1
|
Abdalla AM, Abdel Karim GSA. Biochemical characterization and peptide mass fingerprinting of two glutathione transferases from Biomphalaria alexandrina snails (Gastropoda: Planorbidae). J Genet Eng Biotechnol 2022; 20:99. [PMID: 35792934 PMCID: PMC9259769 DOI: 10.1186/s43141-022-00372-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The freshwater snails Biomphalaria alexandrina (Gastropoda: Planorbidae) has public health importance of being an intermediate host of Schistosoma mansoni, the parasite species that causes intestinal schistosomiasis in humans. Glutathione transferases (GSTs) play an important role in detoxification of a broad range of compounds including secondary metabolites and exogenous compounds. Studying GSTs in snails may clarify their role in detoxification of molluscicides. RESULTS Two glutathione transferases (BaGST2 and BaGST3) were purified and characterized from B. alexandrina snails. BaGST2 and BaGST3 were electrophoretically homogeneous preparations with subunit molecular weight of 23.6 kDa and molecular weight of 45 kDa. Isoelectric focusing of BaGST2 revealed the presence of two components at pI 4.47 and 4.67, while BaGST3 showed one band at pI 4.17. The specific activity of BaGST2 and BaGST3 toward 1-chloro-2,4-dinitrobenzene (CDNB) was 19.0 and 45.2 μmol/min/mg protein following 146- and 346-fold purification, respectively. The catalytic pH optima, km values, and the activation energies for BaGST2 and BaGST3 were determined. BaGST2 and BaGST3 were significantly inhibited by hematin and Cibacron Blue and to a less extent by bromosulfophthalein, S-butyl-GSH, S-hexyl-GSH, and S-P-bromobenzyl-GSH. BaGST2 and BaGST3 showed high activity against ethacrynic acid as substrate, and they also exhibited peroxidase activity on cumene hydroperoxide. The two enzymes showed identical patterns of lysine-C digestion after high-performance liquid chromatography. The amino acid sequences of three peptide fragments and peptide mass fingerprinting of fourteen peptides were used to predict the primary structure of BaGST2. A polypeptide of 206 amino acids (with 7 gaps, 3 of which could not identified) was predicted for BaGST2. The theoretical subunit molecular weight of BaGST2 is 22.6 kDa, with pI of 8.58. BaGST2 has 65% sequence identity and 78% positive with Biomphalaria glabrata GST7. The overall structure of BaGST2 at the N-terminal domain is identical to the canonical GST N-terminal domain, having the typical thioredoxin-like fold with a βαβ-α-ββα motif, whereas the C-terminal domain is made from 6 α-helices. A conservative GST-N-domain includes glutathione binding sites Y11, L17, Q53, M54, Q65, and S66, while a variable GST-C domain contains electrophilic substrate binding site H99, R102, A103, F106, K107, L161, and Y167. Phylogenetic tree showed that BaGST2 was clustered in the sigma group with GSTs sigma class from invertebrates and vertebrates. CONCLUSIONS We have purified and characterized two GSTs from B. alexandrina snails. Our study broadens the biochemical information on freshwater snail GSTs by demonstrating the role of BaGSTs in defense mechanisms against structurally different electrophilic compounds. BaGST2 and BaGST3 have Se-independent peroxidase activity, which indicates their role in cellular antioxidant defense by reducing organic hydroperoxides in B. alexandrina. A polypeptide chain of 206 amino acids was predicted. The primary structure of BaGST2 showed 65% sequence identity with Biomphalaria glabrata GST7. Sequence analysis indicates that BaGST2 is a GST-N-sigma-like with a thioredoxin-like superfamily. Phylogenetic tree confirms that BaGST2 belongs to the sigma class of GSTs superfamily.
Collapse
Affiliation(s)
- Abdel-Monem Abdalla
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. Box: 12622, Giza, Egypt.
| | - Ghada S A Abdel Karim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. Box: 12622, Giza, Egypt
| |
Collapse
|
2
|
Abstract
Drug metabolizing enzymes catalyze the biotransformation of many of drugs and chemicals. The drug metabolizing enzymes are distributed among several evolutionary families and catalyze a range of detoxication reactions, including oxidation/reduction, conjugative, and hydrolytic reactions that serve to detoxify potentially toxic compounds. This detoxication function requires that drug metabolizing enzymes exhibit substrate promiscuity. In addition to their catalytic functions, many drug metabolizing enzymes possess functions unrelated to or in addition to catalysis. Such proteins are termed 'moonlighting proteins' and are defined as proteins with multiple biochemical or biophysical functions that reside in a single protein. This review discusses the diverse moonlighting functions of drug metabolizing enzymes and the roles they play in physiological functions relating to reproduction, vision, cell signaling, cancer, and transport. Further research will likely reveal new examples of moonlighting functions of drug metabolizing enzymes.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, ANU College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Park JC, Hagiwara A, Park HG, Lee JS. The glutathione S-transferase genes in marine rotifers and copepods: Identification of GSTs and applications for ecotoxicological studies. MARINE POLLUTION BULLETIN 2020; 156:111080. [PMID: 32510351 DOI: 10.1016/j.marpolbul.2020.111080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Various xenobiotics are constantly being released and accumulated into the aquatic environments and consequently, the aquatic organisms are continuously being exposed to exogenous stressors. Among various xenobiotic detoxifying enzymes, Glutathione S-transferase (GST) is one of the major xenobiotic detoxifying enzyme which is widely distributed among living organisms and thus, understanding of the nature of GSTs is crucial. Previous studies have shown GST activity in response to various xenobiotics yet, full identification of GSTs in marine invertebrates is still limited. This review covers information on the importance of GSTs as a biomarker for emerging chemicals and their response to wide ranges of environmental pollutants as well as in-depth phylogenetic analysis of marine invertebrates, including recently identified GSTs belonging to rotifers (Brachionus spp.) and copepods (Tigriopus japonicus and Paracyclopina nana), with unique class-specific features of GSTs, as well as a new suggestion of GST evolutionary pathway.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| |
Collapse
|
4
|
Caruana NJ, Strugnell JM, Faou P, Finn J, Cooke IR. Comparative Proteomic Analysis of Slime from the Striped Pyjama Squid, Sepioloidea lineolata, and the Southern Bottletail Squid, Sepiadarium austrinum (Cephalopoda: Sepiadariidae). J Proteome Res 2019; 18:890-899. [PMID: 30628786 DOI: 10.1021/acs.jproteome.8b00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sepioloidea lineolata, the striped pyjama squid (family Sepiadariidae), is a small species of benthic bobtail squid distributed along the Southern Indo-Pacific coast of Australia. Like other sepiadariid squids, it is known to secrete large volumes of viscous slime when stressed. In order to identify key proteins involved in the function of sepiadariid slimes, we compared the slime proteome of Sepioloidea lineolata with that of a closely related species, Sepiadarium austrinum. Of the 550 protein groups identified in Sepioloidea lineolata slime, 321 had orthologs in Sepiadarium austrinum, and the abundance of these (iBAQ) was highly correlated between species. Both slimes were dominated by a small number of abundant proteins, and several of these were short secreted proteins with no homologues outside the class Cephalopoda. No mucins were identified within either species' slime, suggesting that it is structurally distinct from mucin polymer-based gels found in many vertebrate and echinoderm secretions. The extent of N-glycosylation in the slime of Sepioloidea lineolata was also studied via glycan cleavage with Peptide: N-glycosidase F (PNGase-F). Although very few (four) proteins showed strong evidence of N-glycosylation, we found that treatment with PNGase-F led to a slight increase in peptide identification rates compared with controls.
Collapse
Affiliation(s)
- Nikeisha J Caruana
- Department of Ecology, Environment and Evolution , La Trobe University , Melbourne , VIC 3086 , Australia
| | - Jan M Strugnell
- Department of Ecology, Environment and Evolution , La Trobe University , Melbourne , VIC 3086 , Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture , James Cook University , Townsville , QLD 4811 , Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , VIC 3086 , Australia
| | - Julian Finn
- Sciences , Museums Victoria , Carlton , VIC 3053 , Australia
| | - Ira R Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , VIC 3086 , Australia.,Department of Molecular and Cell Biology , James Cook University , Townsville , QLD 4811 , Australia
| |
Collapse
|
5
|
Identification and characterization of two distinct sigma-class glutathione-S-transferase from freshwater bivalve Cristaria plicata. Comp Biochem Physiol B Biochem Mol Biol 2018; 219-220:52-61. [DOI: 10.1016/j.cbpb.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 11/24/2022]
|
6
|
Cai J, Townsend JP, Dodson TC, Heiney PA, Sweeney AM. Eye patches: Protein assembly of index-gradient squid lenses. Science 2017; 357:564-569. [PMID: 28798124 DOI: 10.1126/science.aal2674] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/06/2017] [Accepted: 07/07/2017] [Indexed: 11/02/2022]
Abstract
A parabolic relationship between lens radius and refractive index allows spherical lenses to avoid spherical aberration. We show that in squid, patchy colloidal physics resulted from an evolutionary radiation of globular S-crystallin proteins. Small-angle x-ray scattering experiments on lens tissue show colloidal gels of S-crystallins at all radial positions. Sparse lens materials form via low-valence linkages between disordered loops protruding from the protein surface. The loops are polydisperse and bind via a set of hydrogen bonds between disordered side chains. Peripheral lens regions with low particle valence form stable, volume-spanning gels at low density, whereas central regions with higher average valence gel at higher densities. The proteins demonstrate an evolved set of linkers for self-assembly of nanoparticles into volumetric materials.
