1
|
O’Donohoe TJ, Ketheesan N, Schrale RG. Anti-troponin antibodies following myocardial infarction. J Cardiol 2017; 69:38-45. [DOI: 10.1016/j.jjcc.2016.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/09/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
|
2
|
Mondal A, Jin JP. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T. Front Physiol 2016; 7:449. [PMID: 27790152 PMCID: PMC5062619 DOI: 10.3389/fphys.2016.00449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 12/03/2022] Open
Abstract
Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.
Collapse
Affiliation(s)
- Anupom Mondal
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
3
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
4
|
Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:1-28. [DOI: 10.1016/bs.ircmb.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Posterino GS, Dunn SL, Botting KJ, Wang W, Gentili S, Morrison JL. Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus. J Appl Physiol (1985) 2011; 111:236-43. [PMID: 21493721 DOI: 10.1152/japplphysiol.00067.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The development of the adult cardiac troponin complex in conjunction with changes in cardiac function and cardiomyocyte binucleation has not been systematically characterized during fetal life in a species where maturation of the cardiomyocytes occurs prenatally as it does in the human. The aim of this study was to correlate the expression of each of the major adult troponin isoforms (T, I, and C) during late gestation (term of 150 days) to changes in both Ca(2+) sensitivity and maximum Ca(2+)-activated force of the contractile apparatus and the maturation of cardiomyocytes. The percentage of mononucleated cardiomyocytes in the right ventricle decreased with gestational age to 46% by 137-142 days of gestation. The length of binucleated cardiomyocytes did not change with gestational age, but the length of binucleated cardiomyocytes relative to heart weight decreased with gestational age. There was no change in the expression of adult cardiac troponin T with increasing gestation. The contractile apparatus was significantly more sensitive to Ca(2+) at 90 days compared with either 132 or 139 days of gestation, consistent with an ∼30% increase in the expression of adult cardiac troponin I between 90 and 110 days of gestation. Maximum Ca(2+)-activated force significantly increased from 90 days compared with 130 days consistent with an increase of ∼40% in cardiac troponin C protein expression. These data show that increased adult cardiac troponin I and C protein expression across late gestation is consistent with reduced Ca(2+) sensitivity and increased maximum Ca(2+)-activated force. Furthermore, changes in cardiac troponin C, not I, protein expression track with the timing of cardiomyocyte binucleation.
Collapse
Affiliation(s)
- Giuseppe Saverio Posterino
- Department of Zoology, School of Life Sciences, Faculty of Science and Technology, LaTrobe University, Melbourne, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2010; 505:144-54. [PMID: 20965144 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
|
7
|
Cloning and tissue expression of eleven troponin-C isoforms in the American lobster, Homarus americanus. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:88-101. [DOI: 10.1016/j.cbpb.2010.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|
8
|
Chong SM, Jin JP. To investigate protein evolution by detecting suppressed epitope structures. J Mol Evol 2009; 68:448-60. [PMID: 19365646 DOI: 10.1007/s00239-009-9202-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/12/2009] [Indexed: 10/20/2022]
Abstract
Material remains of ancestor nucleotides and proteins are largely unavailable, thus sequence comparison among homologous genes in present-day organisms forms the core of current knowledge of molecular evolution. Variation in protein three-dimensional structure is a basis for functional diversity. To study the evolution of three-dimensional structures in related proteins would significantly improve our understanding of protein evolution and function. A protein may contain ancestor conformations that have been allosterically suppressed by evolutionarily additive structures. Using monoclonal antibody probes to detect such conformation in proteins after removing the suppressor structure, our study demonstrates three-dimensional structure evidence for the evolutionary relationship between troponin I and troponin T, two subunits of the troponin complex in the Ca(2+)-regulatory system of striated muscle, and among their muscle type-specific isoforms. The experimental data show the feasibility of detecting evolutionarily suppressed history-telling structural states in proteins by removing conformational modulator segments added during evolution. In addition to identifying structural modifications that were critical to the emergence of diverged proteins, investigating this novel mode of evolution will help us to understand the origin and functional potential of protein structures.
Collapse
Affiliation(s)
- Stephen M Chong
- Section of Molecular Cardiology, Evanston Northwestern Healthcare and Northwestern University, 2650 Ridge Avenue, Evanston, IL 60201, USA
| | | |
Collapse
|
9
|
Gene expression patterns in visual cortex during the critical period: synaptic stabilization and reversal by visual deprivation. Proc Natl Acad Sci U S A 2008; 105:9409-14. [PMID: 18606990 DOI: 10.1073/pnas.0710172105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mapping of eye-specific, geniculocortical inputs to primary visual cortex (V1) is highly sensitive to the balance of correlated activity between the two eyes during a restricted postnatal critical period for ocular dominance plasticity. This critical period is likely to have amplified expression of genes and proteins that mediate synaptic plasticity. DNA microarray analysis of transcription in mouse V1 before, during, and after the critical period identified 31 genes that were up-regulated and 22 that were down-regulated during the critical period. The highest-ranked up-regulated gene, cardiac troponin C, codes for a neuronal calcium-binding protein that regulates actin binding and whose expression is activity-dependent and relatively selective for layer-4 star pyramidal neurons. The highest-ranked down-regulated gene, synCAM, also has actin-based function. Actin-binding function, G protein signaling, transcription, and myelination are prominently represented in the critical period transcriptome. Monocular deprivation during the critical period reverses the expression of nearly all critical period genes. The profile of regulated genes suggests that synaptic stability is a principle driver of critical period gene expression and that alteration in visual activity drives homeostatic restoration of stability.
Collapse
|
10
|
Okada Y, Toth MJ, Vanburen P. Skeletal muscle contractile protein function is preserved in human heart failure. J Appl Physiol (1985) 2008; 104:952-7. [PMID: 18202167 DOI: 10.1152/japplphysiol.01072.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle weakness is a common finding in patients with chronic heart failure (CHF). This functional deficit cannot be accounted for by muscle atrophy alone, suggesting that the syndrome of heart failure induces a myopathy in the skeletal musculature. To determine whether decrements in muscle performance are related to alterations in contractile protein function, biopsies were obtained from the vastus lateralis muscle of four CHF patients and four control patients. CHF patients exhibited reduced peak aerobic capacity and knee extensor muscle strength. Decrements in whole muscle strength persisted after statistical control for muscle size. Thin filaments and myosin were isolated from biopsies and mechanically assessed using the in vitro motility assay. Isolated skeletal muscle thin-filament function, however, did not differ between CHF patients and controls with respect to unloaded shortening velocity, calcium sensitivity, or maximal force. Similarly, no difference in maximal force or unloaded shortening velocity of isolated myosin was observed between CHF patients and controls. From these results, we conclude that skeletal contractile protein function is unaltered in CHF patients. Other factors, such as a decrease in total muscle myosin content, are likely contributors to the skeletal muscle strength deficit of heart failure.
Collapse
Affiliation(s)
- Yoko Okada
- Univ. of Vermont, College of Medicine, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
11
|
Balza RO, Misra RP. Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. J Biol Chem 2005; 281:6498-510. [PMID: 16368687 DOI: 10.1074/jbc.m509487200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The serum response factor (SRF) is a transcriptional regulator required for mesodermal development, including heart formation and function. Previous studies have described the role of SRF in controlling expression of structural genes involved in conferring the myogenic phenotype. Recent studies by us and others have demonstrated embryonic lethal cardiovascular phenotypes in SRF-null animals, but have not directly addressed the mechanistic role of SRF in controlling broad regulatory programs in cardiac cells. In this study, we used a loss-of-function approach to delineate the role of SRF in cardiomyocyte gene expression and function. In SRF-null neonatal cardiomyocytes, we observed severe defects in the contractile apparatus, including Z-disc and stress fiber formation, as well as mislocalization and/or attenuation of sarcomeric proteins. Consistent with this, gene array and reverse transcription-PCR analyses showed down-regulation of genes encoding key cardiac transcriptional regulatory factors and proteins required for the maintenance of sarcomeric structure, function, and regulation. Chromatin immunoprecipitation analysis revealed that at least a subset of these proteins are likely regulated directly by SRF. The results presented here indicate that SRF is an essential coordinator of cardiomyocyte function due to its ability to regulate expression of numerous genes (some previously identified and at least 28 targets newly identified in this study) that are involved in multiple and disparate levels of sarcomeric function and assembly.
