1
|
Xu J, Morten KJ. Raman micro-spectroscopy as a tool to study immunometabolism. Biochem Soc Trans 2024; 52:733-745. [PMID: 38477393 PMCID: PMC11088913 DOI: 10.1042/bst20230794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
In the past two decades, immunometabolism has emerged as a crucial field, unraveling the intricate molecular connections between cellular metabolism and immune function across various cell types, tissues, and diseases. This review explores the insights gained from studies using the emerging technology, Raman micro-spectroscopy, to investigate immunometabolism. Raman micro-spectroscopy provides an exciting opportunity to directly study metabolism at the single cell level where it can be combined with other Raman-based technologies and platforms such as single cell RNA sequencing. The review showcases applications of Raman micro-spectroscopy to study the immune system including cell identification, activation, and autoimmune disease diagnosis, offering a rapid, label-free, and minimally invasive analytical approach. The review spotlights three promising Raman technologies, Raman-activated cell sorting, Raman stable isotope probing, and Raman imaging. The synergy of Raman technologies with machine learning is poised to enhance the understanding of complex Raman phenotypes, enabling biomarker discovery and comprehensive investigations in immunometabolism. The review encourages further exploration of these evolving technologies in the rapidly advancing field of immunometabolism.
Collapse
Affiliation(s)
- Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, The Women Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
2
|
Wu X, Hénin J, Baciou L, Baaden M, Cailliez F, de la Lande A. Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations. Front Chem 2021; 9:650651. [PMID: 34017816 PMCID: PMC8129163 DOI: 10.3389/fchem.2021.650651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
NOX5 is a member of the NADPH oxidase family which is dedicated to the production of reactive oxygen species. The molecular mechanisms governing transmembrane electron transfer (ET) that permits to shuttle electrons over the biological membrane have remained elusive for a long time. Using computer simulations, we report conformational dynamics of NOX5 embedded within a realistic membrane environment. We assess the stability of the protein within the membrane and monitor the existence of cavities that could accommodate dioxygen molecules. We investigate the heme-to-heme electron transfer. We find a reaction free energy of a few tenths of eV (ca. −0.3 eV) and a reorganization free energy of around 1.1 eV (0.8 eV after including electrostatic induction corrections). The former indicates thermodynamically favorable ET, while the latter falls in the expected values for transmembrane inter-heme ET. We estimate the electronic coupling to fall in the range of the μeV. We identify electron tunneling pathways showing that not only the W378 residue is playing a central role, but also F348. Finally, we reveal the existence of two connected O2−binding pockets near the outer heme with fast exchange between the two sites on the nanosecond timescale. We show that when the terminal heme is reduced, O2 binds closer to it, affording a more efficient tunneling pathway than when the terminal heme is oxidized, thereby providing an efficient mechanism to catalyze superoxide production in the final step. Overall, our study reveals some key molecular mechanisms permitting reactive oxygen species production by NOX5 and paves the road for further investigation of ET processes in the wide family of NADPH oxidases by computer simulations.
Collapse
Affiliation(s)
- Xiaojing Wu
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Jérôme Hénin
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | - Fabien Cailliez
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| | - Aurélien de la Lande
- Institut de Chimie Physique, Université Paris Saclay, CNRS (UMR 8000), Orsay, France
| |
Collapse
|
3
|
Atkins CG, Buckley K, Blades MW, Turner RFB. Raman Spectroscopy of Blood and Blood Components. APPLIED SPECTROSCOPY 2017; 71:767-793. [PMID: 28398071 DOI: 10.1177/0003702816686593] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blood is a bodily fluid that is vital for a number of life functions in animals. To a first approximation, blood is a mildly alkaline aqueous fluid (plasma) in which a large number of free-floating red cells (erythrocytes), white cells (leucocytes), and platelets are suspended. The primary function of blood is to transport oxygen from the lungs to all the cells of the body and move carbon dioxide in the return direction after it is produced by the cells' metabolism. Blood also carries nutrients to the cells and brings waste products to the liver and kidneys. Measured levels of oxygen, nutrients, waste, and electrolytes in blood are often used for clinical assessment of human health. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to provide information on chemical composition, and hence has a potential role in this clinical assessment process. Raman spectroscopic probing of blood components and of whole blood has been on-going for more than four decades and has proven useful in applications ranging from the understanding of hemoglobin oxygenation, to the discrimination of cancerous cells from healthy lymphocytes, and the forensic investigation of crime scenes. In this paper, we review the literature in the field, collate the published Raman spectroscopy studies of erythrocytes, leucocytes, platelets, plasma, and whole blood, and attempt to draw general conclusions on the state of the field.
Collapse
Affiliation(s)
- Chad G Atkins
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Kevin Buckley
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 3 Nanoscale Biophotonics Laboratory, National University of Ireland, Ireland
| | - Michael W Blades
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Robin F B Turner
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
- 4 Department of Electrical and Computer Engineering, The University of British Columbia, Canada
| |
Collapse
|
4
|
Walter A, Erdmann S, Bocklitz T, Jung EM, Vogler N, Akimov D, Dietzek B, Rösch P, Kothe E, Popp J. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst 2010; 135:908-17. [DOI: 10.1039/b921101b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Bérczi A, Desmet F, Van Doorslaer S, Asard H. Spectral characterization of the recombinant mouse tumor suppressor 101F6 protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1129-42. [PMID: 19943161 DOI: 10.1007/s00249-009-0564-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Tumor suppressor protein 101F6, a gene product of the 3p21.3 (human) and 9F1 (mouse) chromosomal region, has recently been identified as a member of the cytochrome b561 (Cyt-b561) protein family by sequence homology. The His(6)-tagged recombinant mouse tumor suppressor Cyt-b561 protein (TSCytb) was recently expressed in yeast and purified, and the ascorbate reducibility was determined. TSCytb is auto-oxidizable and has two distinct heme b centers with redox potentials of approximately 40 and approximately 140 mV. Its split alpha-band in the dithionite-reduced spectrum at both 295 and 77 K is well resolved, and the separation between the two alpha-peaks is approximately 7 nm (approximately 222 cm(-1)). Singular value decomposition analysis of the split alpha-band in the ascorbate-reduced spectra revealed the presence of two major spectral components, each of them with split alpha-band but with different peak separations (6 and 8 nm). Similar minor differences in peak separation were obtained when the split alpha-bands in ascorbate-reduced difference spectra at low (<1 mM) and high (>10 mM) ascorbate concentrations were analysed. According to low-temperature electron paramagnetic resonance (EPR) spectroscopy, the two heme b centers are in the low-spin ferric state with maximum principal g values of 3.61 and 2.96, respectively. These values differ from the ones observed for other members of the Cyt-b561 family. According to resonance Raman spectroscopy, the porphyrin rings are in a relaxed state. The spectroscopic results are only partially in agreement with those obtained earlier for the native chromaffin granule Cyt-b561.