Collapse
Affiliation(s)
- J Cai
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA
| | - J P Townsend
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, PA, USA
| | - T C Dodson
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA
| | - P A Heiney
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA
| | - A M Sweeney
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Bathige SDNK, Umasuthan N, Saranya Revathy K, Lee Y, Kim S, Cho MY, Park MA, Whang I, Lee J. A mu class glutathione S-transferase from Manila clam Ruditapes philippinarum (RpGSTμ): cloning, mRNA expression, and conjugation assays. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:85-95. [PMID: 24704543 DOI: 10.1016/j.cbpc.2014.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023]
Abstract
Glutathione S-transferases (GSTs) are enzymes that catalyze xenobiotic metabolism in the phase II detoxification process. GSTs have a potential for use as indicators or biomarkers to assess the presence of organic and inorganic contaminants in aquatic environments. In this study, a full-length cDNA of a mu (μ) class GST (RpGSTμ) was identified from Manila clam (Ruditapes philippinarum) and biochemically characterized. The 1356 bp of the cDNA included an open reading frame of 651 bp encoding a polypeptide of 217 amino acid residues with a molecular mass of 25.04 kDa and an estimated pI of 6.34. Sequence analysis revealed that the RpGSTμ possessed several characteristic features of μ class GSTs, such as a thioredoxin-like N-terminal domain containing binding sites for glutathione (GSH), a C-terminal domain containing substrate binding sites, and a μ loop. The recombinant RpGSTμ (rRpGSTμ) protein exhibited GSH-conjugating catalytic activity towards several substrates, and significantly strong activity was detected against 4-nitrophenethyl bromide (5.77 ± 0.55) and 1-chloro-2,4-dinitrobenzene (CDNB, 3.19 ± 0.05). Kinetic analysis as a function of GSH and CDNB concentrations revealed relatively low Km values of 1.03 ± 0.46 mM and 0.56 ± 0.20 mM, respectively, thereby indicating a GSH-conjugation attributed with high rates. The optimum pH and temperature for the catalytic activity of the rRpGSTμ protein were 7.7 and 37°C, respectively. The effect of two inhibitors, Cibacron blue and hematin, on the activity of rRpGSTμ was evaluated and the IC50 values of 0.65 μM and 9 μM, respectively, were obtained. While RpGSTμ transcripts were highly expressed in gills and hemocytes, a significant elevation in mRNA levels was detected in these tissues after lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (poly I:C) and live bacterial (Vibrio tapetis) challenges. These findings collectively suggest that RpGSTμ functions as a potent detoxifier of xenobiotic toxicants present in the aquatic environment, and that its mRNA expression could be modulated by pathogenic stress signal(s).
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Kasthuri Saranya Revathy
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Youngdeuk Lee
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Seokryel Kim
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Mi Young Cho
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, , Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
8
|
Bocedi A, Fabrini R, Farrotti A, Stella L, Ketterman AJ, Pedersen JZ, Allocati N, Lau PCK, Grosse S, Eltis LD, Ruzzini A, Edwards TE, Morici L, Del Grosso E, Guidoni L, Bovi D, Lo Bello M, Federici G, Parker MW, Board PG, Ricci G. The impact of nitric oxide toxicity on the evolution of the glutathione transferase superfamily: a proposal for an evolutionary driving force. J Biol Chem 2013; 288:24936-47. [PMID: 23828197 DOI: 10.1074/jbc.m113.476135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione transferases (GSTs) are protection enzymes capable of conjugating glutathione (GSH) to toxic compounds. During evolution an important catalytic cysteine residue involved in GSH activation was replaced by serine or, more recently, by tyrosine. The utility of these replacements represents an enigma because they yield no improvements in the affinity toward GSH or in its reactivity. Here we show that these changes better protect the cell from nitric oxide (NO) insults. In fact the dinitrosyl·diglutathionyl·iron complex (DNDGIC), which is formed spontaneously when NO enters the cell, is highly toxic when free in solution but completely harmless when bound to GSTs. By examining 42 different GSTs we discovered that only the more recently evolved Tyr-based GSTs display enough affinity for DNDGIC (KD < 10(-9) M) to sequester the complex efficiently. Ser-based GSTs and Cys-based GSTs show affinities 10(2)-10(4) times lower, not sufficient for this purpose. The NO sensitivity of bacteria that express only Cys-based GSTs could be related to the low or null affinity of their GSTs for DNDGIC. GSTs with the highest affinity (Tyr-based GSTs) are also over-represented in the perinuclear region of mammalian cells, possibly for nucleus protection. On the basis of these results we propose that GST evolution in higher organisms could be linked to the defense against NO.
Collapse
Affiliation(s)
- Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang J, Wei X, Xu J, Yang D, Liu X, Yang J, Fang J, Hu X. A sigma-class glutathione S-transferase from Solen grandis that responded to microorganism glycan and organic contaminants. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1198-1204. [PMID: 22433574 DOI: 10.1016/j.fsi.2012.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Glutathione S-transferases (GSTs) are a superfamily of antioxidant enzymes, which play crucial roles in detoxification and protection of tissues from oxidative damage caused by reactive oxygen species (ROS). In this study, a sigma-class GST was identified from razor clam Solen grandis (designated as SgGST-S1), and its expression patterns, both in tissues and toward microorganism glycan as well as organic contaminants stimulation, were then characterized. The full-length cDNA of SgGST-S1 was of 1291 bp, containing a 5' untranslated region (UTR) of 27 bp, and a 3' UTR of 619 bp with a poly (A) tail. The open reading frame (ORF) was of 645 bp, encoding a polypeptide of 214 amino acids with the predicted molecular weight of 24.8 kDa, which shared 47% identity with GST from Ruditapes philippinarum. The analysis of conserved domain and phylogenetic relationship strongly suggested that SgGST-S1 was a member of sigma-class GST. The mRNA of SgGST-S1 was constitutively expressed in all tested tissues of healthy razor clam, including mantle, gill, gonad, hemocytes, muscle, and hepatopancreas, and it was highly expressed in hepatopancreas. The mRNA expression of SgGST-S1 in hemocytes was significantly up-regulated (P < 0.01) after razor clam was stimulated by peptidoglycan (PGN) or β-1, 3-glucan, but not LPS. In addition, the SgGST-S1 transcript level was also significantly (P < 0.01) induced by exposure of benzo[a]pyrene (B[a]P) or Polybrominated Diphenyl Ethers (PBDE). All the results indicated that SgGST-S1 might serve as an antioxidant enzyme involving in the detoxification cause by both microorganism glycan and organic contaminants.
Collapse
Affiliation(s)
- Jialong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Umasuthan N, Revathy KS, Lee Y, Whang I, Choi CY, Lee J. A novel molluscan sigma-like glutathione S-transferase from Manila clam, Ruditapes philippinarum: cloning, characterization and transcriptional profiling. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:539-50. [PMID: 22245757 DOI: 10.1016/j.cbpc.2012.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/27/2011] [Accepted: 01/02/2012] [Indexed: 01/23/2023]
Abstract
Glutathione S-transferases (GSTs) are versatile enzymes, act as primary intracellular detoxifiers and contribute to a broad range of physiological processes including cellular defense. In this study, a full-length cDNA representing a novel sigma-like GST was identified from Manila clam, Ruditapes philippinarum (RpGSTσ). RpGSTσ (884 bp) was found to possess an open reading frame of 609 bp. The encoded polypeptide (203 amino acids) had a predicted molecular mass of 23.21 kDa and an isoelectric point of 7.64. Sequence analysis revealed two conserved GST domain profiles in N- and C-termini. Alignment studies revealed that the identity between deduced peptides of RpGSTσ and known GSTσ members was relatively low (<35%), except a previously identified Manila clam GSTσ isoform (87.2%). Phylogenetic analysis indicated that RpGSTσ clustered together with molluscan GSTσ homologs, which were closely related to insect GSTσs. The RpGSTσ was subsequently cloned and expressed as recombinant protein, in order to characterize its biological activity. The recombinant RpGSTσ exhibited characteristic glutathione conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene, 3,4-dichloronitrobenzene and ethacrynic acid. It had an optimal pH and temperature of 8.0 and 35 °C, respectively. Expression profiles under normal conditions and in response to lipopolysaccharide-, poly I:C- and Vibrio tapetis-challenges were also investigated. RpGSTσ demonstrated a differential tissue distribution with robust transcription in gills of normal animals. We explored potential association of GSTσ in cellular defense during bacterial infection and found that in challenged clams, RpGSTσ gene was significantly induced in internal and external tissues, in conjunction with manganese- as well as copper-zinc superoxide dismutase (MnSOD and CuZnSOD) genes. Moreover, the induction was remarkably higher in hemocytes than in gill. Collectively, our findings suggested that RpGSTσ could play a significant role in cellular defense against oxidative stress caused by bacteria, in conjunction with other antioxidant enzymes, such as SODs.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province, 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, Chaudhary P, Lelsani P, Suzuki S, Yang S, Awasthi YC, Awasthi S. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Ther 2011; 10:16-28. [PMID: 21220488 PMCID: PMC3065778 DOI: 10.1158/1535-7163.mct-10-0699] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted depletion of the RALBP1-encoded 76-kDa splice variant, RLIP76, causes marked and sustained regression of human xenografts of lung, colon, prostate, and kidney cancers without toxicity in nude mouse models. We proposed that the remarkable efficacy and broad spectrum of RLIP76-targeted therapy is because its glutathione-conjugate (GS-E) transport activity is required for clathrin-dependent endocytosis (CDE), which regulates all ligand-receptor signaling, and that RLIP76 is required not only for survival of cancer cells but also for their very existence. We studied RLIP76 mutant proteins and the functional consequences of their expression into RLIP76(-/-) MEFs, identified key residues for GS-E binding in RLIP76, established the requirement of RLIP76-mediated GS-E transport for CDE, and showed a direct correlation between GS-E transport activities with CDE. Depletion of RLIP76 nearly completely blocked signaling downstream of EGF in a CDE-dependent manner and Wnt5a signaling in a CDE-independent manner. The seminal prediction of this hypothesis-RLIP76(-/-) mice will be deficient in chemical neoplasia-was confirmed. Benzo[a]pyrene, dimethylbenzanthracene, and phorbol esters are ineffective in causing neoplasia in RLIP76(-/-). PMA-induced skin carcinogenesis in RLIP76(+/+) mouse was suppressed completely by depletion of either PKCα or RLIP76 by siRNA or antisense and could be restored by topical application of RLIP76 protein in RLIP76(-/-) mouse skin. Likewise, chemical pulmonary carcinogenesis was absent in female and nearly absent in male RLIP76(-/-) mice. In RLIP76(-/-) mice, p53, p38, and JNK activation did not occur in response to either carcinogen. Our findings show a fundamental role of RLIP76 in chemical carcinogenesis.
