1
|
Huang L, Zhu Y, Kong Q, Guan X, Lei X, Zhang L, Yang H, Yao X, Liang S, An X, Yu J. Inhibition of Integrin α vβ 3-FAK-MAPK signaling constrains the invasion of T-ALL cells. Cell Adh Migr 2023; 17:1-14. [PMID: 36944577 PMCID: PMC10038045 DOI: 10.1080/19336918.2023.2191913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The role of adhesion receptor integrin αvβ3 in T-ALL was unclear. Firstly, we performed quantitative real-time PCR to assess medullary expression of integrin β3(ITGB3) in T-ALL patients and high ITGB3 expression was relevant with the central nervous system leukemia(CNSL) incidence. Decreasing of cell invasion was observed in Jurkat and Molt4 treated with integrin αvβ3 specific antibody and inhibitor as well as cells with ITGB3 interference. Further, phosphorylation of FAK, cRAF, MEK and ERK decreased in cells with integrin αvβ3 inhibition or interference. Invasion decreased in T-ALL cells treated with FAK and ERK inhibitors. In conclusion, inhibition of integrin αvβ3 signals significantly limits the cell invasion of T-ALL cells.
Collapse
Affiliation(s)
- Lan Huang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhu
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinglin Kong
- Department of Hematology and Oncology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianmin Guan
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaoying Lei
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Luying Zhang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Yang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xinyuan Yao
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shaoyan Liang
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xizhou An
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Yu
- Department of hematology and oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
2
|
Hill CJ, Fleming JR, Mousavinejad M, Nicholson R, Tzokov SB, Bullough PA, Bogomolovas J, Morgan MR, Mayans O, Murray P. Self-Assembling Proteins as High-Performance Substrates for Embryonic Stem Cell Self-Renewal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807521. [PMID: 30866118 DOI: 10.1002/adma.201807521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The development of extracellular matrix mimetics that imitate niche stem cell microenvironments and support cell growth for technological applications is intensely pursued. Specifically, mimetics are sought that can enact control over the self-renewal and directed differentiation of human pluripotent stem cells (hPSCs) for clinical use. Despite considerable progress in the field, a major impediment to the clinical translation of hPSCs is the difficulty and high cost of large-scale cell production under xeno-free culture conditions using current matrices. Here, a bioactive, recombinant, protein-based polymer, termed ZTFn , is presented that closely mimics human plasma fibronectin and serves as an economical, xeno-free, biodegradable, and functionally adaptable cell substrate. The ZTFn substrate supports with high performance the propagation and long-term self-renewal of human embryonic stem cells while preserving their pluripotency. The ZTFn polymer can, therefore, be proposed as an efficient and affordable replacement for fibronectin in clinical grade cell culturing. Further, it can be postulated that the ZT polymer has significant engineering potential for further orthogonal functionalization in complex cell applications.
Collapse
Affiliation(s)
- Christopher J Hill
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Nuffield Building, Crown Street, Liverpool, L69 3BX, UK
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | | | - Masoumeh Mousavinejad
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Nuffield Building, Crown Street, Liverpool, L69 3BX, UK
| | - Rachael Nicholson
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Nuffield Building, Crown Street, Liverpool, L69 3BX, UK
| | - Svetomir B Tzokov
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Per A Bullough
- Department of Molecular Biology and Biotechnology, The Krebs Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Julius Bogomolovas
- Department of Medicine, UCSD, La Jolla, CA, 92093, USA
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Mark R Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Nuffield Building, Crown Street, Liverpool, L69 3BX, UK
| | - Olga Mayans
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Nuffield Building, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
3
|
Woodley DT, Wysong A, DeClerck B, Chen M, Li W. Keratinocyte Migration and a Hypothetical New Role for Extracellular Heat Shock Protein 90 Alpha in Orchestrating Skin Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:203-212. [PMID: 25945283 DOI: 10.1089/wound.2014.0566] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/09/2014] [Indexed: 12/18/2022] Open
Abstract
Significance: The treatment and care of patients with skin wounds are a major healthcare expenditure. Burn wounds, iatrogenic surgical wounds, venous stasis dermatitis ulcers, diabetic lower limb ulcers, pressure ulcers, and skin wounds from peripheral neuropathies are largely treated with only supportive care. Despite a great deal of research into using growth factors as therapeutic agents, to date, the field has been disappointing. The only biologic agent that is Federal Drug Administration (FDA) approved for promoting skin wound healing is recombinant platelet-derived growth factor (PDGF-BB), but its modest efficacy and expense limit its use clinically. Recent Advances: Acute hypoxia induced by the clotting of dermal blood vessels during the wounding of skin is a major stress factor that leads to the re-programming of basal keratinocytes to initiate re-epithelialization. The laterally migrating keratinocytes secrete extracellular heat shock protein 90 alpha. Heat shock protein 90 alpha (hsp90α) engages low-density lipoprotein receptor-related protein-1 (LRP-1) cellular receptors and works as an autocrine factor to stimulate keratinocyte migration (re-epithelialization) and as a paracrine factor to stimulate the migration of dermal fibroblasts (fibroplasia) and microvascular endothelial cells (neo-vascularization). Hypoxia-triggered extracellular heat shock protein 90 alpha acts as the master regulator of initial skin wound healing. Critical Issues: It is not yet known how the engagement of hsp90α with the LRP-1 receptor leads to increased motility of keratinocytes, fibroblasts, or microvascular endothelial cells. Understanding the sequence of how an acute skin wound via hypoxic stress leads to cellular events that ultimately induce accelerated wound closure provides numerous targets for new wound-healing therapeutic agents. Future Directions: Developing data for an investigational new drug (IND) application to the FDA for a Phase I study using hsp90α in human skin wounds. Identifying the cellular signaling mechanisms by which hsp90α enhances skin cell migration, leading to accelerated wound closure.
Collapse
Affiliation(s)
- David T. Woodley
- Department of Dermatology, USC Laboratories for Investigative Dermatology, USC/Norris Cancer Center, The Keck Medical Center and the Los Angeles Greater VA Healthcare System, University of Southern California, Los Angeles, California
| | - Ashley Wysong
- Department of Dermatology, USC Laboratories for Investigative Dermatology, USC/Norris Cancer Center, The Keck Medical Center and the Los Angeles Greater VA Healthcare System, University of Southern California, Los Angeles, California
| | - Brittany DeClerck
- Department of Dermatology, USC Laboratories for Investigative Dermatology, USC/Norris Cancer Center, The Keck Medical Center and the Los Angeles Greater VA Healthcare System, University of Southern California, Los Angeles, California
| | - Mei Chen
- Department of Dermatology, USC Laboratories for Investigative Dermatology, USC/Norris Cancer Center, The Keck Medical Center and the Los Angeles Greater VA Healthcare System, University of Southern California, Los Angeles, California
| | - Wei Li
- Department of Dermatology, USC Laboratories for Investigative Dermatology, USC/Norris Cancer Center, The Keck Medical Center and the Los Angeles Greater VA Healthcare System, University of Southern California, Los Angeles, California
| |
Collapse
|
4
|
Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res 2014; 360:571-82. [DOI: 10.1007/s00441-014-2064-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
|
5
|
Banerjee J, Das Ghatak P, Roy S, Khanna S, Sequin EK, Bellman K, Dickinson BC, Suri P, Subramaniam VV, Chang CJ, Sen CK. Improvement of human keratinocyte migration by a redox active bioelectric dressing. PLoS One 2014; 9:e89239. [PMID: 24595050 PMCID: PMC3940438 DOI: 10.1371/journal.pone.0089239] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 01/25/2023] Open
Abstract
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Piya Das Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Emily K. Sequin
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Karen Bellman
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Bryan C. Dickinson
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Prerna Suri
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Vish V. Subramaniam
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Chang
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Chandan K. Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
7
|
Macasev D, Diorio JP, Gugerell A, Goppelt A, Gulle H, Bittner M. Cell Compatibility of Fibrin Sealants: In Vitro Study with Cells Involved in Soft Tissue Repair. J Biomater Appl 2010; 26:129-49. [DOI: 10.1177/0885328210369574] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibrin sealants can be used to support tissue regeneration or as vehicles for delivery of cells in tissue engineering. Differences in the composition of fibrin sealants, however, could determine the success of such applications. The results presented in this article show clear differences between Fibrin sealant A (FS A) clots and Fibrin sealant B (FS B) clots with respect to their compatibility with primary human cells involved in soft tissue repair. FS A clots, which are characterized by a physiological coarse fibrin structure, promoted attachment, spreading, and proliferation of keratinocytes, fibroblasts, and endothelial cells. In contrast, FS B clots displaying a fine to medium clot structure failed to support spreading of all three cell types. Adhesion of keratinocytes was decreased on FS B clots compared to FS A clots after 3 h incubation, whereas number of attached fibroblasts and endothelial cells was initially comparable between the two fibrin sealants. However, all three cell types proliferated on FS A clots but no sustained proliferation was detected on FS B clots. We further demonstrate that the observed differences between FS A and B clots are partly based upon 1 M sodium chloride extractable constituents, like thrombin, and partly on nonextractable constituents or the fibrin structure. In conclusion, our in vitro results demonstrate that FS A clots serve as a provisional matrix that encourages adhesion and growth of keratinocytes, fibroblasts, and endothelial cells. Therefore, FS A seems to be well suited for applications in tissue engineering.