Collapse
Affiliation(s)
- Alajos Bérczi
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, P.O. Box 521, 6701, Szeged, Hungary.
| | | | | | | |
Collapse
|
6
|
Babior BM. The respiratory burst oxidase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:49-95. [PMID: 1570769 DOI: 10.1002/9780470123119.ch2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sbarra and Karnovsky were the first to present evidence suggesting the presence in phagocytes of a special enzyme designed to generate reactive oxidants for purposes of host defense. In the years since their report appeared, a great deal has been learned about this enzyme, now known as the respiratory burst oxidase. It has been found to be a plasma membrane-bound heme- and flavin-containing enzyme, dormant in resting cells, that catalyzes the one-electron reduction of oxygen to O2- at the expense of NADPH: O2 + NADPH----O2- + NADP+ + H+ Its behavior in whole cells and its response to various activating stimuli have been described in detail, although important insights continue to emerge, as for example a very interesting new series of observations on differences in oxidase activation patterns between suspended and adherent cells. The enzyme has been shown by biochemical and genetic studies to consist of at least six components. In the resting cell, three of these components are in the cytosol and three in the plasma membrane, but when the cell passes from its resting to its activated state the cytosolic components are all transferred to the plasma membrane, presumably assembling the oxidase. Of the components initially bound to the membrane, two constitute cytochrome b558, a heme protein characteristic of the respiratory burst oxidase, and the third may represent an oxidase flavoprotein. With regard to the cytosolic components, one is a phosphoprotein and another is the NADPH-binding component, possibly a second oxidase flavoprotein. The nature of the third (p67phox) is a puzzle. Four of the six oxidase components have now been cloned and sequenced. These findings only scratch the surface, however, and many questions remain. How many oxidase components, for example, remain to be discovered, and how do they fit together to form the active enzyme? How is the route of activation of the oxidase integrated into the general signal transduction systems of the cell? How did the oxidase come to be? Could there be a widespread system that generates small amounts of O2- as an intercellular signaling molecule, as recent work is beginning to suggest, and did the ever-destructive respiratory burst oxidase arise from that innocuous system as the creation of some evolutionary Frankenstein--an oxidase from hell? Finally, will it be possible to develop drugs that specifically block the respiratory burst oxidase, and will such drugs prove to be clinically useful as anti-inflammatory agents?(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B M Babior
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
7
|
van Manen HJ, van Bruggen R, Roos D, Otto C. Single-cell optical imaging of the phagocyte NADPH oxidase. Antioxid Redox Signal 2006; 8:1509-22. [PMID: 16987007 DOI: 10.1089/ars.2006.8.1509] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The phagocyte NADPH oxidase is a key component of the innate immune response against invading microorganisms, because the generation of superoxide (O(2)(-)) inside the phagocytic vacuole by this enzyme is responsible for microbial killing by mechanisms that are directly or indirectly dependent on reactive oxygen species (ROS) formation. Most of what is known about the membrane-embedded and cytosolic NADPH oxidase subunits and their intricate network of interactions on assembly and activation has been derived from biochemical and biophysical studies involving subcellular fractionation or reconstituted cell-free systems. Such investigations can be complemented by single-cell microscopy on phagocytes, which may reveal spatial and/or temporal details about NADPH oxidase assembly that cannot be obtained from fractionated-cell assays. In recent years, we have investigated the NADPH oxidase in neutrophils using two complementary optical imaging techniques: Raman microscopy, a vibrational spectroscopic technique that does not require protein labeling, and live-cell fluorescence microscopy, which sheds light on the dynamics of NADPH oxidase assembly in individual cells. Here, we briefly introduce these techniques, compare their characteristics, and show their potential for studying NADPH oxidase at the single-cell level. New microscopy data are presented to illustrate the versatility of Raman and fluorescence microscopy on intact neutrophils.
Collapse
Affiliation(s)
- Henk-Jan van Manen
- Biophysical Engineering Group, Faculty of Science & Technology, Institute for Biomedical Technology, BMTI, and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Zhu Y, Marchal CC, Casbon AJ, Stull N, von Löhneysen K, Knaus UG, Jesaitis AJ, McCormick S, Nauseef WM, Dinauer MC. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem 2006; 281:30336-46. [PMID: 16895900 DOI: 10.1074/jbc.m607191200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric flavocytochrome b558, comprised of the two integral membrane proteins p22phox and gp91phox, mediates the transfer of electrons from NADPH to molecular oxygen in the phagocyte NADPH oxidase to generate the superoxide precursor of microbicidal oxidants. This study uses deletion mutagenesis to identify regions of p22phox required for maturation of gp91phox and for NADPH oxidase activity. N-terminal, C-terminal, or internal deletions of human p22phox were generated and expressed in Chinese hamster ovary cells with transgenes for gp91phox and two other NADPH oxidase subunits, p47phox, and p67phox. The results demonstrate that p22phox-dependent maturation of gp91phox carbohydrate, cell surface expression of gp91phox, and the enzymatic function of flavocytochrome b558 are closely correlated. Whereas the 5 N-terminal and 25 C-terminal amino acids are dispensable for these functions, the N-terminal 11 amino acids of p22phox are required, as is a hydrophilic region between amino acids 65 and 90. Upon deletion of 54 residues at the C terminus of p22phox (amino acids 142-195), maturation and cell surface expression of gp91phox was still preserved, although NADPH oxidase activity was absent, as expected, due to removal of a proline-rich domain between amino acids 151-160 that is required for recruitment of p47phox. Antibody binding studies indicate that the extreme N terminus of p22phox is inaccessible in the absence of cell permeabilization, supporting a model in which both the N- and C-terminal domains of p22phox extend into the cytoplasm, anchored by two membrane-embedded regions.
Collapse
Affiliation(s)
- Yanmin Zhu
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), Microbiology/Immunology, and Medical and Molecular Genetics, James Whitcomb Riley Hospital for Children, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Izadi-Pruneyre N, Huché F, Lukat-Rodgers GS, Lecroisey A, Gilli R, Rodgers KR, Wandersman C, Delepelaire P. The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site. J Biol Chem 2006; 281:25541-50. [PMID: 16774915 DOI: 10.1074/jbc.m603698200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HasA is an extracellular heme binding protein, and HasR is an outer membrane receptor protein from Serratia marcescens. They are the initial partners of a heme internalization system allowing S. marcescens to scavenge heme at very low concentrations due to the very high affinity of HasA for heme (Ka = 5,3 x 10(10) m(-1)). Heme is then transferred to HasR, which has a lower affinity for heme. The mechanism of the heme transfer between HasA and HasR is largely unknown. HasR has been overexpressed and purified in holo and apo forms. It binds one heme molecule with a Ka of 5 x 10(6) m(-1) and shows the characteristic absorbance spectrum of a low spin heme iron. Both holoHasA and apoHasA bind tightly to apoHasR in a 1:1 stoichiometry. In this study we show that heme transfer occurs in vitro in the purified HasA.HasR complex, demonstrating that heme transfer is energy- and TonB complex-independent and driven by a protein-protein interaction. We also show that heme binding to HasR involves two conserved histidine residues.
Collapse
Affiliation(s)
- Nadia Izadi-Pruneyre
- Unité des Membranes Bactériennes, CNRS URA 2172 Département de Microbiologie, Institut Pasteur, 75724 Paris Cedex 15 France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H. The NADPH Oxidase Nox3 Constitutively Produces Superoxide in a p22 -dependent Manner. J Biol Chem 2005; 280:23328-39. [PMID: 15824103 DOI: 10.1074/jbc.m414548200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nox3, a member of the superoxide-producing NADPH oxidase (Nox) family, participates in otoconia formation in mouse inner ears, which is required for perception of balance and gravity. The activity of other Nox enzymes such as gp91(phox)/Nox2 and Nox1 is known to absolutely require both an organizer protein (p47(phox) or Noxo1) andanactivatorprotein (p67(phox) or Noxa1); for the p47(phox)-dependent activation of these oxidases, treatment of cells with stimulants such as phorbol 12-myristate 13-acetate is also indispensable. Here we show that ectopic expression of Nox3 in various types of cells leads to phorbol 12-myristate 13-acetate-independent constitutive production of a substantial amount of superoxide under the conditions where gp91(phox) and Nox1 fail to generate superoxide, i.e. in the absence of the oxidase organizers and activators. Nox3 likely forms a functional complex with p22(phox); Nox3 physically interacts with and stabilizes p22(phox), and the Nox3-dependent superoxide production is totally dependent on p22(phox). The organizers p47(phox) and Noxo1 are capable of enhancing the superoxide production by Nox3 in the absence of the activators, and the enhancement requires the interaction of the organizers with p22(phox), further indicating a link between Nox3 and p22(phox). The p47(phox)-enhanced Nox3 activity is further facilitated by p67(phox) or Noxa1, whereas the activators cancel the Noxo1-induced enhancement. On the other hand, the small GTPase Rac, essential for the gp91(phox) activity, is likely dispensable to the Nox3 system. Thus Nox3 functions together with p22(phox) as an enzyme constitutively producing superoxide, which can be distinctly regulated by combinatorial use of the organizers and activators.