Collapse
Affiliation(s)
- Sharad S Singhal
- Corresponding Authors: Sanjay Awasthi or Sharad S. Singhal, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christ AN, Labzin L, Bourne GT, Fukunishi H, Weber JE, Sweet MJ, Smythe ML, Flanagan JU. Development and characterization of new inhibitors of the human and mouse hematopoietic prostaglandin D(2) synthases. J Med Chem 2010; 53:5536-48. [PMID: 20684598 DOI: 10.1021/jm100194a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hematopoietic prostaglandin D(2) synthase has a proinflammatory effect in a range of diseases, including allergic asthma, where its product prostaglandin D(2) (PGD(2)) has a role in regulating many of the hallmark disease characteristics. Here we describe the development and characterization of a novel series of hematopoietic prostaglandin D(2) synthase inhibitors with potency similar to that of known inhibitors. Compounds N-benzhydryl-5-(3-hydroxyphenyl)thiophene-2-carboxamide (compound 8) and N-(1-amino-1-oxo-3-phenylpropan-2-yl)-6-(thiophen-2-yl)nicotinamide (compound 34) demonstrated low micromolar potency in the inhibition of the purified enzyme, while only 34 reduced Toll-like receptor (TLR) inducible PGD(2) production in both mouse primary bone marrow-derived macrophages and the human megakaryocytic cell line MEG-01S. Importantly, 34 demonstrated a greater selectivity for inhibition of PGD(2) synthesis versus other eicosanoids that lie downstream of PGH(2) (PGE(2) and markers of prostacyclin (6-keto PGF(1alpha)) and thromboxane (TXB(2))) when compared to the known inhibitors HQL-79 (compound 1) and 2-phenyl-5-(1H-pyrazol-3-yl)thiazole (compound 2). Compound 34 therefore represents a selective hematopoietic prostaglandin D(2) synthase inhibitor.
Collapse
Affiliation(s)
- Angelika N Christ
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Weber JE, Oakley AJ, Christ AN, Clark AG, Hayes JD, Hall R, Hume DA, Board PG, Smythe ML, Flanagan JU. Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D2 synthase. Eur J Med Chem 2009; 45:447-54. [PMID: 19939518 DOI: 10.1016/j.ejmech.2009.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/18/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Prostaglandin D(2) synthesised by the hematopoietic prostaglandin D(2) synthase has a pro-inflammatory effect in allergic asthma, regulating many hallmark characteristics of the disease. Here we describe identification of hematopoietic prostaglandin D(2) synthase inhibitors including cibacron blue, bromosulfophthalein and ethacrynic acid. Expansion around the drug-like ethacrynic acid identified a novel inhibitor, nocodazole, and a fragment representing its aromatic core. Nocodazole binding was further characterised by docking calculations in combination with conformational strain analysis. The benzyl thiophene core was predicted to be buried in the active site, binding in the putative prostaglandin binding site, and a likely hydrogen bond donor site identified. X-ray crystallographic studies supported the predicted binding mode.
Collapse
Affiliation(s)
- Jane E Weber
- The University of Queensland, Institute for Molecular Bioscience, Building 80, St Lucia, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Feng X, Singh BR. Molecular identification of glutathione S-transferase gene and cDNAs of two isotypes from northern quahog (Mercenaria mercenaria). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:25-36. [DOI: 10.1016/j.cbpb.2009.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/28/2009] [Accepted: 04/28/2009] [Indexed: 11/16/2022]
|
16
|
Ren HL, Xu DD, Gopalakrishnan S, Qiao K, Huang WB, Wang KJ. Gene cloning of a sigma class glutathione S-transferase from abalone (Haliotis diversicolor) and expression analysis upon bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:980-990. [PMID: 19414031 DOI: 10.1016/j.dci.2009.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/09/2009] [Accepted: 04/25/2009] [Indexed: 05/27/2023]
Abstract
Glutathione S-transferases (GSTs) are a multigene family of xenobiotic metabolizing phase II detoxification enzymes which take part in many pathological and physiological processes, and which can potentially be used as indicators and biomarkers for cancer diagnoses and organic or inorganic pollutant exposure. In this study, a full-length cDNA of a sigma class GST (abGSTsigma) (GenBank accession number EF546619) from variously colored abalone (Haliotis diversicolor) was identified. It was 1328bp containing an open reading frame of 624bp, encoding 208 amino acid residues with a predicted protein molecular weight of 23.67kDa and an estimated pI of 5.67. Sequence analysis showed that the predicted protein sequence of abGSTsigma cDNA contained the conserved domain of the GST_N_Sigma_like (PSSM: cd03039) and GST_C_Sigma_like (PSSM: cd03192). Alignment analysis demonstrated that the abGSTsigma of H. diversicolor was in a branch position with other known class sigma GSTs from different organisms. The abGSTsigma mRNA was distributed in multiple tissues tested and was highly demonstrated in the gill and mantle of normal abalones. In bacteria-challenged abalone, the abGSTsigma gene was significantly expressed in the hemocytes, gill, mantle and digestive gland and the total GSTs enzyme and SOD were also induced in the four tissues. The increased activities of SOD and GSTs can result in the elimination of reactive oxygen species (ROS) indicating antioxidant activities involved. The preliminary work revealed that the sigma class glutathione S-transferase gene abGSTsigma, a phase II detoxification enzyme, had a positive response to bacterial challenge, and that will lead to an insightful study on elucidating the interactions between immune responses and biotransformation exerted by abGSTsigma.
Collapse
Affiliation(s)
- Hong-Lin Ren
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, China
| | | | | | | | | | | |
Collapse
|
17
|
Hayes JD, Pulford DJ. The Glut athione S-Transferase Supergene Family: Regulation of GST and the Contribution of the lsoenzymes to Cancer Chemoprotection and Drug Resistance Part II. Crit Rev Biochem Mol Biol 2008. [DOI: 10.3109/10409239509083492] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Molecular cloning and characterization of three sigma glutathione S-transferases from disk abalone (Haliotis discus discus). Comp Biochem Physiol B Biochem Mol Biol 2008; 151:257-67. [PMID: 18703158 DOI: 10.1016/j.cbpb.2008.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 11/21/2022]
Abstract
Three novel glutathione S-transferase (GSTs) cDNAs were cloned from a disk abalone (Haliotis dicus discus) cDNA library. Multiple alignment and phylogenetic analysis of three GSTs revealed that their closest relationship is with insect sigma GSTs. Recombinant GSTs were over-expressed in Escherichia coli as soluble fusion proteins. HdGSTS1 and HdGSTS2 were active towards 1-chloro-2,4-dinitrobenzene and ethacrynic acid, whereas HdGSTS3 appeared to be a non-enzymatic GST. Two active GSTs had similar optimum conditions for enzymatic reaction at pH 8.0 and temperature of approximately 30 degrees C. Molecular modeling analysis of three GSTs implicates their diverse active sites as being responsible for their different enzymatic features. Three sigma GSTs had significantly different expression patterns and levels of expression in abalone tissues, indicating their different functions. After 48 h-exposure to three model marine pollutants, only HdGSTS1 exhibited a proper inducibility, exhibiting its good biomarker potential for organic contaminants in marine environment. In contrast, the other two sigma GSTs revealed a minor role in the response of pollutants exposure.
Collapse
|
19
|
Whalen KE, Morin D, Lin CY, Tjeerdema RS, Goldstone JV, Hahn ME. Proteomic identification, cDNA cloning and enzymatic activity of glutathione S-transferases from the generalist marine gastropod, Cyphoma gibbosum. Arch Biochem Biophys 2008; 478:7-17. [PMID: 18671936 DOI: 10.1016/j.abb.2008.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 06/20/2008] [Accepted: 07/09/2008] [Indexed: 11/17/2022]
Abstract
Glutathione S-transferases (GST) were characterized from the digestive gland of Cyphoma gibbosum (Mollusca; Gastropoda), to investigate the possible role of these detoxification enzymes in conferring resistance to allelochemicals present in its gorgonian coral diet. We identified the collection of expressed cytosolic Cyphoma GST classes using a proteomic approach involving affinity chromatography, HPLC and nano-spray liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two major GST subunits were identified as putative mu-class GSTs; while one minor GST subunit was identified as a putative theta-class GST, apparently the first theta-class GST identified from a mollusc. Two Cyphoma GST cDNAs (CgGSTM1 and CgGSTM2) were isolated by RT-PCR using primers derived from peptide sequences. Phylogenetic analyses established both cDNAs as mu-class GSTs and revealed a mollusc-specific subclass of the GST-mu clade. These results provide new insights into metazoan GST diversity and the biochemical mechanisms used by marine organisms to cope with their chemically defended prey.
