1
|
Molosh AI, Shekhar A. Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. PROGRESS IN BRAIN RESEARCH 2018; 241:37-62. [PMID: 30447756 DOI: 10.1016/bs.pbr.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is monogenic neurodevelopmental disorder caused by mutation of NF1 gene, which leads to increased susceptibility to various tumors formations. Additionally, majority of patients with NF1 are experience high incidence of cognitive deficits. Particularly, we review the growing number of reports demonstrated a higher incidence of autism spectrum disorder (ASD) in individuals with NF1. In this review we also discuss face validity of preclinical Nf1 mouse models. Then we describe discoveries from these animal models that have uncovered the deficiencies in the regulation of Ras and other intracellular pathways as critical mechanisms underlying the Nf1 cognitive problems. We also summarize and interpret recent preclinical and clinical studies that point toward potential pharmacological therapies for NF1 patients.
Collapse
Affiliation(s)
- Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States.
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States; Department of Pharmacology & Toxicology, IU School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translational Institute, IU School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Wang M, Luan H, Wu P, Fan L, Wang L, Duan X, Zhang D, Wang WH, Gu R. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb. Am J Physiol Renal Physiol 2014; 306:F509-16. [PMID: 24370594 PMCID: PMC3949033 DOI: 10.1152/ajprenal.00476.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023] Open
Abstract
We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.
Collapse
Affiliation(s)
- Mingxiao Wang
- Dept. of Pharmacology, New York Medical College, 15 Dana Rd., Valhalla, NY 10595.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
In the two decades since its cloning, thrombopoietin (TPO) has emerged not only as a critical haematopoietic cytokine, but also serves as a great example of bench-to-bedside research. Thrombopoietin, produced by the liver, is the primary regulator of megakaryocyte progenitor expansion and differentiation. Additionally, as TPO is vital for the maintenance of haematopoietic stem cells, it can truly be described as a pan-haematopoietic cytokine. Since recombinant TPO became available, the molecular mechanisms of TPO function have been the subject of extensive research. Via its receptor, c-Mpl (also termed MPL), TPO activates a wide array of downstream signalling pathways, promoting cellular survival and proliferation. Due to its central, non-redundant role in haematopoiesis, alterations of both the hormone and its receptor contribute to human disease; congenital and acquired states of thrombocytosis and thrombocytopenia and aplastic anaemia as a result from dysregulated TPO expression or functional alterations of c-Mpl. With TPO mimetics now in clinical use, the story of this haematopoietic cytokine represents a great success for biomedical research.
Collapse
Affiliation(s)
- Ian S Hitchcock
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
4
|
Sharma R, Wu X, Rhodes SD, Chen S, He Y, Yuan J, Li J, Yang X, Li X, Jiang L, Kim ET, Stevenson DA, Viskochil D, Xu M, Yang FC. Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromin-deficient mice. Hum Mol Genet 2013; 22:4818-28. [PMID: 23863460 DOI: 10.1093/hmg/ddt333] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder affecting 1 in 3500 individuals. Patients with NF1 are predisposed to debilitating skeletal manifestations, including osteopenia/osteoporosis and long bone pseudarthrosis (nonunion fracture). Hyperactivation of the Ras/mitogen-activated protein kinase (MAPK) pathway in NF1 is known to underlie aberrant proliferation and differentiation in cell lineages, including osteoclast progenitors and mesenchymal stem cells (MSCs) also known as osteoblast progenitors (pro-OBLs). Our current study demonstrates the hyper Ras/MAPK as a critical pathway underlying the pathogenesis of NF1-associated fracture repair deficits. Nf1-deficient pro-OBLs exhibit Ras/MAPK hyperactivation. Introduction of the NF1 GTPase activating-related domain (NF1 GAP-related domain) in vitro is sufficient to rescue hyper Ras activity and enhance osteoblast (OBL) differentiation in Nf1(-/-) pro-OBLs and NF1 human (h) MSCs cultured from NF1 patients with skeletal abnormalities, including pseudarthrosis or scoliosis. Pharmacologic inhibition of mitogen-activated protein kinase kinase (MEK) signaling with PD98059 partially rescues aberrant Erk activation while enhancing OBL differentiation and expression of OBL markers, osterix and osteocalcin, in Nf1-deficient murine pro-OBLs. Similarly, MEK inhibition enhances OBL differentiation of hMSCs. In addition, PD98059 rescues aberrant osteoclast maturation in Nf1 haploinsufficient bone marrow mononuclear cells (BMMNCs). Importantly, MEK inhibitor significantly improves fracture healing in an NF1 murine model, Col2.3Cre;Nf1(flox/-). Collectively, these data indicate the Ras/MAPK cascade as a critical pathway in the pathogenesis of bone loss and pseudarthrosis related to NF1 mutations. These studies provide evidence for targeting the MAPK pathway to improve bone mass and treat pseudarthrosis in NF1.
Collapse
|
5
|
Wang L, Li W, Kong S, Wu P, Zhang C, Gu L, Wang M, Wang W, Gu R. Insulin-like growth factor-1 (IGF-1) inhibits the basolateral Cl channels in the thick ascending limb of the rat kidney. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1163-9. [PMID: 22575459 DOI: 10.1016/j.bbamcr.2012.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/23/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022]
Abstract
The aim of the present study is to test the hypothesis that insulin-like-growth factor-1 (IGF-1) plays a role in the regulation of basolateral Cl channels in the thick ascending limb (TAL). The patch-clamp experiments demonstrated that application of IGF-I or insulin inhibited the basolateral 10-pS Cl channels. However, the concentration of insulin required for the inhibition of the Cl channels by 50% (K(1/2)) was ten times higher than those of IGF-1. The inhibitory effect of IGF-I on the 10-pS Cl channels was blocked by suppressing protein tyrosine kinase or by blocking phosphoinositide 3-kinase (PI3K). In contrast, inhibition of phospholipase C (PLC) failed to abolish the inhibitory effect of IGF-1 on the Cl channels in the TAL. Western blot analysis demonstrated that IGF-1 significantly increased the phosphorylation of phospholipid-dependent kinase (PDK) at serine residue 241 (Ser(241)) and AKT at Ser(473) in the isolated medullary TAL. Moreover, inhibition of PI3K with LY294002 abolished the effect of IGF-1 on the phosphorylation of PDK and AKT. The notion that the effect of IGF-1 on the 10-pS Cl channels was induced by stimulation of PDK-AKT-mTOR pathway was further suggested by the finding that rapamycin completely abolished the effect of IGF-1 on the 10-pS Cl channels in the TAL. We conclude that IGF-1 inhibits the basolateral Cl channels by activating PI3K-AKT-mTOR pathways. The inhibitory effect of IGF-1 on the Cl channels may play a role in ameliorating the ischemia-induced renal injury through IGF-1 administration.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pharmacology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bordeaux-Rego P, Luzo A, Costa FF, Olalla Saad ST, Crosara-Alberto DP. Both interleukin-3 and interleukin-6 are necessary for better ex vivo expansion of CD133+ cells from umbilical cord blood. Stem Cells Dev 2010; 19:413-22. [PMID: 19656071 DOI: 10.1089/scd.2009.0098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Umbilical cord blood (UCB), an ideal source for transplantable hematopoietic stem cells (HSC), is readily available and is rich in progenitor cells. Identification of conditions favoring UCB-HSC ex vivo expansion and of repopulating potential remains a major challenge in hematology. CD133+ cells constitute an earlier, less-differentiated HSC group with a potentially higher engraftment capacity. The presence of SCF, Flt3-L, and TPO are essential for CD133+ and/or CD34+ cells ex vivo expansion; however, IL-3 and IL-6 influence has not yet been clearly established. We investigated this influence on CD133+ cells from UCB ex vivo expansion and the effect of these cytokines upon cell phenotype. Immediately after isolation an 85% of CD133+ cell purity was obtained, diminishing after 4 and 8 days of ex vivo expansion. CD133+ fold-increase was higher using IMDM with SCF, Flt3-L, and TPO (BM)+IL-3 or BM+IL-3+IL-6 on day 8 (13.83- and 17.47-fold increase, respectively). BM+IL-6 presented no significant difference from BM alone. We demonstrated that 5.1% of the CD133+ cells expressed IL-6 receptor (IL-6R) after isolation. After 4 and 8 days in culture, the percentage of CD133+ cells that expressed IL-6R was as follows: BM alone (9.8% and 22.02%, respectively); BM+IL-3 (8.33% and 16.74%); BM+IL-6 (9.2% and 17.67%); and BM+IL-3+IL-6 (12.5% and 61.20%). Cell cycle analysis revealed quiescent cells after isolation, 95.5% CD133+ cells in the G0/G1 phase. Regardless of culture period or cytokine incubation, CD133+ cell cycle altered to 70% of CD133+ in the G0/G1 phase. Colony-forming unit (CFU) doubled in BM+IL-3+IL-6 after 8 days of incubation compared with BM group. SOX-2 and NANOG-relative gene expression was detected on day 0 after isolation. BM+IL-6 prevented the decrease in NANOG and SOX-2 gene expression level compared to BM+IL-3 or BM+IL-3+IL-6 incubated cells. Our results indicated that UCB-isolated CD133+ cells were better ex vivo expanded in the presence of SCF, Flt3-L, TPO, IL-3+IL-6. IL-3 probably promotes higher CD133+ cell expansion and IL-6 maintains immature phenotype.