Collapse
Affiliation(s)
- Noriko Ueno
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
11
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
12
|
Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:1-22. [PMID: 15238208 PMCID: PMC2636547 DOI: 10.1016/j.bbabio.2004.03.008] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 02/06/2023]
Abstract
The NADPH oxidase is an electron transport chain in "professional" phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established.
Collapse
Affiliation(s)
- Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony W. Segal
- Centre for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
13
|
Zhu H, Larade K, Jackson TA, Xie J, Ladoux A, Acker H, Berchner-Pfannschmidt U, Fandrey J, Cross AR, Lukat-Rodgers GS, Rodgers KR, Bunn HF. NCB5OR is a novel soluble NAD(P)H reductase localized in the endoplasmic reticulum. J Biol Chem 2004; 279:30316-25. [PMID: 15131110 PMCID: PMC3045664 DOI: 10.1074/jbc.m402664200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NAD(P)H cytochrome b5 oxidoreductase, Ncb5or (previously named b5+b5R), is widely expressed in human tissues and broadly distributed among the animal kingdom. NCB5OR is the first example of an animal flavohemoprotein containing cytochrome b5 and chrome b5 reductase cytodomains. We initially reported human NCB5OR to be a 487-residue soluble protein that reduces cytochrome c, methemoglobin, ferricyanide, and molecular oxygen in vitro. Bioinformatic analysis of genomic sequences suggested the presence of an upstream start codon. We confirm that endogenous NCB5OR indeed has additional NH2-terminal residues. By performing fractionation of subcellular organelles and confocal microscopy, we show that NCB5OR colocalizes with calreticulin, a marker for endoplasmic reticulum. Recombinant NCB5OR is soluble and has stoichiometric amounts of heme and flavin adenine dinucleotide. Resonance Raman spectroscopy of NCB5OR presents typical signatures of a six-coordinate low-spin heme similar to those found in other cytochrome b5 proteins. Kinetic measurements showed that full-length and truncated NCB5OR reduce cytochrome c actively in vitro. However, both full-length and truncated NCB5OR produce superoxide from oxygen with slow turnover rates: kcat = approximately 0.05 and approximately 1 s(-1), respectively. The redox potential at the heme center of NCB5OR is -108 mV, as determined by potentiometric titrations. Taken together, these data suggest that endogenous NCB5OR is a soluble NAD(P)H reductase preferentially reducing substrate(s) rather than transferring electrons to molecular oxygen and therefore not an NAD(P)H oxidase for superoxide production. The subcellular localization and redox properties of NCB5OR provide important insights into the biology of NCB5OR and the phenotype of the Ncb5or-null mouse.
Collapse
Affiliation(s)
- Hao Zhu
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- To whom correspondence may be addressed: Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115. Tel.: 617-278-0870; Fax: 617-739-0748;
| | - Kevin Larade
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Timothy A. Jackson
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jianxin Xie
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Annie Ladoux
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Helmut Acker
- Labor fuer optische Systemphysiologie, Max-Planck-Institut fuer molekulare Physiologie, 44227 Dortmund, Germany
| | - Utta Berchner-Pfannschmidt
- Labor fuer optische Systemphysiologie, Max-Planck-Institut fuer molekulare Physiologie, 44227 Dortmund, Germany
- Universitätsklinikum Essen, Institut fuer Physiologie, 45122 Essen, Germany
| | - Joachim Fandrey
- Universitätsklinikum Essen, Institut fuer Physiologie, 45122 Essen, Germany
| | - Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | | | - Kenton R. Rodgers
- Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105-5516
| | - H. Franklin Bunn
- Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- To whom correspondence may be addressed: Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115. Tel.: 617-732-5841; Fax: 617-739-0748;
| |
Collapse
|
14
|
Taylor RM, Burritt JB, Foubert TR, Snodgrass MA, Stone KC, Baniulis D, Gripentrog JM, Lord C, Jesaitis AJ. Single-step immunoaffinity purification and characterization of dodecylmaltoside-solubilized human neutrophil flavocytochrome b. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1612:65-75. [PMID: 12729931 DOI: 10.1016/s0005-2736(03)00086-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Flavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that serves as the central component of an electron transferase system employed by phagocytes for elimination of bacterial and fungal pathogens. This report describes a rapid and efficient single-step purification of Cyt b from human neutrophil plasma membranes by solubilization in the nonionic detergent dodecylmaltoside (DDM) and immunoaffinity chromatography. A similar procedure for isolation of Cyt b directly from intact neutrophils by a combination of heparin and immunoaffinity chromatography is also presented. The stability of Cyt b was enhanced in DDM relative to previously employed solubilizing agents as determined by both monitoring the heme spectrum in crude membrane extracts and assaying resistance to proteolytic degradation following purification. Gel filtration chromatography and dynamic light scattering indicated that DDM maintains a predominantly monodisperse population of Cyt b following immunoaffinity purification. The high degree of purity obtained with this isolation procedure allowed for direct determination of a 2:1 heme to protein stoichiometry, confirming previous structural models. Analysis of the isolated heterodimer by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allowed for accurate mass determination of p22(phox) as indicated by the gene sequence. Affinity-purified Cyt b was functionally reconstituted into artificial bilayers and demonstrated that catalytic activity of the protein was efficiently retained throughout the purification procedure.
Collapse
Affiliation(s)
- Ross M Taylor
- Department of Microbiology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717-3520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H. mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 2002. [DOI: 10.1172/jci0215268] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Rosen H, Crowley JR, Heinecke JW. Human neutrophils use the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate but not nitrate bacterial proteins during phagocytosis. J Biol Chem 2002; 277:30463-8. [PMID: 12060654 DOI: 10.1074/jbc.m202331200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of extracellular oxidants by neutrophils has been widely investigated, but knowledge about the chemical reactions that occur in the phagolysosome, the cellular compartment that kills pathogens, is more limited. One important pathway may involve the production of potent halogenating agents such as hypochlorous acid (HOCl) by the myeloperoxidase-hydrogen peroxide-halide system. However, explorations of the oxidation chemistry of phagolysosomes have been hampered by the organelle's inaccessibility. To overcome this limitation, we recovered Escherichia coli that had been internalized by human neutrophils. We then analyzed the bacterial proteins for 3-chlorotyrosine, a stable marker of damage by HOCl. Mass spectrometric analysis revealed that levels of 3-chlorotyrosine in E. coli proteins increased markedly after the bacteria were internalized by human neutrophils. This increase failed to occur in E. coli exposed to neutrophils deficient in NADPH oxidase or myeloperoxidase, implicating H(2)O(2) and myeloperoxidase in the halogenation reaction. The extent of protein chlorination by normal neutrophils paralleled bacterial killing. Our observations support the view that the phagolysosome of human neutrophils uses the myeloperoxidase-hydrogen peroxide-chloride system to chlorinate bacterial proteins. In striking contrast, human neutrophils failed to nitrate bacterial proteins unless the medium was supplemented with 1 mm nitrite, and the level of nitration was low. Protein chlorination associated with bacterial killing was unaffected by the presence of nitrite in the medium. Nitration required NADPH oxidase but appeared to be independent of myeloperoxidase, suggesting that neutrophils can nitrate proteins through a pathway that requires nitrite but is independent of myeloperoxidase.
