.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Treatment Center of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, NanGang District, Harbin, The People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Lee JJ, Yu JY, Zhang WY, Kim TJ, Lim Y, Kwon JS, Kim DW, Myung CS, Yun YP. Inhibitory effect of fenofibrate on neointima hyperplasia via G0/G1 arrest of cell proliferation. Eur J Pharmacol 2011; 650:342-9. [DOI: 10.1016/j.ejphar.2010.10.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 01/15/2023]
|
15
|
Thomas JA, Deaton RA, Hastings NE, Shang Y, Moehle CW, Eriksson U, Topouzis S, Wamhoff BR, Blackman BR, Owens GK. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. Am J Physiol Heart Circ Physiol 2009; 296:H442-52. [PMID: 19028801 PMCID: PMC2643880 DOI: 10.1152/ajpheart.00165.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 11/20/2008] [Indexed: 11/22/2022]
Abstract
Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Genes, Reporter
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Lymphokines/genetics
- Lymphokines/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myosin Heavy Chains/metabolism
- Phenotype
- Phosphorylation
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Promoter Regions, Genetic
- Protein Kinase Inhibitors/pharmacology
- Protein Multimerization
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Rats
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Recombinant Proteins/metabolism
- Regional Blood Flow
- Stress, Mechanical
- Time Factors
- Up-Regulation
- ets-Domain Protein Elk-1/metabolism
- Calponins
Collapse
Affiliation(s)
- James A Thomas
- Department of Molecular Physiology and Biological Physics, Univeresity of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, Cheresh DA. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 2008; 456:809-13. [PMID: 18997771 PMCID: PMC2605188 DOI: 10.1038/nature07424] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 09/10/2008] [Indexed: 01/11/2023]
Abstract
Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation.
Collapse
Affiliation(s)
- Joshua I. Greenberg
- Department of Surgery, University of California, San Diego, School of Medicine
| | - David J. Shields
- Department of Pathology and Moore’s UCSD Cancer Center, University of California, San Diego
| | - Samuel G. Barillas
- Department of Surgery, University of California, San Diego, School of Medicine
| | - Lisette M. Acevedo
- Department of Pathology and Moore’s UCSD Cancer Center, University of California, San Diego
| | - Eric Murphy
- Department of Pathology and Moore’s UCSD Cancer Center, University of California, San Diego
| | - Jianhua Huang
- Department of Pathology and Moore’s UCSD Cancer Center, University of California, San Diego
| | - Lea Scheppke
- Department of Pathology and Moore’s UCSD Cancer Center, University of California, San Diego
| | - Christian Stockmann
- Section of Molecular Biology, Division of Biology, University of California, San Diego
| | - Randall S. Johnson
- Section of Molecular Biology, Division of Biology, University of California, San Diego
| | - Niren Angle
- Department of Surgery, University of California, San Diego, School of Medicine
| | - David A. Cheresh
- Department of Pathology and Moore’s UCSD Cancer Center, University of California, San Diego
| |
Collapse
|
17
|
Miyake T, Aoki M, Morishita R. Inhibition of anastomotic intimal hyperplasia using a chimeric decoy strategy against NFkappaB and E2F in a rabbit model. Cardiovasc Res 2008; 79:706-14. [PMID: 18515844 DOI: 10.1093/cvr/cvn139] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Neointimal formation remains a major limitation after arterial reconstruction. To overcome this problem, we focused on two important transcription factors, nuclear factor-kappaB (NFkappaB) and E2F. The purpose of this study was to determine the effects of simultaneous inhibition of these transcription factors on the formation of neointimal hyperplasia. METHODS AND RESULTS We employed chimeric decoy oligodeoxynucleotides (ODN) to inhibit both NFkappaB and E2F simultaneously, and examined the effects of chimeric decoy ODN on the proliferation and migration of cultured vascular cells and on the formation of neointimal hyperplasia using prosthetic graft placement in a rabbit hypercholesterolemia model. Our in vitro study demonstrated that transfection of chimeric decoy ODN inhibited platelet-derived growth factor (PDGF)-induced proliferation and migration of vascular smooth muscle cells, whereas endothelial cell proliferation was not inhibited. In an in vivo study, treatment with chimeric decoy ODN significantly inhibited proximal and distal anastomotic intimal hyperplasia, and accelerated re-endothelialization. alpha-Smooth muscle actin (alpha-SMA)-positive cell proliferation was inhibited at the anastomotic sites. Expression of PDGF-BB and PDGF receptor-beta was also suppressed by chimeric decoy ODN, resulting in a reduction of alpha-SMA-positive cell accumulation. In addition, chimeric decoy ODN treatment inhibited macrophage accumulation, which was accompanied by a reduction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 gene expression. CONCLUSION The present study demonstrates the feasibility of chimeric decoy ODN treatment for preventing neointimal formation. This strategy might be useful to improve the clinical outcome after arterial reconstruction.
Collapse
Affiliation(s)
- Takashi Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
18
|
Jiang LP, Lu Y, Nie BM, Chen HZ. Antiproliferative effect of panaxynol on RASMCs via inhibition of ERK1/2 and CREB. Chem Biol Interact 2008; 171:348-54. [DOI: 10.1016/j.cbi.2007.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 11/18/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
|
19
|
Jin YR, Han XH, Zhang YH, Lee JJ, Lim Y, Kim TJ, Yoo HS, Yun YP. Hesperetin, a bioflavonoid, inhibits rat aortic vascular smooth muscle cells proliferation by arresting cell cycle. J Cell Biochem 2008; 104:1-14. [DOI: 10.1002/jcb.21592] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Dhillon NK, Peng F, Ransohoff RM, Buch S. PDGF synergistically enhances IFN-gamma-induced expression of CXCL10 in blood-derived macrophages: implications for HIV dementia. THE JOURNAL OF IMMUNOLOGY 2007; 179:2722-30. [PMID: 17709485 DOI: 10.4049/jimmunol.179.5.2722] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is increasing cumulative evidence that activated mononuclear phagocytes (macrophages/microglia) releasing inflammatory mediators in the CNS are a better correlate of HIV-associated dementia (HAD) than the actual viral load in the brain. Earlier studies on simian HIV/rhesus macaque model of NeuroAIDS confirmed that pathological changes in brains of macaques with encephalitis were associated with up-regulation of platelet-derived growth factor (PDGF) and the chemokine, CXCL10. Because the complex interplay of inflammatory mediators released by macrophages often leads to the induction of neurotoxins in HAD, we hypothesized that PDGF could interact with IFN-gamma to modulate the expression of CXCL10 in these primary virus target cells. Although PDGF alone had no effect on the induction of CXCL10 in human macrophages, in conjunction with IFN-gamma, it significantly augmented the expression of CXCL10 RNA & protein through transcriptional and posttranscriptional mechanisms. Signaling molecules, such as JAK and STATs, PI3K, MAPK, and NF-kappaB were found to play a role in the synergistic induction of CXCL10. Furthermore, PDGF via its activation of p38 MAPK was able to increase the stability of IFN-gamma-induced CXCL10 mRNA. Understanding the mechanisms involved in the synergistic up-regulation of CXCL10 could aid in the development of therapeutic modalities for HAD.