Collapse
Affiliation(s)
- Pedro Bordeaux-Rego
- Center of Haematology and Hemotherapy, University of Campinas, Campinas, São Paulo Brazil
| | | | | | | | | |
Collapse
|
7
|
Zhang J, Schulze KL, Hiesinger PR, Suyama K, Wang S, Fish M, Acar M, Hoskins RA, Bellen HJ, Scott MP. Thirty-one flavors of Drosophila rab proteins. Genetics 2007; 176:1307-22. [PMID: 17409086 PMCID: PMC1894592 DOI: 10.1534/genetics.106.066761] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/21/2007] [Indexed: 11/18/2022] Open
Abstract
Rab proteins are small GTPases that play important roles in transport of vesicle cargo and recruitment, association of motor and other proteins with vesicles, and docking and fusion of vesicles at defined locations. In vertebrates, >75 Rab genes have been identified, some of which have been intensively studied for their roles in endosome and synaptic vesicle trafficking. Recent studies of the functions of certain Rab proteins have revealed specific roles in mediating developmental signal transduction. We have begun a systematic genetic study of the 33 Rab genes in Drosophila. Most of the fly proteins are clearly related to specific vertebrate proteins. We report here the creation of a set of transgenic fly lines that allow spatially and temporally regulated expression of Drosophila Rab proteins. We generated fluorescent protein-tagged wild-type, dominant-negative, and constitutively active forms of 31 Drosophila Rab proteins. We describe Drosophila Rab expression patterns during embryogenesis, the subcellular localization of some Rab proteins, and comparisons of the localization of wild-type, dominant-negative, and constitutively active forms of selected Rab proteins. The high evolutionary conservation and low redundancy of Drosophila Rab proteins make these transgenic lines a useful tool kit for investigating Rab functions in vivo.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Karen L. Schulze
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - P. Robin Hiesinger
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Kaye Suyama
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Stream Wang
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Matthew Fish
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Melih Acar
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Roger A. Hoskins
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Hugo J. Bellen
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| | - Matthew P. Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, Howard Hughes Medical Institute, Department of Molecular and Human Genetics, Stanford University School of Medicine, Stanford, California 94305, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, Department of Genome Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3200 and Department of Physiology Green Center Division for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040
| |
Collapse
|
8
|
Fujimura T, Moriwaki S, Hotta M, Kitahara T, Takema Y. Horse Chestnut Extract Induces Contraction Force Generation in Fibroblasts through Activation of Rho/Rho Kinase. Biol Pharm Bull 2006; 29:1075-81. [PMID: 16754996 DOI: 10.1248/bpb.29.1075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contraction forces generated by non-muscle cells such as fibroblasts play important roles in determining cell morphology, vasoconstriction, and/or wound healing. However, few factors that induce cell contraction forces are known, such as lysophosphatidic acid and thrombin. Our study analyzed various plant extracts for ingredients that induce generation of cell contraction forces in fibroblasts populating collagen gels. We found that an extract of Horse chestnut (Aesculus hippocastanum) is able to induce such contraction forces in fibroblasts. The involvement of actin polymerization and stress fiber formation in the force generation was suggested by inhibition of this effect by cytochalasin D and by Rhodamine phalloidin. Rho kinase inhibitors (Y27632 and HA1077) and a Rho inhibitor (exoenzyme C3) significantly inhibited the force generation induced by the Horse chestnut extract. H7, which inhibits Rho kinase as well as other protein kinases, also significantly inhibited induction of force generation. However, inhibitors of other protein kinases such as myosin light chain kinase (ML-9), protein kinase C (Calphostin), protein kinase A (KT5720), and tyrosine kinase (Genistein, Herbimycin A) had no effect on force generation induced by Horse chestnut extract. These results suggest that the Horse chestnut extract induces generation of contraction forces in fibroblasts through stress fiber formation followed by activation of Rho protein and Rho kinase but not myosin light chain kinase or other protein kinases.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Biological Science Laboratories, Kao Corporation, Haga-gun, Tochigi, Japan.
| | | | | | | | | |
Collapse
|
9
|
Wei Y, Chen YJ, Li D, Gu R, Wang WH. Dual effect of insulin-like growth factor on the apical 70-pS K channel in the thick ascending limb of rat kidney. Am J Physiol Cell Physiol 2004; 286:C1258-63. [PMID: 15151916 DOI: 10.1152/ajpcell.00441.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the patch-clamp technique to study the effect of insulin-like growth factor I (IGF-I) on the apical 70-pS K channel in the isolated thick ascending limb (TAL) of the rat kidney. The isolated TAL was cut open to gain access to the apical membrane. Addition of 25 nM IGF-I stimulates the apical 70-pS K channel and increases channel activity, defined by the product of channel open probability and channel number, from 0.31 to 1.21. The stimulatory effect of IGF-I is not mediated by nitric oxide- or protein tyrosine phosphatase-dependent mechanisms, because inhibition of nitric oxide synthase or blocking protein tyrosine phosphatase did not abolish the stimulatory effect of IGF-I on the 70-pS K channel. In contrast, inhibition of mitogen-activated protein (MAP) kinase with PD-98059 or U0126 abolished the stimulatory effect of IGF-I. This suggests that MAP kinase is responsible for mediating the effect of IGF-I on the apical K channels. Moreover, the effect of IGF-I on the apical 70-pS K channel is biphasic because high concentrations (>200 nM) inhibit apical 70-pS K channels. Application of 400 nM IGF-I decreased channel activity from 1.45 to 0.2. The inhibitory effect of IGF-I is not blocked by calphostin C (an inhibitor of PKC), but inhibition of protein tyrosine kinase with herbimycin A abolished the IGF-induced inhibition. We conclude that IGF-I has a dual effect on the apical 70-pS K channel in the TAL: low concentrations of IGF-I stimulate, whereas high concentrations inhibit the channel activity. The stimulatory effect of IGF-I is mediated by a MAP kinase-dependent pathway, whereas the inhibitory effect is the result of stimulation of protein tyrosine kinase.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
10
|
Lin SK, Kok SH, Yeh FTC, Kuo MYP, Lin CC, Wang CC, Goldring SR, Hong CY. MEK/ERK and signal transducer and activator of transcription signaling pathways modulate oncostatin M-stimulated CCL2 expression in human osteoblasts through a common transcription factor. ACTA ACUST UNITED AC 2004; 50:785-93. [PMID: 15022320 DOI: 10.1002/art.20058] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To analyze the effects of oncostatin M (OSM), a gp130-type cytokine, on CCL2 expression in MG-63 cells, a human osteosarcoma cell line with a characteristic osteoblastic phenotype, and to investigate the signaling pathway involved. METHODS The expression of messenger RNA (mRNA) for CCL2 and c-Fos was analyzed by Northern blotting. Amounts of CCL2 released into the supernatant were measured by enzyme-linked immunosorbent assay. Western blotting was used to examine the activation of MAPK signaling pathways. Interactions between activator protein 1 (AP-1) and DNA were evaluated by electrophoretic mobility shift assay. RESULTS OSM stimulated CCL2 expression at both the mRNA and the protein levels. Cyclooxygenase 2 (COX-2) was also induced by OSM. However, the up-regulation of CCL2 mRNA was COX-2-independent but required tyrosine kinase and protein kinase C (PKC). OSM stimulated the phosphorylation of MEK-1/2 and ERK-1/2 but not p38 and JNK. A transient elevation of c-Fos mRNA was induced by OSM, but PD 98059 (MEK inhibitor), fludarabine (signal transducer and activator of transcription 1 [STAT-1] inhibitor), and piceatannol (STAT-3 and STAT-5 inhibitor) abolished this effect. Electrophoretic mobility shift assay revealed that OSM stimulated AP-1-DNA binding, which was also abolished by PD 98059, fludarabine, and piceatannol. Supershift study further confirmed the role of c-Fos in the above interaction. PD 98059, fludarabine, piceatannol, and curcumin (AP-1 inhibitor) inhibited the OSM-induced expression of CCL2. CONCLUSION OSM induces CCL-2 expression in osteoblasts. Activation of the MEK/ERK and STAT pathways, which leads to c-Fos expression and AP-1-DNA binding, is involved in the process. The signaling requires tyrosine kinase and PKC but not COX-2.