Collapse
Affiliation(s)
- Robert O Balza
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
12
|
Stoutamyer A, Dhoot GK. Transient expression of fast troponin C transcripts in embryonic quail heart. J Muscle Res Cell Motil 2005; 26:237-45. [PMID: 16322912 DOI: 10.1007/s10974-005-9041-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Most myofibrillar proteins, including troponin I and troponin T subunits of troponin complex, undergo developmental stage-specific isoform transitions in vertebrate heart before attaining adult contractile and regulatory characteristics. Only the cardiac/slow skeletal muscle type isoform of troponin C, however, has been shown to be expressed in both adult and developing heart. The changes in troponin C could be functionally important as the TnC isoforms vary in their affinities for Ca(2+). For example, fast troponin C has two Ca(2+) binding sites while slow/cardiac troponin C has a single regulatory site. This study demonstrates the co-expression of both fast and slow transcripts of troponin C in not only quail embryonic skeletal muscle but also embryonic heart using two different analytical techniques of polymerase chain reaction and in situ hybridisation procedure. Fast troponin C expression in the quail heart using in situ hybridisation procedure was first observed at embryonic day 3, with maximum expression at day 5 after which its level in the developing heart was gradually down regulated. In situ hybridisation staining of sections at these developmental stages demonstrated the expression of both fast and slow transcripts of troponin C in all cardiomyocytes.
Collapse
Affiliation(s)
- A Stoutamyer
- Department of Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, NW1 OTU London, UK
| | | |
Collapse
|
13
|
Brotto MA, Biesiadecki BJ, Brotto LS, Nosek TM, Jin JP. Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility. Am J Physiol Cell Physiol 2005; 290:C567-76. [PMID: 16192301 PMCID: PMC1409758 DOI: 10.1152/ajpcell.00422.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
Collapse
Affiliation(s)
- Marco A Brotto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Troponin is the regulatory complex of the myofibrillar thin filament that plays a critical role in regulating excitation-contraction coupling in the heart. Troponin is composed of three distinct gene products: troponin C (cTnC), the 18-kD Ca(2+)-binding subunit; troponin I (cTnI), the approximately 23-kD inhibitory subunit that prevents contraction in the absence of Ca2+ binding to cTnC; and troponin T (cTnT), the approximately 35-kD subunit that attaches troponin to tropomyosin (Tm) and to the myofibrillar thin filament. Over the past 45 years, extensive biochemical, biophysical, and structural studies have helped to elucidate the molecular basis of troponin function and thin filament activation in the heart. At the onset of systole, Ca2+ binds to the N-terminal Ca2+ binding site of cTnC initiating a conformational change in cTnC, which catalyzes protein-protein associations activating the myofibrillar thin filament. Thin filament activation in turn facilitates crossbridge cycling, myofibrillar activation, and contraction of the heart. The intrinsic length-tension properties of cardiac myocytes as well as the Frank-Starling properties of the intact heart are mediated primarily through Ca(2+)-responsive thin filament activation. cTnC, cTnI, and cTnT are encoded by distinct single-copy genes in the human genome, each of which is expressed in a unique cardiac-restricted developmentally regulated fashion. Elucidation of the transcriptional programs that regulate troponin transcription and gene expression has provided insights into the molecular mechanisms that regulate and coordinate cardiac myocyte differentiation and provided unanticipated insights into the pathogenesis of cardiac hypertrophy. Autosomal dominant mutations in cTnI and cTnT have been identified and are associated with familial hypertrophic and restrictive cardiomyopathies.
Collapse
Affiliation(s)
- Michael S Parmacek
- Department of Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., 9123 Founders Pavilion, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
15
|
Abstract
Cardiovascular disease is the most common cause of death in patients with renal failure. Patients with renal failure are at greater risk of atypical presentations of myocardial ischaemia. Traditional markers of myocardial damage are often increased in renal failure in the absence of clinically suspect myocardial ischaemia. The cardiac troponins are specific markers of myocardial injury. Large-scale trials, excluding patients with renal disease, have shown the importance of the cardiac troponins in predicting adverse outcome and in guiding both therapy and intervention in acute coronary syndromes. Cardiac Troponin T and cardiac Troponin I are increased in patients with renal failure and this is likely to represent multifactorial pathology including cardiac dysfunction, left ventricular hypertrophy and cardiac microinfarctions. Increases in serum troponin from baseline, in patients with renal disease with acute coronary syndromes, may represent a poor prognosis. Small studies of patients with renal failure have suggested that elevation of the cardiac troponins is associated with an increased risk of cardiac death.
Collapse
|
16
|
Du KL, Chen M, Li J, Lepore JJ, Mericko P, Parmacek MS. Megakaryoblastic Leukemia Factor-1 Transduces Cytoskeletal Signals and Induces Smooth Muscle Cell Differentiation from Undifferentiated Embryonic Stem Cells. J Biol Chem 2004; 279:17578-86. [PMID: 14970199 DOI: 10.1074/jbc.m400961200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The SAP domain transcription factor myocardin plays a critical role in the transcriptional program regulating smooth muscle cell differentiation. In this report, we describe the capacity of myocardin to physically associate with megakaryoblastic leukemia factor-1 (MKL1) and characterize the function of MKL1 in smooth muscle cells (SMCs). The MKL1 gene is expressed in most human tissues and myocardin and MKL are co-expressed in SMCs. MKL1 and myocardin physically associate via conserved leucine zipper domains. Overexpression of MKL1 transactivates serum response factor (SRF)-dependent SMC-restricted transcriptional regulatory elements including the SM22alpha promoter, smooth muscle myosin heavy chain promoter/enhancer, and SM-alpha-actin promoter/enhancer in non-SMCs. Moreover, forced expression of MKL1 and SRF in undifferentiated SRF(-/-) embryonic stem cells activates multiple endogenous SMC-restricted genes at levels equivalent to, or exceeding, myocardin. Forced expression of a dominant-negative MKL1 mutant reduces myocardin-induced activation of the SMC-specific SM22alpha promoter. In NIH3T3 fibroblasts MKL1 localizes to the cytoplasm and translocates to the nucleus in response to serum stimulation, actin treadmilling, and RhoA signaling. In contrast, in SMCs MKL1 is observed exclusively in the nucleus regardless of serum conditions or RhoA signaling. However, when actin polymerization is disrupted MKL1 translocates from the nucleus to the cytoplasm in SMCs. Together, these data were consistent with a model wherein MKL1 transduces signals from the cytoskeleton to the nucleus in SMCs and regulates SRF-dependent SMC differentiation autonomously or in concert with myocardin.
Collapse
Affiliation(s)
- Kevin L Du
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
17
|
Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, Parmacek MS. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003; 23:2425-37. [PMID: 12640126 PMCID: PMC150745 DOI: 10.1128/mcb.23.7.2425-2437.2003] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The SAP family transcription factor myocardin functionally synergizes with serum response factor (SRF) and plays an important role in cardiac development. To determine the function of myocardin in the smooth muscle cell (SMC) lineage, we mapped the pattern of myocardin gene expression and examined the molecular mechanisms underlying transcriptional activity of myocardin in SMCs and embryonic stem (ES) cells. The human and murine myocardin genes were expressed in vascular and visceral SMCs at levels equivalent to or exceeding those observed in the heart. During embryonic development, the myocardin gene was expressed abundantly in a precise, developmentally regulated pattern in SMCs. Forced expression of myocardin transactivated multiple SMC-specific transcriptional regulatory elements in non-SMCs. By contrast, myocardin-induced transactivation was not observed in SRF(-/-) ES cells but could be rescued by forced expression of SRF or the SRF DNA-binding domain. Furthermore, expression of a dominant-negative myocardin mutant protein or small-interfering-RNA-induced myocardin knockdown significantly reduced SM22 alpha promoter activity in SMCs. Most importantly, forced expression of myocardin activated expression of the SM22 alpha, smooth muscle alpha-actin, and calponin-h1 genes in undifferentiated mouse ES cells. Taken together, these data demonstrate that myocardin plays an important role in the SRF-dependent transcriptional program that regulates SMC development and differentiation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COS Cells
- Cell Differentiation/physiology
- Cells, Cultured
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Humans
- Mice
- Microfilament Proteins/genetics
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocardium/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Organ Specificity
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- RNA, Small Interfering/pharmacology
- Rats
- Sequence Alignment
- Serum Response Factor/deficiency
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Kevin L Du
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cardiac troponins I and T are proteins integral to the function of cardiac muscle. They are very sensitive markers for the detection of myocardial damage, and the ability to assay their serum levels accurately and quickly have revolutionized the concepts of minor myocardial injury and infarction. They are also powerful prognostic indicators of future adverse cardiac events. Limitations, more of troponin T than I, include decreased specificity in renal failure and skeletal muscle disease. Rapid, whole blood assays are now available that can be done at the patient's bedside. This review discusses the cardiac troponins, their biochemistry, the assays for them currently available, and their roles in the evaluation of cardiac disease in the Emergency Department (ED).