Collapse
Affiliation(s)
- Navneet Kaur Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
21
|
Lee KS, Park JH, Lee S, Lim HJ, Choi HE, Park HY. HB-EGF induces delayed STAT3 activation via NF-kappaB mediated IL-6 secretion in vascular smooth muscle cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1637-44. [PMID: 17822789 DOI: 10.1016/j.bbamcr.2007.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 06/25/2007] [Accepted: 07/09/2007] [Indexed: 01/07/2023]
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family that binds to and activates EGF receptor, and is expressed in a variety of tissues, predominantly in the lung, heart, brain and skeletal muscle. HB-EGF is known to induce vascular smooth muscle cell (VSMC) proliferation by activating PI3K-Akt and MAPK pathway. However, our preliminary data showed that Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway was also involved in HB-EGF induced VSMC proliferation. More interestingly, HB-EGF (10 ng/ml) induced a biphasic activation of STAT3 (early at 5 min and late at 60-120 min). Therefore, we tried to elucidate the underlying mechanism of this delayed STAT3 activation by HB-EGF in VSMCs. First, we examined the effect of HB-EGF on interleukin-6 (IL-6) mRNA expressions, since IL-6 have been implicated in the regulation of STAT3 activation. According to our data, HB-EGF increased transcription of IL-6, cardiotrophin-1 (CT-1), leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF). The secretion of IL-6 was also increased by HB-EGF. Furthermore, these HB-EGF-mediated up-regulation of IL-6 mRNA expression and secretion were inhibited by NF-kappaB inhibitor Bay117082 (2.5 microM) treatment suggesting involvement of NF-kappaB pathway. Again, the late activation of STAT3 by HB-EGF was abolished by both Bay117082 and IL-6 neutralizing antibody (1 microg/ml) indicating IL-6 is a key molecule in the delayed activation of STAT3 by HB-EGF. In addition, IL-6 neutralizing antibody inhibited both HB-EGF conditioned media induced STAT3 activation and HB-EGF induced VSMC proliferation. In conclusion, IL-6 plays an important role in the delayed activation of STAT3 and VSMC proliferation induced by HB-EGF.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Cell Proliferation/drug effects
- Culture Media, Conditioned
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/metabolism
- Heparin-binding EGF-like Growth Factor
- Intercellular Signaling Peptides and Proteins/pharmacology
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Janus Kinases/antagonists & inhibitors
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- NF-kappa B/metabolism
- Phosphorylation/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Kuy-Sook Lee
- Center for Biomedical Sciences, Division of Cardiovascular Diseases, National Institute of Health, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Zhao J, Zhao B, Wang W, Huang B, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells. J Cell Biochem 2007; 102:421-8. [PMID: 17393430 DOI: 10.1002/jcb.21301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To find the key factors that were involved in the survival and vascular endothelial differentiation of chick blatodisc induced by fibroblast growth factor 2 (FGF-2), we built a chick vasculogenesis model in vitro. Subsequently, the activities of phosphatidylcholine-specific phospholipase C (PC-PLC), including Ca(2+)-dependent and -independent PC-PLC, and the level of reactive oxygen species (ROS) were evaluated during the endothelial differentiation of chick blastodisc. The results showed that Ca(2+)-indepentent PC-PLC underwent a remarkable increase in 24 h (P < 0.01), then it decreased gradually with the cell differentiation, while the Ca(2+)-depentent PC-PLC was nearly not changed in the whole process. At the same time, ROS level dramatically decreased during the cell differentiation. To understand the role of PC-PLC and how it performs its function in the vascular endothelial differentiation induced by FGF-2, we suppressed PC-PLC activity by its specific inhibitor D609 (tricyclodecan-9-yl potassium xanthate) at 24 h during the cell differentiation. As a result, the cell differentiation could not progress and the intracellular level of ROS was elevated. The data suggested that PC-PLC and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells. PC-PLC was an important factor in the blastodisc cell survival and differentiation, and it might perform its function associated with ROS.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shangdong 250100, China
| | | | | | | | | | | |
Collapse
|
23
|
Park SD, Jung JH, Lee HW, Kwon YM, Chung KH, Kim MG, Kim CH. Zedoariae rhizoma and curcumin inhibits platelet-derived growth factor-induced proliferation of human hepatic myofibroblasts. Int Immunopharmacol 2005; 5:555-69. [PMID: 15683851 DOI: 10.1016/j.intimp.2004.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Revised: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 11/15/2022]
Abstract
During the course of liver fibrogenesis, hepatic myofibroblast cells (hMF), mostly derived from hepatic stellate cells (HSC), proliferate and synthesize excessive amounts of extracellular matrix (ECM) components. To evaluate the antiproliferative effect of a traditional herbal medicine, Zedoariae rhizoma water extracts (ZR) was examined on the growth inhibition of human hMF since proliferation of hMF is known to be central for the development of fibrosis during liver injury, and factors that may limit their growth are potential antifibrotic agents. The aim of this study was to test the effects of ZR on the proliferation and to clarify the molecular mechanisms of ZR inhibition of HSC proliferation in cultured human hMF. The cells were stimulated by platelet-derived growth factor (PDGF)-BB in the presence or absence of ZR. Proliferation was determined by bromodeoxy-uridine (BrdU) incorporation. The mRNA expressions of collagen alpha1(I) and (IV) were evaluated by a quantitative reverse transcription-polymerase chain reaction (RT-PCR). PDGF-receptor tyrosine phosphorylation was detected using anti-phosphotyrosine antibody. PDGF-receptor radioligand binding assay was performed by [125I]PDGF-BB. ZR inhibited the PDGF-BB-induced cell-proliferation and collagen alpha1(I) and (IV) mRNA expressions. ZR reduced the autophosphorylation of the PDGF-receptor. ZR blocked PDGF-BB binding to its receptor in a non-competitive manner. Furthermore, the 80% aqueous acetone extract of ZR was also found to show a decreasing effect against the proportion of S phase cells after PDGF stimulation. To clarify the active compounds, the principal constituents of seven sesquiterpenes (curdione, dehydrocurdione, germacrone, curcumenol, isocurcumenol, zedoarondiol and curcumenone) and a diarylheptanoid (curcumin) were examined. Among them, curcumin was found to decrease the proportion of S phase cells after PDGF stimulation at a dose of 30-50 microM. Potent antiproliferative and antifibrogenic effects of ZR toward hMF indicated that ZR might have therapeutic implications in chronic liver disease, indicating a novel role for ZR as a growth inhibitory mediator and pointing out its potential involvement in the negative regulation of liver fibrogenesis. In conclusion, ZR has an inhibitory effect on PDGF-induced proliferation of hMF and the blocking of PDGF-BB binding to its receptor may be the mechanism behind this effect.