Collapse
Affiliation(s)
- Sze-Kwan Lin
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Farivar RS, Gardner-Thorpe J, Ito H, Arshad H, Zinner MJ, Ashley SW, Whang EE. The efficacy of tyrosine kinase inhibitors on human pancreatic cancer cell lines1. J Surg Res 2003; 115:219-25. [PMID: 14697287 DOI: 10.1016/s0022-4804(03)00246-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We attempted to determine potential therapeutic targets in pancreatic cancer by performing microarray analysis and targeted chemotherapy on three human pancreatic cancer cell lines. We used a microarray to screen 847 genes involved in cytokine signaling, signal transduction, and transcription. Tyrosine kinases represented a common target driving proliferation among the three cell types. We tested the ability of Gleevec (STI-571), Lavendustin, Herbimycin, and Genistein to inhibit the proliferation of cells in culture as assessed by the MTT assay.Eighteen genes were found to be commonly expressed by the three cell lines. Of these, six (33%) included tyrosine phosphorylation signaling as part of the pathway. The most highly expressed common transcript was the EphB3 receptor, which is a tyrosine kinase. Herbimycin and Genistein were able to inhibit the proliferation of all three cell lines in a dose dependent manner, with a mean IC(50) of 1.71 microM and 223 microM, respectively; whereas Lavendustin and Gleevec were ineffective in the inhibition of proliferation. Transcriptional profiling yielded common targets and insights into the biology of cells in culture. Herbimycin- and Genistein-based kinase inhibitors may offer potential and should be tested in other in vivo models for their ability to inhibit the growth of pancreatic cancer.
Collapse
Affiliation(s)
- Robert Saeid Farivar
- Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ohba Y, Mochizuki N, Matsuo K, Yamashita S, Nakaya M, Hashimoto Y, Hamaguchi M, Kurata T, Nagashima K, Matsuda M. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol 2000; 20:6074-83. [PMID: 10913189 PMCID: PMC86083 DOI: 10.1128/mcb.20.16.6074-6083.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap2 is a member of the Ras family of GTPases and exhibits 60% identity to Rap1, but the function and regulation of Rap2 remain obscure. We found that, unlike the other Ras family proteins, the GTP-bound active form exceeded 50% of total Rap2 protein in adherent cells. Guanine nucleotide exchange factors (GEFs) for Rap1, C3G, Epac (or cyclic AMP [cAMP]-GEF), CalDAG-GEFI, PDZ-GEF1, and GFR efficiently increased the level of GTP-Rap2 both in 293T cells and in vitro. GTPase-activating proteins (GAPs) for Rap1, rap1GAPII and SPA-1, stimulated Rap2 GTPase, but with low efficiency. The half-life of GTP-Rap2 was significantly longer than that of GTP-Rap1 in 293T cells, indicating that low sensitivity to GAPs caused a high GTP/GDP ratio on Rap2. Rap2 bound to the Ras-binding domain of Raf and inhibited Ras-dependent activation of Elk1 transcription factor, as did Rap1. The level of GTP-Rap2 in rat 3Y1 fibroblasts was decreased by the expression of v-Src, and expression of a GTPase-deficient Rap2 mutant inhibited v-Src-dependent transformation of 3Y1 cells. Altogether, Rap2 is regulated by a similar set of GEFs and GAPs as Rap1 and functions as a slowly responding molecular switch in the Rap1 signaling cascade.
Collapse
Affiliation(s)
- Y Ohba
- Department of Pathology, Research Institute, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yakabi K, Ro S, Okazaki R, Shiojima J, Tsuda K, Mimura H, Tomono H, Nakamura T. Water extract of Helicobacter pylori stimulates interleukin-8 secretion by a human gastric epithelial cell line (JR-St) through protein tyrosine phosphorylation. J Gastroenterol Hepatol 2000; 15:263-70. [PMID: 10764026 DOI: 10.1046/j.1440-1746.2000.02130.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Infection by Helicobacter pylori induces cytokine production in gastric mucosal cells. Production of interleukin-8 (IL-8) is known to be markedly increased and is believed to play an important role in gastric mucosal inflammation. The aim of this study was to elucidate the effects of soluble factors of H. pylori on IL-8 production in a gastric epithelial cell line, JR-St. METHODS JR-St cells were cocultured with a H. pylori water extract, live H. pylori or culture medium supernatant for 24 h, then the IL-8 secreted into the culture medium was assayed. The effects of three different inhibitors; (i) an inhibitor of protein kinase C (PKC); (ii) an inhibitor of PKC and protein kinase A (PKA); and (iii) an inhibitor of protein tyrosine kinase (PTK) were also compared. Specific induction of IL-8 mRNA was also examined. RESULTS Water extract of H. pylori increased IL-8 secretion 7.72-fold, more than the control. The increase was concentration dependent. Live bacteria, supernatant and water extract significantly stimulated IL-8 secretion. Addition of live bacteria increased IL-8 secretion most strongly, while the effect of water extract was small (22% that of live bacteria). Secretion was not inhibited by the PKC inhibitor staurosporine or the inhibitors of PKA and PKC H7. However, secretion was significantly reduced by the PTK inhibitor herbimycin in a dose-dependent manner. Furthermore, 24 h exposure to water extract increased IL-8 mRNA expression, suggesting water extract increased production of IL-8. CONCLUSIONS Some soluble factors of H. pylori can stimulate IL-8 production by JR-St cells. Stimulation was not dependent on PKA or PKC but was, at least partially, dependent on protein tyrosine phosphorylation. This suggests that soluble factors of H. pylori can play an important role in mediating the inflammatory response of H. pylori gastritis.