Collapse
Affiliation(s)
- John Sarko
- Department of Emergency Medicine, Maricopa Medical Center, Phoenix, Arizona 85008, USA
| | | |
Collapse
|
19
|
Zhang JCL, Helmke BP, Shum A, Du K, Yu WW, Lu MM, Davies PF, Parmacek MS. SM22beta encodes a lineage-restricted cytoskeletal protein with a unique developmentally regulated pattern of expression. Mech Dev 2002; 115:161-6. [PMID: 12049783 DOI: 10.1016/s0925-4773(02)00088-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytoskeletal proteins play important roles in regulating cellular morphology, cytokinesis and intracellular signaling. In this report, we describe a developmentally regulated gene encoding a novel cell lineage-restricted cytoskeletal protein, designated SM22beta. SM22beta shares high-grade sequence identity with the smooth muscle cell (SMC)-specific protein, SM22alpha, the neuron-specific protein, NP25, and the Drosophila melanogaster flight muscle-specific protein, mp20. The mouse SM22beta cDNA encodes a 199-amino acid polypeptide that contains a single conserved calponin-like repeat domain. During mouse embryonic development, the SM22beta gene is expressed in a temporally and spatially regulated pattern in the tunica media of arteries and veins, endocardium and compact layer of the myocardium, bronchial epithelium and mesenchyme of the lung, gastrointestinal epithelium and cartilaginous primordia. During postnatal development, SM22beta is co-expressed with SM22alpha in arterial and venous SMCs. In addition, SM22beta is expressed at high levels in the bronchial epithelium and lung mesenchyme, gastrointestinal epithelial cells and in the cartilagenous and periosteal layer of bones. Three-dimensional deconvolution microscopic analyses of A7r5 SMCs revealed that SM22beta co-localizes with SM22alpha to cytoskeletal actin filaments. Taken together, these data demonstrate that SM22beta is a novel actin-associated protein with a unique cell lineage-restricted pattern of expression.
Collapse
Affiliation(s)
- Janet C L Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang JC, Kim S, Helmke BP, Yu WW, Du KL, Lu MM, Strobeck M, Yu Q, Parmacek MS. Analysis of SM22alpha-deficient mice reveals unanticipated insights into smooth muscle cell differentiation and function. Mol Cell Biol 2001; 21:1336-44. [PMID: 11158319 PMCID: PMC99586 DOI: 10.1128/mcb.2001.21.4.1336-1344.2001] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SM22alpha is a 22-kDa smooth muscle cell (SMC) lineage-restricted protein that physically associates with cytoskeletal actin filament bundles in contractile SMCs. To examine the function of SM22alpha, gene targeting was used to generate SM22alpha-deficient (SM22(-/-LacZ)) mice. The gene targeting strategy employed resulted in insertion of the bacterial lacZ reporter gene at the SM22alpha initiation codon, permitting precise analysis of the temporal and spatial pattern of SM22alpha transcriptional activation in the developing mouse. Northern and Western blot analyses confirmed that the gene targeting strategy resulted in a null mutation. Histological analysis of SM22(+/-LacZ) embryos revealed detectable beta-galactosidase activity in the unturned embryonic day 8.0 embryo in the layer of cells surrounding the paired dorsal aortae concomitant with its expression in the primitive heart tube, cephalic mesenchyme, and yolk sac vasculature. Subsequently, during postnatal development, beta-galactosidase activity was observed exclusively in arterial, venous, and visceral SMCs. SM22alpha-deficient mice are viable and fertile. Their blood pressure and heart rate do not differ significantly from their control SM22alpha(+/-) and SM22alpha(+/+) littermates. The vasculature and SMC-containing tissues of SM22alpha-deficient mice develop normally and appear to be histologically and ultrastructurally similar to those of their control littermates. Taken together, these data demonstrate that SM22alpha is not required for basal homeostatic functions mediated by vascular and visceral SMCs in the developing mouse. These data also suggest that signaling pathways that regulate SMC specification and differentiation from local mesenchyme are activated earlier in the angiogenic program than previously recognized.
Collapse
Affiliation(s)
- J C Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yamane A, Mayo M, Shuler C, Crowe D, Ohnuki Y, Dalrymple K, Saeki Y. Expression of myogenic regulatory factors during the development of mouse tongue striated muscle. Arch Oral Biol 2000; 45:71-8. [PMID: 10669094 DOI: 10.1016/s0003-9969(99)00105-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the role of myogenic regulatory factors (MRFs) in skeletal myogenesis has been well evaluated in limb and trunk muscles, very little is known about their role in tongue myogenesis. Here the expression of MRF mRNA in mouse tongue muscle was examined during development from embryonic day (E)11 to birth and compared them with that in hind-limb muscle. Desmin, muscle creatine kinase and troponin C mRNAs were used as markers for myoblast determination, myotubule formation and myofibre maturation, respectively. The mRNA quantities were determined by competitive reverse transcriptase-polymerase chain reaction. The expression profile of desmin mRNA indicated that myoblast determination occurred before E11 in both the tongue and hind-limb muscles; the profile of muscle creatine kinase and troponin C mRNAs indicated that myotubule formation and myofibre maturation began between E11 and 13 in both tongue and hind-limb muscles, but ended 2 days earlier in the tongue than in the hind limb. Expression of myoD and myogenin mRNAs began at E11, increased, and showed peak values earlier in the tongue muscle (E13) than in the hind-limb muscle (E15). Expression of MRF4 mRNA appeared earlier in the tongue (E13) than in the hind-limb muscle (E15) and increased in both muscles after that. These results suggest that myotubule formation and myofibre maturation in the tongue muscle progress faster than in the hind-limb muscle, a result of earlier expression of myoD, myogenin, and MRF4 in response to earlier functional demands such as suckling immediately after birth.
Collapse
Affiliation(s)
- A Yamane
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Terami H, Williams BD, Kitamura SI, Sakube Y, Matsumoto S, Doi S, Obinata T, Kagawa H. Genomic organization, expression, and analysis of the troponin C gene pat-10 of Caenorhabditis elegans. J Cell Biol 1999; 146:193-202. [PMID: 10402470 PMCID: PMC2199735 DOI: 10.1083/jcb.146.1.193] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1998] [Accepted: 06/08/1999] [Indexed: 12/03/2022] Open
Abstract
We have cloned and characterized the troponin C gene, pat-10 of the nematode Caenorhabditis elegans. At the amino acid level nematode troponin C is most similar to troponin C of Drosophila (45% identity) and cardiac troponin C of vertebrates. Expression studies demonstrate that this troponin is expressed in body wall muscle throughout the life of the animal. Later, vulval muscles and anal muscles also express this troponin C isoform. The structural gene for this troponin is pat-10 and mutations in this gene lead to animals that arrest as twofold paralyzed embryos late in development. We have sequenced two of the mutations in pat-10 and both had identical two mutations in the gene; one changes D64 to N and the other changes W153 to a termination site. The missense alteration affects a calcium-binding site and eliminates calcium binding, whereas the second mutation eliminates binding to troponin I. These combined biochemical and in vivo studies of mutant animals demonstrate that this troponin is essential for proper muscle function during development.