Collapse
Affiliation(s)
- Kristen E Whalen
- Biology Department, Woods Hole Oceanographic Institution, MS 32, 45 Water Street, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Lee YM, Lee KW, Park H, Park HG, Raisuddin S, Ahn IY, Lee JS. Sequence, biochemical characteristics and expression of a novel Sigma-class of glutathione S-transferase from the intertidal copepod, Tigriopus japonicus with a possible role in antioxidant defense. CHEMOSPHERE 2007; 69:893-902. [PMID: 17659322 DOI: 10.1016/j.chemosphere.2007.05.087] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/18/2007] [Accepted: 05/26/2007] [Indexed: 05/16/2023]
Abstract
Glutathione S-transferases (GSTs) play a major role in detoxification of xenobiotics and antioxidant defense. Here we report full-length cDNA sequence of a novel Sigma-class of GST (GST-S) from the intertidal copepod Tigriopus japonicus. The full sequence was of 1,136 bp in length containing an open reading frame (ORF) of 651 bp that encoded 217 amino acid residues. The recombinant Tigriopus GST-S was highly expressed in transformed Escherichia coli. Kinetic properties and effects of pH, temperature and chemical inhibitors on Tigriopus GST-S were also studied. The expression of GST-S was studied using real-time RT-PCR in response to exposure to two oxidative stresses-inducing agents, viz., hydrogen peroxide (H(2)O(2)) and heavy metals (copper, manganese). It was observed that H(2)O(2) (2mM) exposure down-regulated its expression at the initial stage but there was recovery and up-regulation shortly afterwards. In case of heavy metal exposure there was concentration-dependent increase in Tigriopus GST-S gene expression up to 24h. These results suggest that Tigriopus GST-S expression is modulated by prooxidant chemicals and it may play a role against oxidative stress. A majority of other GST isoforms is known to play an important role in antioxidant defense. This study provides a preliminary insight into the possible antioxidant role for Sigma-class of GST in T. japonicus.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Chemistry and the National Research Lab of Marine Molecular and Environmental Bioscience, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Blanchette B, Feng X, Singh BR. Marine glutathione S-transferases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:513-42. [PMID: 17682821 DOI: 10.1007/s10126-007-9034-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/07/2007] [Indexed: 05/16/2023]
Abstract
The aquatic environment is generally affected by the presence of environmental xenobiotic compounds. One of the major xenobiotic detoxifying enzymes is glutathione S-transferase (GST), which belongs to a family of multifunctional enzymes involved in catalyzing nucleophilic attack of the sulfur atom of glutathione (gamma-glutamyl-cysteinylglycine) to an electrophilic group on metabolic products or xenobiotic compounds. Because of the unique nature of the aquatic environment and the possible pollution therein, the biochemical evolution in terms of the nature of GSTs could by uniquely expressed. The full complement of GSTs has not been studied in marine organisms, as very few aquatic GSTs have been fully characterized. The focus of this article is to present an overview of the GST superfamily and their critical role in the survival of organisms in the marine environment, emphasizing the critical roles of GSTs in the detoxification of marine organisms and the unique characteristics of their GSTs compared to those from non-marine organisms.
Collapse
Affiliation(s)
- Brian Blanchette
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | | |
Collapse
|
22
|
Rhee JS, Lee YM, Hwang DS, Won EJ, Raisuddin S, Shin KH, Lee JS. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione S-transferase (GST-T) from the polychaete Neanthes succinea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:104-15. [PMID: 17459495 DOI: 10.1016/j.aquatox.2007.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 03/19/2007] [Accepted: 03/22/2007] [Indexed: 05/15/2023]
Abstract
We cloned and sequenced the full-length cDNA of a theta class glutathione S-transferase (GST-T) from the polychaete Neanthes succinea. The open reading frame of N. succinea GST-T cDNA was 678bp and encoded 226 amino acid residues. We generated recombinant N. succinea GST-T by expression in transformed Escherichia coli and studied the kinetic properties as well as the effects of inhibitors, pH, and temperature on N. succinea GST-T. GST-T expression was studied using real-time RT-PCR in response to exposure to the model oxidative stress-inducing agent, CuCl(2). Copper induced a concentration-dependant increase in the expression of GST-T. Moreover, polychaetes collected from a heavily contaminated lake near an industrial complex showed significantly higher levels of GST-T expression. Interestingly, the site-collected polychaetes with the highest GST-T mRNA expression levels also showed the highest metallothioneins levels. These results suggest that GST-T in polychaetes may have an antioxidant role and that N. succinea GST-T expression may be a useful biomarker for exposure to environmental contaminants such as copper. Our findings provide a better understanding of the biochemical characteristics of N. succinea GST-T, and elucidate the potential role of GST-T in heavy metal-induced oxidative stress and as a biomarker for environmental contamination.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Armstrong RN. Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:1-44. [PMID: 7817866 DOI: 10.1002/9780470123157.ch1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R N Armstrong
- Department of Chemistry and Biochemistry, University of Maryland, College Park
| |
Collapse
|
24
|
Frova C. Glutathione transferases in the genomics era: new insights and perspectives. ACTA ACUST UNITED AC 2006; 23:149-69. [PMID: 16839810 DOI: 10.1016/j.bioeng.2006.05.020] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
In the last decade the tumultuous development of "omics" greatly improved our ability to understand protein structure, function and evolution, and to define their roles and networks in complex biological processes. This fast accumulating knowledge holds great potential for biotechnological applications, from the development of biomolecules with novel properties of industrial and medical importance, to the creation of transgenic organisms with new, favorable characteristics. This review focuses on glutathione transferases (GSTs), an ancient protein superfamily with multiple roles in all eukaryotic organisms, and attempts to give an overview of the new insights and perspectives provided by omics into the biology of these proteins. Among the aspects considered are the redefinition of GST subfamilies, their evolution in connection with structurally related families, present and future biotechnological outcomes.
Collapse
Affiliation(s)
- Carla Frova
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
25
|
Whitbread AK, Masoumi A, Tetlow N, Schmuck E, Coggan M, Board PG. Characterization of the omega class of glutathione transferases. Methods Enzymol 2006; 401:78-99. [PMID: 16399380 DOI: 10.1016/s0076-6879(05)01005-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Omega class of cytosolic glutathione transferases was initially recognized by bioinformatic analysis of human sequence databases, and orthologous sequences were subsequently discovered in mouse, rat, pig, Caenorhabditis elegans, Schistosoma mansoni, and Drosophila melanogaster. In humans and mice, two GSTO genes have been recognized and their genetic structures and expression patterns identified. In both species, GSTO1 mRNA is expressed in liver and heart as well as a range of other tissues. GSTO2 is expressed predominantly in the testis, although moderate levels of expression are seen in other tissues. Extensive immunohistochemistry of rat and human tissue sections has demonstrated cellular and subcellular specificity in the expression of GSTO1-1. The crystal structure of recombinant human GSTO1-1 has been determined, and it adopts the canonical GST fold. A cysteine residue in place of the catalytic tyrosine or serine residues found in other GSTs was shown to form a mixed disulfide with glutathione. Omega class GSTs have dehydroascorbate reductase and thioltransferase activities and also catalyze the reduction of monomethylarsonate, an intermediate in the pathway of arsenic biotransformation. Other diverse actions of human GSTO1-1 include modulation of ryanodine receptors and interaction with cytokine release inhibitory drugs. In addition, GSTO1 has been linked to the age at onset of both Alzheimer's and Parkinson's diseases. Several polymorphisms have been identified in the coding regions of the human GSTO1 and GSTO2 genes. Our laboratory has expressed recombinant human GSTO1-1 and GSTO2-2 proteins, as well as a number of polymorphic variants. The expression and purification of these proteins and determination of their enzymatic activity is described.
Collapse
Affiliation(s)
- Astrid K Whitbread
- School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Naso B, Perrone D, Ferrante MC, Bilancione M, Lucisano A. Persistent organic pollutants in edible marine species from the Gulf of Naples, Southern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 343:83-95. [PMID: 15862838 DOI: 10.1016/j.scitotenv.2004.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Accepted: 10/07/2004] [Indexed: 05/02/2023]
Abstract
Edible tissues from 10 marine species, collected from the Gulf of Naples in the Southern Tyrrhenian Sea (Italy) between February and July 2003, were analysed for the presence of organochlorine pesticides hexachlorobenzene (HCB) and DDTs (p,p'-DDT, p,p'-DDE, and p,p'-DDD), and 20 polychlorinated biphenyls (PCBs). The PCB levels (calculated as the sum of all the determined congeners) were found to be the highest (from 56.8 to 47909.5 ng/g on lipid basis), followed by the DDTs (sum of p,p'-DDT and its metabolites; <dl-2095.5 ng/g) and HCB (<dl-165.4 ng/g). There were marked differences in residue levels of DDTs and PCBs among the various species under investigation (from P<0.05 to P<0.001). Since the presence of organochlorine pollutants was most evident in the strictly resident species which inhabit shallow coastal waters, contamination of the Gulf of Naples by these compounds probably derives from local agricultural, industrial, and municipal sources. Concentrations of DDTs and PCBs detected in this study were generally comparable or higher than those found in studies of similar species from other Mediterranean and non-Mediterranean regions subject to a high anthropogenic impact. From the human health point of view, the residue levels of HCB and DDTs detected in this study are well below the Maximum Residue Limits for some foods of animal origin (0.2 and 1 mg/kg fat weight for HCB and DDTs calculated as the sum of p,p'-DDT, p,p'-DDE, p,p'-DDD, and o,p'-DDT, respectively). However, the concentrations of PCBs (calculated as the sum of the seven "target" congeners IUPAC nos. 28, 52, 101, 118, 138, 153, and 180) detected in all the analysed samples far exceed the action limit of 200 ng/g fat weight recommended by the European Union for eggs, fresh pig meat, fresh poultry meat, and derived products.