Collapse
Affiliation(s)
- Henry Rosen
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
17
|
Biberstine-Kinkade KJ, Yu L, Stull N, LeRoy B, Bennett S, Cross A, Dinauer MC. Mutagenesis of p22(phox) histidine 94. A histidine in this position is not required for flavocytochrome b558 function. J Biol Chem 2002; 277:30368-74. [PMID: 12042318 DOI: 10.1074/jbc.m203993200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NADPH oxidase is a multicomponent enzyme that transfers electrons from NADPH to O2 to generate superoxide (O2*-), the precursor of microbicidal oxygen species that play an important role in host defense. Flavocytochrome b558, a heterodimeric oxidoreductase comprised of gp91(phox) and p22(phox) subunits, contains two nonidentical, bis-histidine-ligated heme groups imbedded within the membrane. Four histidine residues that appear to serve as noncovalent axial heme ligands reside within the hydrophobic N terminus of gp91(phox), but the role of p22(phox) in heme binding is unclear. We compared biochemical and functional features of wild type flavocytochrome b558 with those in cells co-expressing gp91(phox) with p22(phox) harboring amino acid substitutions at histidine 94, the only invariant histidine residue within the p22(phox) subunit. Substitution with leucine, tyrosine, or methionine did not affect heterodimer formation or flavocytochrome b558 function. The heme spectrum in purified preparations of flavocytochrome b558 containing the p22(phox) derivative was unaffected. In contrast, substitution of histidine 94 with arginine appeared to disrupt the intrinsic stability of p22(phox) and, secondarily, the stability of mature gp91(phox) and abrogated O2*- production. These findings demonstrate that His94 p22(phox) is not required for heme binding or function of flavocytochrome b558 in the NADPH oxidase.
Collapse
Affiliation(s)
- Karla J Biberstine-Kinkade
- Department of Pediatrics (Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana 46202-5225, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Biberstine-Kinkade KJ, DeLeo FR, Epstein RI, LeRoy BA, Nauseef WM, Dinauer MC. Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox). J Biol Chem 2001; 276:31105-12. [PMID: 11413138 DOI: 10.1074/jbc.m103327200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phagocyte NADPH-dependent oxidase generates superoxide (O(2)) by reducing molecular oxygen through flavocytochrome b(558) (flavocytochrome b), a heterodimeric oxidoreductase composed of gp91(phox) and p22(phox) subunits. Although each flavocytochrome b molecule contains two heme groups, their precise distribution within the heterodimer is unknown. Among functionally and/or structurally related oxidoreductases, histidines at codons 101, 111, 115, 119, 209, 210, and 222 of gp91(phox) are conserved and potential candidates to ligate heme. We compared biochemical and functional features of normal flavocytochrome b with those in cells expressing gp91(phox) harboring amino acid substitutions at each of these histidines. Surface expression of flavocytochrome b and heterodimer formation were relatively unaffected in cells expressing gp91(phox) H111L, H119L, or H210L. These mutations also had no effect on the flavocytochrome b heme spectrum, although NADPH oxidase activity was decreased in cells expressing gp91(phox) H119L or H210L. In contrast, gp65 was not processed to gp91(phox), heterodimers did not form, and flavocytochrome b was not expressed on the surface of cells expressing gp91(phox) H101L, H115L, H115D, H209C, H209Y, H222L, H222C, or H222R. Similarly, this subset of mutants lacked detectable O(2)-generating activity, and flavocytochrome b purified from these cells contained little or no heme. These findings demonstrate that His(101), His(115), His(209), and His(222) of gp91(phox) are critical for heme binding and biosynthetic maturation of flavocytochrome b.
Collapse
Affiliation(s)
- K J Biberstine-Kinkade
- Department of Pediatrics (Hematology/Oncology), Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sijtsema NM, Tibbe AG, Segers-Nolten IG, Verhoeven AJ, Weening RS, Greve J, Otto C. Intracellular reactions in single human granulocytes upon phorbol myristate acetate activation using confocal Raman microspectroscopy. Biophys J 2000; 78:2606-13. [PMID: 10777757 PMCID: PMC1300850 DOI: 10.1016/s0006-3495(00)76805-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have obtained new evidence for the occurrence of intracellular NADPH-oxidase activity in neutrophilic and eosinophilic granulocytes upon stimulation with phorbol myristate acetate (PMA). PMA activation leads to a partial translocation of cytochrome b(558) from the membranes of the specific granules to the plasma membrane. It was suggested that NADPH-oxidase activity only takes place in the plasma membrane, leading to an extracellular release of oxygen metabolites because cellular self-destruction can be avoided in this way. The effects of PMA activation were indirectly studied in recent experiments employing scavengers of extracellular superoxide anion and hydrogen peroxide, and support for intracellular NADPH-oxidase activity was obtained. In this paper we use Raman microspectroscopy as a direct method to study intracellular molecular reactions that result from cellular triggering by PMA. The molecular specificity of this microscopic method enables us to show that intracellular reduction of both myeloperoxidase (MPO) and cytochrome b(558) occurs in neutrophilic granulocytes. Control measurements with cytochrome b(558)-deficient neutrophilic granulocytes did not show a reduction of intracellular MPO. This is direct support for the occurrence of intracellular NADPH-oxidase activity in organelles that must be in close contact with the azurophilic granules that contain MPO. Furthermore, a comparison was made with chemical reactions occurring in eosinophilic granulocytes after activation with PMA. Moreover, in these cells an intracellular reduction of eosinophil peroxidase was observed.
Collapse
Affiliation(s)
- N M Sijtsema
- University of Twente, Institute for Biomedical Technology, Department of Applied Physics, Applied Optics Group (TOP), 7500 AE Enschede, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Roesler J, Heyden S, Burdelski M, Schäfer H, Kreth HW, Lehmann R, Paul D, Marzahn J, Gahr M, Rösen-Wolff A. Uncommon missense and splice mutations and resulting biochemical phenotypes in German patients with X-linked chronic granulomatous disease. Exp Hematol 1999; 27:505-11. [PMID: 10089913 DOI: 10.1016/s0301-472x(98)00024-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic granulomatous disease is an inherited disease characterized by the inability of phagocytes to generate normal amounts of superoxide, leaving patients susceptible to opportunistic, life-threatening infections. In the majority of cases, cytochrome b558 is absent in the X-chromosomal form of CGD. However, the neutrophils from six of nine X-linked CGD patients, reported here, expressed normal or decreased amounts of this cytochrome and are referred to as "variant" forms. In three of these six variant patients, a roughly proportional decrease in cytochrome b558 expression and production of H2O2 were found. In two cases this phenotype could be well explained by special splice mutations, whereas in the third case it was caused by a missense mutation, predicting Ser 193-->Phe. In the other three variant patients, cytochrome b558 expression and H2O2 production were clearly disproportionate as the generation of H2O2 was much more decreased than cytochrome expression. Missense mutations also were found in these cases. One of these mutations, predicting Leu 546-->Pro and affecting the putative nicotinamide adenine dinucleotide phosphate binding site, led to normal levels of cytochrome b558 expression and reduced H2O2 production. In the other two mutations, predicting Pro 339-->His and His 338-->Tyr, the putative flavin adenine dinucleotide binding site was affected. This could explain the corresponding uncommon phenotypes, characterized by zero or trace amounts of H2O2 production and the expression of relatively high amounts of nonfunctional or low functional cytochrome b558, respectively. The only missense mutation found that prevented the expression of any cytochrome b558 was caused by a predicted His 222-->Arg exchange in one of the three classic cases. The two other classic phenotypes were caused by splice mutations.