Collapse
Affiliation(s)
- K Yakabi
- The Third Department of Internal Medicine, Teikyo University School of Medicine, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sai X, Naruse K, Sokabe M. Activation of pp60(src) is critical for stretch-induced orienting response in fibroblasts. J Cell Sci 1999; 112 ( Pt 9):1365-73. [PMID: 10194415 DOI: 10.1242/jcs.112.9.1365] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When subjected to uni-axial cyclic stretch (120% in length, 1 Hz), fibroblasts (3Y1) aligned perpendicular to the stretch axis in a couple of hours. Concomitantly with this orienting response, protein tyrosine phosphorylation of cellular proteins (molecular masses of approximately 70 kDa and 120–130 kDa) increased and peaked at 30 minutes. Immuno-precipitation experiments revealed that paxillin, pp125(FAK), and pp130(CAS) were included in the 70 kDa, and 120–130 kDa bands, respectively. Treatment of the cells with herbimycin A, a tyrosine kinase inhibitor, suppressed the stretch induced tyrosine phosphorylation and the orienting response suggesting that certain tyrosine kinases are activated by stretch. We focused on pp60(src), the most abundant tyrosine kinase in fibroblasts. The kinase activity of pp60(src) increased and peaked at 20 minutes after the onset of cyclic stretch. Treatment of the cells with an anti-sense S-oligodeoxynucleotide (S-ODN) against pp60(src), but not the sense S-ODN, inhibited the stretch induced tyrosine phosphorylation and the orienting response. To further confirm the involvement of pp60(src), we performed the same sets of experiments using c-src-transformed 3Y1 (c-src-3Y1) fibroblasts. Cyclic stretch induced a similar orienting response in c-src-3Y1 to that in wild-type 3Y1, but with a significantly faster rate. The time course of the stretch-induced tyrosine phosphorylation was also much faster in c-src-3Y1 than in 3Y1 fibroblasts. These results strongly suggest that cyclic stretch induces the activation of pp60(src) and that pp60(src) is indispensable for the tyrosine phosphorylation of pp130(CAS), pp125(FAK) and paxillin followed by the orienting response in 3Y1 fibroblasts.
Collapse
Affiliation(s)
- X Sai
- Department of Physiology, Nagoya University School of Medicine, Showa-ku, Nagoya 466 Japan
| | | | | |
Collapse
|
15
|
de Groot RP, Coffer PJ, Koenderman L. Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 1998; 10:619-28. [PMID: 9794243 DOI: 10.1016/s0898-6568(98)00023-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptors for the I1-3/IL-5/GM-CSF cytokine family are composed of a heterodimeric complex of a cytokine-specific alpha chain and a common beta chain (betac). Binding of IL-3/IL-5/GM-CSF to their respective receptors rapidly induces activation of multiple intracellular signalling pathways, including the Ras-Raf-ERK, the JAK/STAT, the phosphatidylinositol 3-kinase PKB, and the JNK/SAPK and p38 signalling pathways. This review focuses on recent advancements in understanding how these different signalling pathways are activated by IL-3/IL-5/GM-CSF receptors, and how the individual pathways contribute to the pleiotropic effects of IL-3/IL-5/GM-CSF on their target cells, including proliferation, differentiation, survival, and effector functions.
Collapse
Affiliation(s)
- R P de Groot
- Department of Pulmonary Diseases, University Hospital Utrecht, The Netherlands.
| | | | | |
Collapse
|
16
|
Abstract
Cytokines are important regulators of hematopoiesis. They exert their actions by binding to specific receptors on the cell surface. Interleukin-5 (IL-5) is a critical cytokine that regulates the growth, activation, and survival of eosinophils. Because eosinophils play a seminal role in the pathogenesis of asthma and allergic diseases, an understanding of the signal transduction mechanism of IL-5 is of paramount importance. The IL-5 receptor is a heterodimer of alpha- and beta-subunits. The alpha-subunit is specific, whereas the beta-subunit is common to IL-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) receptors and is crucial for signal transduction. It has been shown that there are two major signaling pathways of IL-5 in eosinophils. IL-5 activates Lyn, Syk, and JAK2 and propagates signals through the Ras-MAPK and JAK-STAT pathways. Studies suggest that Lyn, Syk, and JAK2 tyrosine kinases and SHP-2 tyrosine phosphatase are important for eosinophil survival. In contrast to their survival-promoting activity, Lyn and JAK2 appear to have no role in eosinophil degranulation or expression of surface adhesion molecules. Raf-1 kinase, on the other hand, is critical for eosinophil degranulation and adhesion molecule expression. Btk is involved in IL-5 stimulation of B cell function. However, it does not appear to be important for eosinophil function. Thus a clear segregation of signaling molecules based on their functional importance is emerging. This review describes the signal transduction mechanism of the IL-3/GM-CSF/IL-5 receptor system and compares and contrasts IL-5 signaling between eosinophils and B cells.
Collapse
Affiliation(s)
- T Adachi
- The University of Texas Medical Branch, Division of Allergy and Immunology, Department of Internal Medicine, Galveston, Texas 77555-0762, USA
| | | |
Collapse
|
17
|
Mergler S, Steinhausen K, Wiederholt M, Strauss O. Altered regulation of L-type channels by protein kinase C and protein tyrosine kinases as a pathophysiologic effect in retinal degeneration. FASEB J 1998; 12:1125-34. [PMID: 9737715 DOI: 10.1096/fasebj.12.12.1125] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of protein tyrosine kinases (PTK) on L-type calcium channels in cultured retinal pigmented epithelium (RPE) from rats with retinal dystrophy was investigated. Barium currents through Bay K 8644 (10(-6) M) sensitive L-type channels were measured using the patch-clamp technique. The current density of L-type currents is twice as high and the inactivation time constants are much slower than in cells from nondystrophic control rats. Application of the PTK blockers genistein, lavendustin A, and herbimycin A (all 5 x 10(-6) M) led to an increase of L-type currents. Intracellular application of pp60c-src (30 U/ml) via the patch pipette led to a transient decrease of L-type currents. The protein kinase A (PKA) and PKG blocker H9 (10(-6) M) showed no effect on L-type currents. However, the protein kinase C blocker chelerythrine (10(-5) M) reduced these currents. Up-regulation of PKC by 10(-6) M 4beta-phorbol-12 myristate-13 acetate (PMA) led to a decrease of L-type currents. Additional application of genistein led to a further decrease of these currents. However, intracellular application of pp60(c-src) in PMA-treated cells led to a transient increase of L-type currents. Investigating the calcium response to bFGF application showed that RPE cells from RCS rats used different pathways than control RPE cells to increase cytosolic free calcium. This different pathway does not involve the activation of L-type channels. The present study with RPE cells from rats with retinal dystrophy shows a changed integration of PTK and PKC in channel regulation. Considering the altered response to bFGF in RCS-RPE cells, this disturbed regulation of L-type channels by tyrosine kinases is involved in the etiology of retinal degeneration in RCS rats.