Collapse
Affiliation(s)
- Diana Macasev
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - James P. Diorio
- Baxter Healthcare Corporation Inc. Technology Resources Round Lake, Illinois, USA
| | - Alfred Gugerell
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - Andreas Goppelt
- Baxter Innovations GmbH, Biosurgery Division, Wagramerstrasse 17-19, A-1221 Vienna, Austria
| | - Heinz Gulle
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - Michaela Bittner
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria,
| |
Collapse
|
8
|
CLARK R, ASHCROFT G, SPENCER MJ, LARJAVA H, FERGUSON M. Re-epithelialization of normal human excisional wounds is associated with a switch from αvβ5 to αvβ6 integrins. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1996.d01-931.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Agren MS, Werthén M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. INT J LOW EXTR WOUND 2007; 6:82-97. [PMID: 17558006 DOI: 10.1177/1534734607301394] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disappointing results with the use of exogenous recombinant growth factors in chronic wounds have redirected the focus to the extracellular matrix (ECM). Newer research has clearly changed our view on the role of the ECM in tissue repair and dismissed the dogma that the sole function of ECM is a passive physical support for cells. It is now clear that intact or fragmented ECM molecules are capable of transducing signals pivotal for cell processes in wound healing primarily via integrin interactions in concert with growth factor activation. In addition, our knowledge about ECM molecules in minute concentrations with biological activity, but devoid of significant structural influence, is increasing. This article reviews the multifaceted molecular roles of ECM in the normal wound-healing process and some molecular abnormalities in chronic wounds, and touches on potential therapies based on the developments of tissue biology.
Collapse
Affiliation(s)
- Magnus S Agren
- Department of Surgery K, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
10
|
Falanga V, Butmarc J, Cha J, Yufit T, Carson P. Migration of the epidermal over the dermal component (epiboly) in a bilayered bioengineered skin construct. ACTA ACUST UNITED AC 2007; 13:21-8. [PMID: 17518578 DOI: 10.1089/ten.2006.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A bilayered bioengineered living skin construct (LSC) consisting of viable human neonatal keratinocytes over a collagenous dermis seeded with dermal fibroblasts has been used extensively in difficult-to heal human wounds. Its biological properties include production of several mediators, cytokines, and growth factors and the ability to heal itself upon injury. In this study, we investigated the process of keratinocyte migration in LSC. At baseline, 6-mm punch biopsies of the construct were placed in serum-free medium (AIM-V) or Dulbecco's modified Eagle medium. At varying time points, the LSC samples were processed and analyzed using histology and immunohistochemistry. By 72 h, in a time-dependent manner, the overlying epidermis had migrated over and enveloped the entire underlying dermis, a process known as epiboly. Increasing concentrations of neutralizing antibodies to epidermal growth factor or interleukin-1 alpha down-regulated the extent of epiboly, as measured using computerized planimetry, but antibodies to transforming growth factor-beta 1 did not affect it. The consistent expression of laminin V, alpha3beta1 integrin, and vitronectin (epibolin) and its integrin receptor (alphavbeta5) characterized the tongue of migrating epidermis. Increasing concentrations of antibodies to vitronectin blocked the process of epiboly, as did antibodies to the alphavbeta5 integrin receptor, which mediates vitronectin-driven keratinocyte locomotion. This process of epiboly provides novel mechanisms of action for bioengineered skin constructs.
Collapse
Affiliation(s)
- Vincent Falanga
- Department of Dermatology, Roger Williams Medical Center, Providence, Rhode Island 02908, and Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
11
|
Kubo M, Clark RAF, Katz AB, Taichman LB, Jin Z, Zhao Y, Moriguchi T. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin. Arch Dermatol Res 2006; 299:13-24. [PMID: 17146626 DOI: 10.1007/s00403-006-0718-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Collapse
Affiliation(s)
- Miyoko Kubo
- Department of Plastic and Reconstructive Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Dawson RA, Upton Z, Malda J, Harkin DG. Preparation of Cultured Skin for Transplantation Using Insulin-like Growth Factor I in Conjunction with Insulin-like Growth Factor Binding Protein 5, Epidermal Growth Factor, and Vitronectin. Transplantation 2006; 81:1668-76. [PMID: 16794533 DOI: 10.1097/01.tp.0000226060.51572.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cultured skin for transplantation is routinely prepared by growing patient keratinocytes in the presence of semidefined sources of growth factors including serum and feeder cells, but these materials require substantial risk remediation and can contribute to transplant rejection. METHODS We have therefore investigated the potential of a novel combination of recombinant and purified growth factors to replace serum and feeder cells in cultures of human keratinocytes suitable for clinical application. Our technique was investigated with respect to culture establishment, serial propagation, colony-forming efficiency, immunocytochemistry, epidermal reconstruction, and suitability to support transplantation by aerosolization. RESULTS We demonstrate that insulin-like growth factor (IGF)-I--used in conjunction with epidermal growth factor (EGF), insulin-like growth factor binding protein (IGFBP)-5 and vitronectin--supports growth in the absence of serum. Moreover, a threefold greater number of cells are generated within 7 days compared to those grown under current best practice conditions using serum (P<0.05). The resulting test cultures are suitable for epidermal reconstruction and support the option for delivery in the form of an aerosolized cell suspension. Serial propagation, with the view to producing confluent sheets for extensive injuries, was achieved but with less consistency and this result correlated with a significant decline in colony-forming efficiency compared to controls. CONCLUSIONS IGF-I used in conjunction with IGFBP-5, EGF, and vitronectin provides a superior alternative to serum for the rapid expansion and transplantation of cultured keratinocytes within the first week of treatment. Nevertheless, further optimization is required with respect to elimination of feeder cells and serial expansion of cultures for treatment of extensive injuries.
Collapse
Affiliation(s)
- Rebecca A Dawson
- Tissue Repair and Regeneration Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
13
|
Sutherland J, Denyer M, Britland S. Motogenic substrata and chemokinetic growth factors for human skin cells. J Anat 2005; 207:67-78. [PMID: 16011545 PMCID: PMC1571500 DOI: 10.1111/j.1469-7580.2005.00431.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2005] [Indexed: 11/29/2022] Open
Abstract
Extracellular matrix remodelling and accurate spatio-temporal coordination of growth factor expression are two factors that are believed to regulate mitoses and cell migration in developing and regenerating tissues. The present quantitative videomicroscopical study examined the influence of some of the principal components of extracellular matrix and several growth factors that are known to be expressed in dermal wounds on three important facets of human skin cell behaviour in culture. Keratinocytes, melanocytes and dermal fibroblasts (and myofibroblast controls) exhibited varying degrees of substrate adhesion, division and migration depending on the composition of the culture substrate. Substrates that are recognized components of transitional matrices generally accentuated cell adhesion and proliferation, and were motogenic, when compared with serum-treated control surfaces, whereas components of more stable structures such as basement membrane had less influence. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and alpha fibroblastic growth factor (alphaFGF) all promoted cell proliferation and were chemokinetic to dermal fibroblasts, but not keratinocyte growth factor (KGF) or transforming growth factor beta (TGFbeta). PDGF, EGF and KGF, but not TGFbeta or alphaFGF, all enhanced proliferation of dermal keratinocytes. The same growth factors, and in addition KGF, all stimulated motility in keratinocytes, but TGFbeta and alphaFGF again had no effect. Developing a better understanding of the interdependency of factors that control crucial cell behaviour may assist those who are interested in the regulation of histogenesis and also inform the development of rational therapeutic strategies for the management of chronic and poorly healed wounds.
Collapse
|
14
|
Braun-Falco M, Eisenried A, Büning H, Ring J. Recombinant adeno-associated virus type 2-mediated gene transfer into human keratinocytes is influenced by both the ubiquitin/proteasome pathway and epidermal growth factor receptor tyrosine kinase. Arch Dermatol Res 2005; 296:528-35. [PMID: 15776248 DOI: 10.1007/s00403-005-0547-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 01/20/2005] [Accepted: 01/29/2005] [Indexed: 01/09/2023]
Abstract
Efficient gene delivery into keratinocytes is a prerequisite for successful skin gene therapy. Vectors based on recombinant adeno-associated virus type 2 (rAAV-2) offer several promising features that make them attractive for cutaneous applications. However, highly efficient gene delivery may be hampered by different cellular factors, including lack of viral receptors, impairment of cytoplasmic trafficking or limitations in viral second-strand synthesis. This study was undertaken to find factors that influence rAAV-2-mediated in vitro gene transfer into human keratinocytes and, consequently, ways to optimize gene delivery. Transduction experiments using rAAV-2 vectors expressing green fluorescent protein (GFP) demonstrated that impaired cellular trafficking of vector particles and high levels of autophosphorylation at epidermal growth factor receptor tyrosine kinase (EGF-R TK) have a negative influence on gene transfer into keratinocytes. Treatment of keratinocytes with proteasome inhibitor MG132 resulted in a transient augmentation of GFP expression in up to 37% of cells. Treatment with EGF-R TK inhibitors (quinazoline type) enhanced transgene expression in 10-14.5% of the cells. Gene expression was stable for more than 10 weeks and persisted until proliferative senescence occurred. This stable gene expression allows speculation that keratinocyte stem cells have initially been transduced. These findings might have relevance for the use of rAAV-2 vectors in skin gene therapy: transient enhancement of rAAV-2 transduction with proteasome inhibitors might be useful for genetic promotion of wound healing or skin-directed vaccination. Treatment with quinazolines may increase rAAV-2 transduction of keratinocyte stem cells, which is important for gene therapy approaches to inherited diseases.