Collapse
Affiliation(s)
- J Roesler
- Department of Pediatrics, Clinic of the University of Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Components and organization of the nadph oxidase of phagocytic cells. PHAGOCYTOSIS: THE HOST 1999. [DOI: 10.1016/s1874-5172(99)80043-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Yu L, Quinn MT, Cross AR, Dinauer MC. Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci U S A 1998; 95:7993-8. [PMID: 9653128 PMCID: PMC20917 DOI: 10.1073/pnas.95.14.7993] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1998] [Indexed: 02/08/2023] Open
Abstract
The phagocyte NADPH oxidase flavocytochrome b558 is a membrane-bound heterodimer comprised of a glycosylated subunit, gp91(phox), and a nonglycosylated subunit, p22(phox). It contains two nonidentical heme groups that mediate the final steps of electron transfer to molecular oxygen (O2), resulting in the generation of superoxide ion (O2-). However, the location of the hemes within the flavocytochrome heterodimer remains controversial. In this study, we have used transgenic COS7 cell lines expressing gp91(phox), p22(phox), or both polypeptides to examine the relative role of each flavocytochrome b558 subunit in heme binding and O2- formation. A similar membrane localization was observed when gp91(phox) and p22(phox) were either expressed individually or coexpressed, as analyzed by confocal microscopy and immunoblotting of subcellular fractions. Spectral analysis of membranes prepared from COS7 cell lines expressing either gp91(phox) or both gp91(phox) and p22(phox) showed a b-type cytochrome with spectral characteristics identical to those of human neutrophil flavocytochrome b558. In contrast, no heme spectrum was detected in wild-type COS7 membranes or those containing only p22(phox). Furthermore, redox titration studies suggested that two heme groups were contained in gp91(phox) expressed in COS7 membranes, with midpoint potentials of -264 and -233 mV that were very similar to those obtained for neutrophil flavocytochrome b558. These results provide strong support for the hypothesis that gp91(phox) is the sole heme binding subunit of flavocytochrome b558. However, coexpression of gp91(phox) and p22(phox) in COS7 membranes was required to support O2- production in combination with neutrophil cytosol, indicating that the functional assembly of the active NADPH oxidase complex requires both subunits of flavocytochrome b558.
Collapse
Affiliation(s)
- L Yu
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
23
|
Sijtsema NM, Otto C, Segers-Nolten GM, Verhoeven AJ, Greve J. Resonance Raman microspectroscopy of myeloperoxidase and cytochrome b558 in human neutrophilic granulocytes. Biophys J 1998; 74:3250-5. [PMID: 9635778 PMCID: PMC1299665 DOI: 10.1016/s0006-3495(98)78031-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With (resonance) Raman microscospectroscopy, it is possible to investigate the chemical constitution of a very small volume (0.5 fl) in a living cell. We have measured resonance Raman spectra in the cytoplasm of living normal, myeloperoxidase (MPO)-deficient, and cytochrome b558-deficient neutrophils and in isolated specific and azurophilic granule fractions, using an excitation wavelength of 413.1 nm. Similar experiments were performed after reduction of the redox centers by the addition of sodium dithionite. The specific and azurophilic granules in both redox states appeared to have clearly distinguishable Raman spectra when exciting at a wavelength of 413.1 nm. The azurophilic granules and the cytochrome b558-deficient neutrophils showed Raman spectra similar to that of the isolated MPO. The spectra of the specific granules and the MPO-deficient neutrophils corresponded very well to published cytochrome b558 spectra. The resonance Raman spectrum of the cytoplasmic region of normal neutrophilic granulocytes could be fitted with a combination of the spectra of the specific and azurophilic granules, which shows that the Raman signal of neutrophilic granulocytes mainly originates from MPO and cytochrome b558, at an excitation wavelength of 413.1 nm.
Collapse
Affiliation(s)
- N M Sijtsema
- Department of Applied Physics, Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Zhen L, Yu L, Dinauer MC. Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis. J Biol Chem 1998; 273:6575-81. [PMID: 9497394 DOI: 10.1074/jbc.273.11.6575] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Site-directed mutagenesis was used to generate a series of substitutions and deletions in the carboxyl-terminal 11 residues of gp91phox, the 91-kDa subunit of the phagocyte NADPH oxidase flavocytochrome b558. This region encompasses 559RGVHFIF565, implicated as a contact point for the cytosolic oxidase subunit p47phox during oxidase activation, and a carboxyl-terminal phenylalanine (Phe570), which corresponds in position to a highly conserved aromatic residue that interacts with the flavin group in the ferredoxin-NADP+ reductase flavoenzyme family, of which gp91phox is a member. Mutant proteins were expressed in human myeloid leukemia cells which lack expression of endogenous gp91phox due to targeted disruption of the X-linked gp91phox gene. Although specific residues within 559RGVHFIF565 had previously been identified by alanine scanning as essential for peptide inhibition of oxidase activity in a cell-free assay, comparable substitutions in the gp91phox polypeptide had either no or only a modest effect on oxidase activity in whole cells. Replacement of nonpolar with polar or charged residues had greater effects on oxidase activity, but were also associated with decreased gp91phox expression, suggesting that overall protein structure was perturbed. No stable gp91phox protein was detected upon deletion of the terminal 11 amino acids. Alanine substitution or deletion of the carboxyl-terminal Phe570 in gp91phox resulted in a 2-fold reduction in superoxide production. This contrasts with a approximately 300-800-fold reduction reported for comparable mutations in pea ferredoxin-NADP+ reductase, which suggests that structural or functional differences exist between the carboxyl terminus of gp91phox and other ferredoxin-NADP+ reductases.
Collapse
Affiliation(s)
- L Zhen
- Herman B. Wells Center for Pediatric Research, James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, Indiana 46702, USA
| | | | | |
Collapse
|
25
|
Affiliation(s)
- A W Segal
- Department of Medicine, University College London, United Kingdom
| | | |
Collapse
|
26
|
Yu L, Zhen L, Dinauer MC. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J Biol Chem 1997; 272:27288-94. [PMID: 9341176 DOI: 10.1074/jbc.272.43.27288] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The NADPH oxidase cytochrome b558 is a membrane heterodimer comprised of a glycosylated 91-kDa subunit, gp91(phox), and a nonglycosylated 22-kDa subunit, p22(phox). The role of heme in cytochrome b558 biosynthesis was studied using succinyl acetone, an inhibitor of heme synthesis, in PLB-985 myeloid cells undergoing granulocytic differentiation. Succinyl acetone markedly reduced expression of p22(phox) and the mature 91-kDa form of gp91(phox) but not its 65-kDa high mannose precursor, in association with a profound reduction in NADPH oxidase activity. Expression of non-heme-containing cytosolic oxidase components was unaffected. The reduction in cytochrome b558 expression and NADPH oxidase activity was prevented by adding exogenous heme and was reversible upon removal of succinyl acetone. Transgenic expression of gp91(phox) in monkey COS-7 and murine 3T3 cells, both of which lacked endogenous p22(phox) mRNA, demonstrated that p22(phox) was not required for maturation of gp91(phox) carbohydrate to complex oligosaccharides. However, coexpression of transgenic p22(phox) increased the abundance of the mature gp91(phox) glycoprotein. These results suggest that heme incorporation plays an important role in cytochrome b558 assembly and provide further support for the concept that stability of p22(phox) and the mature gp91(phox) subunit is increased by heterodimer formation.