Collapse
Affiliation(s)
- S Mergler
- Institut für Klinische Physiologie, Universitätsklinikum Benjamin-Franklin der Freien Universität Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Tsuruta N, Yatsunami J, Takayama K, Nakanishi Y, Ichinose Y, Hara N. Granulocyte-macrophage-colony stimulating factor stimulates tumor invasiveness in squamous cell lung carcinoma. Cancer 1998. [DOI: 10.1002/(sici)1097-0142(19980601)82:11<2173::aid-cncr12>3.0.co;2-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Zhang YY, Vik TA, Ryder JW, Srour EF, Jacks T, Shannon K, Clapp DW. Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines. J Exp Med 1998; 187:1893-902. [PMID: 9607929 PMCID: PMC2212307 DOI: 10.1084/jem.187.11.1893] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1998] [Revised: 03/19/1998] [Indexed: 01/21/2023] Open
Abstract
Neurofibromin, the protein encoded by the NF1 tumor-suppressor gene, negatively regulates the output of p21(ras) (Ras) proteins by accelerating the hydrolysis of active Ras-guanosine triphosphate to inactive Ras-guanosine diphosphate. Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile chronic myelogenous leukemia (JCML) and other malignant myeloid disorders, and heterozygous Nf1 knockout mice spontaneously develop a myeloid disorder that resembles JCML. Both human and murine leukemias show loss of the normal allele. JCML cells and Nf1-/- hematopoietic cells isolated from fetal livers selectively form abnormally high numbers of colonies derived from granulocyte-macrophage progenitors in cultures supplemented with low concentrations of granulocyte-macrophage colony stimulating factor (GM-CSF). Taken together, these data suggest that neurofibromin is required to downregulate Ras activation in myeloid cells exposed to GM-CSF. We have investigated the growth and proliferation of purified populations of hematopoietic progenitor cells isolated from Nf1 knockout mice in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF), as well as to GM-CSF. We found abnormal proliferation of both immature and lineage-restricted progenitor populations, and we observed increased synergy between SCF and either IL-3 or GM-CSF in Nf1-/- progenitors. Nf1-/- fetal livers also showed an absolute increase in the numbers of immature progenitors. We further demonstrate constitutive activation of the Ras-Raf-MAP (mitogen-activated protein) kinase signaling pathway in primary c-kit+ Nf1-/- progenitors and hyperactivation of MAP kinase after growth factor stimulation. The results of these experiments in primary hematopoietic cells implicate Nf1 as playing a central role in regulating the proliferation and survival of primitive and lineage-restricted myeloid progenitors in response to multiple cytokines by modulating Ras output.
Collapse
Affiliation(s)
- Y Y Zhang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Naito S, Shimizu S, Maeda S, Wang J, Paul R, Fagin JA. Ets-1 is an early response gene activated by ET-1 and PDGF-BB in vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C472-80. [PMID: 9486138 DOI: 10.1152/ajpcell.1998.274.2.c472] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ets-1 is a transcription factor that activates expression of matrix-degrading proteinases such as collagenase and stromelysin. To study the control of ets-1 gene expression in rat vascular smooth muscle cells (VSMC), cells were exposed to factors known to regulate VSMC migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB), endothelin-1 (ET-1), and phorbol 12-myristate 13-acetate (PMA) induced a dose-dependent expression of ets-1 mRNA. These effects were abrogated by inhibition of protein kinase C (PKC) by H-7 or chronic PMA treatment. Ets-1 mRNA was superinduced by PDGF-BB and ET-1 in the presence of cycloheximide. The chelation of intracellular Ca2+ by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester and the depletion of endoplasmic reticulum intracellular Ca2+ concentration ([Ca2+]i) by thapsigargin inhibited PDGF-BB- and ET-1-induced ets-1 mRNA, whereas ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid had no effect. However, [Ca2+]i release alone was not sufficient to increase ets-1 mRNA. Forskolin blocked ET-1-, PDGF-BB-, and PMA-induced ets-1 mRNA, as well as inositol phosphate formation, consistent with an effect through impairment of PKC activation. Inhibitors of ets-1 gene expression, such as H-7 and herbimycin A, inhibited the ET-1 induction of collagenase I mRNA. We propose that ets-1 may be an important element in the orchestration of matrix proteinase expression and of vascular remodeling after arterial injury.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Animals
- Becaplermin
- Benzoquinones
- Calcium/metabolism
- Cells, Cultured
- Collagenases/genetics
- Collagenases/metabolism
- Culture Media, Serum-Free
- Cyclic AMP/pharmacology
- Cycloheximide/pharmacology
- Endoplasmic Reticulum/metabolism
- Endothelin-1/pharmacology
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Extracellular Matrix/metabolism
- Gene Expression Regulation/drug effects
- Lactams, Macrocyclic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Protein Kinase C/metabolism
- Protein Synthesis Inhibitors/pharmacology
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-ets
- Proto-Oncogene Proteins c-sis
- Quinones/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Rifabutin/analogs & derivatives
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- S Naito
- Division of Endocrinology and Metabolism, College of Medicine, University of Cincinnati, Ohio 45267-0547, USA
| | | | | | | | | | | |
Collapse
|
21
|
Boeuf H, Hauss C, Graeve FD, Baran N, Kedinger C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J Biophys Biochem Cytol 1997; 138:1207-17. [PMID: 9298977 PMCID: PMC2132559 DOI: 10.1083/jcb.138.6.1207] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
STAT transcription factors are induced by a number of growth factors and cytokines. Within minutes of induction, the STAT proteins are phosphorylated on tyrosine and serine residues and translocated to the nucleus, where they bind to their DNA targets. The leukemia inhibitory factor (LIF) mediates pleiotropic and sometimes opposite effects both in vivo and in cultured cells. It is known, for example, to prevent differentiation of embryonic stem (ES) cells in vitro. To get insights into LIF-regulated signaling in ES cells, we have analyzed protein-binding and transcriptional properties of STAT recognition sites in ES cells cultivated in the presence and in the absence of LIF. We have detected a specific LIF-regulated DNA-binding activity implicating the STAT3 protein. We show that STAT3 phosphorylation is essential for this LIF-dependent DNA-binding activity. The possibility that ERK2 or a closely related protein kinase, whose activity is modulated in a LIF-dependent manner, contributes to this phosphorylation is discussed. Finally, we show that the multimerized STAT3-binding DNA element confers LIF responsiveness to a minimal thymidine kinase promoter. This, together with our observation that overexpression of STAT3 dominant-negative mutants abrogates this LIF responsiveness, clearly indicates that STAT3 is involved in LIF-regulated transcriptional events in ES cells. Finally, stable expression of such a dominant negative mutant of STAT3 induces morphological differentiation of ES cells despite continuous LIF supply. Our results suggest that STAT3 is a critical target of the LIF signaling pathway, which maintains pluripotent cell proliferation.
Collapse
Affiliation(s)
- H Boeuf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur), F-67404 ILLKIRCH Cedex C.U. de Strasbourg, France
| | | | | | | | | |
Collapse
|
22
|
Activation of JAK2 in Human Vascular Endothelial Cells by Granulocyte-Macrophage Colony-Stimulating Factor. Blood 1997. [DOI: 10.1182/blood.v89.3.863] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractBesides the regulation of hematopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the expression of a functional program in endothelial cells (ECs) related to angiogenesis and to their survival in the bone marrow microenvironment. ECs express specific GM-CSF high-affinity binding sites, which mediate the proliferative and migratory response. We now report that ECs express the α and β subunits of GM-CSF receptor (GM-CSFR), and that GM-CSF is able to activate the Janus kinase (JAK)2, a member of the cytosolic tyrosine kinase family, which is known to mediate signals of several non–tyrosine kinase receptors. JAK2 tyrosine phoshorylation, as well as activation of its catalytic activity, is induced by subnanomolar concentrations of GM-CSF and occurs within 3 minutes of stimulation and persists at least for 10 minutes. The effect is specific as inferred by the lack of effect of heat-inactivated GM-CSF or neutralized by specific antibodies and by the finding that interleukin-5, which utilizes a specific α chain and the same β chain of GM-CSFR, does not phosphorylate JAK2. Furthermore, we show that the amount of JAK2 physically associated with GM-CSFR β chain is increased after GM-CSF stimulation and that GM-CSF triggers both β chain and JAK2 tyrosine phosphorylation. Taken together, these results suggest that biologic activities of GM-CSF in vascular endothelium may, in part, be elicited by GM-CSFR–mediated JAK2 activation.