Collapse
Affiliation(s)
- Markus Braun-Falco
- Klinik und Poliklinik für Dermatologie und Allergologie am Biederstein, Division of Environmental Dermatology and Allergy, National Research Center for Environment & Health, Technische Universität München and GSF, Munich, Germany.
| | | | | | | |
Collapse
|
15
|
Baroni A, Paoletti I, Ruocco E, Agozzino M, Tufano MA, Donnarumma G. Possible role of Malassezia furfur in psoriasis: modulation of TGF-beta1, integrin, and HSP70 expression in human keratinocytes and in the skin of psoriasis-affected patients. J Cutan Pathol 2004; 31:35-42. [PMID: 14675283 DOI: 10.1046/j.0303-6987.2004.0135.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Psoriasis is a disease characterized by an abnormal pattern of keratinocyte growth and differentiation. Malassezia furfur forms part of the normal human skin flora. It may also be involved in the pathogenesis of psoriasis. To define the role of M. furfur in the pathogenesis of psoriasis, we investigated how M. furfur regulates molecules involved in cell migration and proliferation. The experiments were performed using human keratinocytes and skin biopsies from M. furfur-positive and -negative psoriasis-affected patients. In addition, we examined the signal transduction mechanisms involved. MATERIALS AND METHODS Western blot analysis was performed on human keratinocytes lysates treated or untreated with M. furfur and on biopsies from healthy and psoriasis patients. Signal transduction mechanisms involved were evaluated by electrophoretic mobility shift assay using the AP-1 inhibitor curcumin. RESULTS We found that M. furfur up-regulates transforming growth factor-beta1 (TGF-beta1), integrin chain, and HSP70 expression in human keratinocytes via AP-1-dependent mechanism. In the biopsies of M. furfur-positive psoriasis-affected patients, an increase in TGF-beta1, integrin chains, and HSP70 expression was found. CONCLUSION Our data suggest that M. furfur can induce the overproduction of molecules involved in cell migration and hyperproliferation, thereby favoring the exacerbation of psoriasis.
Collapse
Affiliation(s)
- Adone Baroni
- Department of Dermatology, Second University of Naples, Via Constantinopoli 16, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Increased expression levels of integrin alphavbeta5 on scleroderma fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1275-92. [PMID: 15039216 PMCID: PMC1615355 DOI: 10.1016/s0002-9440(10)63215-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Integrin alphavbeta5 is a receptor for vitronectin, a plasma glycoprotein that is also distributed in extracellular matrix of various tissues. Matrix-bound vitronectin has the potential to stabilize the active form of plasminogen activator inhibitor-1, resulting in the inhibition of the plasmin-mediated pericellular proteolytic cascade. In this study, we compared the levels of alphavbeta5 and matrix-bound vitronectin between normal and scleroderma fibroblasts and investigated the association with fibrosis. We demonstrated that alphavbeta5 was up-regulated on scleroderma fibroblasts. The up-regulated alphavbeta5 contributed to the increase in vitronectin-binding ability in scleroderma fibroblasts, which led to the vitronectin-dependent activation of plasminogen activator inhibitor-1. In immunohistochemistry, the alphav and beta5 subunits were stained strongly on scleroderma fibroblasts and the amount of vitronectin was increased in the pericellular matrix of those cells. The transient overexpression of alphavbeta5 on normal fibroblasts enhanced the human alpha2(I) collagen promoter activity through Sp-1 and Smad3 as well as the vitronectin-dependent plasminogen activator inhibitor-1 activity. This effect on the promoter activity was also observed in the absence of vitronectin and completely disappeared in the presence of anti-alphavbeta5 antibody. These results indicate that the up-regulated alphavbeta5 may contribute to the phenotypical alteration of scleroderma fibroblasts, while at the same time suppressing the plasmin-mediated pericellular proteolytic cascade.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
17
|
Kim H, Arakawa H, Osada T, Ikai A. Quantification of cell adhesion force with AFM: distribution of vitronectin receptors on a living MC3T3-E1 cell. Ultramicroscopy 2003; 97:359-63. [PMID: 12801689 DOI: 10.1016/s0304-3991(03)00061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Distribution of vitronectin (VN) receptors on a living murine osteoblastic cell was successfully measured by atomic force microscopy (AFM). First, the distribution of the integrin beta(5) subunit which constitutes a part of the VN receptor on the cell was confirmed by conventional immunohistochemistry after fixing the cell. To visualize the distribution of the receptor on a living cell by an independent and potentially a more quantitative method, the AFM was used with a microbead attached to the cantilever tip to increase the area of contact and VN was immobilized on the microbead. Force measurements were then performed over a large area of a living murine osteoblastic cell using the microbead covered with VN.
Collapse
Affiliation(s)
- H Kim
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | |
Collapse
|
18
|
Abstract
This article provides much evidence that the inflammatory process has direct effects on normal and abnormal wound healing. As better understanding develops for the mechanism for these outcomes, targeted proinflammatory and anti-inflammatory interventions are likely to be successful. When inflammation is maintained as a regulated and orchestrated response, effective and normal wound healing is likely to result.
Collapse
Affiliation(s)
- Ginard Henry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Southern California, Keck School of Medicine, 1450 San Pablo Street, Los Angeles, CA 90033, USA
| | | |
Collapse
|
19
|
Masson-Gadais B, Houle F, Laferrière J, Huot J. Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 2003; 8:37-52. [PMID: 12820653 PMCID: PMC514852 DOI: 10.1379/1466-1268(2003)8<37:ivrfva>2.0.co;2] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Endothelial cell migration, a key process in angiogenesis, requires the coordinated integration of motogenic signals elicited by the adhesion of endothelial cells to extracellular matrices and by angiogenic cytokines such as the vascular endothelial growth factor (VEGF). In this study, we found that addition of VEGF to human umbilical vein endothelial cells cultivated on vitronectin triggers a synergistic interaction between the VEGF receptor VEGFR2 and the clustered integrin receptor alphavbeta3. The interaction between VEGFR2 and alphavbeta3 is required for full phosphorylation of VEGFR2 and to drive the activation of motogenic pathways involving focal adhesion kinase (FAK) and stress-activated protein kinase-2/p38 (SAPK2/p38). The signal emanating from the VEGFR2 and alphavbeta3 interaction and leading to SAPK2/p38 activation proceeds directly from VEGFR2. The chaperone Hsp90 is found in a complex that coprecipitates with inactivated VEGFR2, and the association is increased by VEGF and decreased by geldanamycin, a specific inhibitor of Hsp90-mediated events. Geldanamycin also impairs the phosphorylation of FAK that results from the interaction between VEGFR2 and alphavbeta3, and this is accompanied by an inhibition of the recruitment of vinculin to VEGFR2. We conclude that a necessary cross talk should occur between VEGFR2 and the integrin alphavbeta3, to transduce the VEGF signals to SAPK2/p38 and FAK and that Hsp90 is instrumental in the building up of focal adhesions by allowing the phosphorylation of FAK and the recruitment of vinculin to VEGFR2.
Collapse
Affiliation(s)
- Bénédicte Masson-Gadais
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, G1R 2J6, Canada
| | | | | | | |
Collapse
|
20
|
Niu J, Dorahy DJ, Gu X, Scott RJ, Draganic B, Ahmed N, Agrez MV. Integrin expression in colon cancer cells is regulated by the cytoplasmic domain of the beta6 integrin subunit. Int J Cancer 2002; 99:529-37. [PMID: 11992542 DOI: 10.1002/ijc.10397] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously reported that the alphavbeta6 integrin upregulates its own expression in a protein kinase C-dependent manner with increasing cell density. The wild-type beta6 integrin subunit has also been shown to promote tumour growth in vivo and its growth-enhancing effect is regulated by both a MAP kinase binding motif on beta6 and the 11 amino acid C-terminal cytoplasmic extension unique to the beta6 subunit. Herein, we show that the 11 amino acid cytoplasmic extension is essential for the cell density-dependent increase in beta6 expression and that the 11 amino acid tail exerts a dominant negative effect on cell density- and PKC-mediated beta5 expression in alphavbeta6-expressing colon cancer cells. Cells that express beta6 lacking the 11 amino acid tail respond to PKC simulation with increased expression of only the beta5 subunit as seen for cells that lack constitutive alphavbeta6 expression. In contrast, loss of the ERK binding site on beta6 markedly impairs cell density- and PKC-dependent expression of either beta6 or beta5 in the presence or absence of the 11 amino acid tail, respectively. Our findings suggest that in alphavbeta6-expressing cells, a hierarchy of kinase signalling cascades exists and that the beta6-ERK2 interaction dominates over PKC-mediated signalling pathways responsible for integrin upregulation with cell confluence. Given the dominance of the beta6-ERK2 interaction over PKC-mediated expression of both beta5 and beta6 integrin subunits, targeting the beta6-ERK2 interaction may prove useful as an anticancer strategy in colon cancer.
Collapse
Affiliation(s)
- Jun Niu
- Newcastle Bowel Cancer Research Collaborative, Hunter Medical Research Institute, John Hunter Hospital, The University of Newcastle, Callaghan, New South Wales 2310, Australia
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen J, Baskerville C, Han Q, Pan ZK, Huang S. Alpha(v) integrin, p38 mitogen-activated protein kinase, and urokinase plasminogen activator are functionally linked in invasive breast cancer cells. J Biol Chem 2001; 276:47901-5. [PMID: 11606583 DOI: 10.1074/jbc.m107574200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We reported previously that endogenous p38 MAPK activity is elevated in invasive breast cancer cells and that constitutive p38 MAPK activity is important for overproduction of uPA in these cells (Huang, S., New, L., Pan, Z., Han, J., and Nemerow, G. R. (2000) J. Biol. Chem. 275, 12266-12272). However, it is unclear how elevated endogenous p38 MAPK activity is maintained in invasive breast cancer cells. In the present study, we found that blocking alpha(v) integrin functionality with a function-blocking monoclonal antibody or down-regulating alpha(v) integrin expression with alpha(v)-specific antisense oligonucleotides significantly decreased the levels of active p38 MAPK and inhibited cell-associated uPA expression in invasive breast cancer MDA-MB-231 cells. These results suggest a function link between alpha(v) integrin, p38 MAPK activity, and uPA expression in invasive tumor cells. We also found that vitronectin/alpha(v) integrin ligation specifically induced p38 MAPK activation and uPA up-regulation in invasive MDA-MB-231 cells but not in non-invasive MCF7 cells. Finally, using a panel of melanoma cells, we demonstrated that the cytoplasmic tail of alpha(v) integrin subunit is required for alpha(v) integrin ligation-induced p38 MAPK activation.