Collapse
Affiliation(s)
- L Yu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
27
|
Escriou V, Laporte F, Vignais PV, Desbois A. Differential characterization of neutrophil cytochrome p30 and cytochrome b-558 by low-temperature absorption and resonance Raman spectroscopies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:505-11. [PMID: 9151986 DOI: 10.1111/j.1432-1033.1997.t01-1-00505.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytochrome p30, a novel hemoprotein isolated from rabbit peritoneal neutrophils [Escriou, V., Laporte, F., Garin, J., Brandolin, G. & Vignais, P. V. (1994) J. Biol. Chem. 269, 14007-14014] has been characterized by low-temperature (77 K) absorption and resonance Raman spectroscopies. The spectral data have been compared with those obtained with neutrophil cytochrome b-558. At room temperature, the absorption difference spectra (reduced minus oxidized) of cytochrome p30 and cytochrome b-558 could not been distinguished from each other. However, at 77 K, significant differences were observed. In particular, the alpha band of cytochrome p30 was split whereas that of cytochrome b-558 was symmetrical, but particularly broad. The resonance Raman spectra of cytochrome p30 provided evidence for the presence of two hemes both in the ferric and ferrous states. One of them was a six-coordinated low-spin heme either oxidized or reduced whereas the other one was a high-spin heme, five-coordinated in the reduced state and six-coordinated in the oxidized state. It is probable that two histidine residues constitute the axial ligands of the six-coordinated low-spin heme of cytochrome p30. The resonance Raman spectra of cytochrome b-558 allowed the detection of a six-coordinated low-spin heme, similar to that found in cytochrome p30. The component typical of the high-spin heme of cytochrome p30 was however absent in the spectra of oxidized and reduced cytochrome b-558.
Collapse
Affiliation(s)
- V Escriou
- Département de Biologie Moléculaire et Structurale, CEA et URA CNRS 1130, Centre d'Etudes Nucléaires, Grenoble, France
| | | | | | | |
Collapse
|
28
|
Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 1996; 271:31021-4. [PMID: 8940093 DOI: 10.1074/jbc.271.49.31021] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A plasma membrane iron reductase, required for cellular iron acquisition by Saccharomyces cerevisiae, and the human phagocytic NADPH oxidase, implicated in cellular defense, contain low potential plasma membrane b cytochromes that share elements of structure and function. Four critical histidine residues in the FRE1 protein of the iron reductase were identified by site-directed mutagenesis. Individual mutation of each histidine to alanine eliminated the entire heme spectrum without affecting expression of the apoprotein, documenting the specificity of the requirement for the histidine residues. These critical residues are predicted to coordinate a bis-heme structure between transmembrane domains of the FRE1 protein. The histidine residues are conserved in the related gp91(phox) protein of the NADPH oxidase of human granulocytes, predicting the sites of heme coordination in that protein complex. Similarly spaced histidine residues have also been implicated in heme binding by organelle b cytochromes with little overall sequence similarity to the plasma membrane b cytochromes. This bis-heme motif may play a role in transmembrane electron transport by distinct families of polytopic b cytochromes.
Collapse
Affiliation(s)
- A A Finegold
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Leusen JH, Verhoeven AJ, Roos D. Interactions between the components of the human NADPH oxidase: intrigues in the phox family. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1996; 128:461-76. [PMID: 8900289 DOI: 10.1016/s0022-2143(96)90043-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human NADPH oxidase is a very intriguing enzyme; although its catalytic unit is retained within cytochrome b558, various additional proteins are required for activity of the NADPH oxidase. In the past few years substantial progress has been made to elucidate the protein-protein interactions and the activation events involved. The following facts have become evident: (1) activation of rac and subsequent interaction with p67-phox is crucial for the interaction of p67-phox with cytochrome b558, and probably with gp91-phox; (2) p47-phox interacts with p22-phox, and phosphorylation of 379Ser of p47-phox is obligatory for this event; (3) p47-phox and p67-phox regulate each other's translocation in a positive sense (see also reference 71). To put it differently: it is vital to gain insight in the intrigues within the phox family and associated characters to fully understand NADPH oxidase activation.
Collapse
Affiliation(s)
- J H Leusen
- Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, University of Amsterdam
| | | | | |
Collapse
|
30
|
Affiliation(s)
- L M Henderson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| | | |
Collapse
|
31
|
Fujii H, Finnegan MG, Miki T, Crouse BR, Kakinuma K, Johnson MK. Spectroscopic identification of the heme axial ligation of cytochrome b558 in the NADPH oxidase of porcine neutrophils. FEBS Lett 1995; 377:345-8. [PMID: 8549752 DOI: 10.1016/0014-5793(95)01372-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The combination of electron paramagnetic resonance (EPR), near-infrared magnetic circular dichroism (NIR-MCD) and resonance Raman (RR) spectroscopies at cryogenic temperatures has been used to identify the axial heme ligation of the low spin cytochrome b558 component of NADPH oxidase from porcine blood neutrophils. The EPR and NIR-MCD results indicate the presence of two distinct forms in frozen solution; one with a low field g-value at 3.23 and porphyrin(pi)-to-Fe(III) charge transfer maximum at 1660 nm and the other a low field g-value at 3.00 and porphyrin(pi)-to-Fe(III) charge transfer maximum at 1510 nm. On the basis of these properties and the RR studies, both are attributed to forms of cytochrome b558 with bis-histidine axial ligation. The origin of the observed heterogeneity, the location and identity of the specific histidines involved in ligating the heme, and the role of the heme prosthetic group in O2- production are discussed in light of these results.
Collapse
Affiliation(s)
- H Fujii
- Department of Inflammation Research, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Koshkin V. Aerobic and anaerobic functioning of superoxide-producing cytochrome b-559 reconstituted with phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:225-9. [PMID: 8534675 DOI: 10.1016/0005-2728(95)00123-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytochrome b-559 reconstituted with phospholipids and FAD represents the simplest model of the respiratory burst NADPH oxidase and reproduces the main catalytic features of this system (Koshkin, V. and Pick, E. (1993) FEBS Lett. 327, 57-62; (1994) FEBS Lett. 338, 285-289). In the present report it is shown that activation by oxygen, characteristic of the NADPH oxidase complex, is an intrinsic property of flavocytochrome b-559, in principle independent of its complexation with the other components of NADPH oxidase. Facilitation of electron transfer from NADPH to FAD is found to be the reason for this phenomenon. Kinetic studies of anaerobic operation of flavocytochrome b-559 revealed the functional heterogeneity of two hemes, manifested as a dramatic difference in their reducibility under these conditions.