Collapse
Affiliation(s)
- Barbara Naso
- Dipartimento di Patologia e Sanità Animale, Università degli Studi di Napoli Federico II, Via Veterinaria 1, 80137 Napoli, Italy.
| | | | | | | | | |
Collapse
|
27
|
Cohen JH, Piatigorsky J, Ding L, Colley NJ, Ward R, Horwitz J. Vertebrate-like ??-crystallins in the ocular lenses of a copepod. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:291-8. [PMID: 15702356 DOI: 10.1007/s00359-004-0594-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 11/24/2004] [Accepted: 11/26/2004] [Indexed: 11/29/2022]
Abstract
The diverse crystallins are water-soluble proteins that are responsible for the optical properties of cellular lenses of animal eyes. While all vertebrate lenses contain physiological stress-related alpha- and betagamma-crystallins, some also contain taxon-specific, often enzyme-related crystallins. To date, the alpha- and betagamma-crystallins have been found only in vertebrate lenses. Here we report lenses from an invertebrate, the pontellid copepod Anomalocera ornata, accumulate betagamma-crystallin family members as judged by immunocytochemistry, western immunoblotting and microsequencing. Our data provide the first example of betagamma-crystallin members in an invertebrate lens, establishing that the use of this protein family as lens crystallins is not confined to vertebrates.
Collapse
Affiliation(s)
- Jonathan H Cohen
- Duke University Marine Laboratory and Department of Biology, Duke University, Beaufort, NC 28516, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Carletti E, De Luca A, Urbani A, Sacchetta P, Di Ilio C. Sigma-class glutathione transferase from Xenopus laevis: molecular cloning, expression, and site-directed mutagenesis. Arch Biochem Biophys 2003; 419:214-21. [PMID: 14592465 DOI: 10.1016/j.abb.2003.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The structural gene for glutathione transferase (XlGSTS1-1) in the amphibia Xenopus laevis has been cloned from an embryo library and its nucleotide sequence has been determined. Open reading frame analysis indicated that xlgsts1 gene encodes the smallest protein of sigma class GST so far identified as being composed of only 194 amino acid residues. The recombinant XlGSTS1-1 shows a narrow range of substrate specificity as well as a significantly lower 1-chloro-2,4-dinitrobenzene conjugation capacity than that of squid sigma class GST. To compare the structural and functional differences between the squid and amphibian enzymes, several site-specific mutations were introduced in XlGSTS1-1, i.e., Ser100Asn, Phe102Tyr, Trp143Leu, Phe146Leu, and Trp148Cys. The results obtained indicate that Trp143 and Trp148 are more important determinants for the structural stability of XlGSTS1-1 rather than for its substrate specificity.
Collapse
Affiliation(s)
- Erminia Carletti
- Dipartimento di Scienze Biomediche, Università G. D'Annunzio, Chieti, Italy
| | | | | | | | | |
Collapse
|
29
|
Yang HL, Zeng QY, Nie LJ, Zhu SG, Zhou XW. Purification and characterization of a novel glutathione S-transferase from Atactodea striata. Biochem Biophys Res Commun 2003; 307:626-31. [PMID: 12893269 DOI: 10.1016/s0006-291x(03)01221-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel GST isoenzyme was purified from hepatopancreas cytosol of Atactodea striata with a combination of affinity chromatography and reverse-phase HPLC. The molecular weight of the enzyme was determined to be 24 kDa by SDS-PAGE electrophoresis and 48 kDa by gel chromatography, in combination with GST information from literature revealed that the native enzyme was homodimeric with a subunit of M(r) 24 kDa. The purified enzyme, exhibited high activity towards 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a K(m) of 0.43 mM and V(max) of 0.24 micromol/min/mg and a specific activity of 108.9 micromol/min/mg. The isoelectric point of the enzyme was 5.5 by isoelectric focusing and its optimum temperature was 38 degrees C and the enzyme had a maximum activity at approximately pH 8.0. The amino acid composition was also determined for the purified enzyme.
Collapse
Affiliation(s)
- Hai-ling Yang
- College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | |
Collapse
|
30
|
Agianian B, Tucker PA, Schouten A, Leonard K, Bullard B, Gros P. Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. J Mol Biol 2003; 326:151-65. [PMID: 12547198 DOI: 10.1016/s0022-2836(02)01327-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insect glutathione-S-transferases (GSTs) are grouped in three classes, I, II and recently III; class I (Delta class) enzymes together with class III members are implicated in conferring resistance to insecticides. Class II (Sigma class) GSTs, however, are poorly characterized and their exact biological function remains elusive. Drosophila glutathione S-transferase-2 (GST-2) (DmGSTS1-1) is a class II enzyme previously found associated specifically with the insect indirect flight muscle. It was recently shown that GST-2 exhibits considerable conjugation activity for 4-hydroxynonenal (4-HNE), a lipid peroxidation product, raising the possibility that it has a major anti-oxidant role in the flight muscle. Here, we report the crystal structure of GST-2 at 1.75A resolution. The GST-2 dimer shows the canonical GST fold with glutathione (GSH) ordered in only one of the two binding sites. While the GSH-binding mode is similar to other GST structures, a distinct orientation of helix alpha6 creates a novel electrophilic substrate-binding site (H-site) topography, largely flat and without a prominent hydrophobic-binding pocket, which characterizes the H-sites of other GSTs. The H-site displays directionality in the distribution of charged/polar and hydrophobic residues creating a binding surface that explains the selectivity for amphipolar peroxidation products, with the polar-binding region formed by residues Y208, Y153 and R145 and the hydrophobic-binding region by residues V57, A59, Y211 and the C-terminal V249. A structure-based model of 4-HNE binding is presented. The model suggest that residues Y208, R145 and possibly Y153 may be key residues involved in catalysis.
Collapse
Affiliation(s)
- Bogos Agianian
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Yang HL, Nie LJ, Zhu SG, Zhou XW. Purification and characterization of a novel glutathione S-transferase from Asaphis dichotoma. Arch Biochem Biophys 2002; 403:202-8. [PMID: 12139969 DOI: 10.1016/s0003-9861(02)00223-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An isoenzyme of glutathione S-transferase (adGST) was purified from liver intestine of the seashell (Asaphis dichotoma) by GST-Sepharose 4B affinity chromatography followed by reverse-phase HPLC. The enzyme has a pI value of 4.6 and is composed of two subunits each with a molecular weight of 23kDa. It exhibits different catalytic activities toward the substrates 1-chloro-2,4-dinitrobenzene, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, ethacrynic acid, and p-nitrophenyl acetate and, fascinatingly, shows high activity toward CDNB. The amino acid composition of adGST was determined and found to be very similar to the Sloane squid GSTs. N-terminal analysis of the first 15 residues of adGST revealed that it has 73% sequence identity with the pig roundworm GSTs. The adGST shows characteristics similar to those of class sigma GSTs, as was indicated by its substrate specificity, N-terminal amino acid sequence, and amino acid composition.
Collapse
Affiliation(s)
- Hai ling Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
32
|
Nóvoa-Valiñas MC, Pérez-López M, Melgar MJ. Comparative study of the purification and characterization of the cytosolic glutathione S-transferases from two salmonid species: Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Comp Biochem Physiol C Toxicol Pharmacol 2002; 131:207-13. [PMID: 11879788 DOI: 10.1016/s1532-0456(02)00003-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present report, an efficient method for isolating multiple cytosolic forms of glutathione S-transferases from liver and kidney cytosolic samples of two salmonid species (brown trout and Atlantic salmon) is described, and some of the multiple properties of these enzymes are presented. Glutathione S-transferases were partially purified by low-pressure affinity chromatography on a column with glutathione coupled to agarose, which retained an average of 89.47% of the total activity. The GST activity was appropriated towards CDNB and ETHA as substrates. The application of an HPLC system associated to elestrospray ionization mass spectrometry allowed the identification of five GST cytosolic isoforms, corresponding to subunits with M(r) between 23,700 and 26,900 Da being the main form, with retention time of 17 min, a pi-class-related GST isoenzyme.
Collapse
Affiliation(s)
- M C Nóvoa-Valiñas
- Department of Toxicology, Facultad de Veterinaria, Avda. de Madrid s/n. 27002 Lugo, Spain
| | | | | |
Collapse
|
33
|
Carosa E, Kozmik Z, Rall JE, Piatigorsky J. Structure and expression of the scallop Omega-crystallin gene. Evidence for convergent evolution of promoter sequences. J Biol Chem 2002; 277:656-64. [PMID: 11682475 DOI: 10.1074/jbc.m107004200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Omega-crystallin of the scallop lens is an inactive aldehyde dehydrogenase (1A9). Here we have cloned the scallop Omega-crystallin gene. Except for an extra novel first exon, its 14-exon structure agrees well with that of mammalian aldehyde dehydrogenases 1, 2, and 6. The -2120/+63, -714/+63, and -156/+63 Omega-crystallin promoter fragments drive the luciferase reporter gene in transfected alphaTN4-1 lens cells and L929 fibroblasts but not in Cos7 cells. Putative binding sequences for cAMP-responsive element-binding protein (CREB)/Jun, alphaACRYBP1, AP-1, and PAX-6 in the Omega-crystallin promoter are surprisingly similar to the cis-elements used for lens promoter activity of the mouse and chicken alphaA-crystallin genes, which encode proteins homologous to small heat shock proteins. Site-specific mutations in the overlapping CREB/Jun and Pax-6 sites abolished activity of the Omega-crystallin promoter in transfected cells. Gel shift experiments utilizing extracts from the alphaTN4-1, L929, and Cos7 cells and the scallop stomach and oligonucleotides derived from the putative binding sites of the Omega-crystallin promoter showed complex formation. Gel shift experiments showed binding of recombinant Pax-6 and CREB to their respective sites. Our data suggest convergent evolutionary adaptations that underlie the preferential expression of crystallin genes in the lens of vertebrates and invertebrates.
