1
|
Leys SP, Grombacher L, Field D, Elliott GRD, Ho VR, Kahn AS, Reid PJ, Riesgo A, Lanna E, Bobkov Y, Ryan JF, Horton AL. A morphological cell atlas of the freshwater sponge Ephydatia muelleri with key insights from targeted single-cell transcriptomes. EvoDevo 2025; 16:1. [PMID: 39953556 PMCID: PMC11827373 DOI: 10.1186/s13227-025-00237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
How animal cell types, tissues, and regional body plans arose is a fundamental question in EvoDevo. Many current efforts attempt to link genetic information to the morphology of cells, tissues and regionalization of animal body plans using single-cell sequencing of cell populations. However, a lack of in-depth understanding of the morphology of non-bilaterian animals remains a considerable block to understanding the transitions between bilaterian and non-bilaterian cells and tissues. Sponges (Porifera), one of the earliest diverging animal phyla, pose a particular challenge to this endeavour, because their body plans lack mouths, gut, conventional muscle and nervous systems. With a goal to help bridge this gap, we have studied the morphology, behaviour and transcriptomics of cells and tissue types of an easily accessible and well-studied species of freshwater sponge, Ephydatia muelleri. New features described here include: a polarized external epithelium, a new contractile sieve cell that forms the entry to incurrent canals, motile cilia on apopyle cells at the exit of choanocyte chambers, and non-motile cilia on cells in excurrent canals and oscula. Imaging cells in vivo shows distinct behavioural characteristics of motile cells in the mesohyl. Transcriptomic phenotypes of three cell types (cystencytes, choanocytes and archaeocytes) captured live indicate that cell-type transcriptomes are distinct. Importantly, individual archaeocytes show a range of transcriptomic phenotypes which is supported by the distinct expression of different genes by subsets of this cell type. In contrast, all five choanocyte cells sampled live revealed highly uniform transcriptomes with significantly fewer genes expressed than in other cell types. Our study shows that sponges have tissues whose morphology and cell diversity are both functionally complex, but which together enable the sponge, like other metazoans, to sense and respond to stimuli.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Lauren Grombacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Daniel Field
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Glen R D Elliott
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Elliott Microscopy and Microanalysis Inc., Edmonton, AB, Canada
| | - Vanessa R Ho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Amanda S Kahn
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Moss Landing Marine Laboratories and San Jose State University, Moss Landing, CA, 95039, USA
| | - Pamela J Reid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Ana Riesgo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Emilio Lanna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Universidade Federal da Bahia, Instituto de Biologia, Salvador, BA, Brazil
| | - Yuriy Bobkov
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
2
|
Podolsky MJ, Kheyfets B, Pandey M, Beigh AH, Yang CD, Lizama CO, Datta R, Lin LL, Wang Z, Wolters PJ, McManus MT, Qi L, Atabai K. Genome-wide screens identify SEL1L as an intracellular rheostat controlling collagen turnover. Nat Commun 2024; 15:1531. [PMID: 38378719 PMCID: PMC10879544 DOI: 10.1038/s41467-024-45817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has implicated impaired extracellular matrix (ECM) clearance as a key factor in fibrotic disease. Despite decades of research elucidating the effectors of ECM clearance, relatively little is understood regarding the upstream regulation of this process. Collagen is the most abundant constituent of normal and fibrotic ECM in mammalian tissues. Its catabolism occurs through extracellular proteolysis and cell-mediated uptake of collagen fragments for intracellular degradation. Given the paucity of information regarding the regulation of this latter process, here we execute unbiased genome-wide screens to understand the molecular underpinnings of cell-mediated collagen clearance. Using this approach, we discover a mechanism through which collagen biosynthesis is sensed by cells internally and directly regulates clearance of extracellular collagen. The sensing mechanism appears to be dependent on endoplasmic reticulum-resident protein SEL1L and occurs via a noncanonical function of this protein. This pathway functions as a homeostatic negative feedback loop that limits collagen accumulation in tissues. In human fibrotic lung disease, the induction of this collagen clearance pathway by collagen synthesis is impaired, thereby contributing to the pathological accumulation of collagen in lung tissue. Thus, we describe cell-autonomous, rheostatic collagen clearance as an important pathway of tissue homeostasis.