Collapse
Affiliation(s)
- Sun-Dong Park
- Department of Herbal Pharmacology, Biochemistry and Molecular Biology, Dongguk University College of Oriental Medicine and National Research Laboratory for Glycobiology, Sukjang-Dong 707, Kyungju City, Kyungbuk 780-714, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Jankov RP, Kantores C, Belcastro R, Yi S, Ridsdale RA, Post M, Tanswell AK. A role for platelet-derived growth factor beta-receptor in a newborn rat model of endothelin-mediated pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1162-70. [PMID: 15722379 DOI: 10.1152/ajplung.00180.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Newborn rats exposed to 60% O2 for 14 days develop endothelin (ET)-1-dependent pulmonary hypertension with vascular remodeling, characterized by increased smooth muscle cell (SMC) proliferation and medial thickening of pulmonary resistance arteries. Using immunohistochemistry and Western blot analyses, we examined the effect of exposure to 60% O2 on expression in the lung of receptors for the platelet-derived growth factors (PDGF), which are implicated in the pathogenesis of arterial smooth muscle hyperplasia. We observed a marked O2-induced upregulation of PDGF-alpha and -beta receptors (PDGF-alphaR and -betaR) on arterial smooth muscle. This led us to examine pulmonary vascular PDGF receptor expression in 60% O2-exposed rats given SB-217242, a combined ET receptor antagonist, which we found prevented the O2-induced upregulation of PDGF-betaR, but not PDGF-alphaR, on arterial smooth muscle. PDGF-BB, a major PDGF-betaR ligand, was found to be a potent in vitro inducer of hyperplasia and DNA synthesis in cultured pulmonary artery SMC from infant rats. A critical role for PDGF-betaR ligands in arterial SMC proliferation was confirmed in vivo using a truncated soluble PDGF-betaR intervention, which attenuated SMC proliferation induced by exposure to 60% O2. Collectively, these data are consistent with a major role for PDGF-betaR-mediated SMC proliferation, acting downstream of increased ET-1 in a newborn rat model of 60% O2-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Robert P Jankov
- Clinical Integrative Biology, Sunnybrook & Women's Research Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
TGF beta1 and PDGF AA override collagen type I inhibition of proliferation in human liver connective tissue cells. BMC Gastroenterol 2004; 4:30. [PMID: 15579200 PMCID: PMC539266 DOI: 10.1186/1471-230x-4-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 12/03/2004] [Indexed: 12/14/2022] Open
Abstract
Background A marked expansion of the connective tissue population and an abnormal deposition of extracellular matrix proteins are hallmarks of chronic and acute injuries to liver tissue. Liver connective tissue cells, also called stellate cells, derived from fibrotic liver have been thoroughly characterized and correspond phenotypically to myofibroblasts. They are thought to derive from fat-storing Ito cells in the perisinusoidal space and acquire a contractile phenotype when activated by tissue injury. In the last few years it has become evident that several peptide growth factors such as PDGF AA and TGF-β are involved in the development of fibrosis by modulating myofibroblast proliferation and collagen secretion. The fact that during the development of chronic fibrosis there is concomitant deposition of collagen, a known inhibitory factor, and sustained cell proliferation, raises the possibility that stellate cells from chronic liver fibrosis patients fail to respond to normal physiologic controls. Methods In this study we address whether cells from fibrotic liver patients respond to normal controls of proliferation. We compared cell proliferation of primary human liver connective tissue cells (LCTC) from patients with liver fibrosis and skin fibroblasts (SF) in the presence of collagens type I and IV; TGF-β, PDGF AA and combinations of collagen type I and TGF-β or PDGF AA. Results Our results indicate that despite displaying normal contact and collagen-induced inhibition of proliferation LCTC respond more vigorously to lower concentrations of PDGF AA. In addition, we show that collagen type I synergizes with growth factors to promote mitogenesis of LCTC but not SF. Conclusions The synergistic interaction of growth factors and extracellular matrix proteins may underlie the development of chronic liver fibrosis.
Collapse
|
26
|
Autieri MV. Inducible expression of the signal transduction protein 14-3-3gamma in injured arteries and stimulated human vascular smooth muscle cells. Exp Mol Pathol 2004; 76:99-107. [PMID: 15010287 DOI: 10.1016/j.yexmp.2003.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Indexed: 01/20/2023]
Abstract
Although the 14-3-3 family of proteins have been shown to be key signal transduction proteins involved in regulation of cellular growth and proliferation, little has been reported on their expression in pathophysiological states. We hypothesized that expression of one isoform, 14-3-3gamma, would also be increased in vascular proliferative diseases. We observed 14-3-3gamma expression induced in human coronary artery vasculopathy (CAV) as compared with coronary arteries isolated from normal and end-stage heart failure patients. 14-3-3gamma is acutely expressed in aortic medial smooth muscle cells in experimental models of arterial injury including rat cardiac allografts balloon angioplasty-injured swine coronary arteries. In each case, 14-3-3gamma protein expression is induced by 3 days and peaks at 7-10 days post-injury. Expression of this protein in cultured human vascular smooth muscle cells (VSMC) is associated with cytokine-induced VSMC activation, rather than direct injury to the VSMC themselves, and is unique among other 14-3-3 family proteins. Potential 14-3-3gamma protein-protein interactions are also differentially regulated by cytokine stimulation. This study indicates that 14-3-3gamma expression is induced in arterial trauma by cytokines, and suggests that this protein may play an important role in progression of vascular proliferative diseases.
Collapse
Affiliation(s)
- Michael V Autieri
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, Sata M. Green tea polyphenol epigallocatechin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. J Hepatol 2004; 40:52-9. [PMID: 14672614 DOI: 10.1016/s0168-8278(03)00477-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS Green-tea polyphenols are known to have anti-fibrotic properties of the skin and the artery. The proliferation of hepatic stellate cells (HSC) is closely related to the progression of liver fibrosis in chronic liver diseases. We investigated the inhibitory effect of epigallocatechin-3-gallate (EGCG), the major potential inhibitory component of green-tea polyphenols, on the proliferation of HSC. The aim of this study was to clarify the molecular mechanisms of EGCG inhibition of HSC proliferation. METHODS A cultured human hepatic stellate cell line LI90 was used for this study. The cells were stimulated by platelet-derived growth factor (PDGF)-BB in the presence or absence of EGCG. Proliferation was determined by bromodeoxy-uridine incorporation. The mRNA expressions of collagen alpha1(I) and (IV) were evaluated by a quantitative reverse transcription-polymerase chain reaction. PDGF receptor tyrosine phosphorylation was detected using anti-phosphotyrosine antibody. PDGF receptor radioligand binding assay was performed by [125I]-PDGF-BB. RESULTS EGCG inhibited the PDGF-BB-induced cell-proliferation and collagen alpha1(I) and (IV) mRNA expressions. EGCG reduced the autophosphorylation of the PDGF receptor. EGCG blocked PDGF-BB binding to its receptor in a non-competitive manner. CONCLUSIONS EGCG has an inhibitory effect on PDGF-induced proliferation of HSC, and the blocking of PDGF-BB binding to its receptor may be the mechanism behind this effect.