Collapse
Affiliation(s)
- Hiromi Terami
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Benjamin D. Williams
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Shin-ichi Kitamura
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Yasuji Sakube
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Shinji Matsumoto
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Shima Doi
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Takashi Obinata
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-0022 Japan
| | - Hiroaki Kagawa
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| |
Collapse
|
23
|
Gupta M, Zak R, Libermann TA, Gupta MP. Tissue-restricted expression of the cardiac alpha-myosin heavy chain gene is controlled by a downstream repressor element containing a palindrome of two ets-binding sites. Mol Cell Biol 1998; 18:7243-58. [PMID: 9819411 PMCID: PMC109306 DOI: 10.1128/mcb.18.12.7243] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.
Collapse
Affiliation(s)
- M Gupta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, Illinois 60453, USA.
| | | | | | | |
Collapse
|
24
|
Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 1998; 12:3579-90. [PMID: 9832509 PMCID: PMC317242 DOI: 10.1101/gad.12.22.3579] [Citation(s) in RCA: 512] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
GATA6 belongs to a family of zinc finger transcription factors that play important roles in transducing nuclear events that regulate cellular differentiation and embryonic morphogenesis in vertebrate species. To examine the function of GATA6 during embryonic development, gene targeting was used to generate GATA6-deficient (GATA6(-/-)) ES cells and mice harboring a null mutation in GATA6. Differentiated embryoid bodies derived from GATA6(-/-) ES cells lack a covering layer of visceral endoderm and severely attenuate, or fail to express, genes encoding early and late endodermal markers, including HNF4, GATA4, alpha-fetoprotein (AFP), and HNF3beta. Homozygous GATA6(-/-) mice died between embryonic day (E) 6.5 and E7. 5 and exhibited a specific defect in endoderm differentiation including severely down-regulated expression of GATA4 and absence of HNF4 gene expression. Moreover, widespread programmed cell death was observed within the embryonic ectoderm of GATA6-deficient embryos, a finding also observed in HNF4-deficient embryos. Consistent with these data, forced expression of GATA6 activated the HNF4 promoter in nonendodermal cells. Finally, to examine the function of GATA6 during later embryonic development, GATA6(-/-)-C57BL/6 chimeric mice were generated. lacZ-tagged GATA6(-/-) ES cells contributed to all embryonic tissues with the exception of the endodermally derived bronchial epithelium. Taken together, these data suggest a model in which GATA6 lies upstream of HNF4 in a transcriptional cascade that regulates differentiation of the visceral endoderm. In addition, these data demonstrate that GATA6 is required for establishment of the endodermally derived bronchial epithelium.
Collapse
Affiliation(s)
- E E Morrisey
- Department of Medicine, University of Chicago, Chicago, Illinois 60637 USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Choudhury M, Bag J. Stabilization of slow troponin C polypeptide compensates for its reduced synthesis in antisense oligodeoxynucleotide-treated cells. Nucleic Acids Res 1998; 26:4765-70. [PMID: 9753747 PMCID: PMC147890 DOI: 10.1093/nar/26.20.4765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expression of genes for contractile proteins during myogenesis is coordinately regulated. Uncoupling the expression of the slow/cardiac troponin C (sTnC) gene from this process with an antisense phosphorothioate oligodeoxynucleotide (ODN) was used to examine the presence of any post-transcriptional mechanisms for regulating muscle protein synthesis. Approximately 70 and 50% decreases in sTnC polypeptide synthesis and mRNA levels, respectively, were achieved after 4 days antisense treatment. This decrease in sTnC polypeptide synthesis was not reflected in a similar decline in the steady-state level of this polypeptide. Extension of the ODN treatment to 7 days was required to produce a substantial decrease in the steady-state level of sTnC polypeptide. Our investigation suggests that during the 4-day treatment, the affected cells stabilized the sTnC polypeptide level by increasing its half-life. However, the stabilizing effect appears to be overridden during prolonged (7 days) antisense ODN treatment. Measurement of the polypeptide synthesis and mRNA levels of several contractile proteins showed no evidence of cross-regulation among the genes to coordinately regulate their expression levels.
Collapse
Affiliation(s)
- M Choudhury
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
26
|
Abstract
Determination of muscle fiber type is related to the developmental stage of the tissue. Ordinarily the final distribution of fast and slow fibers in a muscle is determined postnatally. Tongue muscle, however, is composed solely of fast-twitch fibers that express only troponin C fast mRNA and fast (type II) myosin heavy chain (MHC) proteins in both the adult and the one-day-old mouse. The fiber-type determination of this muscle was examined during fetal development. Both troponin C fast and slow mRNAs were expressed at initial stages of tongue development at embryonic day 18. However, by embryonic day 16 the troponin C fast transcripts predominated. AT 17 days of embryonic development, TnC fast mRNA was 10 times more abundant than TnC slow, and at 18 days of development the TnC slow mRNA was barely detectable. The tongue muscle myotubes expressed fast, slow, and embryonic MHC isoforms during early embryonic development. At 18 days of gestation, the MHC isoform expressed by the majority of the myotubes was the fast isoform, whereas the slow isoform was present in very few fibers. RT-PCR analysis of the MHC transcripts present throughout tongue development demonstrated expression of the mdms or type IIx MHC in both late fetal and postnatal stages of development. In contrast, the type I/beta slow MHC mRNA was undetectable in the postnatal and adult tongue. The absence of TnC and MHC slow-isoform mRNAs in the newborn mouse tongue suggests that slow isoform genes become dominantly repressed with the TnC-F and MHC type IIx genes remaining transcriptionally active, giving rise to an unusually homogeneous fast-twitch phenotype. The tongue muscle fibers acquire their specific adult-type fiber characteristics during fetal development rather than postnatally.
Collapse
Affiliation(s)
- T I Prigozy
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90095-1570, USA
| | | | | | | |
Collapse
|
27
|
Morrisey EE, Ip HS, Tang Z, Lu MM, Parmacek MS. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 1997; 183:21-36. [PMID: 9119112 DOI: 10.1006/dbio.1996.8485] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Members of the GATA family of zinc finger transcription factors regulate critical steps of cellular differentiation during vertebrate development. In the studies described in this report, we have isolated and functionally characterized the murine GATA-5 cDNA and protein and defined the temporal and spatial pattern of GATA-5 gene expression during mammalian development. The amino terminus of the mouse GATA-5 protein shares high level amino acid sequence identity with the murine GATA-4 and -6 proteins, but not with other members of the GATA family. GATA-5 binds to the functionally important CEF-1 nuclear protein binding site in the cardiac-specific slow/cardiac troponin C (cTnC) transcriptional enhancer and overexpression of GATA-5 transactivates the cTnC enhancer in noncardiac muscle cell lines. During embryonic and postnatal development, the pattern of GATA-5 gene expression differs significantly from that of other GATA family members. In the primitive streak embryo, GATA-5 mRNA is detectable in the precardiac mesoderm. Within the embryonic heart, the GATA-5 gene is expressed within the atrial and ventricular chambers (ED 9.5), becomes restricted to the atrial endocardium (ED 12.5), and is subsequently not expressed in the heart during late fetal and postnatal development. Moreover, coincident with the earliest steps in lung development, only the GATA-5 gene is expressed within the pulmonary mesenchyme. Finally, the GATA-5 gene is expressed in tissue-restricted subsets of smooth muscle cells (SMCs), including bronchial SMCs and SMCs in the bladder wall. These data are consistent with a model in which GATA-5 performs a unique temporally and spatially restricted function in the embryonic heart and lung. Moreover, these data suggest that GATA-5 may play an important role in the transcriptional program(s) that underlies smooth muscle cell diversity.
Collapse
Affiliation(s)
- E E Morrisey
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Ojala J, Choudhury M, Bag J. Inhibition of troponin C production without affecting other muscle protein synthesis by the antisense oligodeoxynucleotide. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:31-8. [PMID: 9055036 DOI: 10.1089/oli.1.1997.7.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of blocking expression of a specific gene with antisense phosphodiester oligodeoxynucleotides on the coordinate regulation of myogenesis was studied. Different regions of both fast and slow troponin C (TnC) mRNAs were targeted for binding of the antisense oligomer. The 5'-cap region of both mRNAs was found to be the most effective target for inhibiting the expression of these genes. Approximately 40%-60% inhibition of expression of a specific isoform of TnC was achieved. However, inhibition of the TnC expression did not appreciably alter the pattern of myogenesis of mouse C2C12 cells. The differentiated murine muscle cells were able to cope with this reduced level of the target gene expression by antisense phosphodiester oligomers. We have also used a phosphorothioate oligomer targeted against a common sequence within the coding region of both fast and slow TnC mRNAs. This oligomer was found to be ineffective in blocking TnC gene expression.