Collapse
Affiliation(s)
- J Chen
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
22
|
Kubo M, Van de Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG, Taichman L, Clark RA. Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 2001; 117:1369-81. [PMID: 11886497 DOI: 10.1046/j.0022-202x.2001.01551.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cutaneous wound repair the epidermis avoids the fibrin-rich clot; rather it migrates down the collagen-rich dermal wound margin and over fibronectin-rich granulation tissue. The mechanism(s) underlying keratinocyte movement in this precise pathway has not been previously addressed. Here we demonstrate that cultured human keratinocytes do not express functional fibrinogen/fibrin receptors, specifically alpha v beta 3. Biologic modifiers known to induce integrin expression or activation did not induce adhesion to fibrin, fibrinogen, or its fragments. Epidermal explant outgrowth and single epidermal cell migration failed to occur on either fibrin or fibrinogen. Surprisingly, fibrin and fibrinogen mixed at physiologic molar ratios with fibronectin abrogated keratinocyte attachment to fibronectin. Keratinocytes transduced with the beta 3 integrin subunit cDNA, expressed alpha v beta 3 on their surface and attached to and spread on fibrinogen and fibrin. beta-gal cDNA-transduced keratinocytes did not demonstrate this activity. Furthermore, beta 3 cDNA-transduced keratinocyte adhesion to fibrin was inhibited by LM609 monoclonal antibody to alpha v beta 3 in a concentration-dependent fashion. From these data, we conclude that normal human keratinocytes cannot interact with fibrinogen and its derivatives due to the lack of alpha v beta 3. Thus, fibrinogen and fibrin are authentic anti-adhesive for keratinocytes. This may be a fundamental reason why the migrating epidermis dissects the fibrin eschar from wounds.
Collapse
Affiliation(s)
- M Kubo
- Department of Dermatology, School of Medicine, SUNY at Stony Brook, Stony Brook, New York, New York 11794-8165, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
We are just beginning to understand some of the cellular mechanisms involved in human keratinocyte migration on extracellular matrix. Extracellular matrix components have differing effects on keratinocyte motility. Signalling through integrin receptors and secretion of collagenase are both components of this process. An understanding of the effect of extracellular matrix on keratinocyte migration has direct relevance to the problem of wound re-epithelialization and will assist in the development of therapeutic efforts to enhance wound healing artificially.
Collapse
Affiliation(s)
- E A O'Toole
- Centre for Cutaneous Research, St Bartholomew's & The Royal London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
24
|
Grzeszkiewicz TM, Kirschling DJ, Chen N, Lau LF. CYR61 stimulates human skin fibroblast migration through Integrin alpha vbeta 5 and enhances mitogenesis through integrin alpha vbeta 3, independent of its carboxyl-terminal domain. J Biol Chem 2001; 276:21943-50. [PMID: 11287419 DOI: 10.1074/jbc.m100978200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CYR61, an angiogenic factor and a member of the CCN protein family, is an extracellular matrix-associated, heparin-binding protein that mediates cell adhesion, promotes cell migration, and enhances growth factor-stimulated cell proliferation. CYR61 induces angiogenesis and promotes tumor growth in vivo and is expressed in dermal fibroblasts during cutaneous wound healing. It has been demonstrated recently that adhesion of primary skin fibroblasts to CYR61 is mediated through integrin alpha(6)beta(1) and cell surface heparan sulfate proteoglycans, resulting in adhesive signaling and up-regulation of matrix metalloproteinases 1 and 3. CYR61 is composed of four discrete structural domains that bear sequence similarities to the insulin-like growth factor-binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a carboxyl-terminal (CT) domain that resembles cysteine knots found in some growth factors. In this study, we show that a CYR61 mutant (CYR61DeltaCT) that has the CT domain deleted is unable to support adhesion of primary human skin fibroblasts but is still able to stimulate chemotaxis and enhance basic fibroblast growth factor-induced mitogenesis similar to wild type. In addition, fibroblast migration to CYR61 is mediated through integrin alpha(v)beta(5) but not integrins alpha(6)beta(1) or alpha(v)beta(3). Furthermore, we show that CYR61 binds directly to purified integrin alpha(v)beta(5) in vitro. By contrast, CYR61 enhancement of basic fibroblast growth factor-induced DNA synthesis is mediated through integrin alpha(v)beta(3), a known receptor for CYR61 that mediates CYR61-dependent cell adhesion and chemotaxis in vascular endothelial cells. Thus, CYR61 promotes primary human fibroblast adhesion, migration, and mitogenesis through integrins alpha(6)beta(1), alpha(v)beta(5), and alpha(v)beta(3), respectively. Together, these findings establish CYR61 as a novel ligand for integrin alpha(v)beta(5) and show that CYR61 interacts with distinct integrins to mediate disparate activities in a cell type-specific manner.
Collapse
Affiliation(s)
- T M Grzeszkiewicz
- Department of Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
25
|
Thomas GJ, Poomsawat S, Lewis MP, Hart IR, Speight PM, Marshall JF. alpha v beta 6 Integrin upregulates matrix metalloproteinase 9 and promotes migration of normal oral keratinocytes. J Invest Dermatol 2001; 116:898-904. [PMID: 11407978 DOI: 10.1046/j.1523-1747.2001.01352.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The integrin alpha v beta 6 is a fibronectin receptor that is undetectable on normal keratinocytes in situ, but is increased significantly in wound healing and in culture-established keratinocytes, suggesting that it may promote changes associated with cell motility. Using normal human oral keratinocytes we have shown that cultured cells express relatively high levels of alpha v beta 6 and this integrin has a functional role in both cell adhesion and migration towards fibronectin. We provide experimental evidence that the increased expression of alpha v beta 6 by normal human oral keratinocytes results in coordinate changes, which promote a more migratory phenotype. Thus increased expression of alpha v beta 6 results in a fibronectin-dependent increase in pro-matrix metalloproteinase 9, matrix metalloproteinase 9 activity increases normal human oral keratinocyte migration, and this may be further dependent on plasmin activation. The results suggest a key role for alpha v beta 6 in these processes and indicate a coordinated link between alpha v beta 6 expression and upregulation of matrix metalloproteinase 9. It appears that alpha v beta 6 may function in normal human oral keratinocyte migration through matrix-metalloproteinase-9-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- G J Thomas
- Department of Oral Pathology, Eastman Dental Institute, University College London, UK
| | | | | | | | | | | |
Collapse
|
26
|
Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P, Bar-Shavit R. Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 2001; 276:10952-62. [PMID: 11278329 DOI: 10.1074/jbc.m007027200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first prototype of the protease activated receptor (PAR) family, the thrombin receptor PAR1, plays a central role both in the malignant invasion process of breast carcinoma metastasis and in the physiological process of placental implantation. The molecular mechanism underlying PAR1 involvement in tumor invasion and metastasis, however, is poorly defined. Here we show that PAR1 increases the invasive properties of tumor cells primarily by increased adhesion to extracellular matrix components. This preferential adhesion is accompanied by the cytoskeletal reorganization of F-actin toward migration-favoring morphology as detected by phalloidin staining. Activation of PAR1 increased the phosphorylation of focal adhesion kinase and paxillin, and the induced formation of focal contact complexes. PAR1 activation affected integrin cell-surface distribution without altering their level of expression. The specific recruitment of alpha(v)beta(5) to focal contact sites, but not of alpha(v)beta(3) or alpha(5)beta(1), was observed by immunofluorescent microscopy. PAR1 overexpressing cells showed selective reciprocal co-precipitation with alpha(v)beta(5) and paxillin but not with alpha(v)beta(3) that remained evenly distributed under these conditions. This co-immunoprecipitation failed to occur in cells containing the truncated form of PAR1 that lacked the entire cytoplasmic portion of the receptor. Thus, the PAR1 cytoplasmic tail is essential for conveying the cross-talk and recruiting the alpha(v)beta(5) integrin. While PAR1 overexpressing cells were invasive in vitro, as reflected by their migration through a Matrigel barrier, invasion was further enhanced by ligand activation of PAR1. Moreover, the application of anti-alpha(v)beta(5) antibodies specifically attenuated this PAR1 induced invasion. We propose that the activation of PAR1 may lead to a novel cooperation with the alpha(v)beta(5) integrin that supports tumor cell invasion.
Collapse
Affiliation(s)
- S C Even-Ram
- Departments of Oncology and Pharmacology at the Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel, the Department of Hematology, Medical Center, Tel Aviv 64239, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Harwood FL, Monosov AZ, Goomer RS, Gelberman RH, Winters SC, Silva MJ, Amiel D. Integrin expression is upregulated during early healing in a canine intrasynovial flexor tendon repair and controlled passive motion model. Connect Tissue Res 2001; 39:309-16. [PMID: 11063010 DOI: 10.3109/03008209809021505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To explore crucial early molecular events involved in contact healing of the intrasynovial flexor tendon, integrin expression was evaluated at the transcriptional and post-transcriptional levels during the first two weeks following injury, repair and controlled passive motion in a canine model. Specifically, immunohistochemical and reverse transcription polymerase chain reaction (RT-PCR) techniques were employed to evaluate expression of the fibronectin, vitronectin and endothelial cell binding integrin receptor subunits alpha5, alphav and alpha6, along with the common beta1 subunit. The two techniques revealed increasing expression of the four subunits over the two week post-repair period. Immunohistochemistry revealed that beta1 and alpha5 expression was concentrated in the epitenon layer near the repair site and interiorly within the wound area, while alpha6 was associated with capillary-forming endothelial cells near the wound. RT-PCR and quantitation by NIH image analysis demonstrated peak messenger RNA expression of beta1 and alpha5 at ten days post-repair and peak expression of alpha6 and alphav at 15 days. The results in this study correlate well with previous results demonstrating increased fibronectin deposition and angiogenesis during the same time period in a similar injury/repair model.