Collapse
Affiliation(s)
- Eleonora Carosa
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|
34
|
Piatigorsky J, Norman B, Dishaw LJ, Kos L, Horwitz J, Steinbach PJ, Kozmik Z. J3-crystallin of the jellyfish lens: similarity to saposins. Proc Natl Acad Sci U S A 2001; 98:12362-7. [PMID: 11675486 PMCID: PMC60059 DOI: 10.1073/pnas.231310698] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Indexed: 11/18/2022] Open
Abstract
J3-crystallin, one of the three major eye-lens proteins of the cubomedusan jellyfish (Tripedalia cystophora), shows similarity to vertebrate saposins, which are multifunctional proteins that bridge lysosomal hydrolases to lipids and activate enzyme activity. Sequence alignment of deduced J3-crystallin indicates two saposin-like motifs arranged in tandem, each containing six cysteines characteristic of this protein family. The J3-crystallin cDNA encodes a putative precursor analogous to vertebrate prosaposins. The J3-crystallin gene has seven exons, with exons 2-4 encoding the protein. Exon 3 encodes a circularly permutated saposin motif, called a swaposin, found in plant aspartic proteases. J3-crystallin RNA was found in the cubomedusan lens, statocyst, in bands radiating from the pigmented region of the ocellus, in the tentacle tip by in situ hybridization, and in the embryo and larva by reverse transcription-PCR. Our data suggest a crystallin role for the multifunctional saposin protein family in the jellyfish lens. This finding extends the gene sharing evolutionary strategy for lens crystallins to the cnidarians and indicates that the putative primordial saposin/swaposin J3-crystallin reflects both the chaperone and enzyme connections of the vertebrate crystallins.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, and Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kanaoka Y, Fujimori K, Kikuno R, Sakaguchi Y, Urade Y, Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3315-22. [PMID: 10824118 DOI: 10.1046/j.1432-1327.2000.01362.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hematopoietic prostaglandin D synthase (H-PGDS) is the key enzyme for the production of the D and J series of prostanoids, and the first recognized vertebrate homolog of sigma-class glutathione S-transferase (GST). We isolated the genes and cDNAs for human and mouse H-PGDSs. The human and mouse cDNAs contained a coding region corresponding to 199 amino-acid residues with calculated molecular masses of 23 343 and 23 226, respectively. Both H-PGDS proteins recombinantly expressed in Escherichia coli showed bifunctional activities for PGDS and GST, and had almost the same catalytic properties as the rat enzyme. Northern analyses demonstrated that the H-PGDS genes were expressed in a highly species-specific manner. Whereas the human gene was widely distributed, in contrast, the mouse gene was detected only in samples from oviduct and skin. By fluorescence in situ hybridization, the chromosomal localization of the human and mouse H-PGDS genes were mapped to 4q21-22 and 3D-E, respectively. The human and mouse H-PGDS genes spanned approximately 41 and 28 kb, respectively, and consisted of six exons divided by five introns. The exon/intron boundaries of both genes were completely identical to those of the sigma-class GST subfamily, although the amino-acid sequences of the latter were only 17.0-21.5% identical to those of either H-PGDS. These findings suggest that the H-PGDS genes evolved from the same ancestral gene as the members of the sigma-class GST family.
Collapse
Affiliation(s)
- Y Kanaoka
- Department of Molecular Behavioral Biology, Osaka Bioscience, Institute, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Molitor M, Dahl C, Molitor I, Schäfer U, Speich N, Huber R, Deutzmann R, Trüper HG. A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):529-541. [PMID: 9493389 DOI: 10.1099/00221287-144-2-529] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sulfite-reductase-type protein was purified from the hyperthermophilic crenarchaeote Pyrobaculum islandicum grown chemoorganoheterotrophically with thiosulfate as terminal electron acceptor. In common with dissimilatory sulfite reductases the protein has an alpha 2 beta 2 structure and contains high-spin sirohaem, non-haem iron and acid-labile sulfide. The oxidized protein exhibits absorption maxima at 280, 392, 578 and 710 nm with shoulders at 430 and 610 nm. The isoelectric point of pH 8.4 sets the protein apart from all dissimilatory sulfite reductases characterized thus far. The genes for the alpha- and beta-subunits (dsrA and dsrB) are contiguous in the order dsrAdsrB and most probably comprise an operon with the directly following dsrG and dsrC genes. dsrG and dsrC encode products which are homologous to eukaryotic glutathione S-transferases and the proposed gamma-subunit of Desulfovibrio vulgaris sulfite reductase, respectively. dsrA and dsrB encode 44.2 kDa and 41.2 kDa peptides which show significant similarity to the two homologous subunits DsrA and DsrB of dissimilatory sulfite reductases. Phylogenetic analyses indicate a common protogenotic origin of the P. islandicum protein and the dissimilatory sulfite reductases from sulfate-reducing and sulfide-oxidizing prokaryotes. However, the protein from P. islandicum and the sulfite reductases from sulfate-reducers and from sulfur-oxidizers most probably evolved into three independent lineages prior to divergence of archaea and bacteria.
Collapse
Affiliation(s)
- Michael Molitor
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Ilka Molitor
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Ulrike Schäfer
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Norbert Speich
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Robert Huber
- Lehrstuhl für Mikrobiologie Universitätsstr. 31, 93053 Regensburg and Institut für Biochemie
| | | | - Hans G Trüper
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| |
Collapse
|
37
|
Abstract
The glutathione-S-transferase (GST) protein superfamily is currently composed of nearly 100 sequences. This study documents a greater phylogenetic diversity of GSTs than previously realized. Parsimony and distance phylogenetic methods of GST amino acid sequences yielded virtually the same results. There appear to be at least 25 groups (families) of GST-like proteins, as different from one another as are the currently recognized classes. This diversity will require the design of a new nomenclature for this large protein superfamily. There is one well-supported large clade containing the mammalian mu, pi, and alpha classes as well as GSTs from molluscs, helminths, nematodes, and arthropods.
Collapse
Affiliation(s)
- M J Snyder
- Bodega Marine Laboratory, University of California, Bodega Bay 94923, USA
| | | |
Collapse
|
38
|
Weinander R, Ekström L, Andersson C, Raza H, Bergman T, Morgenstern R. Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues. J Biol Chem 1997; 272:8871-7. [PMID: 9083005 DOI: 10.1074/jbc.272.14.8871] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rat liver microsomal glutathione transferase is rapidly inactivated upon treatment with the arginine-selective reagent phenylglyoxal or the lysine-selective 1,3,5-trinitrobenzenesulfonate. Glutathione sulfonate, an inhibitor of the enzyme, gives nearly complete protection against inactivation and prevents modification, indicating that these residues form part of or reside close to the active site. Sequence analysis of peptides from peptic and tryptic digests of [7-14C]phenylglyoxal- and 1,3,5-trinitrobenzenesulfonate-treated microsomal glutathione transferase indicated arginine 107 and lysine 67 as the sites of modification. A set of mutant forms of microsomal glutathione transferase was constructed by site-directed mutagenesis and heterologously expressed in Escherichia coli BL21(DE3). Arginine 107 was exchanged for alanine and lysine residues. The alanine mutant (R107A) exhibited an activity and inhibition profile similar to that of the wild type enzyme but displayed a decreased thermostability. Thus, arginine 107 does not appear to participate in catalysis or substrate binding; instead, an important structural role is suggested for this residue. Lysine 67 was mutated to alanine and arginine with no effect on activity. All three histidines were replaced by glutamine, and the resulting mutant proteins had activities comparable with that of the wild type. It can thus be concluded that the chemical modification experiments indicating that arginine 107, lysine 67, and one of the histidines partake in catalysis can be disproved. However, protection from modification by a competitive inhibitor indicates that these residues could be close to the glutathione binding site. All tyrosine to phenylalanine substitutions resulted in mutants with activities similar to that of the wild type. Interestingly, the exchange of tyrosine 137 appears to result in activation of the enzyme. Thus, the microsomal glutathione transferase must display an alternate stabilization of the thiolate anion of glutathione other than through interaction with the phenolic hydroxyl group of a tyrosine residue. Substitution of cysteine 49 with alanine resulted in a semiactivated mutant enzyme with enzymatic properties partly resembling the activated form of microsomal glutathione transferase. The function of this mutant was not altered upon reaction with N-ethylmaleimide, and cysteine 49 is thus demonstrated as the site of modification that results in activation of microsomal glutathione transferase.