Collapse
|
23
|
Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 1996; 16:488-96. [PMID: 8630677 DOI: 10.1161/01.atv.16.3.488] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thrombin increases endothelial permeability in a rapid and reversible way. This effect requires the catalytic activity of the enzyme and thrombin receptor engagement. Endothelial cell permeability is mostly regulated by intercellular junction organization. In the present study, we investigated whether opening of intercellular gaps after thrombin treatment could be related to changes in adherence-junction molecular organization. By immunofluorescence analysis, we found that thrombin stimulation of endothelial cells caused a marked alteration of the distribution of vascular endothelial (VE)-cadherin and of the associated catenins. These molecules, which are strictly localized at intercellular boundaries in confluent resting cells, were absent in the areas of intercellular retraction. Immunoprecipitation analysis indicated that thrombin disrupted the VE-cadherin/catenin complex. This effect was reversible and correlated with the increase in endothelial permeability. The use of a protein kinase C inhibitor (calphostin C) blocked both thrombin-induced permeability and disassembly of adherence-junction components. We propose that thrombin's effect on endothelial cell junction organization is an important determinant in the increase in endothelial permeability induced by this agent.
Collapse
Affiliation(s)
- M J Rabiet
- CEA, Laboratoire d'Hématologie, INSERM U217, Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | | | | | | | |
Collapse
|
24
|
Ohtsuka T, Kaziro Y, Satoh T. Analysis of the T-cell activation signaling pathway mediated by tyrosine kinases, protein kinase C, and Ras protein, which is modulated by intracellular cyclic AMP. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1310:223-32. [PMID: 8611637 DOI: 10.1016/0167-4889(95)00172-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
T-cell receptor (TCR) triggering by an anti-CD3 antibody or phytohemagglutinin (PHA) as well as the treatment with phorbol myristate acetate (PMA), a direct activator of protein kinase C (PKC), induces activation of Ras in T-lymphocytes (Downward, J. et al. (1990)) Nature 364, 719-723). In this paper, we studied the role of Ras in the process of TCR-mediated T-cell activation using a human lymphomic Jurkat cell line. The stimulatory effect of TCR cross-linking on Ras activation was inhibited by herbimycin A, a specific inhibitor of protein tyrosine kinases (PTKs), whereas PMA-induced Ras activation was not affected. On the other hand, calphostin C, a specific inhibitor of PKC, blocked not only PMA-induced, but also TCR-mediated formation of Ras.GTP. Furthermore, down-regulation of PMA-sensitive PKC severely impaired the activation of Ras in response to TCR-stimulation. Tyrosine-phosphorylation and translocation to the particulate fraction of phospholipase C-gamma 1 (PLC-gamma 1) were observed upon T-cell activation. Subcellular localization of PKC was also changed when the cells were stimulated with an anti-CD3 antibody or PMA. While TCR-stimulated translocation of PKC was observed only transiently, PMA-induced translocation of PKC was more sustained. These results suggest that the activation of PLC-gamma 1 by PTK and subsequent activation of PKC are important for TCR-mediated Ras activation in Jurkat cells. An activated form of Ras enhanced the activation of interleukin 2 (IL-2) promoter by TCR stimulation or PMA treatment, although the activated Ras by itself was insufficient for IL-2 promoter activation. On the other hand, a dominant-inhibitory Ras diminished almost completely the activation of IL-2 promoter induced by PMA plus calcium ionophore, indicating that Ras is essential for transduction of T-cell activation signals. Cholera toxin (CTX), which directly activates Gs alpha, is shown to inhibit the activation of IL-2 promoter. TCR-mediated Ras activation, tyrosine phosphorylation and translocation of cellular proteins including ZAP-70, PLC-gamma 1 , and PKC. An activated Gs alpha mutant as well as dibutylyl cAMP (dBcAMP) also showed similar inhibitory effects.
Collapse
Affiliation(s)
- T Ohtsuka
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | | |
Collapse
|
25
|
The Role of Interleukin 5 in the Production and Function of Eosinophils. BLOOD CELL BIOCHEMISTRY 1996. [DOI: 10.1007/978-0-585-31728-1_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Warskulat U, Newsome W, Noe B, Stoll B, Haussinger D. Anisoosmotic regulation of hepatic gene expression. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:57-65. [PMID: 8929814 DOI: 10.1515/bchm3.1996.377.1.57] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of anisoosmolarity on the abundance of various mRNA species was examined in perfused rat liver and H4IIE rat hepatoma cells. Hyperosmotic exposure (385 mosmol/l) of isolated rat livers increased mRNA levels for tyrosine aminotransferase (TAT) by 246% and those for phosphoenolpyruvate carboxykinase (PEPCK) by 186%, whereas hypoosmotic exposure (225 mosmol/l) decreased their levels to 43% and 42%, respectively. mRNA levels for fructose-1,6-bisphosphatase (FBP), argininosuccinate lyase (ASL), argininosuccinate synthetase (ASS), glutamine synthetase (GS), glutaminase (GA) and glucokinase (GK) were largely unaffected. In H4IIE cells the modulation of TAT and PEPCK mRNA levels by anisoosmotic exposure was similar to that found in perfused rat liver. ASL and glutaminase mRNA levels were influenced in an opposite manner. The effects of anisoosmolarity on PEPCK mRNA levels in H4IIE cells were largely abolished in the presence of the protein kinase inhibitors H-7, H-89 and HA-1004. Other protein kinase inhibitors such as Go-6850, KN-62, Rp-8-CPT-cAMPS, rapamycin, wortmannin, genistein or herbimycin did not prevent the osmosensitivity of PEPCK mRNA levels. Also pertussis and cholera toxin, vanadate and colchicine did not affect the osmosensitivity of PEPCK mRNA levels. The data suggest that anisoosmotic exposure acts on the levels of some but not all mRNA species and that this action may involve changes in protein phosphorylation. They further indicate that the recently identified osmosensitive signal transduction pathway which involves a G-protein and tyrosine kinase dependent activation of mitogen-activated protein kinases is apparently not involved in the osmoregulation of PEPCK mRNA levels.
Collapse
Affiliation(s)
- U Warskulat
- Medizinische Universitatsklinik, Klinik fur Gastroenterologie, Hepatologie und Infektiologie, Heinrich-Heine-Universitat, Dusseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Wong A, Sakamoto KM. Granulocyte-macrophage colony-stimulating factor induces the transcriptional activation of egr-1 through a protein kinase A-independent signaling pathway. J Biol Chem 1995; 270:30271-3. [PMID: 8530445 DOI: 10.1074/jbc.270.51.30271] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) rapidly and transiently induces the transcriptional activation of the early growth response gene-1 (egr-1) in the human factor-dependent myeloid leukemic cell line, TF-1. We previously demonstrated that the cAMP response element (CRE) is required for GM-CSF-induced egr-1 expression and that phosphorylation of CREB on serine 133 plays a critical role during GM-CSF signal transduction. To determine whether GM-CSF activates signaling pathways through a protein kinase A-dependent or -independent pathway, we measured cAMP levels following GM-CSF or forskolin treatment of TF-1 cells. Forskolin but not GM-CSF stimulation resulted in an increase in cAMP levels. Transient transfection assays with TF-1 cells were also performed with a -116-nucleotide egr-1 promoter construct and the protein kinase inhibitor, PKI. Although PKI inhibited forskolin induction of the -116-nucleotide construct, it did not affect GM-CSF stimulation of this construct. In the present study, we demonstrated that GM-CSF induces egr-1 expression through a protein kinase A-independent pathway.
Collapse
Affiliation(s)
- A Wong
- Gwynne Hazen Cherry Memorial Laboratories, Department of Pediatrics, UCLA School of Medicine 90095-1752, USA
| | | |
Collapse
|
29
|
Tanaka S, Takahashi N, Udagawa N, Murakami H, Nakamura I, Kurokawa T, Suda T. Possible involvement of focal adhesion kinase, p125FAK, in osteoclastic bone resorption. J Cell Biochem 1995; 58:424-35. [PMID: 7593264 DOI: 10.1002/jcb.240580405] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1 alpha,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115- to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115-130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.