Collapse
Affiliation(s)
- F L Harwood
- Department of Orthopaedics, Connective Tissue Biochemistry, University of California San Diego, La Jolla 92093-0630, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Puyraimond A, Fridman R, Lemesle M, Arbeille B, Menashi S. MMP-2 colocalizes with caveolae on the surface of endothelial cells. Exp Cell Res 2001; 262:28-36. [PMID: 11120602 DOI: 10.1006/excr.2000.5069] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examined the spatial distribution of MMP-2 on the surface of human endothelial cells using immunofluorescence and confocal microscopy. Staining endothelial cells with MMP-2-specific antibodies revealed a punctate labeling at the basolateral side of the cell periphery, which colocalized with patches of caveolin-1, a major constituent of the caveolae. This colocalization was confirmed by immunogold electron microscopy. MT1-MMP, TIMP-2, and the alphavbeta3 integrin exhibited a similar pattern of staining, with pericellular patches that colocalized with either MMP-2 or caveolin-1. The presence of MT1-MMP and TIMP-2 in caveolae patches could be seen only after treatment with concanavalin A, which induced MMP-2 activation but had no noticeable effect on the pattern or intensity of MMP-2 immunostaining. In contrast, MMP-9 and TIMP-1 staining showed a pattern completely different from that of MMP-2 and TIMP-2, with positive spots uniformly distributed throughout the cell body. Our data show that MMP-2, its activator the MT1-MMP, and its proposed receptor, the alphavbeta3 integrin, are all targeted to the same membrane microdomains on the endothelial cell, thereby restricting matrix proteolysis to a limited microenvironment at the cell surface.
Collapse
Affiliation(s)
- A Puyraimond
- Unité 353 INSERM, Hôpital Saint Louis, Paris, 75010, France
| | | | | | | | | |
Collapse
|
29
|
Lai CF, Feng X, Nishimura R, Teitelbaum SL, Avioli LV, Ross FP, Cheng SL. Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. J Biol Chem 2000; 275:36400-6. [PMID: 10964912 DOI: 10.1074/jbc.m002131200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-mediated cell-matrix interactions play important roles in regulating cell function. Since transforming growth factor-beta (TGF-beta) modulates many osteoblast activities, we hypothesized that the growth factor acts in part by modulating integrin expression. TGF-beta increased cell adhesion to vitronectin and up-regulated the surface level of alpha(v)beta(5) via increasing beta(5) protein synthesis by a transcriptional mechanism. Promoter activity analysis demonstrated that a TGF-beta-responsive element resides between nucleotides -63 and -44. Electrophoretic mobility shift assay and immunoprecipitation/Western studies indicated that the nuclear complex formed using the -66/-42 oligonucleotide contained both Sp1/Sp3 and Smad proteins. Since nuclear Sp1/Sp3 levels were not altered, whereas Smad levels were increased by TGF-beta, we investigated the roles of Smad proteins in the up-regulation of beta(5) gene activation. Co-transfection of cells with beta(5) promoter reporter construct and expression vectors for Smad3, Smad4, and Sp1 increased the stimulatory effect of TGF-beta. Furthermore, expression of dominant negative Smad3 or Smad4 in cells decreased or abolished the stimulation of beta(5) promoter activity by TGF-beta. Smad4 mutant also inhibited the up-regulation of surface beta(5) level by TGF-beta. Thus, TGF-beta increases expression of the integrin beta(5) gene by mechanisms involving Sp1/Sp3 and Smad transcription factors.
Collapse
Affiliation(s)
- C F Lai
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim LT, Wu J, Bier-Laning C, Dollar BT, Turnage RH. Focal adhesion kinase up-regulation and signaling in activated keratinocytes. J Surg Res 2000; 91:65-9. [PMID: 10816352 DOI: 10.1006/jsre.2000.5914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND During wound healing keratinocytes undergo a process called "activation" that enables the cells to spread and migrate on wound matrix molecules. Focal adhesion kinase (FAK) is a key component of integrin-mediated intracellular signaling. We investigated the induction of FAK and its signaling activity during keratinocyte activation. MATERIALS AND METHODS Keratinocytes were harvested from normal human skin. Previous work has shown that culture of keratinocytes causes activation in a manner similar to reepithelialization. Freshly isolated, unactivated cells were compared with cultured, activated cells. Activated cells were further examined either as growing colonies or after replating on type I collagen. FAK content was assessed by Western blotting. FAK distribution was shown using indirect immunofluorescence. FAK signaling activity was assessed using an antiphosphotyrosine antibody. RESULTS FAK was not detectable by Western blotting in freshly isolated cells. In contrast FAK was detected in activated cells. FAK was up-regulated between Days 2 and 4 after cell isolation from skin. Immunostaining of activated, growing keratinocyte colonies in vitro showed a diffuse, cytoplasmic pattern. When these cells were replated on collagen, FAK became concentrated in focal adhesions. Lysates from replated cells showed increased tyrosine phosphorylation of FAK. CONCLUSIONS In summary FAK is induced in keratinocytes in a time course comparable to that of activation. FAK is phosphorylated and undergoes redistribution to focal adhesions when cells are plated on the beta(1) integrin ligand collagen. These data suggest that induction of FAK and subsequent FAK-induced signaling may be responsible for changes in integrin-mediated behavior of activated keratinocytes during reepithelialization.
Collapse
Affiliation(s)
- L T Kim
- Surgical Service, Veterans Affairs North Texas Health Care System, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
31
|
Leivo T, Kiistala U, Vesterinen M, Owaribe K, Burgeson RE, Virtanen I, Oikarinen A. Re-epithelialization rate and protein expression in the suction-induced wound model: comparison between intact blisters, open wounds and calcipotriol-pretreated open wounds. Br J Dermatol 2000; 142:991-1002. [PMID: 10809861 DOI: 10.1046/j.1365-2133.2000.03484.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated re-epithelialization following induction of suction blisters in humans in intact blisters, open wounds, i.e. blister roofs removed immediately after blister induction, and calcipotriol-pretreated open wounds. Intact blisters simulate blister healing in bullous disease, while open wounds simulate re-epithelialization during wound healing. Re-epithelialization was clearly faster in open wounds than in intact blisters, and was not affected by calcipotriol pretreatment. Bullous pemphigoid antigen 2 (BP180), bullous pemphigoid antigen 1 (BP230), plectin/hemidesmosomal 1 protein (HD1), laminin 5, laminin alpha5, laminin beta1, type VII collagen, tenascin-C, beta4, alphavbeta5, alpha5 and alpha9 integrins were studied in intact blisters and open wounds by immunohistochemistry. Hemidesmosomal plaque proteins BP230 and plectin/HD1, which connect the keratin cytoskeleton to the hemidesmosome, appeared earlier at the leading edge in intact blisters than in open wounds. Band-like immunostaining in the basement membrane for laminin 5, alpha5 and beta1 chains was continuous in blister bases, but partially discontinuous in open wound bases. The other antigens studied showed similar expression in intact blisters and open wounds. BP180, BP230, plectin/HD1, beta4 integrin, laminin 5 and tenascin-C expression were further studied in calcipotriol-pretreated open wounds. Calcipotriol did not affect the expression of these antigens. The immunohistochemical results suggest that the keratin cytoskeleton is linked to the basal plasma membrane of migrating basal cells via BP230 and plectin/HD1 earlier in the more slowly re-epithelializing blisters than in open wounds. An intact laminin sheath may inhibit keratinocyte migration in intact blisters.
Collapse
Affiliation(s)
- T Leivo
- Department of Anatomy, Institute of Biomedicine, PO Box 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
32
|
Cheng SL, Lai CF, Fausto A, Chellaiah M, Feng X, McHugh KP, Teitelbaum SL, Civitelli R, Hruska KA, Ross FP, Avioli LV. Regulation of alphaVbeta3 and alphaVbeta5 integrins by dexamethasone in normal human osteoblastic cells. J Cell Biochem 2000; 77:265-76. [PMID: 10723092 DOI: 10.1002/(sici)1097-4644(20000501)77:2<265::aid-jcb9>3.0.co;2-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term administration of pharmacological doses of glucocorticoids inhibits bone formation and results in osteoporosis. Since integrin-mediated cell-matrix interactions are essential for osteoblast function, we hypothesized that the detrimental effect of glucocorticoids on bone derived, at least in part, from decreased integrin-matrix interactions. Because alphavbeta3 and alphavbeta5 integrins can interact with several bone matrix proteins, we analyzed the effects of dexamethasone (Dex) on the expression of these integrins in normal human osteoblastic cells. We found adhesion of these cells to osteopontin and vitronectin to be dependent on alphavbeta3 and alphavbeta5, respectively; this ligand specificity was not altered by Dex. The effects of Dex on the adhesion of human osteoblastic cells to osteopontin and vitronectin were biphasic with an increase after 2 days, followed by a decrease after 8 days of treatment. Consistently, surface alphavbeta3 and alphavbeta5 integrins, which were increased after 2 days of Dex treatment, were decreased after 8 days. Similarly, total cellular alphav, beta3, and beta5 proteins, which were increased by Dex early in the culture, were diminished after 8 days. Metabolic labeling studies indicated that Dex exhibited biphasic regulation on the biosynthesis of alphavbeta5, with stimulation observed during the second day of treatment, followed by inhibition during the 8th day of exposure. By contrast, the biosynthesis of alphavbeta3 was inhibited by Dex on day 1 and remained inhibited on day 8. Analysis of the mRNA indicated that alphav and beta5 levels were increased by Dex during early exposure (1-3 days), followed by inhibition after prolonged exposure (>/=7 days). By contrast, Dex decreased beta3 mRNA level at all the time points analyzed. Consistently, Dex decreased beta3 promoter activity after 1 day and persisted over 8-day period. By contrast, Dex stimulated beta5 promoter activity after 1 or 2 days but had no effect after 8 days. To further evaluate mechanism(s) leading to the decreased integrin expression after prolonged Dex treatment, mRNA stability was analyzed. Dex was found to accelerate the degradation of alphav, beta3 and beta5 mRNA after an 8-day treatment. Thus, the regulation of alphavbeta3 was dependent on transcription and posttranscriptional events whereas the expression of alphavbeta5 was dependent mainly on posttranscriptional events after prolonged Dex treatment. In conclusion, Dex exhibited time-dependent regulation on the expression of alphavbeta3 and alphavbeta5 integrins in normal human osteoblastic cells. Short-term exposure to Dex increased the levels of alphavbeta3 and alphavbeta5 on the surface and cell adhesion to osteopontin and vitronectin whereas long-term exposure to Dex decreased the expression of both integrins and inhibited the cell adhesion to matrix proteins.