Collapse
Affiliation(s)
- Michael J Podolsky
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Benjamin Kheyfets
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Monika Pandey
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Afaq H Beigh
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Liangguang L Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhihong Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology and UCSF Diabetes Center, University of California, San Francisco, CA, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Lung Biology Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
3
|
Manconi R, Cubeddu T, Pronzato R, Sanna MA, Nieddu G, Gaino E, Stocchino GA. Collagenic architecture and morphotraits in a marine basal metazoan as a model for bioinspired applied research. J Morphol 2022; 283:585-604. [PMID: 35119713 PMCID: PMC9306819 DOI: 10.1002/jmor.21460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
In some Porifera (Demospongiae: Keratosa), prototypes of the connective system are almost exclusively based on collagenic networks. We studied the topographic distribution, spatial layout, microtraits, and/or morphogenesis of these collagenic structures in Ircinia retidermata (Dictyoceratida: Irciniidae). Analyses were carried out on a clonal strain from sustainable experimental mariculture by using light and scanning electron microscopy. Histology revealed new insights on the widely diversified and complex hierarchical assemblage of collagenic structures. Key evolutionary novelties in the organization of sponge connective system were found out. The aquiferous canals are shaped as corrugate‐like pipelines conferring plasticity to the water circulation system. Compact clusters of elongated cells are putatively involved in a nutrient transferring system. Knob‐ended filaments are characterized by a banding pattern and micro‐components. Ectosome and outer endosome districts are the active fibrogenetic areas, where exogenous material constitutes an axial condensation nucleus for the ensuing morphogenesis. The new data can be useful to understand not only the evolutionary novelties occurring in the target taxon but also the morpho‐functional significance of its adaptive collagenic anatomical traits. In addition, data may give insights on both marine collagen sustainable applied researches along with evolutionary and phylogenetic analyses, thus highlighting sponges as a key renewable source for inspired biomaterials. Therefore, we also promote bioresources sustainable exploitation with the aim to provide new donors of marine collagen, thereby supporting conservation of wild populations/species.
Collapse
Affiliation(s)
- Renata Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Marina A Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Elda Gaino
- Viale Canepa 15/10, 16153 Sestri Ponente, Italy
| | | |
Collapse
|
4
|
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp HT, Riesgo A. The Molecular Machinery of Gametogenesis in Geodia Demosponges (Porifera): Evolutionary Origins of a Conserved Toolkit across Animals. Mol Biol Evol 2020; 37:3485-3506. [PMID: 32929503 PMCID: PMC7743902 DOI: 10.1093/molbev/msaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Nadiezhda Santodomingo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
5
|
Sundar G, Joseph J, C P, John A, Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gayathri Sundar
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Josna Joseph
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Prabhakumari C
- Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, India
| | - Annie John
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, Advanced Center for Tissue Engineering, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
6
|
Modelling the early evolution of extracellular matrix from modern Ctenophores and Sponges. Essays Biochem 2019; 63:389-405. [DOI: 10.1042/ebc20180048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
AbstractAnimals (metazoans) include some of the most complex living organisms on Earth, with regard to their multicellularity, numbers of differentiated cell types, and lifecycles. The metazoan extracellular matrix (ECM) is well-known to have major roles in the development of tissues during embryogenesis and in maintaining homoeostasis throughout life, yet insight into the ECM proteins which may have contributed to the transition from unicellular eukaryotes to multicellular animals remains sparse. Recent phylogenetic studies place either ctenophores or poriferans as the closest modern relatives of the earliest emerging metazoans. Here, we review the literature and representative genomic and transcriptomic databases for evidence of ECM and ECM-affiliated components known to be conserved in bilaterians, that are also present in ctenophores and/or poriferans. Whereas an extensive set of related proteins are identifiable in poriferans, there is a strikingly lack of conservation in ctenophores. From this perspective, much remains to be learnt about the composition of ctenophore mesoglea. The principal ECM-related proteins conserved between ctenophores, poriferans, and bilaterians include collagen IV, laminin-like proteins, thrombospondin superfamily members, integrins, membrane-associated proteoglycans, and tissue transglutaminase. These are candidates for a putative ancestral ECM that may have contributed to the emergence of the metazoans.