Collapse
Affiliation(s)
- Ryuichiro Sakata
- Research Center for Innovative Cancer Therapy, Second Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Roy S Herbst
- University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
29
|
Thorsen VAT, Vorland M, Bjørndal B, Bruland O, Holmsen H, Lillehaug JR. Participation of phospholipase D and alpha/beta-protein kinase C in growth factor-induced signalling in C3H10T1/2 fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1632:62-71. [PMID: 12782152 DOI: 10.1016/s1388-1981(03)00063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have studied phospholipase D (PLD) activation in relation to protein kinase C (PKC) and the involvement of PLD in extracellularly regulated kinase 1 (MAPK) (ERK1) activation and c-fos mRNA expression in C3H/10T1/2 (Cl8) fibroblasts. In these cells, the PLD activity was significantly increased by porcine platelet-derived growth factor (PDGF-BB), phorbol 12-myristate 13-acetate (PMA), and epidermal growth factor (EGF). PLD activation by PDGF-BB and PMA, but not EGF, was inhibited in Cl8 cells expressing the HAbetaC2-1 peptide (Cl8 HAbetaC2-1 cells), with a sequence (betaC2-1) shown to bind receptor for activated C kinase 1 (RACK1) and inhibit c-PKC-mediated cell functions [Science 268 (1995) 247]. A role of alpha-PKC in PLD activation is further underscored by co-immunoprecipitation of alpha-PKC with PLD1 and PLD2 in non-stimulated as well as PMA- and PDGF-BB-stimulated Cl8 cells. However, only PKC in PLD1 precipitates was activated by these agonists, while the PKC in the PLD2 precipitates was constitutively activated. The c-fos mRNA levels in Cl8 cells increased more than 30-fold in response to either PDGF-BB, EGF, or PMA. Approximately 60% inhibition of this increase in c-fos mRNA levels was observed in Cl8 HAbetaC2-1 cells. Formation of phosphatidylbutanol (PtdBut) at the expense of phosphatidic acid (PtdH) in the presence of n-butanol inhibited ERK1 activation and c-fos mRNA expression in PDGF-BB-treated Cl8 cells. ERK activation by PMA was unaffected by n-butanol in Cl8 cells but almost abolished by n-butanol in Cl8 HAbetaC2-1 cells, showing that ERK activation by PMA is heavily dependent on PKC and PLD1. In contrast, ERK activation by EGF in both cell types was not sensitive to n-butanol. These results indicate (1) a role of a functional interaction between the RACK1 scaffolding protein and a alphaPKC-PLD complex for achieving full PLD activity in PDGF-BB- and PMA-stimulated Cl8 cells; (2) PLD-mediated PtdH formation is needed for optimal ERK1 activation by PDGF-BB and maximal increase in c-fos mRNA expression. These findings place PLD as an important component in PDGF-BB- and PMA-stimulated intracellular signalling leading to gene activation in Cl8 cells, while EGF does not require PLD.
Collapse
Affiliation(s)
- Vidar A T Thorsen
- Department of Biochemistry and Molecular Biology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Kingsley K, Huff JL, Rust WL, Carroll K, Martinez AM, Fitchmun M, Plopper GE. ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5. Biochem Biophys Res Commun 2002; 293:1000-6. [PMID: 12051759 DOI: 10.1016/s0006-291x(02)00331-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During restenosis following arterial injury, vascular smooth muscle cells (VSMCs) form a neointimal layer in arteries by changing from a differentiated, contractile phenotype to a dedifferentiated, migratory, and proliferative phenotype. Several growth factors, cytokines, and extracellular matrix components released following injury have been implicated in these phenotypic changes. We have recently detected the expression of laminin-5, an ECM protein found predominantly in epithelial tissues, in the arterial vasculature. Here we report that ln-5 expression by VSMC is upregulated by platelet-derived growth factor (PDGF-BB), epidermal growth factor, basic fibroblast growth factor, and transforming growth factor-beta1. Adhesion to ln-5 specifically enhances PDGF-BB-stimulated VSMC proliferation and migration. PD98059, a specific inhibitor of the ERK1/2 members of the Mitogen Activated Protein kinase family, increases both VSMC adhesion to ln-5 and blocks PDGF-BB-stimulated VSMC migration on ln-5. These results suggest that adhesion to ln-5 mediates a PDGF-BB-stimulated VSMC response to vascular injury via an ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- K Kingsley
- Department of Biological Sciences, University of Nevada, Las Vegas, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Powner DJ, Hodgkin MN, Wakelam MJO. Antigen-stimulated activation of phospholipase D1b by Rac1, ARF6, and PKCalpha in RBL-2H3 cells. Mol Biol Cell 2002; 13:1252-62. [PMID: 11950936 PMCID: PMC102266 DOI: 10.1091/mbc.01-05-0235] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Revised: 12/21/2001] [Accepted: 12/31/2001] [Indexed: 01/17/2023] Open
Abstract
Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCalpha at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase-dependent stimulation of Rac1, ARF6, and PKCalpha.
Collapse
Affiliation(s)
- Dale J Powner
- Institute for Cancer Studies, Birmingham University, Birmingham, B15 2TA, United Kingdom
| | | | | |
Collapse
|
32
|
Klinghoffer RA, Mueting-Nelsen PF, Faerman A, Shani M, Soriano P. The two PDGF receptors maintain conserved signaling in vivo despite divergent embryological functions. Mol Cell 2001; 7:343-54. [PMID: 11239463 DOI: 10.1016/s1097-2765(01)00182-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene targeting studies have indicated that the two receptors for PDGF, alpha and beta, direct unique functions during development. Distinct ligand affinities, patterns of gene expression, and/or mechanisms of signal relay may account for functional specificity of the two PDGF receptor isoforms. To distinguish between these factors, we have created two complementary lines of knockin mice in which the intracellular signaling domains of one PDGFR have been removed and replaced by those of the other PDGFR. While both lines demonstrated substantial rescue of normal development, substitution of the PDGFbetaR signaling domains with those of the PDGFalphaR resulted in varying degrees of vascular disease. This observation provides a framework for discussing the evolution of receptor tyrosine kinase functional specificity.
Collapse
Affiliation(s)
- R A Klinghoffer
- Program in Developmental Biology and Division, Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
33
|
Ichiki T, Takeda K, Tokunou T, Funakoshi Y, Ito K, Iino N, Takeshita A. Reactive oxygen species-mediated homologous downregulation of angiotensin II type 1 receptor mRNA by angiotensin II. Hypertension 2001; 37:535-40. [PMID: 11230331 DOI: 10.1161/01.hyp.37.2.535] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies suggest a crucial role of reactive oxygen species (ROS) for the signaling of angiotensin (Ang) II through Ang II type 1 receptor (AT(1)-R). However, the role of ROS in the regulation of AT(1)-R expression has not been explored. In this study, we examined the effect of an antioxidant on the homologous downregulation of AT(1)-R by Ang II. Ang II (10(-6) mol/L) decreased AT(1)-R mRNA with a peak suppression at 6 hours of stimulation in rat aortic vascular smooth muscle cells. Preincubation of vascular smooth muscle cells with N:-acetylcysteine (NAC), a potent antioxidant, almost completely inhibited the Ang II-induced downregulation of AT(1)-R mRNA. The effect of NAC was due to stabilization of the AT(1)-R mRNA that was destabilized by Ang II. The Ang II-induced AT(1)-R mRNA downregulation was also blocked by PD98059, an extracellular signal-regulated protein kinase (ERK) kinase inhibitor. Ang II-induced ERK activation was inhibited by NAC as well as by PD98059. Exogenous H(2)O(2) also suppressed AT(1)-R mRNA. These results suggest that the production of ROS and the activation of ERK are critical for the downregulation of AT(1)-R mRNA. The generation of ROS through stimulation of AT(1)-R not only mediates signaling of Ang II but also may play a crucial role in the adaptation process of AT(1)-R to the sustained stimulation of Ang II.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Angiotensin II/antagonists & inhibitors
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers
- Angiotensin II Type 2 Receptor Blockers
- Angiotensin Receptor Antagonists
- Animals
- Antioxidants/pharmacology
- Binding, Competitive
- Cells, Cultured
- Down-Regulation
- Enzyme Activation
- Flavonoids/pharmacology
- Gene Expression Regulation/drug effects
- Hydrogen Peroxide/pharmacology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Transfection
Collapse
Affiliation(s)
- T Ichiki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Mayer TJ, Frauenhoffer EE, Meyers AC. Expression of epidermal growth factor and platelet-derived growth factor receptors during cervical carcinogenesis. In Vitro Cell Dev Biol Anim 2000; 36:667-76. [PMID: 11229599 DOI: 10.1290/1071-2690(2000)036<0667:eoegfa>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered expression of epidermal growth factor receptor (EGFR) is common in a variety of epithelial malignancies, including cervical cancer. However, the prognostic significance of EGFR expression is controversial for cervical cancer. Platelet-derived growth factor receptor (PDGFR) expression status is unknown in cervical cancer. Our results demonstrated that expression of EGFR and PDGFR was greatly enhanced in vivo and in organotypic cultures of low-grade cervical dysplastic tissues, but levels were decreased in high-grade lesions. To our knowledge, this is the first report identifying the expression of PDGFR in human epithelium. When low-grade dysplastic organotypic culture tissues were induced to differentiate more completely, EGFR expression, but not PDGFR expression, was relocalized to the basal layer as seen in normal tissues. Differentiation also induced phosphorylation of EGFR but not PDGFR. Our results suggest a role for EGFR and PDGFR during the early stages of cervical carcinogenesis, and demonstrate the facility of organotypic cultures to study the role of these growth factors in the development of cervical cancer.