Collapse
Affiliation(s)
- S L Cheng
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang X, Griffiths M, Wu J, Farese RV, Sheppard D. Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol 2000; 20:755-9. [PMID: 10629031 PMCID: PMC85191 DOI: 10.1128/mcb.20.3.755-759.2000] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1999] [Accepted: 10/27/1999] [Indexed: 11/20/2022] Open
Abstract
Integrins have been shown to play important roles in embryonic development, wound healing, metastasis, and other biological processes. alphavbeta5 is a receptor for RGD-containing extracellular matrix proteins that has been suggested to be important in cutaneous wound healing and adenovirus infection. To examine the in vivo function of this receptor, we have generated mice lacking beta5 expression, using homologous recombination in embryonic stem cells. Mice homozygous for a null mutation of the beta5 subunit gene develop, grow, and reproduce normally. Keratinocytes harvested from beta5(-/-) mice demonstrate impaired migration on and adhesion to the alphavbeta5 ligand, vitronectin. However, the rate of healing of cutaneous wounds is not different in beta5(-/-) and beta5(+/+) mice. Furthermore, keratinocytes and airway epithelial cells obtained from null mice show adenovirus infection efficiency equal to that from wild-type mice. These data suggest that alphavbeta5 is not essential for normal development, reproduction, adenovirus infection, or the healing of cutaneous wounds.
Collapse
Affiliation(s)
- X Huang
- Lung Biology Center, University of California, San Francisco, San Francisco, California 94143-0854, USA
| | | | | | | | | |
Collapse
|
34
|
Hebert C, Norris K, Della Coletta R, Reynolds M, Ordóñez J, Sauk JJ. Cell surface colligin/Hsp47 associates with tetraspanin protein CD9 in epidermoid carcinoma cell lines. J Cell Biochem 1999; 73:248-58. [PMID: 10227388 DOI: 10.1002/(sici)1097-4644(19990501)73:2<248::aid-jcb11>3.0.co;2-a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hsps expressed on the cell surface have been associated with tumor invasiveness and used as targets for molecular surveillance. The present study utilized four human oral squamous cell carcinoma cells lines, SCC-4, SCC-9, SCC-15, SCC-25, the murine epidermoid carcinoma cell line LL/2, and primary cultures of human gingival fibroblasts to assess the cell surface expression of colligin/Hsp47, a proposed marker for malignancy. Immunoprecipitation studies following protein crosslinking revealed that Hsp47 was associated with a number of membrane proteins including the tetraspanin CD9. Cytometric analyses were performed to determine the distribution of cell surface colligin/Hsp47 during the phases of the cell cycle. These studies showed that colligin/Hsp47 was not limited to any phase of the cell cycle in epidermoid carcinoma cells. Boyden chamber tumor invasion assays and colloidal gold migration assays utilizing a reconstituted basement membrane (Matrigel), collagen type I, and laminin-5 substrates revealed that cell lines expressing constitutive high levels of colligin/Hsp47 manifested the lowest invasion and migration indices. The incorporation of antibodies against Hsps into the migration and invasion assays, likewise, increased the invasion indices and the phagokinetic migration indices. These data indicate that colligin/Hsp47 is anchored to the cell membrane in a complex with CD9 where it moderates tumor cell invasion and motility possibly by acting as a serpin protein inhibitor or as a receptor for collagen.
Collapse
Affiliation(s)
- C Hebert
- Department of Pathology, University of Maryland at Baltimore, 21201, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Terskikh VV, Vasiliev AV. Cultivation and transplantation of epidermal keratinocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 188:41-72. [PMID: 10208010 DOI: 10.1016/s0074-7696(08)61565-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transplantation of autologous cultured keratinocytes is the most advanced area of tissue engineering which has clinical application in restoration of skin lesions. In vitro, disaggregated keratinocytes undergo activation and after adhesion and histogenic aggregation form three-dimensional epithelial sheets suitable for grafting on prepared wounds that provide a reparative environment. Epidermal stem cells survive and proliferate in culture, retaining their potential to differentiate and to produce neoepidermis. Reconstructed skin is physiologically compatible to split-thickness autografts. Autotransplantation of cultured keratinocytes is a promising technique for gene therapy. In many cases allografting of cultured keratinocytes promotes wound healing by stimulation of epithelialization. Banking of cryopreserved keratinocytes is a significant improvement in usage of cultured keratinocytes for wound healing. Skin substitutes reconstructed in vitro that have morphological, biochemical, and functional features of the native tissue are of interest as model systems that enable extrapolation to situations in vivo.
Collapse
Affiliation(s)
- V V Terskikh
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
36
|
Carreiras F, Rigot V, Cruet S, Andre F, Gauduchon P, Marvaldi J. Migration properties of the human ovarian adenocarcinoma cell line IGROV1: importance of alpha(v)beta3 integrins and vitronectin. Int J Cancer 1999; 80:285-94. [PMID: 9935212 DOI: 10.1002/(sici)1097-0215(19990118)80:2<285::aid-ijc19>3.0.co;2-l] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cell migration of ovarian tumoral cells is essential for cell dissemination and for invasion of the submesothelial extracellular matrix (ECM). We have conducted a study of the migratory properties of an ovarian adenocarcinoma cell line (IGROV1) by using 2 distinct methods for the evaluation of cell migration. We found that in a short-term transfilter migration assay, IGROV1 cells migrated toward vitronectin, fibronectin, type IV collagen and laminin in an integrin-dependent manner. When migration was evaluated in a wound healing assay, the restitution of the wounded area was stimulated solely by added, exogenous vitronectin and was almost totally dependent on alpha(v)beta3 integrin function. Moreover, we demonstrated that alpha(v)beta3 was localized in focal contacts restricted to the leading edge of migrating cells, whereas vitronectin notably localized with actin stress fibers and cortical actin. On the other hand, several kinase inhibitors were found to impede migration of IGROV1 induced by vitronectin. It thus appears that alpha(v)beta3-vitronectin interactions lead to the activation of multiple signaling pathway including activation of protein kinase C, phosphatidyl-inositol-3-phosphate kinase and protein tyrosine kinase. The "alpha(v)beta3-vitronectin system" is therefore essential to the migration of human ovarian carcinoma cells.
Collapse
Affiliation(s)
- F Carreiras
- UPRES-A 6032, Laboratoire de Biochimie Cellulaire, Faculté de Pharmacie, Marseille, France
| | | | | | | | | | | |
Collapse
|
37
|
Huang X, Wu J, Spong S, Sheppard D. The integrin alphavbeta6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin. J Cell Sci 1998; 111 ( Pt 15):2189-95. [PMID: 9664040 DOI: 10.1242/jcs.111.15.2189] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrin alphavbeta6 is expressed on a variety of epithelial cells during dynamic processes including organogenesis, tissue injury and malignant transformation. However, because of the lack of tools to specifically inhibit the function of this integrin, little is known about its effects on cell behavior. To directly examine the role of this integrin in cell migration, we used keratinocytes derived from wild-type mice or mice expressing a null mutation in the beta6 subunit (beta6-/-) to perform migration assays in vitro. Migration on the known alphavbeta6 ligand, fibronectin was reduced in keratinocytes from beta6-/- mice. Interestingly, keratinocytes from beta6-/- mice also demonstrated markedly reduced migration on vitronectin, a protein not previously known to be a ligand for alphavbeta6. An anti-alphavbeta6 monoclonal antibody 10D5, generated by immunization of beta6-/- mice with murine keratinocytes, inhibited adhesion and migration of wild-type keratinocyte on both vitronectin and fibronectin to levels similar to those seen with keratinocytes from beta6-/- mice. alphavbeta6-mediated migration on both ligands was dramatically augmented by treatment with phorbol myrisate acetate (PMA) or with hepatocyte growth factor, and augmentation of migration by either stimulus could be abolished by the PKC inhibitor GF109203X, suggesting a critical role for PKC in enhancement of alphavbeta6-mediated cell migration.