Collapse
Affiliation(s)
- V Koshkin
- Julius Friedrich Cohnheim Center for Phagocyte Research, Tel-Aviv University, Israel
| |
Collapse
|
33
|
de Jong GA, Caldeira J, Sun J, Jongejan JA, de Vries S, Loehr TM, Moura I, Moura JJ, Duine JA. Characterization of the interaction between PQQ and heme c in the quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni. Biochemistry 1995; 34:9451-8. [PMID: 7626615 DOI: 10.1021/bi00029a021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quinohemoprotein ethanol dehydrogenase from Comamonas testosteroni (QH-EDH) contains two cofactors, 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline-4,5-dione (PQQ) and heme c. Since previous studies on the kinetics of this enzyme suggested that both participate in electron transfer, spectroscopic investigations were performed of the oxidized and reduced holo- and apoenzyme (without PQQ but with heme c) to reveal the nature of the interaction between the two redox centers. From this it appears that the properties of the heme in the enzyme are affected by the presence of PQQ, as judged from the shift of the maxima in the ultraviolet/visible absorption spectra of the heme moiety in both reduced and oxidized QH-EDH and the 60-mV increase of the heme midpoint redox potential caused by PQQ addition. Also 1H-NMR spectroscopy was indicative for interaction since binding of PQQ induced shifts in the resonances of the methyl groups of the porphyrin ring in the oxidized form of the apoenzyme and a shift in the methionine heme ligand resonance of the reduced form of the apoenzyme. On the other hand, resonance Raman spectra of the heme in the different enzyme forms were nearly similar. These results suggest that a major effect of PQQ binding to apo-QH-EDH is a rotation of the methionine ligand of heme c. Since no intermediate 1H-NMR spectra were observed upon titration of apoenzyme with PQQ, apparently no exchange occurs of PQQ between (oxidized) holo- and apoenzyme at the NMR time scale and at that of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G A de Jong
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cross AR, Rae J, Curnutte JT. Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem 1995; 270:17075-7. [PMID: 7615499 DOI: 10.1074/jbc.270.29.17075] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Analysis of potentiometric titrations of the cytochrome b-245 from a X+ chronic granulomatous disease patient with an Arg54 --> Ser mutation in gp91phox indicates that the mutant form of the cytochrome contains two nonidentical hemes with midpoint potentials of Em7 = -220 and Em7 = -300 mV. In the light of this information, reanalysis of redox titrations of wild-type cytochrome b-245 implies that it probably also contains two separate heme centers with midpoint potentials of Em7 = -225 and Em7 = -265 mV. The effect of the Arg54 --> Ser substitution is to reduce the midpoint potential of one of the heme centers by approximately 35 mV and suggests possible interaction between Arg54 and a heme propionate side chain.
Collapse
Affiliation(s)
- A R Cross
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
35
|
Fujii H, Johnson MK, Finnegan MG, Miki T, Yoshida LS, Kakinuma K. Electron Spin Resonance Studies on Neutrophil Cytochrome b558. J Biol Chem 1995. [DOI: 10.1074/jbc.270.21.12685] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Isogai Y, Iizuka T, Shiro Y. The mechanism of electron donation to molecular oxygen by phagocytic cytochrome b558. J Biol Chem 1995; 270:7853-7. [PMID: 7713877 DOI: 10.1074/jbc.270.14.7853] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phagocytic cytochrome b558 is a unique heme-containing enzyme, which catalyzes one electron reduction of molecular oxygen to produce a superoxide anion with a six-coordinated heme iron. To clarify the mechanism of the superoxide production, we have analyzed oxidation-reduction kinetics of cytochrome b558 purified from porcine neutrophils by stopped-flow and rapid-scanning spectroscopy. Reduced cytochrome b558 was rapidly reoxidized by O2 showing spectral changes with clear isosbestic points, which were also observed during the reduction of ferric cytochrome b558 with Na2S2O4 under anaerobic conditions. The single turnover rate for the reaction with O2 linearly depended on the O2 concentration but was not affected by addition of CO. The rate of the reaction decreased with an increase of pH giving a pKa of 9.7. Under complete anaerobic conditions, ferrous cytochrome b558 was oxidized by ferricyanide at a rate faster than by O2. The thermodynamic analysis shows that the enthalpic energy barriers for the reactions of cytochrome b558 are significantly lower when compared to the autoxidation of native and modified myoglobins through the formation of the iron-O2 complex. These findings are most consistent with the electron transfer from the heme to O2 by an outer-sphere mechanism.
Collapse
Affiliation(s)
- Y Isogai
- Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | |
Collapse
|
37
|
Cross AR, Heyworth PG, Rae J, Curnutte JT. A variant X-linked chronic granulomatous disease patient (X91+) with partially functional cytochrome b. J Biol Chem 1995; 270:8194-200. [PMID: 7713925 DOI: 10.1074/jbc.270.14.8194] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genetic analysis of a patient with the variant cytochrome b-245-positive form of chronic granulomatous disease revealed a missense mutation resulting in a Arg54-->Ser substitution in the gp91phox subunit of cytochrome b-245. As a consequence, although no O2- is made, NADPH oxidase-associated FAD accepts electrons from NADPH in the cell-free activation system and becomes reduced. The reduced flavin exhibits normal levels of iodonitrotetrazolium violet diaphorase activity, and the patient's neutrophils exhibit high levels of intracellular oxidant production and show a low level of NBT staining in the NBT slide test. Thus, this mutation appears to render the heme center of NADPH oxidase present but nonfunctional, while leaving the flavin center fully functional.
Collapse
Affiliation(s)
- A R Cross
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
38
|
Henderson LM, Banting G, Chappell JB. The Arachidonate-activable, NADPH Oxidase-associated H+ Channel. J Biol Chem 1995. [DOI: 10.1074/jbc.270.11.5909] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Robinson JM, Badwey JA. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 1995; 103:163-80. [PMID: 7553130 DOI: 10.1007/bf01454021] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The NADPH oxidase complex catalyzes the formation of superoxide (O2.-) in phagocytic leukocytes. This paper reviews recent advances in our understanding of this enzyme system. Recent studies have defined conditions for reconstitution of this enzymatic activity with purified proteins in a cell-free system. The role of the individual proteins that make up the active complex, their regulation and the effects of mutations in these proteins are discussed. While these studies represent major achievements, it is clear from cytochemical investigations that additional levels of complexity exist in the modulation of the NADPH oxidase complex in vivo. A major role for cytochemical analysis in understanding the cell biological aspects of the generation of reactive oxygen species is discussed.
Collapse
Affiliation(s)
- J M Robinson
- Department of Cell Biology, Neurobiology, and Anatomy, Columbus 43210, USA
| | | |
Collapse
|
40
|
Jones OT. The regulation of superoxide production by the NADPH oxidase of neutrophils and other mammalian cells. Bioessays 1994; 16:919-23. [PMID: 7840772 DOI: 10.1002/bies.950161211] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Superoxide is produced by a NADPH oxidase of phagocytic cells and contributes to their microbicidal activities. The oxidase is activated when receptors in the neutrophil plasma membrane bind to the target microbe. These receptors recognise antibodies and complement fragments which coat the target cell. The oxidase electron transport chain, located in the plasma membrane, comprises a low potential cytochrome b heterodimer (gp 91-phox and p22-phox) associated with FAD. It is non-functional until at least three proteins, p67-phox, p47-phox and p21rac (and possibly others), move from the cytosol to dock on the cytochrome b. The docking involves the interaction of SH3 domains on p47-phox or p67-phox with a proline-rich sequence on the small subunit of the cytochrome b. These SH3 domains may become exposed following phosphorylation of p47-phox by protein kinase C or, in model systems, by addition of arachidonic acid to reconstitution mixtures. Following the docking process the electron-transporting component is able to transfer electrons from NADPH to oxygen. This electrogenic event is charge-compensated by the opening of a proton channel. Components of the oxidase are expressed in non-phagocytes, where their function is uncertain but could be related to some signal function of superoxide.