Collapse
Affiliation(s)
- T J Mayer
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine. The Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | |
Collapse
|
35
|
Shome K, Rizzo MA, Vasudevan C, Andresen B, Romero G. The activation of phospholipase D by endothelin-1, angiotensin II, and platelet-derived growth factor in vascular smooth muscle A10 cells is mediated by small G proteins of the ADP-ribosylation factor family. Endocrinology 2000; 141:2200-8. [PMID: 10830309 DOI: 10.1210/endo.141.6.7517] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show here that A10 cells express the phospholipase D (PLD) isoforms PLD1b and PLD2. The activation of PLD in these cells by angiotensin II (AngII), endothelin-1 (ET-1), and platelet-derived growth factor (PDGF) was found to be sensitive to inhibitors of the activation of ADP-ribosylation factor (ARF) but not to blockers of Rho protein function. PDGF, AngII, and ET-1 induced the binding of ARF proteins to cell membranes in a permeabilized cell assay. Cells permeabilized and depleted of ARF were no longer sensitive to stimulation with AngII, ET-1, or PDGF, but the addition of recombinant myristoylated human ARF1 restored agonist-dependent PLD activity. Expression of dominant negative ARF mutants blocked receptor-dependent activation of PLD. PLD activity was also potently stimulated by treatment with phorbol esters, but this activity was only partially inhibited by brefeldin A or by the overexpression of ARF dominant negative mutants. Transient expression of catalytically inactive mutants of PLD2, but not PLD1, inhibited significantly PDGF- and AngII-dependent PLD activity. We conclude: 1) the activation of PLD by cell surface receptors occurs primarily by an ARF-dependent mechanism in A10 cells, whereas the activation of PLD by protein kinase C-dependent pathways is only partially dependent on the regulation of ARF proteins; and 2) cell surface receptors, such as AngII and PDGF, signal primarily via PLD2 in A10 cells.
Collapse
Affiliation(s)
- K Shome
- Department of Pharmacology of the University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
36
|
Davies MG, Owens EL, Mason DP, Lea H, Tran PK, Vergel S, Hawkins SA, Hart CE, Clowes AW. Effect of platelet-derived growth factor receptor-alpha and -beta blockade on flow-induced neointimal formation in endothelialized baboon vascular grafts. Circ Res 2000; 86:779-86. [PMID: 10764412 DOI: 10.1161/01.res.86.7.779] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth of neointima and neointimal smooth muscle cells in baboon polytetrafluoroethylene grafts is regulated by blood flow. Because neointimal smooth muscle cells express both platelet-derived growth factor receptor-alpha and -beta (PDGFR-alpha and -beta), we designed this study to test the hypothesis that inhibiting either PDGFR-alpha or PDGFR-beta with a specific mouse/human chimeric antibody will modulate flow-induced neointimal formation. Bilateral aortoiliac grafts and distal femoral arteriovenous fistulae were placed in 17 baboons. After 8 weeks, 1 arteriovenous fistulae was ligated, normalizing flow through the ipsilateral graft while maintaining high flow in the contralateral graft. The experimental groups received a blocking antibody to PDGFR-alpha (Ab-PDGFR-alpha; 10 mg/kg; n=5) or PDGFR-beta (Ab-PDGFR-beta; 10 mg/kg; n=6) by pulsed intravenous administration 30 minutes before ligation and at 4, 8, 15, and 22 days after ligation. Controls received carrier medium alone (n=8). Serum antibody concentrations were followed. Grafts were harvested after 28 days and analyzed by videomorphometry. Serum Ab-PDGFR-alpha concentrations fell rapidly after day 7 to 0, whereas serum Ab-PDGFR-beta concentrations were maintained at the target levels (>50 microg/mL). Compared with controls (3.7+/-0.3), the ratio of the intimal areas (normalized flow/high flow) was significantly reduced in Ab-PDGFR-beta (1.2+/-0.2, P<0.01) but not in Ab-PDGFR-alpha (2.2+/-0.4). Ab-PDGFR-alpha decreased significantly the overall smooth muscle cell nuclear density of the neointima (P<0.01) compared with either the control or Ab-PDGFR-beta treated groups. PDGFR-beta is necessary for flow-induced neointimal formation in prosthetic grafts. Targeting PDGFR-beta may be an effective pharmacological strategy for suppressing graft neointimal development.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Aorta/surgery
- Apoptosis
- Arteriovenous Shunt, Surgical
- Blood Flow Velocity
- Cell Division
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Endothelium, Vascular/transplantation
- Femoral Artery/surgery
- Femoral Vein/surgery
- Humans
- Hyperplasia
- Iliac Artery/surgery
- Male
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/transplantation
- Neovascularization, Pathologic
- Papio
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Recombinant Fusion Proteins/pharmacology
- Stress, Mechanical
- Tunica Intima/cytology
- Tunica Intima/pathology
- Tunica Intima/physiology
Collapse
Affiliation(s)
- M G Davies
- Division of Vascular Surgery, University of Washington, Seattle, WA 98195-6410, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Most amino acids are specified by more than one trinucleotide codon. Here we show that amino acids of differing functional importance may be distinguished by the pattern of synonymous codon usage. GC-rich genes tend to be of a greater transcriptional (p<0.01) and mitogenic (p<0.0001) significance than AT-rich genes, consistent with GC-->AT mutational drift in methylated genomic regions. Third-base GC retention also identifies critical amino acids within individual proteins, as indicated by non-random patterns of codon variation between gene homologs and also by differential sequelae of site-directed mutagenesis. Sequence analysis of human receptor tyrosine kinase genes confirms that functionally important transmembrane hydrophobic amino acids are specified by codons containing GC third bases more often than are transmembrane neutral amino acids (chi(2)=134.2). Amino acids encoded by GC third bases thus appear more tightly linked to cell function and survival than are those encoded by AT third bases.