Collapse
Affiliation(s)
- R Weinander
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Borgeraas J, Nilsen K, Stenersen J. Methods for purification of glutathione transferases in the earthworm genus Eisenia, and their characterization. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1996; 114:129-40. [PMID: 8760608 DOI: 10.1016/0742-8413(96)00026-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Isoenzymes of glutathione transferase (GST) were partially purified from the earthworm species Eisenia andrei and E. veneta using affinity chromatography followed by ion exchange chromatography and reversed-phase HPLC. In E. veneta, five activity peaks, named EvGST Ia, Ib, II, III and IV, were separated by anion exchange chromatography. The GSTs in E. andrei were resolved by cation exchange chromatography into six groups, named EaGST I-VI. Using reversed-phase HPLC, the affinity-purified GSTs from E. andrei and E. veneta were resolved into 14 subunits, named Ea1-Ea14 and Ev1-Ev14, respectively. EaGST I, II, IV and EvGST Ia were further characterized. These forms displayed different substrate specificity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene, ethacrynic acid (ETHA) and cumene hydroperoxide, as well as different subunit composition determined by SDS-PAGE and reversed-phase HPLC. EaGST IV and EvGST Ia showed exceptionally high ETHA activity compared with the other forms. EaGST IV consisted of a homodimeric protein involving subunit Ea6 with an apparent molecular weight of 26.5 kDa, whereas EvGST Ia is composed of two different subunits (Ev9 and Ev10). Amino acid composition and N-terminal analysis of the first 33 residues of Ea6 indicated that the enzyme is most related to the pi class. Subunit Ev10 had 67% identity with Ea6, over the region sequenced (12 residues), but up to 90% identity with GSTs from several nematodes. Exposure of both species to trans-stilbene oxide, 3-methylcholanthrene and phenobarbital for three weeks did not elevate the activity of GST measured with CDNB and ETHA.
Collapse
Affiliation(s)
- J Borgeraas
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|
40
|
Tomarev SI, Piatigorsky J. Lens crystallins of invertebrates--diversity and recruitment from detoxification enzymes and novel proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:449-65. [PMID: 8654388 DOI: 10.1111/j.1432-1033.1996.00449.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major proteins (crystallins) of the transparent, refractive eye lens of vertebrates are a surprisingly diverse group of multifunctional proteins. A number of lens crystallins display taxon-specificity. In general, vertebrate crystallins have been recruited from stress-protective proteins (i.e. the small heat-shock proteins) and a number of metabolic enzymes by a gene-sharing mechanism. Despite the existence of refractive lenses in the complex and compound eyes of many invertebrates, relatively little is known about their crystallins. Here we review for the first time the state of knowledge of invertebrate crystallins. The major cephalopod (squid, octopus, and cuttlefish) crystallins (S-crystallins) have, like vertebrate crystallins, been recruited from a stress protective metabolic enzyme, glutathione S-transferase. The presence of overlapping AP-1 and antioxidant responsive-like sequences that appear functional in transfected vertebrate cells suggest that the recruitment of glutathione S-transferase to S-crystallins involved response to oxidative stress. Cephalopods also have at least two taxon-specific crystallins: omega-crystallin, related to aldehyde dehydrogenase, and omega-crystallin, related to a superfamily of lipid-binding proteins. L-crystallin (probably identical to O-crystallin) is the major protein of the lens of the squid photophore, a specialized structure for emitting light. The use of L/omega-crystallin in the ectodermal lens of the eye and the mesodermal lens of the photophore of the squid contrasts with the recruitment of different crystallins in the ectodermal lenses of the eye and photophore of fish. S-and omega-crystallins appear to be lens-specific (some S-crystallins are also expressed in cornea) and, except for one S-crystallin polypeptide (SL11/Lops4; possibly a molecular fossil), lack enzymatic activity. The S-crystallins (except SL11/Lops4) contain a variable peptide that has been inserted by exon shuffling. The only other invertebrate crystallins that have been examined are in one marine gastropod (Aplysia, a sea hare), in jellyfish and in the compound eyes of some arthropods; all are different and novel proteins. Drosocrystallin is one of three calcium binding taxon-specific crystallins found selectively in the acellular corneal lens of Drosophila, while antigen 3G6 is a highly conserved protein present in the ommatidial crystallin cone and central nervous system of numerous arthropods. Cubomedusan jellyfish have three novel crystallin families (the J-crystallins); the J1-crystallins are encoded in three very similar intronless genes with markedly different 5' flanking sequences despite their almost identical encoded proteins and high lens expression. The numerous refractive structures that have evolved in the eyes of invertebrates contrast markedly with the limited information on their protein composition, making this field as exciting as it is underdeveloped. The similar requirement of Pax-6 (and possibly other common transcription factors) for eye development as well as the diversity, taxon-specificity and recruitment of stress-protective enzymes as crystallins suggest that borrowing multifunctional proteins for refraction by a gene sharing strategy may have occurred in invertebrates as did in vertebrates.
Collapse
Affiliation(s)
- S I Tomarev
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-2730, USA
| | | |
Collapse
|
41
|
Reinemer P, Prade L, Hof P, Neuefeind T, Huber R, Zettl R, Palme K, Schell J, Koelln I, Bartunik HD, Bieseler B. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol 1996; 255:289-309. [PMID: 8551521 DOI: 10.1006/jmbi.1996.0024] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glutathione S-transferases (GST) are a family of multifunctional enzymes involved in the metabolization of a broad variety of xenobiotics and reactive endogenous compounds. The interest in plant glutathione S-transferases may be attributed to their agronomic value, since it has been demonstrated that glutathione conjugation for a variety of herbicides is the major resistance and selectivity factor in plants. The three-dimensional structure of glutathione S-transferase from the plant Arabidopsis thaliana has been solved by multiple isomorphous replacement and multiwavelength anomalous dispersion techniques at 3 A resolution and refined to a final crystallographic R-factor of 17.5% using data from 8 to 2.2 A resolution. The enzyme forms a dimer of two identical subunits each consisting of 211 residues. Each subunit is characterized by the GST-typical modular structure with two spatially distinct domains. Domain I consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side by an irregular segment containing three short 3(10)-helices, while domain II is entirely helical. The dimeric molecule is globular with a prominent large cavity formed between the two subunits. The active site is located in a cleft situated between domains I and II and each subunit binds two molecules of a competitive inhibitor S-hexylglutathione. Both hexyl moieties are oriented parallel and fill the H-subsite of the enzyme's active site. The glutathione peptide of one inhibitor, termed productive binding, occupies the G-subsite with multiple interactions similar to those observed for other glutathione S-transferases, while the glutathione backbone of the second inhibitor, termed unproductive binding, exhibits only weak interactions mediated by two polar contacts. A most striking difference from the mammalian glutathione S-transferases, which share a conserved catalytic tyrosine residue, is the lack of this tyrosine in the active site of the plant glutathione S-transferase.
Collapse
Affiliation(s)
- P Reinemer
- Bayer AG, GB Pflanzenschutz (PF-F Biotechnologie) Pflanzenschutzzentrum Monheim, Leverkusen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Snyder MJ, Walding JK, Feyereisen R. Glutathione S-transferases from larval Manduca sexta midgut: sequence of two cDNAs and enzyme induction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1995; 25:455-465. [PMID: 7742833 DOI: 10.1016/0965-1748(94)00083-b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two glutathione S-transferase (GST) clones from a larval midgut cDNA library of the tobacco hornworm, Manduca sexta were sequenced. The nucleotide sequence of the first clone, M. sexta GST1, encoded a protein of 217 amino acids with a predicted molecular weight of 24,644 and isoelectric point of 4.8. The M. sexta GST1 was 45.9-48.6% identical to GSTs from Musca domestica and several Drosophila species. The M. sexta GST2 cDNA encoded a protein of 203 amino acids with a predicted molecular weight of 23,596 and isoelectric point of 5.5. The M. sexta GST2 shared 44.8-50.0% sequence identity to a second cluster of insect GSTs from M. domestica, D. melanogaster and Anopheles gambiae. GST1 and GST2 were only 24.1% identical in amino acid sequence. The divergence of these two classes of insect GSTs occurred before the radiation of Diptera and Lepidoptera. Northern analysis of the expression of these GSTs showed increased GST1 mRNA levels in midguts of larvae fed diets containing 2-undecanone, or phenobarbital. Midgut and fat body cytosolic GST activities were induced when larvae were fed diets containing 2-tridecanone, 2-undecanone, or phenobarbital. Partial purification of midgut GSTs by size-exclusion and glutathione affinity chromatography resulted in a series of isoelectric focusing bands, with the major one corresponding to the predicted isoelectric point of the M. sexta GST1. In summary, two midgut GSTs have been identified on the basis of cDNA sequence and one of these, GST1, was inducible by dietary chemicals.