Collapse
Affiliation(s)
- J Ojala
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
29
|
Engelmann GL, Campbell SE, Rakusan K. Immediate postnatal rat heart development modified by abdominal aortic banding: analysis of gene expression. Mol Cell Biochem 1996; 163-164:47-56. [PMID: 8974039 DOI: 10.1007/bf00408640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proliferative growth of the ventricular myocyte (cardiomyocyte) is primarily limited to embryonic, fetal and very early neonatal periods of heart development. In contrast, cardiomyocyte maturation, as evidenced by cellular hypertrophy, is a long-term process that can occupy the bulk of the life-span of the mature organism. As the newborn myocyte undergoes a 'transition' from proliferative to hypertrophic growth, ventricular remodeling of the non-myocyte compartment is characterized by increased extracellular matrix (ECM) formation and coronary capillary angiogenesis. A role for ventricular-derived growth factors (GFs) in these inter-related processes are examined in an animal model of altered heart development produced by neonatal aortic banding. The suprarenal abdominal aorta of five day old rat pups were banded (B), sham operated (S), or untreated (C) and ventricular tissue (left ventricular free wall and septum) obtained at 7-, 14-, and 21-days post-intervention. Using Northern blot RNA hybridizations, expression of growth factors (GFs) and/or GF-receptors (GFR's) temporally associated with heart development were evaluated. Transcript levels for TGF-beta 1, IGF-II, and their associated cell surface receptors were increased in B animals. Concomitant changes in extracellular matrix (ECM) genes (as evaluated by Collagens Type I, III, and IV) were also increased in B animals. In addition, transcript levels for the vascular morphogenesis and remodeling-related protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) was also elevated in the B animals. In several instances, S animals demonstrated changes in steady state transcript levels for genes which may influence myocyte maturation during the postnatal period. This suggests that normal autocrine/paracrine growth regulatory stimuli and responses can be modified (by surgical intervention and/or abdominal aortic banding) and these perturbations in gene expression may be related to previously documented changes in myocyte cell number, vascular composition, and ventricular architecture of the banded, neonatal heart. Future studies using this model will provide an opportunity to evaluate and possibly identify the stimuli and signal transduction machinery that regulate the final phases of myocyte proliferation, stimulate capillary formation and ECM deposition, and orchestrate the transition to hypertrophic growth during heart development.
Collapse
Affiliation(s)
- G L Engelmann
- Department of Medicine and Cell Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
30
|
Macallan DC, Cook EB, Preedy VR, Griffin GE. The effect of endotoxin on skeletal muscle protein gene expression in the rat. Int J Biochem Cell Biol 1996; 28:511-20. [PMID: 8697096 DOI: 10.1016/1357-2725(95)00170-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sepsis is associated with net breakdown of skeletal muscle protein, mediated partly by reduced rates of muscle protein synthesis. This study investigated the role of altered gene expression for specific muscle proteins in mediating reduced protein synthesis in a rat model of acute severe sepsis. Adult rats were given a single sublethal intraperitoneal dose of endotoxin (bacterial lipopolysaccharide). Protein, RNA and DNA contents of muscle were measured and changes in expression of mRNA in tibialis anterior and extensor digitorum longus muscles were detected by quantification of Northern blots at 6, 24, 48 and 72 hr after endotoxin and in animals starved for 24 hr. Results showed that at 24 hr after endotoxin there was a loss of about 14% of muscle protein content. No reduction in mRNA was found at any time point for beta-myosin heavy chain (MHC), fast-MHC, alpha-actin, skeletal muscle troponin or carbonic anhydrase III (CA III); rather, at 48 hr there was increased expression of beta-MHC (224 +/- 123% control) and CA III (202 +/- 56%). Blocking TNF-alpha by pre-treatment with a monoclonal antibody did not appear to influence this. Total RNA content of muscle was reduced to 67% of the control values 24 hr after LPS, although this was no different to pair-fed animals starved for 24 hr. It is concluded that reduced protein synthesis in skeletal muscle in early acute sepsis is not primarily associated with reduced muscle protein gene expression.
Collapse
Affiliation(s)
- D C Macallan
- Division of Infectious Diseases, St. George's Hospital Medical School, London, U.K
| | | | | | | |
Collapse
|
31
|
Farrance IK, Ordahl CP. The role of transcription enhancer factor-1 (TEF-1) related proteins in the formation of M-CAT binding complexes in muscle and non-muscle tissues. J Biol Chem 1996; 271:8266-74. [PMID: 8626521 DOI: 10.1074/jbc.271.14.8266] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
M-CAT sites are required for the activity of many promoters in cardiac and skeletal muscle. M-CAT binding activity is muscle-enriched, but is found in many tissues and is immunologically related to the HeLa transcription enhancer factor-1 (TEF-1). TEF-1-related cDNAs (RTEF-1) have been cloned from chick heart. RTEF-1 mRNA is muscle-enriched, consistent with a role for RTEF-1 in the regulation of muscle-specific gene expression. Here, we have examined the tissue distribution of TEF-1-related proteins and of M-CAT binding activity by Western analysis and mobility shift polyacrylamide gel electrophoresis. TEF-1-related proteins of 57, 54 and 52 kDa were found in most tissues with the highest levels in muscle tissues. All of these TEF-1-related proteins bound M-CAT DNA and the 57- and 54-kDa TEF-1-related polypeptides were phosphorylated. Proteolytic digestion mapping showed that the 54-kDa TEF-1-related polypeptide is encoded by a different gene than the 52- and 57-kDa TEF-1-related polypeptides. A comparison of the migration and proteolytic digestion of the 54-kDa TEF-1-related polypeptide with proteins encoded by the cloned RTEF-1 cDNAs showed that the 54-kDa TEF-1-related polypeptide is encoded by RTEF-1A. High resolution mobility shift polyacrylamide gel electrophoresis showed multiple M-CAT binding activities in tissues. All of these activities contained TEF-1-related proteins. One protein-M-CAT DNA complex was muscle-enriched and was up-regulated upon differentiation of a skeletal muscle cell line. This complex contained the 54-kDa TEF-1-related polypeptide. Therefore, RTEF1-A protein is a component of a muscle-enriched transcription complex that forms on M-CAT sites and may play a key role in the regulation of transcription in muscle.
Collapse
Affiliation(s)
- I K Farrance
- Department of Anatomy and Cardiovascular Research Institute, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
32
|
Wiedenman JL, Rivera-Rivera I, Vyas D, Tsika G, Gao L, Sheriff-Carter K, Wang X, Kwan LY, Tsika RW. Beta-MHC and SMLC1 transgene induction in overloaded skeletal muscle of transgenic mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1111-21. [PMID: 8928739 DOI: 10.1152/ajpcell.1996.270.4.c1111] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypertrophic responses of white fast-twitch muscle to mechanical overload has been investigated using transgenic mice. After 7 wk of overload, endogenous beta-myosin heavy chain (MHC) and slow myosin light chain 1 and 2 (SMLC1, SMLC2) protein were increased in the overloaded plantaris (OP) muscle compared with sham-operated control plantaris (CP)muscle. Concurrently, the levels of endogenous beta-MHC, SMLC1, SMLC2, and cardiac/slow troponin C (CTnC) mRNA transcripts were significantly increased in OP muscles, whereas skeletal troponin C (sTnC) mRNA transcript levels decreased. As an initial attempt to locate DNA sequence(s) that governs beta-MHC induction in response to mechanical overload, multiple independent transgenic lines harboring four different human beta-MHC transgenes (beta 1286, beta 988, beta 450, beta 141) were generated. Except for transgene beta 141, muscle-specific expression and induction (3- to 22-fold) in OP muscles were observed by measuring chloramphenicol acetyltransferase activity (CAT assay). Induction of a SMLC1 transgene (3920SMLC1) in OP muscles was also observed. Collectively, these in vivo data provide evidence that 1) a mechanical overload inducible element(s) is located between nucleotides -450 and +120 of the human beta-MHC transgene, 2) 3,900 bp of 5' sequence is sufficient to confer mechanical overload induction of a SMLC1 transgene, and 3) the increased expression of slow/type I isomyosin (beta-MHC, SMLC1, SMLC2) in response to mechanical overload is regulated, in part, transcriptionally.