Collapse
Affiliation(s)
- R J Epstein
- Imperial College School of Medicine, London, UK
| | | | | |
Collapse
|
38
|
Abstract
Recent research on the formation and maintenance of the vasculature in the embryo and in the adult has provided a greater understanding of the cellular signals involved in these processes. With this understanding comes the potential means of controlling vascularization in pathological situations such as tumorigenesis and wounding. For the purpose of this review, we will discuss the key receptor tyrosine kinases involved in vascular function and the molecules which relay signals downstream of receptor activation. The receptor tyrosine kinases discussed include the vascular endothelial cell growth factor receptors, Eph receptors, Tie1, and Tie2, all of which are expressed on vascular endothelial cells. We also discuss the roles of the platelet derived growth factor receptors which are expressed on vascular smooth muscle cells. While all of these receptor tyrosine kinases activate many similar effector molecules, some of the signals initiated appear to be distinct. This may explain, at least in part, how different receptor tyrosine kinases expressed in overlapping patterns on the developing vasculature, direct unique biological functions.
Collapse
Affiliation(s)
- M D Tallquist
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
39
|
Smith CW, Klaasmeyer JG, Woods TL, Jones SJ. Effects of IGF-I, IGF-II, bFGF and PDGF on the initiation of mRNA translation in C2C12 myoblasts and differentiating myoblasts. Tissue Cell 1999; 31:403-12. [PMID: 10522389 DOI: 10.1054/tice.1999.0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to study the mechanisms by which growth factors stimulate protein synthesis, C2C12 myogenic cells were treated with a variety of growth factors and the recruitment of free ribosomes to polysomes was quantified. All experiments were conducted on C2C12 myoblasts (24 h prior to induction of fusion) and differentiating myoblasts (24 h after induction of fusion). After the 2 h incubation, cells were rinsed with phosphate buffered saline and quickly frozen at -80 degrees C. Cell lysates were fractionated on 15-60% sucrose gradients by centrifugation at 200,000 x g for 1 h. Absorbance at 254 nm was recorded continuously across the gradient. The response to each of the four growth factors, IGF-I and-II, basic fibroblast growth factor (FGF), and platelet-derived growth factor was a decrease (P < 0.05) in monosome peak height and a increase (P < 0.05) in polysome percentage (P < 0.05). All responses were linear, except IGF-I, and the monosome peak height response to FGF which were quadratic (P < 0.05). None of the growth factors had a significant effect (P > 0.05) on RNA concentrations over the 2-h incubation. Protein content did not vary due to growth factor or level of treatment. This corroborates the hypothesis that the acute increase of protein synthesis exhibited by growth factor treated cells is due to an increase in the activity of existing ribosomes rather than an increase in ribosome synthesis. These results suggest that we can study the mechanisms regulating protein synthesis in muscle cells effectively by studying shifts in ribosomal activity. This method gave more consistent results than the H3-tyrosine incorporation and has the added benefit of not requiring the use of radioactivity. The strong correlation between monosome peak heights and percentage polysomes will allow researchers to measure total protein synthetic activity in a culture from the free or cytoplasmic fraction and to reserve the polysomes for other uses. The similarity of response among the various growth factors may indicate a common mechanism for increasing the initiation of protein synthesis.
Collapse
Affiliation(s)
- C W Smith
- University of California at San Diego, USA
| | | | | | | |
Collapse
|
40
|
Autieri MV, Carbone CJ. 14-3-3Gamma interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells. DNA Cell Biol 1999; 18:555-64. [PMID: 10433554 DOI: 10.1089/104454999315105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has recently been demonstrated that some members of the 14-3-3 protein family play an important role in signal transduction leading to cellular proliferation. We have previously shown that expression of 14-3-3gamma is induced by growth factors in human vascular smooth muscle cells (VSMC). In this study, we cloned the human homolog of 14-3-3gamma and observed many potential phosphorylation sites, suggesting the potential for post-translational modification. In VSMC treated with platelet-derived growth factor (PDGF), 14-3-3gamma protein was expressed and phosphorylated in an activation-dependent manner. Platelet-derived growth factor-induced phosphorylation could be inhibited by phosphokinase C (PKC) inhibitory compounds, and 14-3-3gamma could be phosphorylated in the absence of PDGF by compounds that activate PKC. We also demonstrated interaction between 14-3-3gamma and several PKC isoforms (alpha, beta, gamma, theta, and delta), implicating these PKC family isoforms as the kinases responsible for PDGF-induced 14-3-3gamma phosphorylation. We found that 14-3-3gamma interacted with the signal transduction protein Raf-1, suggesting that 14-3-3gamma provides a link between this protein and PKC. Thus, 14-3-3gamma may represent a signal transduction protein that is regulated transcriptionally and post-transcriptionally by growth factors.
Collapse
Affiliation(s)
- M V Autieri
- Department of Cardiology and Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
41
|
Deleu S, Pirson I, Coulonval K, Drouin A, Taton M, Clermont F, Roger PP, Nakamura T, Dumont JE, Maenhaut C. IGF-1 or insulin, and the TSH cyclic AMP cascade separately control dog and human thyroid cell growth and DNA synthesis, and complement each other in inducing mitogenesis. Mol Cell Endocrinol 1999; 149:41-51. [PMID: 10375016 DOI: 10.1016/s0303-7207(99)00005-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The regular doubling of cell mass, and therefore of cell protein content, is required for repetitive cell divisions. Preliminary observations have shown that in dog thyrocytes insulin induces protein accumulation but not DNA synthesis, while TSH does not increase protein accumulation but triggers DNA synthesis in the presence of insulin. We show here that EGF and phorbol myristate ester complement insulin action in the same way. HGF is the only factor activating both protein accumulation and DNA synthesis. The effects of insulin on protein accumulation and in permitting the TSH effect are reproduced by IGF-1 and are mediated, at least in part by the IGF-1 receptor. The concentration effect curves are similar for both effects. Similar results are obtained in human thyrocytes. They reflect true cell growth, as shown by increases in RNA content and cell size. Carbachol and fetal calf serum also stimulate protein synthesis and accumulation without triggering DNA synthesis, but they are not permissive for the mitogenic effects of TSH or of the general adenylate cyclase activator, forskolin. Moreover the mitogenic effect of TSH greatly decreased in cells deprived of insulin for 2 days although these cells remain hypertrophic. Hypertrophy may therefore be necessary for cell division, but it is not sufficient to permit it. Three different mechanisms can therefore be distinguished in the mitogenic action of TSH: (1) the increase of cell mass (hypertrophy) induced by insulin or IGF-1; (2) the permissive effect of insulin or IGF-1 on the mitogenic effect of TSH which may involve both the increase of cell mass and the induction of specific proteins such as cyclin D3 and (3) the mitogenic effect of the TSH cyclic AMP cascade proper.