Collapse
Affiliation(s)
- X Huang
- Lung Biology Center, Cardiovascular Research Institute, Center for Occupational and Environmental Health and Department of Medicine, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
38
|
Abstract
BACKGROUND During reepithelialization keratinocytes show increased expression of the integrin subunit alpha-v. We have investigated the promoter region of the alpha-v integrin subunit to learn more about its regulation. METHODS The promoter region of the human integrin alpha-v gene was cloned into a luciferase reporter vector. Deletional mutants were created using PCR. Computerized sequence analysis was performed using the Wisconsin Package. Gel-shift analysis was performed using keratinocyte nuclear extracts and oligonucleotides spanning th regions of interest. RESULTS Deletion from -522 bp to -235 resulted in no discernible effect on promoter activity. In contrast deletion of the next 22 bp, which included a putative ets binding site, reduced activity by approximately half. Further deletion to -139 bp essentially abolished promoter activity. Computer searching of this region of the integrin alpha-v promoter revealed two tandemly repeated motifs, TCCTCCTCC, that had previously been implicated in the function of the epidermal growth factor receptor (EGFR) promoter. Comparison of the alpha-v integrin promoter to the EGFR promoter revealed an area of high homology in this region. Gel-shift analysis revealed binding of a single-strand specific DNA binding protein to single stranded oligos comprising these motifs, but no binding of factors to the double- stranded oligo containing the ets binding site. CONCLUSIONS In keratinocytes alpha-v integrin expression is controlled by a region of the promoter with high homology to the epidermal growth factor receptor promoter This region binds single-strand specific DNA binding proteins that are likely to be important in controlling transcription.
Collapse
Affiliation(s)
- L T Kim
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | |
Collapse
|
39
|
Neff S, Sá-Carvalho D, Rieder E, Mason PW, Blystone SD, Brown EJ, Baxt B. Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. J Virol 1998; 72:3587-94. [PMID: 9557639 PMCID: PMC109579 DOI: 10.1128/jvi.72.5.3587-3594.1998] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adsorption and plaque formation of foot-and-mouth disease virus (FMDV) serotype A12 are inhibited by antibodies to the integrin alpha(v)beta3 (A. Berinstein et al., J. Virol. 69:2664-2666, 1995). A human cell line, K562, which does not normally express alpha(v)beta3 cannot replicate this serotype unless cells are transfected with cDNAs encoding this integrin (K562-alpha(v)beta3 cells). In contrast, we found that a tissue culture-propagated FMDV, type O1BFS, was able to replicate in nontransfected K562 cells, and replication was not inhibited by antibodies to the endogenously expressed integrin alpha5beta1. A recent report indicating that cell surface heparan sulfate (HS) was required for efficient infection of type O1 (T. Jackson et al., J. Virol. 70:5282-5287, 1996) led us to examine the role of HS and alpha(v)beta3 in FMDV infection. We transfected normal CHO cells, which express HS but not alpha(v)beta3, and two HS-deficient CHO cell lines with cDNAs encoding human alpha(v)beta3, producing a panel of cells that expressed one or both receptors. In these cells, type A12 replication was dependent on expression of alpha(v)beta3, whereas type O1BFS replicated to high titer in normal CHO cells but could not replicate in HS-deficient cells even when they expressed alpha(v)beta3. We have also analyzed two genetically engineered variants of type O1Campos, vCRM4, which has greatly reduced virulence in cattle and can bind to heparin-Sepharose columns, and vCRM8, which is highly virulent in cattle and cannot bind to heparin-Sepharose. vCRM4 replicated in wild-type K562 cells and normal, nontransfected CHO (HS+ alpha(v)beta3-) cells, whereas vCRM8 replicated only in K562 and CHO cells transfected with alpha(v)beta3 cDNAs. A similar result was also obtained in assays using a vCRM4 virus with an engineered RGD-->KGE mutation. These results indicate that virulent FMDV utilizes the alpha(v)beta3 integrin as a primary receptor for infection and that adaptation of type O1 virus to cell culture results in the ability of the virus to utilize HS as a receptor and a concomitant loss of virulence.
Collapse
Affiliation(s)
- S Neff
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Simon KO, Nutt EM, Abraham DG, Rodan GA, Duong LT. The alphavbeta3 integrin regulates alpha5beta1-mediated cell migration toward fibronectin. J Biol Chem 1997; 272:29380-9. [PMID: 9361020 DOI: 10.1074/jbc.272.46.29380] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study examines the interactions of alphavbeta3 and alpha5beta1 in the regulation of cell migration. Human embryonic kidney (HEK) 293 cells that express alpha5beta1 endogenously were transfected with alphavbeta3 and beta3 mutants, and their attachment and migration to fibronectin (Fn) and vitronectin (Vn) were measured. An alphavbeta3 blocking antibody and the alphavbeta3 ligand cyclic G-Pen-GRGDSPC-A inhibited alpha5beta1-mediated migration toward Fn, but not attachment to Fn. This function was alphavbeta3-specific since alphavbeta5 transfection and alphavbeta5 blocking antibody did not produce this effect. Mutations introduced into the beta3 integrin subunit to dissect this phenomenon revealed the following. Disruption of the ligand binding domain by the Glanzmann thrombasthenia mutation beta3-D119Y constitutively abolished migration toward both Vn and Fn, and attachment to Vn but not to Fn. Insertion of the Glanzmann mutation beta3-S752P into the cytoplasmic domain or its truncation (beta3-Delta717) abolished binding to Vn but not to Fn. Inhibition of migration toward Fn was inhibited in these cells by alphavbeta3 blocking antibody. alphavbeta3-mediated inhibition was, however, abolished by truncation of the transmembrane domain (beta3-Delta693). These findings demonstrate alphavbeta3 regulation of alpha5beta1-mediated cell migration and suggest that the beta3 transmembrane domain is essential for this function.
Collapse
Affiliation(s)
- K O Simon
- Department of Bone Biology and Osteoporosis, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | |
Collapse
|
41
|
Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Biophys Biochem Cytol 1997; 137:1445-57. [PMID: 9182674 PMCID: PMC2132537 DOI: 10.1083/jcb.137.6.1445] [Citation(s) in RCA: 437] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have shown in a variety of human wounds that collagenase-1 (MMP-1), a matrix metalloproteinase that cleaves fibrillar type I collagen, is invariably expressed by basal keratinocytes migrating across the dermal matrix. Furthermore, we have demonstrated that MMP-1 expression is induced in primary keratinocytes by contact with native type I collagen and not by basement membrane proteins or by other components of the dermal or provisional (wound) matrix. Based on these observations, we hypothesized that the catalytic activity of MMP-1 is necessary for keratinocyte migration on type I collagen. To test this idea, we assessed keratinocyte motility on type I collagen using colony dispersion and colloidal gold migration assays. In both assays, primary human keratinocytes migrated efficiently on collagen. The specificity of MMP-1 in promoting cell movement was demonstrated in four distinct experiments. One, keratinocyte migration was completely blocked by peptide hydroxymates, which are potent inhibitors of the catalytic activity of MMPs. Two, HaCaTs, a line of human keratinocytes that do not express MMP-1 in response to collagen, did not migrate on a type I collagen matrix but moved efficiently on denatured type I collagen (gelatin). EGF, which induces MMP-I production by HaCaT cells, resulted in the ability of these cells to migrate across a type I collagen matrix. Three, keratinocytes did not migrate on mutant type I collagen lacking the collagenase cleavage site, even though this substrate induced MMP-1 expression. Four, cell migration on collagen was completely blocked by recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1) and by affinity-purified anti-MMP-1 antiserum. In addition, the collagen-mediated induction of collagenase-1 and migration of primary keratinocytes on collagen was blocked by antibodies against the alpha2 integrin subunit but not by antibodies against the alpha1 or alpha3 subunits. We propose that interaction of the alpha2beta1 integrin with dermal collagen mediates induction of collagenase-1 in keratinocytes at the onset of healing and that the activity of collagenase-1 is needed to initiate cell movement. Furthermore, we propose that cleavage of dermal collagen provides keratinocytes with a mechanism to maintain their directionality during reepithelialization.
Collapse
Affiliation(s)
- B K Pilcher
- Department of Medicine (Dermatology), Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kjøller L, Kanse SM, Kirkegaard T, Rodenburg KW, Rønne E, Goodman SL, Preissner KT, Ossowski L, Andreasen PA. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Exp Cell Res 1997; 232:420-9. [PMID: 9168821 DOI: 10.1006/excr.1997.3540] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cell migration involves the integrins, their extracellular matrix ligands, and pericellular proteolytic enzyme systems. We have studied the role of plasminogen activator inhibitor-1 (PAI-1) in cell migration, using human amnion WISH cells and human epidermoid carcinoma HEp-2 cells in an assay measuring migration from microcarrier beads and a modified Boyden-chamber assay. Active, but not latent or reactive center-cleaved, PAI-1 inhibited migration. A PAI-1 mutant without ability to inhibit plasminogen activation was as active as wild-type PAI-1 as a migration inhibitor, showing that inhibition of plasminogen activation was not involved. PAI-1 specifically interfered with intergrin- and vitronectin-mediated migration: Migration onto vitronectin-coated but not onto fibronectin-coated surfaces was inhibited by PAI-1, a cyclic RGD peptide inhibited migration, and both cell lines expressed vitronectin-binding alpha v-integrins. In addition, active PAI-1, but not latent or reactive center-cleaved PAI-1, inhibited vitronectin binding to integrins in an in vitro binding assay, without affecting binding of fibronectin. Monoclonal antibodies against the urokinase receptor, another vitronectin binding protein, did not affect cell migration in the beads assay, while some inhibitory effect was observed in the Boyden-chamber assay. We conclude that PAI-1, independently of its role as a proteinase inhibitor, inhibits cell migration by competing for vitronectin binding to integrins, while the interference of PAI-1 with binding of vitronectin to the urokinase receptor may play a secondary role. These data define a novel function for the serpin PAI-1, enabling it to regulate cell migration over vitronectin-rich extracellular matrix in the body.