Collapse
Affiliation(s)
- S Tanaka
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Briggs SD, Bryant SS, Jove R, Sanderson SD, Smithgall TE. The Ras GTPase-activating protein (GAP) is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase, Hck. J Biol Chem 1995; 270:14718-24. [PMID: 7782336 DOI: 10.1074/jbc.270.24.14718] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Ras GTPase-activating protein (GAP) is a target for protein tyrosine kinases of both the receptor and cytoplasmic classes and may serve to integrate tyrosine kinase and Ras signaling pathways. In this report, we provide evidence that GAP is an SH3 domain-binding protein and substrate for the Src-related tyrosine kinase Hck, which has been implicated in the regulation of myeloid cell growth, differentiation, and function. Wild-type (WT) or kinase-inactive (K269E) mutant Hck proteins were co-expressed with bovine GAP using the baculovirus/Sf-9 cell system. GAP was readily phosphorylated on tyrosine by WT but not K269E Hck. GAP was present in WT Hck immunoprecipitates from the co-infected cells, indicative of Hck.GAP complex formation. Unexpectedly, GAP also associated with the kinase-inactive mutant of Hck, suggesting that tyrosine autophosphorylation of Hck is not required for complex formation. The WT and K269E forms of Hck also associated with GAP mutants lacking either the C-terminal catalytic domain (delta CAT) or the Src homology region (delta SH), indicating that these GAP domains are dispensable for complex formation. Recombinant GST fusion proteins containing the Hck, Src, Fyn, or Lck SH3 domains associated with full-length GAP, delta CAT, and delta SH, all of which share an N-terminal proline-rich region resembling an SH3-binding motif (PPLPPPPPQLP). Deletion of the highly conserved YXY sequence from the Hck SH3 domain abolished binding. GAP-SH3 interaction was also inhibited by the proline-rich peptide GFPPLPPPPPQLPTLG, which corresponds to N-terminal amino acids 129-144 of bovine GAP. An N-terminal deletion mutant of GAP lacking this proline-rich region did not bind to the Hck SH3 domain. These data implicate the Hck SH3 domain in GAP interaction, and suggest a general function for the SH3 domains of Src family kinases in recognition of GAP via its proline-rich N-terminal domain.
Collapse
Affiliation(s)
- S D Briggs
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | | | |
Collapse
|
31
|
Watanabe S, Ito Y, Miyajima A, Arai K. Granulocyte macrophage-colony stimulating factor-dependent replication of polyoma virus replicon in hematopoietic cells. Analyses of receptor signals for replication and transcription. J Biol Chem 1995; 270:9615-21. [PMID: 7721893 DOI: 10.1074/jbc.270.16.9615] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) stimulates proliferation of various hematopoietic cells. Using cytoplasmic deletion mutants of the human GM-CSF receptor (hGMR) beta subunit and tyrosine kinase inhibitors, we previously showed that distinct signaling pathways of hGMR are involved in the induction of c-fos/c-jun mRNAs and of c-myc mRNA/cell proliferation. We used polyoma virus (Py) replicon to analyze the initiation of DNA replication induced by hGM-CSF in mouse BA/F3 pro-B cells expressing hGMR. hGM-CSF efficiently stimulated Py replication in the presence of Py enhancer and Py large T antigen supplied in trans. Analyses of Py enhancer mutants revealed that hGM-CSF promoted Py replication and activated transcription of the Py early promoter through the PEA3/PEBP5 region of Py enhancer. The membrane proximal region of hGMR beta subunit is required for activation of PEA3/PEBP5-dependent replication which is also required for activation of DNA synthesis in the host cells. In contrast, a more distal region which is essential for activation of c-fos and c-jun genes is required for the PEA3/PEBP5-dependent transcription of Py early promoter. These results indicate that distinct signaling pathways of hGMR are required to activate PEA3/PEBP5-dependent replication and transcription although the same enhancer is required for both activities.
Collapse
Affiliation(s)
- S Watanabe
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
Rao P, Mufson RA. A membrane proximal domain of the human interleukin-3 receptor beta c subunit that signals DNA synthesis in NIH 3T3 cells specifically binds a complex of Src and Janus family tyrosine kinases and phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:6886-93. [PMID: 7896837 DOI: 10.1074/jbc.270.12.6886] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The high affinity human interleukin-3 receptor is a heterodimeric protein consisting of an alpha and beta c subunit. The beta c subunit is responsible for receptor signal transduction. We have shown that a membrane proximal domain of the cytoplasmic tail of the human beta c subunit (amino acids 451-517) is minimally required for human IL-3 to signal DNA synthesis in quiescent transfected NIH 3T3 cells. Glutathione S-transferase (GST) fusion proteins of this 451-517 region and another region 451-562 that includes an acidic domain previously shown in other receptors to bind Src family kinases were constructed. Purified Lyn and Lck kinase, but not Fes, could phosphorylate tyrosines in both domains. Adsorption with lysates from the human IL-3-dependent hematopoietic cell line (TF-1) or 3T3 cells and in vitro phosphorylation showed that both these domains were intensely phosphorylated. Phosphoamino acid analysis, however, revealed that the majority of phosphorylation was on serine and threonine rather than tyrosine. Adsorption of these domains with 3T3 or TF-1 cell lysates, followed by immunoblotting, showed that cytoplasmic tyrosine kinases Lyn, Fes, and JAK-2 could also stably associate with both domains; however, Src family kinases are more strongly recognized by both regions than JAK-2 kinase. In addition, phosphatidylinositol 3-kinase from cell lysates was also found stably associated with these domains, but GTPase activating protein, Vav, Sos1, or Grb2 were not.
Collapse
Affiliation(s)
- P Rao
- Holland Laboratory for BioMedical Science, American Red Cross, Rockville, Maryland 20855
| | | |
Collapse
|
33
|
Waters MJ, Daniel N, Bignon C, Djiane J. The rabbit mammary gland prolactin receptor is tyrosine-phosphorylated in response to prolactin in vivo and in vitro. J Biol Chem 1995; 270:5136-43. [PMID: 7534288 DOI: 10.1074/jbc.270.10.5136] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report the first in vivo study demonstrating tyrosine phosphorylation of mammary gland proteins including the prolactin receptor, in response to the injection of prolactin. Immunoblotting of mammary gland membrane extracts revealed that subunits of 200, 130, 115, 100, 90, 70, and 45 kDa display increased tyrosine phosphorylation within 5 min of prolactin administration. The 100-kDa component was identified as the full-length prolactin receptor by a variety of means including immunoprecipitation and immunoblotting with monoclonal (U5, 917, 110, and 82) and polyclonal (46) antibodies to the prolactin receptor. Maximal receptor phosphorylation was seen within 1 min of hormone injection, and to obtain a strong response it was necessary to deprive rabbits of their endogenous prolactin for 36 h. Rapid tyrosine phosphorylation of the full-length receptor was verified by its demonstration in Chinese hamster ovary cells stably transfected with rabbit prolactin receptor cDNA. Both in vivo and in vitro, the phosphorylation signal was transient, being markedly reduced within 10 min of exposure to prolactin. Tyrosine-phosphorylated receptor was shown to be associated with JAK 2 by immunoblotting of receptor immunoprecipitated from transfected Chinese hamster ovary cells with polyclonal 46. A 48-kDa ATP-binding protein was also shown to be associated with the mammary gland receptor by U5 or polyclonal 46 immunoprecipitation of receptor complexes following covalent labeling with [alpha-32P]azido-ATP. Our demonstration of prolactin receptor tyrosine phosphorylation raises the possibility of signaling pathways regulated by receptor/SH2 protein interaction, which would facilitate prolactin specific responses. The fact that a period of hormone deprivation is needed for significant hormone triggered receptor phosphorylation indicates that the mammary gland receptor exists in a largely desensitized state in vivo, analogous to the related growth hormone receptor.