Collapse
Affiliation(s)
- S Deleu
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Undie AS. Relationship between dopamine agonist stimulation of inositol phosphate formation and cytidine diphosphate-diacylglycerol accumulation in brain slices. Brain Res 1999; 816:286-94. [PMID: 9878788 DOI: 10.1016/s0006-8993(98)01076-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dopamine receptor-coupled stimulation of inositol phosphate formation has been characterized extensively, but little is known about the diacylglycerol arm of this dual-signaling pathway. This study examined several parameters of cytidine diphosphate-diacylglycerol (CDP-DG) accumulation as an index of agonist-stimulated DG formation. Rat brain slices pre-labeled with 5-[3H]cytidine were incubated with various test agents in the presence of LiCl and accumulated CDP-DG analyzed. Dopamine and SKF38393 significantly and dose-dependently stimulated CDP-DG accumulation. SKF38393 responses were inhibited by neomycin and reversed by myo-inositol or by exclusion of LiCl. Compared to inositol phosphate formation in 2-[3H]inositol-prelabeled slices, the CDP-DG responses were proportionately greater, while the agonist EC50 values were similar between the two assays. The D1-receptor antagonist SCH23390 inhibited SKF38393-mediated responses at 0.1-10 microM concentrations, whereas greater concentrations reversed the inhibition. SKF38393 effects were completely blocked by the DG kinase inhibitor R59022, thus precluding any role for phospholipase-D or de novo phosphatidate synthesis in the dopaminergic response. D609 which inhibits phosphatidylcholine-specific phospholipase-C (PLC), potently inhibited both CDP-DG accumulation and inositol phosphate formation. These findings demonstrate that the selective D1-receptor antagonist SCH23390 is a partial agonist at the D1-like dopamine receptor that couples to phosphoinositide signaling, that dopaminergic facilitation of phosphoinositide signaling is independent of de novo phosphatidate synthesis, and that the widely used enzyme inhibitor, D-609, is probably not selective for phosphatidylcholine-specific PLC in brain slice preparations. The greater sensitivity of the CDP-DG measurement presents this assay as a reliable and possibly superior index of dopamine receptor-coupled PLC activation in intact tissues.
Collapse
Affiliation(s)
- A S Undie
- Neuroscience and Pharmacology Groups, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine Street, Room 450, Baltimore, MD 21201-1180, USA.
| |
Collapse
|
43
|
Rosenkranz S, Kazlauskas A. Evidence for distinct signaling properties and biological responses induced by the PDGF receptor alpha and beta subtypes. Growth Factors 1999; 16:201-16. [PMID: 10372961 DOI: 10.3109/08977199909002130] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factor (PDGF) acts as a potent mitogen, chemoattractant and survival factor for mesenchymal cells. In addition to its importance in mammalian development, PDGF plays a critical role in physiological repair mechanisms and in the pathogenesis of various proliferative diseases. The biological effects of PDGF are initiated via two related receptor tyrosine kinases, termed alpha and betaPDGF receptors. Recent observations provide increasing evidence for distinct roles of the two PDGF receptor subtypes in both embryogenesis and disease formation. Moreover, characterization of the signal relay mechanisms indicates, that the alpha and betaPDGF receptors are not identical in their ability to bind intracellular effector molecules. Furthermore, the two PDGF receptors initiate overlapping, yet distinct signal transduction pathways. These differences may account for some of the variabilities in biological responses resulting from activation of these two receptors.
Collapse
Affiliation(s)
- S Rosenkranz
- The Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
44
|
Rui L, Carter-Su C. Platelet-derived growth factor (PDGF) stimulates the association of SH2-Bbeta with PDGF receptor and phosphorylation of SH2-Bbeta. J Biol Chem 1998; 273:21239-45. [PMID: 9694882 DOI: 10.1074/jbc.273.33.21239] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified SH2-Bbeta as a JAK2-binding protein and substrate involved in the signaling of receptors for growth hormone and interferon-gamma. In this work, we report that SH2-Bbeta also functions as a signaling molecule for platelet-derived growth factor (PDGF). SH2-Bbeta fused to glutathione S-transferase (GST) bound PDGF receptor (PDGFR) from PDGF-treated but not control cells. GST fusion protein containing only the SH2 domain of SH2-Bbeta also bound PDGFR from PDGF-treated cells. An Arg to Glu mutation within the FLVRQS motif in the SH2 domain of SH2-Bbeta inhibited GST-SH2-Bbeta binding to tyrosyl-phosphorylated PDGFR. The N-terminal truncated SH2-Bbeta containing the entire SH2 domain interacted directly with tyrosyl-phosphorylated PDGFR from PDGF-treated cells but not unphosphorylated PDGFR from control cells in a Far Western assay. These results suggest that the SH2 domain of SH2-Bbeta is necessary and sufficient to mediate the interaction between SH2-Bbeta and PDGFR. PDGF stimulated coimmunoprecipitation of endogenous SH2-Bbeta with endogenous PDGFR in both 3T3-F442A and NIH3T3 cells. PDGF stimulated the rapid and transient phosphorylation of SH2-Bbeta on tyrosines and most likely on serines and/or threonines. Similarly, epidermal growth factor stimulated the phosphorylation of SH2-Bbeta; however, phosphorylation appears to be predominantly on serines and/or threonines. In response to PDGF, SH2-Bbeta associated with multiple tyrosyl-phosphorylated proteins, at least one of which (designated p84) does not bind to PDGFR. Taken together, these data strongly argue that, in response to PDGF, SH2-Bbeta directly interacts with PDGFR and is phosphorylated on tyrosine and most likely on serines and/or threonines, and acts as a signaling protein for PDGFR.
Collapse
Affiliation(s)
- L Rui
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
45
|
Lu C, Giordano FJ, Bao X, Morris KC, Rothman A. Antisense fosB RNA inhibits thrombin-induced hypertrophy in cultured pulmonary arterial smooth muscle cells. Circulation 1998; 98:596-603. [PMID: 9714118 DOI: 10.1161/01.cir.98.6.596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have previously reported that fosB mRNA is induced by hypertrophic stimuli (thrombin, angiotensin II) but not proliferative stimuli (platelet-derived growth factor, basic fibroblast growth factor) in pulmonary arterial smooth muscle cells (PASMCs) (J Biol Chem. 1994;9:6399-6404). Our aim in the present study was to investigate the potential role of FosB in PASMC hypertrophy. METHODS AND RESULTS Adenoviruses carrying sense or antisense fosB RNA expression cassettes were used to infect cultured PASMCs with the aim of increasing or inhibiting fosB expression, respectively. We examined whether fosB expression modification affected the growth of quiescent PASMCs, thrombin-induced hypertrophy, or platelet-derived growth factor-induced proliferation. PASMC growth was assessed by daily cell number count, determination of [3H]leucine incorporation, and quantification of total cellular protein. Neither an increase nor a decrease in FosB protein expression caused a significant change in the growth of quiescent PASMCs over a period of 96 hours, indicating that FosB alone is not sufficient to induce hypertrophy. Modification of FosB levels did not affect platelet-derived growth factor-induced PASMC proliferation. An increase in FosB expression did not augment thrombin-induced hypertrophy; however, inhibition of FosB expression resulted in a diminution of thrombin-induced hypertrophy by 58+/-6% (P<0.005). CONCLUSIONS These results suggest that FosB is necessary but not sufficient for thrombin-induced hypertrophy in cultured PASMCs.
Collapse
Affiliation(s)
- C Lu
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, USA
| | | | | | | | | |
Collapse
|
46
|
Okura T, Igase M, Kitami Y, Fukuoka T, Maguchi M, Kohara K, Hiwada K. Platelet-derived growth factor induces apoptosis in vascular smooth muscle cells: roles of the Bcl-2 family. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1403:245-53. [PMID: 9685664 DOI: 10.1016/s0167-4889(98)00065-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apoptosis (programmed cell death) is observed in vascular smooth muscle cells (VSMC) in atherosclerotic lesions and stenotic lesions after injury, and modulates the cellularity of these lesions. It is recognized that cell growth and apoptosis are two linked processes. Platelet-derived growth factor (PDGF) induces VSMC proliferation and migration in vitro. We studied the effect of PDGF on apoptosis in VSMC. Cultured rat VSMC were treated with PDGF-AA or PDGF-BB. PDGF-BB induced cell death in cultured VSMC in a time- and dose-dependent manner, but PDGF-AA did not. Gel electrophoresis of genomic DNA and in situ DNA labeling confirmed that the cell death induced by PDGF-BB is apoptosis. PDGF-BB treatment reduced bcl-2 mRNA and bcl-xl mRNA expression, in contrast, induced bcl-xs mRNA expression, linked with the induction of apoptosis in cultured VSMC.