Collapse
|
33
|
Grewal JS, Bag J. Slow troponin C gene expression in chicken heart and liver is regulated by similar enhancers. FEBS Lett 1996; 383:267-72. [PMID: 8925911 DOI: 10.1016/0014-5793(96)00247-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two isoforms of troponin C (TnC) are encoded by distinct single copy genes. Expression of fast TnC is restricted to the skeletal muscle, whereas the slow isoform is expressed in both skeletal and cardiac muscle. Chicken slow TnC (cTnC) gene is also expressed in some non-muscle tissues like the liver and the brain. Expression of cTnC gene is regulated by two distinct enhancers in cardiac and skeletal muscles. The cardiac specific enhancer is located in the immediate 5' flanking region (bp-124 to -79) of the murine cTnC gene whereas the skeletal enhancer is located within the first intron (bp 997 to 1141). In the present study we have examined how cTnC gene expression is regulated in the chicken liver. Transient transfection of liver cells with CTnC-CAT reporter constructs containing various regions of the murine cTnC gene showed that its expression in chicken liver is regulated by the cardiac specific enhancer. Furthermore, electrophoretic mobility shift assays using synthetic oligonucleotides corresponding to both CEF-1 and CEF-2 regions of the murine cardiac enhancer revealed formation of specific DNA-protein complexes. Ultraviolet light induced covalent linking of nuclear proteins to CEF-1 and CEF-2 oligomers were used to examine the nature of the cardiac enhancer binding polypeptides; one polypeptide of 48 kDa appeared to bind to both CEF-1 and CEF-2 sequences.
Collapse
Affiliation(s)
- J S Grewal
- Department of Molecular Biology and Genetics, University of Guelph, Ont., Canada
| | | |
Collapse
|
34
|
Dong W, Rosenfeld SS, Wang CK, Gordon AM, Cheung HC. Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. J Biol Chem 1996; 271:688-94. [PMID: 8557674 DOI: 10.1074/jbc.271.2.688] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have studied the kinetics of the structural transitions induced by calcium binding to the single, regulatory site of cardiac troponin C by measuring the rates of calcium-mediated fluorescence changes with a monocysteine mutant of the protein (C35S) specifically labeled at Cys-84 with the fluorescent probe 2(-)[4'-(iodoacetamido)anilino]naphthalene-6-sulfonic acid. At 4 degrees C, the binding kinetics determined in the presence of Mg2+ was resolved into two phases with positive amplitude, which were completed in less than 100 ms. The rate of the fast phase increased linearly with [Ca2+] reaching a maximum of approximately 590 s-1, and that of the slow phase was approximately 100 s-1 and did not depend on Ca2+ concentration. Dissociation of bound Ca2+ from the regulatory site occurred with a rate of 102 s-1, whereas the dissociation from the two high affinity sites was about two orders of magnitude slower. These results are consistent with the following scheme for the binding of Ca2+ to the regulatory site: [formula: see text] where the asterisks denote states with enhanced fluorescence. The apparent second-order rate constant for calcium binding is Kok1 = 1.4 x 10(8) M 1 s-1. The two first-order transitions occur with observed rates of k1 + kappa-1 approximately 590 s-1 and kappa 2 + kappa-2 approximately 100 s-1, and the binding of Ca2+ to the regulatory site is not a simple diffusion-controlled reaction. These transitions provide the first information on the rates of Ca(2+)-induced conformational changes involving helix movements in the regulatory domain.
Collapse
Affiliation(s)
- W Dong
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
35
|
Samaha FF, Ip HS, Morrisey EE, Seltzer J, Tang Z, Solway J, Parmacek MS. Developmental pattern of expression and genomic organization of the calponin-h1 gene. A contractile smooth muscle cell marker. J Biol Chem 1996; 271:395-403. [PMID: 8550594 DOI: 10.1074/jbc.271.1.395] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Calponin-h1 is a 34-kDa myofibrillar thin filament, actin-binding protein that is expressed exclusively in smooth muscle cells (SMCs) in adult animals. To examine the molecular mechanisms that regulate SMC-specific gene expression, we have examined the temporal, spatial, and cell cycle-regulated patterns of expression of calponin-h1 gene expression and isolated and structurally characterized the murine calponin-h1 gene. Calponin-h1 mRNA is expressed exclusively in SMC-containing tissues in adult animals. During murine embryonic development, calponin-h1 gene expression is (i) detectable in E9.5 embryos in the dorsal aorta, cardiac outflow tract, and tubular heart, (ii) sequentially up-regulated in SMC-containing tissues, and (iii) down-regulated to non-detectable levels in the heart during late fetal development. In addition, the gene is expressed in resting rat aortic SMCs, but its expression is rapidly down-regulated when growth-arrested cells reenter phase G1 of the cell cycle and proliferate. Calponin-h1 is encoded by a 10.7-kilobase single copy gene composed of seven exons, which is part of a multigene family. Transient transfection analyses demonstrated that 1.5 kilobases of calponin-h1 5'-flanking sequence is sufficient to program high level transcription of a luciferase reporter gene in cultured primary rat aortic SMCs and the smooth muscle cell line, A7r5. Taken together, these data suggest that the calponin-h1 gene will serve as an excellent model system with which to examine the molecular mechanisms that regulate SMC lineage specification, differentiation, and phenotypic modulation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Biological Evolution
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- Gene Expression Regulation, Developmental
- Humans
- Mice
- Microfilament Proteins
- Molecular Sequence Data
- Multigene Family
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Phenotype
- Promoter Regions, Genetic
- Rats
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Calponins
Collapse
Affiliation(s)
- F F Samaha
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Solway J, Seltzer J, Samaha FF, Kim S, Alger LE, Niu Q, Morrisey EE, Ip HS, Parmacek MS. Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem 1995; 270:13460-9. [PMID: 7768949 DOI: 10.1074/jbc.270.22.13460] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SM22 alpha is expressed exclusively in smooth muscle-containing tissues of adult animals and is one of the earliest markers of differentiated smooth muscle cells (SMCs). To examine the molecular mechanisms that regulate SMC-specific gene expression, we have isolated and structurally characterized the murine SM22 alpha gene. SM22 alpha is a 6.2-kilobase single copy gene composed of five exons. SM22 alpha mRNA is expressed at high levels in the aorta, uterus, lung, and intestine, and in primary cultures of rat aortic SMCs, and the SMC line, A7r5. In contrast to genes encoding SMC contractile proteins, SM22 alpha gene expression is not decreased in proliferating SMCs. Transient transfection experiments demonstrated that 441 base pairs of SM22 alpha 5'-flanking sequence was necessary and sufficient to program high level transcription of a luciferase reporter gene in both primary rat aortic SMCs and A7r5 cells. DNA sequence analyses revealed that the 441-base pair promoter contains two CArG/SRF boxes, a CACC box, and one potential MEF-2 binding site, cis-acting elements which are each important regulators of striated muscle transcription. Taken together, these studies have identified the murine SM22 alpha promoter as an excellent model system for studies of developmentally regulated, lineage-specific gene expression in SMCs.
Collapse
Affiliation(s)
- J Solway
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ip HS, Wilson DB, Heikinheimo M, Leiden JM, Parmacek MS. The GATA-4 transcription factor transactivates the cardiac-specific troponin C promoter-enhancer in non-muscle cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 382:117-24. [PMID: 8540389 DOI: 10.1007/978-1-4615-1893-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unique contractile phenotype of cardiac myocytes is determined by the expression of a set of cardiac-specific genes. By analogy to other mammalian developmental systems, it is likely that the coordinate expression of cardiac genes is controlled by lineage-specific transcription factors that interact with promoter and enhancer elements in the transcriptional regulatory regions of these genes. Here, we demonstrate that the slow/cardiac-specific troponin C (cTnC) enhancer contains a specific binding site for the lineage-restricted, zinc finger transcription factor, GATA-4 and that GATA-4 mRNA and protein is expressed in cardiac myocytes. In addition, GATA-4 binding sites were identified in several previously characterized cardiac-specific transcriptional regulatory elements. The cTnC GATA-4 binding site is required for transcriptional enhancer activity in primary cardiac myocytes. Moreover, the cTnC enhancer can be transactivated by over-expression of GATA-4 in non-cardiac muscle cells such as NIH 3T3 cells. Taken together, these results are consistent with a model in which GATA-4 functions to direct tissue-specific gene expression during mammalian cardiac development.