Collapse
Affiliation(s)
- M J Waters
- Unite d'Endocrinologie Moleculaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
34
|
Drachman JG, Griffin JD, Kaushansky K. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J Biol Chem 1995; 270:4979-82. [PMID: 7534285 DOI: 10.1074/jbc.270.10.4979] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
c-Mpl is a member of the cytokine receptor superfamily, expressed primarily on hematopoietic cells. Recently, the c-Mpl ligand was cloned and found to have thrombopoietic activity. In this paper we report that ligand binding induced tyrosine phosphorylation in BaF3 cells engineered to express the murine Mpl receptor (BaF3/mMpl). Phosphorylation occurred within 1 min at cytokine concentrations sufficient for proliferation of receptor-bearing cells. Using specific antibodies for immunoprecipitation and Western blotting, several of these phosphorylated proteins were identified. Shc and Jak2, known cytokine signaling molecules, and the c-Mpl receptor were shown to be major substrates for tyrosine phosphorylation. In contrast, phospholipase C-gamma and phosphatidylinositol 3-kinase displayed little and no tyrosine phosphorylation, respectively, after thrombopoietin stimulation. Co-immunoprecipitation studies demonstrated that Jak2 became physically associated with c-Mpl relatively late in the observed time course (20-60 min), significantly later than tyrosine phosphorylation of Jak2 (1-5 min). These results suggest that c-Mpl induces signal transduction pathways similar to those of other known cytokines. Additionally, in light of its late physical association with c-Mpl following ligand binding, Jak2 may not be the initiating tyrosine kinase in the thrombopoietin-induced signaling cascade.
Collapse
Affiliation(s)
- J G Drachman
- Department of Medicine, University of Washington, School of Medicine, Seattle 98195
| | | | | |
Collapse
|
35
|
Siddiqui RA, Yang YC. Interleukin-11 induces phosphatidic acid formation and activates MAP kinase in mouse 3T3-L1 cells. Cell Signal 1995; 7:247-59. [PMID: 7544991 DOI: 10.1016/0898-6568(94)00083-n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interleukin-11 (IL-11) stimulated [3H]phosphatidic acid (PA) formation in [3H]arachidonic acid (AA) prelabelled quiescent mouse 3T3-L1 cells. When IL-11 stimulated 3T3-L1 cells were incubated with NaF, a phosphatidic acid phosphohydrolase (PAP) inhibitor, increased PA formation was observed. In the presence of ethanol, phosphatidylethanol accumulated at the expense of PA. These results indicated that the formation of PA upon IL-11 stimulation was a result of phospholipase D (PLD) activation. Endogenous accumulation of PA by NaF treatment or exogenously added PA enhanced tyrosine phosphorylation of two proteins of 44 KDa (p44) and 47 KDa (p47) whereas tyrosine phosphorylation of other proteins was not affected. Among various PA species, dipalmitoyl PA was found to be most effective in enhancing tyrosine phosphorylation of these proteins. p44 and p47 cross reacted with anti-MAP kinase monoclonal antibody (MoAb) in both immunoprecipitation and western blot analysis. Lysates from IL-11-induced or PA-induced cells stimulated phosphorylation of a synthetic peptide substrate for MAP kinase, indicating the activation of MAP kinase in the induced cells. These studies suggest that one of the cellular signalling mechanisms of IL-11 in 3T3-L1 cells involves the activation of phospholipase D to produce the second messenger PA. The increased level of PA enhances tyrosine phosphorylation of p44 and p47 which belong to the members of MAP kinase family and thus transduces some of the mitogenic signals of IL-11 in this cell line.
Collapse
Affiliation(s)
- R A Siddiqui
- Department of Medicine, Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
36
|
Affiliation(s)
- A Lindemann
- Department Medicine I, University of Freiburg, Germany
| | | |
Collapse
|
37
|
Miura Y, Miura O, Ihle JN, Aoki N. Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43975-0] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
VanderKuur J, Wang X, Zhang L, Campbell G, Allevato G, Billestrup N, Norstedt G, Carter-Su C. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31863-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Polotskaya A, Zhao Y, Lilly M, Kraft A. Mapping the intracytoplasmic regions of the alpha granulocyte-macrophage colony-stimulating factor receptor necessary for cell growth regulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36667-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Characterization of two different forms of mitogen-activated protein kinase kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalanine or granulocyte-macrophage colony-stimulating factor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36907-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Zhu X, Suen K, Barbacid M, Bolen J, Fargnoli J. Interleukin-2-induced tyrosine phosphorylation of Shc proteins correlates with factor-dependent T cell proliferation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37491-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
42
|
Abstract
Cytokines are important regulators of hemopoiesis which exert their actions by binding to specific, high affinity, cell surface receptors. In the past several years, molecular cloning of these receptors has revealed a new superfamily referred to as the hemopoietic growth factor receptors. Members of this family are defined by a 200 amino acid conserved domain; however, it has become increasingly apparent that another characteristic of these receptors is the shared usage of a common signalling subunit among subgroups in this family. The shared signalling component explains the functional redundancy of many cytokines; however, the mechanism by which these receptors transduce a signal across the membrane is not yet clear. Studies into cytokine action have shown that many of the events that occur in response to ligand stimulation are similar to those observed for the better characterized intrinsic tyrosine kinase receptors. Thus, although the cytokine receptors do not possess intrinsic tyrosine kinase activity, these observations have led to a model of cytokine signal transduction adapted from the signalling mechanisms described for the tyrosine kinase receptors.
Collapse
Affiliation(s)
- A L Mui
- DNAX Research Institute for Molecular and Cellular Biology, Palo Alto, CA 94304
| | | |
Collapse
|
43
|
Stimulation of tyrosine phosphorylation and accumulation of GTP-bound p21ras upon antibody-mediated alpha 2 beta 1 integrin activation in T-lymphoblastic cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36834-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Burns L, Karnitz L, Sutor S, Abraham R. Interleukin-2-induced tyrosine phosphorylation of p52shc in T lymphocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46751-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Campbell G, Christian L, Carter-Su C. Evidence for involvement of the growth hormone receptor-associated tyrosine kinase in actions of growth hormone. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53192-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Izquierdo M, Cantrell DA. Protein tyrosine kinases couple the interleukin-2 receptor to p21ras. Eur J Immunol 1993; 23:131-5. [PMID: 8419163 DOI: 10.1002/eji.1830230121] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The T cell growth factor interleukin-2 (IL-2) induces p21ras activation in T lymphocytes. We have previously shown that a protein kinase C (PKC)-mediated pathway for p21ras regulation exists in T cells and that the IL-2 receptor (IL-2R) can couple to p21ras independently of the presence of the PKC pathway for p21ras regulation. Our data show that in conditions where cellular protein tyrosine kinases (PTK) were efficiently down-regulated by pretreatment with the specific PTK inhibitor herbimycin, the IL-2-induced activation of p21ras was blocked. Herbimycin did not inhibit the PKC-mediated pathway for p21ras regulation. Thus, the data indicate that PTK are involved in the coupling of the IL-2R to p21ras.
Collapse
Affiliation(s)
- M Izquierdo
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund Laboratories, London, GB
| | | |
Collapse
|
47
|
Affiliation(s)
- A Lindemann
- Department of Medicine 1, University of Freiburg, Germany
| | | |
Collapse
|
48
|
Interleukin 2-induced activation of Ras requires two domains of interleukin 2 receptor beta subunit, the essential region for growth stimulation and Lck-binding domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74058-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
49
|
|
50
|
Nakafuku M, Satoh T, Kaziro Y. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active Ras.GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41796-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|