Collapse
Affiliation(s)
- T Okura
- Second Department of Internal Medicine, Ehime University School of Medicine, Onsen-gun, Ehime 791-0295, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Jurcovicová J, Krueger KS, Nandy I, Lewis DF, Brooks GG, Brown EG. Expression of platelet-derived growth factor-A mRNA in human placenta: effect of magnesium infusion in pre-eclampsia. Placenta 1998; 19:423-7. [PMID: 9699964 DOI: 10.1016/s0143-4004(98)90083-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of platelet-derived growth factor-A (PDGF-A) mRNA was examined in the cotyledons of normal human placentae and those from patients with pre-eclampsia. These patients exhibited pre-delivery blood pressure of 154+/-4/99+/-4 mmHg (mean+/-SEM) and met the criteria established for pre-eclampsia. During labour they received MgSO4 infusion for various time intervals (4-25 h). The PDGF-A message was quantitated to beta-actin by the solution hybridization nuclease protection assay. Since the two groups differed in two parameters (pre-eclampsia and MgSO4 treatment), the direct comparison was not feasible. An analysis of covariance revealed a significant difference in the message between the pre-eclamptic and control groups (P<0.01); the gestational age was not a significant covariate for either group but the time on MgSO4 in pre-eclampsia group was significant (P<0.002). A linear regression analysis of PDGF-A mRNA values for the pre-eclamptic group showed a time-dependent downregulation of the message by MgSO4 (P<0.01, r=- 0.796). These results show a uniform expression of PDGF-A mRNA in cotyledons of normal human placenta between 35 and 40 weeks of gestation. Furthermore, MgSO4 has an inhibitory effect on the expression of this message which may have aside from its anticonvulsive action beneficial effect on the function of pre-eclamptic placenta.
Collapse
Affiliation(s)
- J Jurcovicová
- Department of Pediatrics, Louisiana State University, Medical Center, Shreveport 71130-3932, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Kim BC, Ha KS, Park JB, Kim JH. Evidence for role of phospholipase A2 in phosphatidic acid-induced signaling to c-fos serum response element activation. Biochem Biophys Res Commun 1998; 247:630-5. [PMID: 9647745 DOI: 10.1006/bbrc.1998.8855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activity of exogenous phosphatidic acid (PA) to transactivate c-fos serum response element (SRE) was investigated by transient transfection analysis. Incubation of Rat-2 fibroblast cells with exogenous PA caused a stimulation of c-fos SRE-linked luciferase activity in a dose- and time-dependent manner. The SRE stimulation by PA was dramatically reduced by either pre-treatment with mepacrine, an inhibitor of phospholipase A2 (PLA2), or co-transfection with antisense cytosolic phospholipase A2 (cPLA2) oligonucleotide, whereas lysophosphatidic acid (LPA)-induced SRE activation was not affected. Consistent with this specific requirement for PLA2 by PA, the translocation of cPLA2 protein was rapidly induced followed by PA treatment. Together, these results suggest that PLA2, especially cPLA2, plays a critical role in the nuclear signaling cascade of PA in Rat-2 fibroblast cells.
Collapse
Affiliation(s)
- B C Kim
- Department of Molecular and Cellular Genetics, Hallym University, Chun-Cheon, Kangwon-do, Korea
| | | | | | | |
Collapse
|
49
|
Kitami Y, Fukuoka T, Okura T, Takata Y, Maguchi M, Igase M, Kohara K, Hiwada K. Molecular structure and function of rat platelet-derived growth factor beta-receptor gene promoter. J Hypertens 1998; 16:437-45. [PMID: 9797189 DOI: 10.1097/00004872-199816040-00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To understand the regulatory mechanism of platelet-derived growth factor beta-receptor gene expression. METHODS A 1.7 kb genomic fragment was obtained from a rat genomic library. After we had determined an entire sequence of this fragment, transcription start sites were determined both by primer extension analysis and by riboprobe mapping. We performed a functional promoter assay by using a dual-luciferase reporter system. Progressive 5'-deletions of the fragment and site-directed mutagenesis for the CCAAT motif located at -67 or -94 were used for the assay, and their promoter activities in vascular smooth muscle cells were assessed. Gel-mobility shift analysis was also performed for the CCAAT motif at -67. Effects of the upstream sequence spanning -310 through -120 on heterologous gene promoters were also investigated. RESULTS Multiple transcription start sites were observed in the 5'-flanking region, and the 1.7 kb sequence was actually active as a functional promoter in vascular smooth muscle cells. Two important sequences responsible for the basal transcriptional activity were identified by the functional promoter assay. One was the CCAAT motif at -67 which acts as a promoter itself, and the other was the upstream region spanning -310 through -210 which positively regulates the basal promoter activity. CONCLUSION The basal promoter activity of the rat platelet-derived growth factor beta-receptor gene is mainly regulated by the interaction or coordination of two sequences, the CCAAT motif and the upstream control element.
Collapse
Affiliation(s)
- Y Kitami
- The Second Department of Internal Medicine, Ehime University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang S, Desai D, Wright G, Niles RM, Wright GL. Effects of protein kinase C alpha overexpression on A7r5 smooth muscle cell proliferation and differentiation. Exp Cell Res 1997; 236:117-26. [PMID: 9344591 DOI: 10.1006/excr.1997.3714] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Smooth muscle cell differentiation and proliferation are increasingly seen to be intimately tied to the etiology of atherosclerosis and hypertension. To determine the role of PKC alpha in the regulation of smooth muscle cell differentiation and proliferation, the rat embryonic smooth muscle cell line A7r5 was transfected with an expression vector containing the full-length PKC alpha cDNA. Neomycin-resistant clones which exhibited increased PKC alpha levels compared to wild-type cells were selected. The A7r5 cells overexpressing PKC alpha had altered morphology and decreased growth rates compared to wild-type cells and cells transfected only with the neomycin resistance gene. Electrophoretic mobility shift assays showed that nuclear extracts from overexpressing clones gave a different pattern of protein-DNA binding to an AP-1 consensus oligonucleotide compared to wild-type cells. In contrast to the growth characteristics of these clones, their levels of cell differentiation marker proteins such as vinculin and desmin were not affected by PKC alpha overexpression. Moreover, the smooth muscle-specific differentiation marker alpha-actin was markedly reduced, while beta-actin levels were found to remain unchanged. Northern blot analysis confirmed that alpha-actin downregulation occurred at the RNA level. Western blot analysis revealed that A7r5 cells have five different PKC isoforms and that these isoform protein levels were not changed by PKC alpha overexpression. These findings suggest that PKC alpha regulates growth and differentiation of A7r5 smooth muscle cells and that these changes might result from altered expression/function of AP-1 transcription factors.
Collapse
Affiliation(s)
- S Wang
- Department of Physiology, Marshall University School of Medicine, Huntington, West Virginia 25755, USA
| | | | | | | | | |
Collapse
|