Collapse
Affiliation(s)
- H S Ip
- Department of Medicine, University of Chicago, IL, USA
| | | | | | | | | |
Collapse
|
38
|
Heikinheimo M, Scandrett JM, Wilson DB. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol 1994; 164:361-73. [PMID: 8045339 DOI: 10.1006/dbio.1994.1206] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To clarify the role of transcription factor GATA-4 in mammalian development, we have determined the pattern of expression of GATA-4 in early postimplantation mouse embryos. Using in situ hybridization and immunohistochemistry, we find that GATA-4 RNA and protein are expressed in cells associated with heart development. Intraembryonic expression of GATA-4 RNA is first apparent in coelomic epithelial cells of the primitive streak embryo (approximately 7.0-7.5 days postcoitum). During formation and bending of the heart tube (approximately 8 days postcoitum), GATA-4 RNA and protein are expressed in endocardium, myocardium, and embryonic structures containing precardiac mesoderm such as the septum transversum and intraembryonic coelomic epithelium. By the onset of cardiac septation (approximately 9 days postcoitum), abundant GATA-4 RNA expression is evident in endocardium, endocardial cushion tissue, and myocardium. Expression of GATA-4 by the myocardium continues through gestation and after birth. The temporal and spacial patterns of GATA-4 expression support a role for this factor in the regulation of cardiac differentiation, analogous to the established role of transcription factor GATA-1 in the regulation of hematopoiesis.
Collapse
Affiliation(s)
- M Heikinheimo
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
39
|
McMahon DK, Anderson PA, Nassar R, Bunting JB, Saba Z, Oakeley AE, Malouf NN. C2C12 cells: biophysical, biochemical, and immunocytochemical properties. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C1795-802. [PMID: 8023908 DOI: 10.1152/ajpcell.1994.266.6.c1795] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the myofibril biochemical, structural, and biophysical properties of C2C12, a mouse skeletal muscle cell line (American Type Culture Collection), to assess whether force development and the sensitivity of the myofilaments to calcium could be measured in C2C12 myotubes and whether a cardiac contractile protein, troponin T, is expressed and incorporated into C2C12 myofibrils. When myoblasts fused and differentiated into myotubes, expression of myofilament proteins was initiated. Multiple cardiac and skeletal muscle troponin T isoforms were coexpressed. Cardiac troponin T expression increased and then decreased with time. Fluorescence immunocytochemistry demonstrated incorporation of cardiac troponin T isoforms into the myofibrils. At the time of the biophysical studies, mean myotube diameter was 12 microns (range 5-25 microns), and mean length was 290 microns (range 130-520 microns). The estimated maximum force developed by chemically skinned myotubes at 6-7 days poststarvation, 0.88 +/- 0.12 microN (mean +/- 95% confidence interval, n = 5), was significantly less (P < 0.05) than that at 10-13 days poststarvation, 1.12 +/- 0.12 microN (n = 7). The force-pCa relation yielded a Hill coefficient of 2.9 +/- 0.6 (n = 7) and half-maximal activation at pCa of 5.77 +/- 0.20. The demonstration that the biophysical properties of C2C12 cells can be measured and that cardiac and skeletal muscle troponin T isoforms are incorporated and colocalized into myofibrils suggest that these cells could be a useful model to assess the effects of exogenous native and mutated cardiac and skeletal contractile protein isoforms on myofilament function.
Collapse
Affiliation(s)
- D K McMahon
- Department of Pathology, University of North Carolina at Chapel Hill 27599
| | | | | | | | | | | | | |
Collapse
|
40
|
François JM, Gerday C, Prendergast FG, Potter JD. Determination of the Ca2+ and Mg2+ affinity constants of troponin C from eel skeletal muscle and positioning of the single tryptophan in the primary structure. J Muscle Res Cell Motil 1993; 14:585-93. [PMID: 8126218 DOI: 10.1007/bf00141555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The complete amino acid sequence of troponin C (ETnC) from the white muscle of the European eel has been determined by Edman degradation procedures. Its single tryptophan residue is situated in helix H at amino acid position 152 of the aligned sequence; the tryptophan is the first residue on the C-terminal side of Ca2+ binding loop IV. The increase of tryptophan fluorescence emission intensity occurring upon titration of ETnC with Ca2+ has been used to determine the affinity constants of ETnC for Ca2+. The calculated affinity of ETnC for Ca2+ results in a K(Ca) of 1.3 10(7) M-1, typical of the Ca(2+)-Mg2+ sites of the second domain of fast skeletal muscle TnCs. Moreover, a direct competition between Ca2+ and Mg2+ was also observed. The calculated affinity of ETnC for Mg2+ is K(Mg) = 1.2 10(3) M-1. In order to probe the affinity constants of the Ca2+ binding sites of the regulatory domain, ETnC was labelled with dansylaziridine (Danz). The Danz fluorescent signal was used to estimate the affinity constants of ETnC-Danz for Ca2+ and also for Mg2+ (assuming a competitive behaviour between these two metal ions). The calculated affinity constants are K(Ca) = 9.4 10(5) M-1 and K(Mg) = 2.0 10(2) M-1, respectively. These values are typical of the Ca(2+)-specific sites of the regulatory domain of fast skeletal muscle TnCs.
Collapse
Affiliation(s)
- J M François
- Laboratoire de Biochimie, Université de Liège, Sart Tilman, Belgium
| | | | | | | |
Collapse
|
41
|
Warren KS, Lin JJ. Forced expression and assembly of rat cardiac troponin T isoforms in cultured muscle and nonmuscle cells. J Muscle Res Cell Motil 1993; 14:619-32. [PMID: 8126222 DOI: 10.1007/bf00141559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cardiac troponin T (cTnT), a tropomyosin (TM)-binding subunit of the troponin complex, undergoes a developmentally regulated isoform switch from embryonic form to adult form in the rat heart. To investigate the in vivo assembly of cTnT isoforms, we transiently transfected cDNA clones of either rat cTnT isoform into nonmuscle CHO cells and chick embryo myogenic (CEM) cells. As determined by Western blotting, both isoforms can be expressed in CHO and CEM cells. The expressed proteins had the same mobility as native rat cTnT proteins on SDS polyacrylamide gels and were recognized by anti-TnT antibodies. Conventional and confocal microscopy of transfected cells, double-labelled with antibodies against cTnT and against TM, revealed that neither isoform appears to associate with the nonmuscle TM in CHO cells, although both are able to colocalize with muscle TM-containing microfilament bundles in the myogenic CEM cells. There was no appreciable cTnT isoform-related difference in association with TM, suggesting that the functional significance of isoform variability in rat cTnT does not correspond to an assembly advantage for the maturing cardiac thin filament. To help determine whether cTnT nonassembly in CHO environment is primarily due to the nonmuscle nature of the endogenous TM, or if it involves the absence of other factors specific to muscle, we have isolated several stably-transfected clones of skeletal beta TM-expressing CHO cells which incorporate this muscle TM onto stress fibres. When either isoform of cTnT was transiently expressed in these beta TM-CHO cells, the strictly filamentous beta TM staining pattern was no longer observed. Instead, beta TM codistributed with cTnT in brightly staining aggregates not associated with the intact stress fibres. This suggests that both isoforms of cTnT are interacting with the beta TM in the nonmuscle environment and that other muscle-specific proteins may indeed be required for stable assembly of cTnT onto microfilaments. It also suggests that the interaction between cTnT and muscle TM is stronger than that between muscle TM and nonmuscle microfilaments.
Collapse
Affiliation(s)
- K S Warren
- Department of Biological Sciences, University of Iowa, Iowa City 52242
| | | |
Collapse
|
42
|
Nakayama S, Kretsinger RH. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism. J Mol Evol 1993; 36:458-76. [PMID: 8510179 DOI: 10.1007/bf02406722] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.