Collapse
Affiliation(s)
- O T Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, UK
| |
Collapse
|
41
|
Thrasher AJ, Keep NH, Wientjes F, Segal AW. Chronic granulomatous disease. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1227:1-24. [PMID: 7918677 DOI: 10.1016/0925-4439(94)90100-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A J Thrasher
- Division of Molecular Medicine, University College London, Medical School, UK
| | | | | | | |
Collapse
|
42
|
Abstract
Chronic granulomatous disease is a serious clinical entity. The disease is caused by the failure of NADPH oxidase in phagocytic leukocytes to generate superoxide, needed for the killing of micro-organisms. The patients need careful management aimed at prevention and aggressive treatment of infections. CGD is a heterogeneous syndrome, both clinically and genetically. This disease is caused by a diversity of mutations, and multiple genes are affected. In fact, in the A22 and X91 subtypes of CGD, in which the alpha subunit and the beta subunit of cytochrome b558 are affected, respectively, the mutations are virtually unique for each CGD family tested. The results of these studies provide a better understanding of the mechanism of action of the various components of the superoxide-generating enzyme. Although treatment of CGD patients has improved considerably over the past 30 years, death caused by overwhelming infections is still a serious threat. Prenatal diagnosis now provides the relatives of a CGD patient with the possibility to choose for first-trimester abortion of an affected fetus. Moreover, genetic correction of the disease is now a goal within reach.
Collapse
Affiliation(s)
- D Roos
- Central Laboratory of The Netherlands Red Cross Blood Transfusion Service, Amsterdam
| |
Collapse
|
43
|
Cytochromeb558: A flavocytochrome comprising the complete electron‐transporting apparatus of phagocyte NADPH oxidase. Stem Cells 1994. [DOI: 10.1002/stem.5530120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Taylor WR, Jones DT, Segal AW. A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain. Protein Sci 1993; 2:1675-85. [PMID: 8251942 PMCID: PMC2142254 DOI: 10.1002/pro.5560021013] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NADPH is a system in phagocytic cells that generates O2- and hydrogen peroxide in the endocytic vacuole, both of which are important for killing of the engulfed microbe. Dysfunction of this oxidase results in the syndrome of chronic granulomatous disease, characterized by a profound predisposition to bacterial and fungal infections. A flavocytochrome b is the site of most of the mutations causing this syndrome. The FAD and NADPH binding sites have been located on the beta subunit of this molecule, the C-terminal half of which showed weak sequence similarity to other reductases, including the ferredoxin-NADP reductase (FNR) of known structure. This enabled us to build a model of the nucleotide binding domains of the flavocytochrome using this structure as a template. The model was built initially using a novel automatic modeling method based on distance-matrix projection and then refined using energy minimization with appropriate side-chain torsional constraints. The resulting model rationalized much of the observed sequence conservation and identified a large insertion as a potential regulatory domain. It confirms the inclusion of the neutrophil flavocytochrome b-245 (Cb-245) as a member of the FNR family of reductases and strongly supports its function as the proximal electron transporting component of the NADPH oxidase.
Collapse
Affiliation(s)
- W R Taylor
- Laboratory of Mathematical Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
45
|
Isogai Y, Iizuka T, Makino R, Iyanagi T, Orii Y. Superoxide-producing cytochrome b. Enzymatic and electron paramagnetic resonance properties of cytochrome b558 purified from neutrophils. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53574-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
46
|
Abstract
The NADPH oxidase is an electron transport chain found in lymphocytes and in the wall of the endocytic vacuole of 'professional' phagocytic cells. It is so called because NADPH is used as an electron donor to reduce oxygen to superoxide and hydrogen peroxide. The redox components are provided by a very unusual flavocytochrome b from the membrane, which is dependent upon cytosolic factors (including two specialized proteins, p47phox and p67phox) for activation. The small GTP-binding protein, p21rac, is also implicated in this system, possibly as the switch that triggers electron transport. This system provides a key to our understanding of the way in which these GTP-binding proteins function.
Collapse
Affiliation(s)
- A W Segal
- Department of Medicine, University College London, Rayne Institute, UK
| | | |
Collapse
|
47
|
Loehr TM, Sanders-Loehr J. Techniques for obtaining resonance Raman spectra of metalloproteins. Methods Enzymol 1993; 226:431-70. [PMID: 8277876 DOI: 10.1016/0076-6879(93)26020-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- T M Loehr
- Department of Chemical and Biological Sciences, Oregon Graduate Institute of Science and Technology, Beaverton 97006
| | | |
Collapse
|
48
|
Dinauer MC. The respiratory burst oxidase and the molecular genetics of chronic granulomatous disease. Crit Rev Clin Lab Sci 1993; 30:329-69. [PMID: 8110374 DOI: 10.3109/10408369309082591] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The phagocyte respiratory burst oxidase plays a central role in the inflammatory response. This membrane-bound enzyme complex is comprised of both integral membrane and cytosolic proteins and catalyzes the formation of large quantities of superoxide in response to inflammatory stimuli. While superoxide and its oxidant derivatives normally serve a microbicidal function, excessive or inappropriate release of these products contribute to inflammatory tissue injury. Chronic granulomatous disease (CGD) is a group of inherited disorders characterized by an absent neutrophil respiratory burst, which leads to recurrent and often life-threatening infections in affected patients. The analysis of the specific cellular defects in CGD has been instrumental in the identification and characterization of individual oxidase components. Four distinct genetic subgroups are presently recognized, each involving a different protein essential for respiratory burst oxidase function. This article summarizes recent advances in the characterization of the protein components and cellular biochemistry of the respiratory burst oxidase and reviews the classification and molecular genetics of CGD. The application of these findings to new approaches to the diagnosis and treatment of CGD are also reviewed.
Collapse
Affiliation(s)
- M C Dinauer
- James Whitcomb Riley Hospital for Children, Indiana University School of Medicine, Department of Pediatrics and of Medical and Molecular Genetics, Indianapolis 46202-5225
| |
Collapse
|
49
|
Fujii H, Kakinuma K. Electron paramagnetic resonance studies on cytochrome b-558 and peroxidases of pig blood granulocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1136:239-46. [PMID: 1325837 DOI: 10.1016/0167-4889(92)90112-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low-temperature electron paramagnetic resonance (EPR) spectrometry on granulocytes prepared from pig blood was carried out with concentrated cellular and subcellular fractions to characterize EPR signals of cytochrome b-558 (cyt b-558). A thick cell suspension (approximately 2 x 10(9) cells/ml), containing mostly neutrophils, showed typical high-spin EPR signals due to myeloperoxidase (MPO) and a low spin signal at a g value of around 3.2. A similar thick granulocyte suspension containing eosinophils showed not only these signals but also low spin heme signals at g values of 2.86, 2.13, and 1.66, which have been reported to be of cyt b-558 (Ueno et al. 1991, FEBS Lett. 281, 130-132). MPO and eosinophil peroxidase (EPO) were released from the membrane fractions with 50 mM phosphate buffer (pH 7.0) containing 1 M NaCl, and then were highly concentrated, in which no cyt b-558 was detected by absorption spectra. The signal at a g value of 2.86 was found only in the EPO fraction, suggesting that this signal is derived from a low-spin form of an EPO-complex, but neither from MPO nor cyt b-558. The O2(-)-forming NADPH oxidase associated in the membranes was solubilized with heptyl-thio-glucoside at 0 degree C and concentrated up to 45 microM cyt b-558 with no modification of the heme moiety confirmed by its O2(-)-generating activity and lack of carbon monoxide-binding capacity. Cyt b-558 showed an anisotropic signal at a g value of 3.2 +/- 0.05, which was cyanide-insensitive and reducible with reductants. The signal intensity was concentration dependent, suggesting that the g = 3.2 signal is characteristic of the low-spin heme iron in cyt b-558.
Collapse
Affiliation(s)
- H Fujii
- Department of Inflammation Research, Tokyo Metropolitan Institute of Medical Science, Japan
| | | |
Collapse
|
50
|
|