Collapse
Affiliation(s)
- L Kjøller
- Department of Molecular and Structural Biology, University of Arhus, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Adhesive interactions are crucial for the integrity and function of all cells and tissues. As one of the major families of cell adhesion receptors, the integrins have been the focus of scientific interest for more than a decade. The resulting studies have tremendously enhanced the understanding of integrin-mediated adhesive interactions and have unveiled novel integrin functions in the cytoskeletal organization of microfilaments and in the activation of diverse signaling pathways. These functions are critically involved in the regulation of multiple processes, such as tissue development, inflammation, tumor cell growth and metastasis, and programmed cell death. The global view of integrin receptor biology has radically changed and has become much more subtle and elaborate. The enormous complexity of integrin function is determined by the heterodimeric formation of more than 20 functional integrin receptors, the cell type-specific distribution, the receptor activation state, the presence of different activation and deactivation signals, and the subsequent employment of distinct cytoskeletal and signaling complexes within a more dimensional network of time and space. This article summarizes the structural and functional properties of the integrin receptors and emphasizes some of the major achievements made in the past to enhance the understanding of integrin biology.
Collapse
Affiliation(s)
- J Gille
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
44
|
Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 1996; 383:441-3. [PMID: 8837777 DOI: 10.1038/383441a0] [Citation(s) in RCA: 479] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During wound healing, migrating cells increase expression of both the vitronectin receptor (VNR) integrins and plasminogen activators. Here we report that vitronectin significantly enhances the migration of smooth muscle cells (SMCs), and that the specific VNR alpha V beta 3 is required for cell motility. We also show that the alpha V beta 3 attachment site on vitronectin overlaps with the binding site for plasminogen activator inhibitor (PAI)-1, and that the active conformation of PAI-1 blocks SMC migration. This effect requires high-affinity binding to vitronectin, and is not dependent on the ability of PAI-1 to inhibit plasminogen activators. Formation of a complex between PAI-1 and plasminogen activators results in loss of PAI-1 affinity for vitronectin and restores cell migration. These data demonstrate a direct link between plasminogen activators and integrin-mediated cell migration, and show that PAI-1 can control cell-matrix interactions by regulating the accessibility of specific cell-attachment sites. This indicates that the localization of plasminogen activators at sites of focal contact does not initiate a proteolytic cascade leading to generalized matrix destruction, but instead is required to expose cryptic cell-attachment sites necessary for SMC migration.
Collapse
Affiliation(s)
- S Stefansson
- Biochemistry Department, J.H. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | |
Collapse
|
45
|
CLARK R, ASHCROFT G, SPENCER MJ, LARJAVA H, FERGUSON M. Re-epithelialization of normal human excisional wounds is associated with a switch from αvβ5 to αvβ6 integrins. Br J Dermatol 1996. [DOI: 10.1111/j.1365-2133.1996.tb03606.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Larjava H, Haapasalmi K, Salo T, Wiebe C, Uitto VJ. Keratinocyte integrins in wound healing and chronic inflammation of the human periodontium. Oral Dis 1996; 2:77-86. [PMID: 8957941 DOI: 10.1111/j.1601-0825.1996.tb00207.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Periodontal epithelium plays a critical role in protection, destruction and repair of human periodontium. During optimal repair, epithelium migrates and covers the wound surface to prevent infection and damage of the vulnerable underlying connective tissue. During periodontal destruction, junctional epithelium undergoes transformation to pocket epithelium that has quite different characteristics from junctional epithelium. In the course of periodontal disease the epithelial attachment to the tooth surface is lost and the epithelium proliferates and extends pseudo-rete ridges deep into the inflamed connective tissue. Both scenarios, repair and destruction, involve active epithelial migration either in the wound provisional matrix or in the inflamed connective tissue matrix, respectively. This review covers recent research data on cellular receptors, integrins, that mediate epithelial cell migration during wound healing and destruction of human periodontium.
Collapse
Affiliation(s)
- H Larjava
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
47
|
Aznavoorian S, Stracke ML, Parsons J, McClanahan J, Liotta LA. Integrin alphavbeta3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J Biol Chem 1996; 271:3247-54. [PMID: 8621727 DOI: 10.1074/jbc.271.6.3247] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Distinctions between chemotaxis and haptotaxis of cells to extracellular matrix proteins have not been defined in terms of mechanisms or signaling pathways. Migration of A2058 human melanoma cells to soluble (chemotaxis) and substratum-bound (haptotaxis) vitronectin, mediated by alphav beta3, provided a system with which to address these questions. Both chemotaxis and haptotaxis were completely inhibited by treatment with RGD-containing peptides. Chemotaxis was abolished by a blocking antibody to alphavbeta3 (LM609), whereas haptotaxis was inhibited only by approximately 50%, suggesting involvement of multiple receptors and/or signaling pathways. However, blocking antibodies to alphavbeta5, also present on A2058 cells, did not inhibit. Pertussis toxin treatment of cells inhibited chemotaxis by >80%, but did not inhibit haptotaxis. Adhesion and spreading over vitronectin induced the phosphorylation of paxillin on tyrosine. In cells migrating over substratum-bound vitronectin, tyrosine phosphorylation of paxillin increased 5-fold between 45 min and 5 h. Dilutions of anti- alphavbeta3 that inhibited haptotaxis also inhibited phosphorylation of paxillin (by approximately 50%) and modestly reduced cell spreading. In contrast, soluble vitronectin (50-100 microg/ml) did not induce tyrosine phosphorylation of paxillin. The data suggest that soluble vitronectin stimulates chemotaxis predominantly through a G protein-mediated pathway that is functionally linked to alphavbeta3. Haptotaxis is analogous to directional cell spreading and requires alphavbeta3-mediated tyrosine phosphorylation of paxillin.
Collapse
Affiliation(s)
- S Aznavoorian
- National Institutes of Health, National Cancer Institute, Laboratory of Pathology, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Haapasalmi K, Zhang K, Tonnesen M, Olerud J, Sheppard D, Salo T, Kramer R, Clark RA, Uitto VJ, Larjava H. Keratinocytes in human wounds express alpha v beta 6 integrin. J Invest Dermatol 1996; 106:42-8. [PMID: 8592080 DOI: 10.1111/1523-1747.ep12327199] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell adhesion receptors of the integrin family play a major role during re-epithelialization of human wounds. We have previously documented that the expression of alpha v family integrins is induced in keratinocytes of mucosal wounds [1]. In the present investigation, we extended these studies to determine whether alpha v beta 6 integrin is expressed during wound healing in humans. Mucosal and epidermal wound sections from 1- to 7-day-old wounds were used for immunolocalization of integrins and their putative ligands. In addition, freshly isolated epidermal keratinocytes were used to study integrin expression in vitro. Expression of alpha v beta 6 integrin appeared relatively late during mucosal and dermal wound healing. Maximal expression was seen in 7-day-old wounds in which epithelial sheets had fused and granulation tissue was present. Fibronectin and tenascin, both possible ligands for alpha v beta 6 integrin, were found concentrated underneath the basal epithelial cells expressing this receptor, and the maximal expression of tenascin coincided with that of alpha v beta 6 integrin. Freshly isolated epidermal keratinocytes did not stain for alpha v beta 6 integrin but began to express this integrin after subculturing. Our results suggest that the expression of alpha v beta 6 integrin, a putative binding integrin for fibronectin and tenascin, is induced in keratinocytes when epithelial sheets fuse during wound healing.
Collapse
Affiliation(s)
- K Haapasalmi
- Department of Oral Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bhattacharya S, Fu C, Bhattacharya J, Greenberg S. Soluble ligands of the alpha v beta 3 integrin mediate enhanced tyrosine phosphorylation of multiple proteins in adherent bovine pulmonary artery endothelial cells. J Biol Chem 1995; 270:16781-7. [PMID: 7542653 DOI: 10.1074/jbc.270.28.16781] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Binding of substrate-bound extracellular matrix proteins to cell surface integrins results in a variety of cellular responses including adhesion, cytoskeletal reorganization, and gene expression. We have previously shown that addition of soluble SC5b-9, the complement-vitronectin complex, resulted in an RGD-dependent increase in lung venular hydraulic conductivity (Ishikawa, S., Tsukada, H., and Bhattacharya, J. (1993) J. Clin. Invest. 91, 103-109). To identify specific integrin(s) and signal transduction pathways that are responsive to soluble vitronectin-containing ligands, we exposed confluent bovine pulmonary artery cells to purified soluble human mono- or multimeric vitronectin, or SC5b-9, and determined the extent of endothelial cell protein tyrosine phosphorylation. Monomeric vitronectin (Vn) did not induce enhanced protein tyrosine phosphorylation. However, multimeric Vn and SC5b-9 elicited time- and concentration-dependent increases in tyrosine phosphorylation of numerous proteins. Antiserum against vitronectin, RGD peptides, and monoclonal and polyclonal antibodies against the alpha v beta 3 integrin blocked the vitronectin- or SC5b-9-induced enhanced accumulation of tyrosine phosphoproteins, while antibodies against beta 1 integrins and the alpha v beta 5 integrin did not. Clustering of the alpha v beta 3 integrin using monoclonal antibody LM609 caused a pattern of enhanced tyrosine phosphorylation similar to that caused by multimeric Vn and SC5b-9, suggesting that aggregation of alpha v beta 3 was critical for signaling. Among the proteins that underwent enhanced tyrosine phosphorylation in response to vitronectin were the cytoskeletal proteins paxillin, cortactin, and ezrin, as well as the SH2 domain-containing protein Shc, and p125FAK. We conclude that ligation of the alpha v beta 3 integrin by soluble ligands promotes enhanced phosphorylation of several proteins implicated in tyrosine kinase signaling and suggest that this pathway may be important in inflammatory states which are accompanied by accumulation of SC5b-9.
Collapse
Affiliation(s)
- S Bhattacharya
- St. Luke's-Roosevelt Hospital Center, New York, New York 10019, USA
| | | | | | | |
Collapse
|