Collapse
Affiliation(s)
- S Nakayama
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
43
|
Abstract
The structure of the mouse natriuretic peptide type-B (BNP) gene was determined by isolating and sequencing genomic clones. The mouse BNP gene was structurally similar to other natriuretic peptide genes and comprised three exons and two introns. Expression of the mouse BNP gene was found only in cardiac tissue as determined by ribonuclease protection analyses. Initiation of transcription was 31 bp downstream from a consensus TATA box as determined by primer extension analysis of cardiac RNA. Comparative DNA sequence analysis identified several DNA elements with potential transcriptional regulatory function. Comparative amino acid sequence analysis showed that the N-terminal portion of the mouse and rat BNP precursors was more conserved than the C-terminal 45-amino-acid sequence that constitute the bioactive BNP-45 peptide. The proteolytic processing site (RXXR-S) generating bioactive BNPs was highly conserved among all BNP precursors and was identical to the consensus site of furin, a calcium-dependent serine endoprotease. Finally, the BNP gene was mapped using recombinant inbred DNA and a polymerase chain reaction-based restriction fragment-length polymorphism assay to mouse chromosome 4 near the atrial natriuretic factor (Anf) locus. No recombination event between Bnp and Anf was evident in the 39 recombinant inbred and inbred strains examined. This physical linkage between the two natriuretic peptide genes expressed in cardiac tissue may be important for their transcriptional regulation.
Collapse
Affiliation(s)
- M E Steinhelper
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
44
|
Kretsinger RH, Nakayama S. Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins. J Mol Evol 1993; 36:477-88. [PMID: 8510180 DOI: 10.1007/bf02406723] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the previous three reports in this series we demonstrated that the EF-hand family of proteins evolved by a complex pattern of gene duplication, transposition, and splicing. The dendrograms based on exon sequences are nearly identical to those based on protein sequences for troponin C, the essential light chain myosin, the regulatory light chain, and calpain. This validates both the computational methods and the dendrograms for these subfamilies. The proposal of congruence for calmodulin, troponin C, essential light chain, and regulatory light chain was confirmed. There are, however, significant differences in the calmodulin dendrograms computed from DNA and from protein sequences. In this study we find that introns are distributed throughout the EF-hand domain and the interdomain regions. Further, dendrograms based on intron type and distribution bear little resemblance to those based on protein or on DNA sequences. We conclude that introns are inserted, and probably deleted, with relatively high frequency. Further, in the EF-hand family exons do not correspond to structural domains and exon shuffling played little if any role in the evolution of this widely distributed homolog family. Calmodulin has had a turbulent evolution. Its dendrograms based on protein sequence, exon sequence, 3'-tail sequence, intron sequences, and intron positions all show significant differences.
Collapse
Affiliation(s)
- R H Kretsinger
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
45
|
Abstract
The contractile proteins of skeletal muscle are often represented by families of very similar isoforms. Protein isoforms can result from the differential expression of multigene families or from multiple transcripts from a single gene via alternative splicing. In many cases the regulatory mechanisms that determine the accumulation of specific isoforms via alternative splicing or differential gene expression are being unraveled. However, the functional significance of expressing different proteins during muscle development remains a key issue that has not been resolved. It is widely believed that distinct isoforms within a family are uniquely adapted to muscles with different physiological properties, since separate isoform families are often coordinately regulated within functionally distinct muscle fiber types. It is also possible that different isoforms are functionally indistinguishable and represent an inherent genetic redundancy among critically important muscle proteins. The goal of this review is to assess the evidence that muscle proteins which exist as different isoforms in developing and mature skeletal and cardiac muscles are functionally unique. Since regulation of both transcription and alternative splicing within multigene families may also be an important factor determining the accumulation of specific protein isoforms, evidence that genetic regulation rather than protein coding information provides the functional basis of isoform diversity is also examined.
Collapse
Affiliation(s)
- E Bandman
- Department of Food Science and Technology, University of California, Davis 95616
| |
Collapse
|
46
|
Nakayama S, Moncrief ND, Kretsinger RH. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J Mol Evol 1992; 34:416-48. [PMID: 1602495 DOI: 10.1007/bf00162998] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the first report in this series we described the relationships and evolution of 152 individual proteins of the EF-hand subfamilies. Here we add 66 additional proteins and define eight (CDC, TPNV, CLNB, LPS, DGK, 1F8, VIS, TCBP) new subfamilies and seven (CAL, SQUD, CDPK, EFH5, TPP, LAV, CRGP) new unique proteins, which we assume represent new subfamilies. The main focus of this study is the classification of individual EF-hand domains. Five subfamilies--calmodulin, troponin C, essential light chain, regulatory light chain, CDC31/caltractin--and three uniques--call, squidulin, and calcium-dependent protein kinase--are congruent in that all evolved from a common four-domain precursor. In contrast calpain and sarcoplasmic calcium-binding protein (SARC) each evolved from its own one-domain precursor. The remaining 19 subfamilies and uniques appear to have evolved by translocation and splicing of genes encoding the EF-hand domains that were precursors to the congruent eight and to calpain and to SARC. The rates of evolution of the EF-hand domains are slower following formation of the subfamilies and establishment of their functions. Subfamilies are not readily classified by patterns of calcium coordination, interdomain linker stability, and glycine and proline distribution. There are many homoplasies indicating that similar variants of the EF-hand evolved by independent pathways.
Collapse
Affiliation(s)
- S Nakayama
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | |
Collapse
|
47
|
Flink I, Edwards J, Bahl J, Liew C, Sole M, Morkin E. Characterization of a strong positive cis-acting element of the human beta-myosin heavy chain gene in fetal rat heart cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50180-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Abstract
The ability to stably deliver recombinant proteins to the systemic circulation would facilitate the treatment of a variety of acquired and inherited diseases. To explore the feasibility of the use of genetically engineered myoblasts as a recombinant protein delivery system, stable transfectants of the murine C2C12 myoblast cell line were produced that synthesize and secrete high levels of human growth hormone (hGH) in vitro. Mice injected with hGH-transfected myoblasts had significant levels of hGH in both muscle and serum that were stable for at least 3 weeks after injection. Histological examination of muscles injected with beta-galactosidase-expressing C2C12 myoblasts demonstrated that many of the injected cells had fused to form multinucleated myotubes. Thus, genetically engineered myoblasts can be used for the stable delivery of recombinant proteins into the circulation.
Collapse
Affiliation(s)
- E Barr
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109
| | | |
Collapse
|
49
|
Affiliation(s)
- M S Parmacek
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109
| | | |
Collapse
|
50
|
Papoian T, Lewis W. Selective alterations in rat cardiac mRNA induced by doxorubicin: possible subcellular mechanisms. Exp Mol Pathol 1991; 54:112-21. [PMID: 1709408 DOI: 10.1016/0014-4800(91)90024-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Doxorubicin (Adriamycin, ADR) is an effective antineoplastic agent with a major side effect of dilated cardiomyopathy. Previously we showed ADR selectively decreased alpha cardiac (alpha c) actin mRNA in the rat heart when compared to other mRNAs examined in heart and skeletal muscle. The present study determined if this effect was selective for mRNAs within the thin filament, related to inhibitory effects on mitochondrial transcription, and modified by pretreatment with the cardioprotective chelating agent ICRF-187. Adult Sprague-Dawley rats received ADR at 8 mg/kg intraperitoneally (ip) with or without pretreatment with ICRF-187 given at 80 mg/kg ip. After 3 days, rats were killed and myocardial RNA was extracted, electrophoresed, transferred to nitrocellulose, and hybridized with the [32]cDNA probes alpha c actin, troponin C (TnC), BamHI fragment of mouse mitochondria (MM), and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Results showed a major depressive effect of ADR on rat myocardial alpha c actin mRNA. No depression of the other mRNAs examined (TnC, MM, or G3PD) was seen. ICRF-187 did not modify the effect. We conclude that the ADR-induced decrease in alpha c actin mRNA was: (1) selective within the thin filament; (2) not related to inhibitory effects on mitochondrial transcription; and (3) not related to free radical formation. Possible subcellular mechanisms are discussed.
Collapse
Affiliation(s)
- T Papoian
- Department of Pathology, UCLA School of Medicine 90024
| | | |
Collapse
|