Collapse
Affiliation(s)
- M J Snyder
- Department of Entomology, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
43
|
Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30:445-600. [PMID: 8770536 DOI: 10.3109/10409239509083491] [Citation(s) in RCA: 2404] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glutathione S-transferases (GST) represent a major group of detoxification enzymes. All eukaryotic species possess multiple cytosolic and membrane-bound GST isoenzymes, each of which displays distinct catalytic as well as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five distantly related gene families (designated class alpha, mu, pi, sigma, and theta GST), whereas the membrane-bound enzymes, microsomal GST and leukotriene C4 synthetase, are encoded by single genes and both have arisen separately from the soluble GST. Evidence suggests that the level of expression of GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic chemicals. In this article the biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress. A description of the mechanisms of transcriptional and posttranscriptional regulation of GST isoenzymes is provided to allow identification of factors that may modulate resistance to specific noxious chemicals. The most abundant mammalian GST are the class alpha, mu, and pi enzymes and their regulation has been studied in detail. The biological control of these families is complex as they exhibit sex-, age-, tissue-, species-, and tumor-specific patterns of expression. In addition, GST are regulated by a structurally diverse range of xenobiotics and, to date, at least 100 chemicals have been identified that induce GST; a significant number of these chemical inducers occur naturally and, as they are found as nonnutrient components in vegetables and citrus fruits, it is apparent that humans are likely to be exposed regularly to such compounds. Many inducers, but not all, effect transcriptional activation of GST genes through either the antioxidant-responsive element (ARE), the xenobiotic-responsive element (XRE), the GST P enhancer 1(GPE), or the glucocorticoid-responsive element (GRE). Barbiturates may transcriptionally activate GST through a Barbie box element. The involvement of the Ah-receptor, Maf, Nrl, Jun, Fos, and NF-kappa B in GST induction is discussed. Many of the compounds that induce GST are themselves substrates for these enzymes, or are metabolized (by cytochrome P-450 monooxygenases) to compounds that can serve as GST substrates, suggesting that GST induction represents part of an adaptive response mechanism to chemical stress caused by electrophiles. It also appears probable that GST are regulated in vivo by reactive oxygen species (ROS), because not only are some of the most potent inducers capable of generating free radicals by redox-cycling, but H2O2 has been shown to induce GST in plant and mammalian cells: induction of GST by ROS would appear to represent an adaptive response as these enzymes detoxify some of the toxic carbonyl-, peroxide-, and epoxide-containing metabolites produced within the cell by oxidative stress. Class alpha, mu, and pi GST isoenzymes are overexpressed in rat hepatic preneoplastic nodules and the increased levels of these enzymes are believed to contribute to the multidrug-resistant phenotype observed in these lesions. The majority of human tumors and human tumor cell lines express significant amounts of class pi GST. Cell lines selected in vitro for resistance to anticancer drugs frequently overexpress class pi GST, although overexpression of class alpha and mu isoenzymes is also often observed. The mechanisms responsible for overexpression of GST include transcriptional activation, stabilization of either mRNA or protein, and gene amplification. In humans, marked interindividual differences exist in the expression of class alpha, mu, and theta GST. The molecular basis for the variation in class alpha GST is not known. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- J D Hayes
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, U.K
| | | |
Collapse
|
44
|
Tang SS, Lin CC, Chang GG. Isolation and characterization of octopus hepatopancreatic glutathione S-transferase. Comparison of digestive gland enzyme with lens S-crystallin. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:609-18. [PMID: 7702742 DOI: 10.1007/bf01890459] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutathione S-transferase from Octopus vulgaris hepatopancreas was purified to apparent homogeneity by single glutathione-Sepharose-4B affinity chromatography with overall yield 46% and purification 249-fold. The enzyme was a homodimer with subunit M(r) 24,000, which was smaller than that of the octopus lens S-crystallin (M(r) 27,000) with glutathione-S-transferase-like structure. Both proteins showed substrate specificities similar to alpha/pi-type isozyme of glutathione S-transferase. Under native conditions, both proteins exhibited multiple forms upon polyacrylamide gel electrophoresis or isoelectric focusing, albeit with distinct mobilities; however, only one kind of N-terminal amino acid sequence was determined for the multiple forms of each protein. The hepatopancreatic GST, with pI value 6.6-7.3, dissociated into two monomers in an acidic or alkaline environment. Two amino acid residues, with pKa values 5.69 +/- 0.14 and 9.03 +/- 0.11 were involved in the subunit interactions of the hepatopancreatic enzyme.
Collapse
Affiliation(s)
- S S Tang
- Graduate Institutes of Life Sciences and Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
45
|
Tomarev SI, Duncan MK, Roth HJ, Cvekl A, Piatigorsky J. Convergent evolution of crystallin gene regulation in squid and chicken: the AP-1/ARE connection. J Mol Evol 1994; 39:134-43. [PMID: 7932777 DOI: 10.1007/bf00163802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous experiments have shown that the minimal promoters required for function of the squid SL20-1 and SL11 crystallin genes in transfected rabbit lens epithelial cells contain an overlapping AP-1/antioxidant responsive element (ARE) upstream of the TATA box. This region resembles the PL-1 and PL-2 elements of the chicken beta B1-crystallin promoter which are essential for promoter function in transfected primary chicken lens epithelial cells. Here we demonstrate by site-directed mutagenesis that the AP-1/ARE sequence is essential for activity of the squid SL20-1 and SL11 promoters in transfected embryonic chicken lens cells and fibroblasts. Promoter activity was higher in transfected lens cells than in fibroblasts. Electrophoretic mobility shift and DNase protection experiments demonstrated the formation of numerous complexes between nuclear proteins of the embryonic chicken lens and the AP-1/ARE sequences of the squid SL20-1 and SL11 crystallin promoters. One of these complexes comigrated and cross-competed with that formed with the PL-1 element of the chicken beta B1-crystallin promoter. This complex formed with nuclear extracts from the lens, heart, brain, and skeletal muscle of embryonic chickens and was eliminated by competition with a consensus AP-1 sequence. The nonfunctional mutant AP-1/ARE sequences did not compete for complex formation. These data raise the intriguing possibility that entirely different, nonhomologous crystallin genes of the chicken and squid have convergently evolved a similar cis-acting regulatory element (AP-1/ARE) for high expression in the lens.
Collapse
Affiliation(s)
- S I Tomarev
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
46
|
West JA, Sivak JG, Pasternak J, Piatigorsky J. Immunolocalization of S-crystallins in the developing squid (Loligo opalescens) lens. Dev Dyn 1994; 199:85-92. [PMID: 8204909 DOI: 10.1002/aja.1001990202] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
S-crystallins are the predominant soluble proteins of the squid lens. Of these, S-III crystallin is the major component and S-I and S-II crystallin are the minor lens components. The lens has a posterior and anterior segment, each derived from separate groups of ectodermal cells referred to as lentigenic cells. In the present study, the appearance of S-crystallins during the development of the lens of Loligo opalescens was followed by immuno-cytochemistry. S-crystallins of the lens and lentigenic cells were first observed at day 17 (Arnold stage 27) of embryogenesis. S-crystallins were not confined to a single region, but were present in the middle group (group 2) of lentigenic cells, the posterior lens primordium, and the processes connecting the lentigenic cells and the posterior lens primordium. Two days later (Arnold stage 28), the S-crystallins were also observed in the anterior group (group 1) of lentigenic cells, the anterior lens primordium, and the processes connecting the cells with the anterior lens primordium. Thus, during development, S-crystallins accumulate first in the posterior lens primordium and subsequently in the anterior lens primordium and their respective lentigenic cells and connecting lentigenic processes. Incubated sections of the adult lens and lentigenic cells also show specific immuno-peroxidase staining when compared with controls. This evidence in combination with a recent investigation (West [1993] Ph.D. dissertation), which indicates that the cephalopod lens continues to grow throughout adulthood, suggests that squid lens crystallins are synthesized during adulthood.
Collapse
Affiliation(s)
- J A West
- School of Optometry, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Piatigorsky J, Kantorow M, Gopal-Srivastava R, Tomarev SI. Recruitment of enzymes and stress proteins as lens crystallins. EXS 1994; 71:241-50. [PMID: 8032155 DOI: 10.1007/978-3-0348-7330-7_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The major water-soluble proteins--or crystallins--of the eye lens are either identical to or derived from proteins with non-refractive functions in numerous tissues. In general, the recruitment of crystallins has come from metabolic enzymes (usually with detoxification functions) or stress proteins. Some crystallins have been recruited without duplication of the original gene (i.e., lactate dehydrogenase B and alpha-enolase), while others have incurred one (i.e., argininosuccinate lyase and a small heat shock protein) or several (i.e., glutathione S-transferase) gene duplications. Enzyme (or stress protein)-crystallins often maintain their non-refractive function in the lens and/or other tissues as well as their refractive role, a process we call gene sharing. alpha-Crystallin/small heat shock protein/molecular chaperone is of special interest since it is the major crystallin of humans. There are two alpha-crystallin genes (alpha A and alpha B), with alpha B retaining the full functions of a small heat shock protein. Here we describe recent evidence indicating that alpha A and alpha B have kinase activity, which would make them members of the enzyme-crystallins. We also describe various regulatory elements of the mouse alpha-crystallin genes responsible for their expression in the lens and, for alpha B, in skeletal muscle. Delineating the control elements for gene expression of these multifunctional protective proteins provides the foundations for their eventual use in gene therapy. Finally, comparison of the mouse and chicken alpha A-crystallin genes reveals similarities and differences in their functional cis-acting elements, indicative of evolution at the level of gene regulation.
Collapse
Affiliation(s)
- J Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
48
|
Tomarev SI, Zinovieva RD, Weis VM, Chepelinsky AB, Piatigorsky J, McFall-Ngai MJ. Abundant mRNAs in the squid light organ encode proteins with a high similarity to mammalian peroxidases. Gene 1993; 132:219-26. [PMID: 8224867 DOI: 10.1016/0378-1119(93)90199-d] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A library derived from mRNA in the bacterial light organ of the squid, Euprymna scolopes, contained an unexpectedly high proportion of cDNAs that encode proteins with approximately 30% similarity to a family of mammalian peroxidases (PO) including myelo-PO, eosinophil PO, and thyroid PO (donor:hydrogen-peroxide oxidoreductase; EC 1.11.1.7). Two nearly full-length cDNAs were determined to encode putative PO of nearly 93 kDa each that are 97% identical in amino acid sequence to each other. Each contains four potential glycosylation sites, and His416, believed to be within the active site of the human PO, is conserved in the putative PO from the squid light organ. The mRNAs for the putative squid PO were approximately 250 times more abundant in the tissue housing the bacterial symbiont than in the ocular lens or mantle and were undetectable in the light organ lens. By analogy with the bacteriocidal function of PO in mammalian neutrophils, the putative squid PO may be important for modulating or limiting the population of bacteria within the light organ. The possibility that the squid light organ contains a high concentration of PO raises the possibility that the light organ lens is under oxidative stress, providing a possible rationale for the recruitment of its aldehyde dehydrogenase-like crystallin.
Collapse
Affiliation(s)
- S I Tomarev
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|