Collapse
|
7
|
Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol 2019; 7:166. [PMID: 31355194 PMCID: PMC6639767 DOI: 10.3389/fbioe.2019.00166] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) account for the 31% of total death per year, making them the first cause of death in the world. Atherosclerosis is at the root of the most life-threatening CVDs. Vascular bypass/replacement surgery is the primary therapy for patients with atherosclerosis. The use of polymeric grafts for this application is still burdened by high-rate failure, mostly caused by thrombosis and neointima hyperplasia at the implantation site. As a solution for these problems, the fast re-establishment of a functional endothelial cell (EC) layer has been proposed, representing a strategy of crucial importance to reduce these adverse outcomes. Implant modifications using molecules and growth factors with the aim of speeding up the re-endothelialization process has been proposed over the last years. Collagen, by virtue of several favorable properties, has been widely studied for its application in vascular graft enrichment, mainly as a coating for vascular graft luminal surface and as a drug delivery system for the release of pro-endothelialization factors. Collagen coatings provide receptor-ligand binding sites for ECs on the graft surface and, at the same time, act as biological sealants, effectively reducing graft porosity. The development of collagen-based drug delivery systems, in which small-molecule and protein-based drugs are immobilized within a collagen scaffold in order to control their release for biomedical applications, has been widely explored. These systems help in protecting the biological activity of the loaded molecules while slowing their diffusion from collagen scaffolds, providing optimal effects on the targeted vascular cells. Moreover, collagen-based vascular tissue engineering substitutes, despite not showing yet optimal mechanical properties for their use in the therapy, have shown a high potential as physiologically relevant models for the study of cardiovascular therapeutic drugs and diseases. In this review, the current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Francesca Boccafoschi
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
8
|
Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ, Rahim A, Rizvi SAA, Rehman IU. FTIR analysis of natural and synthetic collagen. APPLIED SPECTROSCOPY REVIEWS 2018; 53:703-746. [DOI: 10.1080/05704928.2018.1426595] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Tehseen Riaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Faiza Zarif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Kanwal Ilyas
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Syed A. A. Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ihtesham Ur Rehman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci 2018; 131:jcs203950. [PMID: 29632050 PMCID: PMC5963836 DOI: 10.1242/jcs.203950] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution.
Collapse
Affiliation(s)
- Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
10
|
Pozzolini M, Scarfì S, Gallus L, Castellano M, Vicini S, Cortese K, Gagliani MC, Bertolino M, Costa G, Giovine M. Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Mar Drugs 2018; 16:111. [PMID: 29596370 PMCID: PMC5923398 DOI: 10.3390/md16040111] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
Collagen is involved in the formation of complex fibrillar networks, providing the structural integrity of tissues. Its low immunogenicity and mechanical properties make this molecule a biomaterial that is extremely suitable for tissue engineering and regenerative medicine (TERM) strategies in human health issues. Here, for the first time, we performed a thorough screening of four different methods to obtain sponge collagenous fibrillar suspensions (FSs) from C. reniformis demosponge, which were then chemically, physically, and biologically characterized, in terms of protein, collagen, and glycosaminoglycans content, viscous properties, biocompatibility, and antioxidant activity. These four FSs were then tested for their capability to generate crosslinked or not thin sponge collagenous membranes (SCMs) that are suitable for TERM purposes. Two types of FSs, of the four tested, were able to generate SCMs, either from crosslinking or not, and showed good mechanical properties, enzymatic degradation resistance, water binding capacity, antioxidant activity, and biocompatibility on both fibroblast and keratinocyte cell cultures. Finally, our results demonstrate that it is possible to adapt the extraction procedure in order to alternatively improve the mechanical properties or the antioxidant performances of the derived biomaterial, depending on the application requirements, thanks to the versatility of C. reniformis extracellular matrix extracts.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Human Anatomy Section, University of Genova, Via De Toni 14, 16132 Genova, Italy.
| | - Maria Cristina Gagliani
- Department of Experimental Medicine (DIMES), Human Anatomy Section, University of Genova, Via De Toni 14, 16132 Genova, Italy.
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Gabriele Costa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| |
Collapse
|
11
|
Ehrlich H, Wysokowski M, Żółtowska-Aksamitowska S, Petrenko I, Jesionowski T. Collagens of Poriferan Origin. Mar Drugs 2018; 16:E79. [PMID: 29510493 PMCID: PMC5867623 DOI: 10.3390/md16030079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis, structural diversity, and functionality of collagens of sponge origin are still paradigms and causes of scientific controversy. This review has the ambitious goal of providing thorough and comprehensive coverage of poriferan collagens as a multifaceted topic with intriguing hypotheses and numerous challenging open questions. The structural diversity, chemistry, and biochemistry of collagens in sponges are analyzed and discussed here. Special attention is paid to spongins, collagen IV-related proteins, fibrillar collagens from demosponges, and collagens from glass sponge skeletal structures. The review also focuses on prospects and trends in applications of sponge collagens for technology, materials science and biomedicine.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany;
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| | - Iaroslav Petrenko
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany;
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| |
Collapse
|
12
|
Fidler AL, Darris CE, Chetyrkin SV, Pedchenko VK, Boudko SP, Brown KL, Gray Jerome W, Hudson JK, Rokas A, Hudson BG. Collagen IV and basement membrane at the evolutionary dawn of metazoan tissues. eLife 2017; 6. [PMID: 28418331 PMCID: PMC5395295 DOI: 10.7554/elife.24176] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/23/2017] [Indexed: 12/13/2022] Open
Abstract
The role of the cellular microenvironment in enabling metazoan tissue genesis remains obscure. Ctenophora has recently emerged as one of the earliest-branching extant animal phyla, providing a unique opportunity to explore the evolutionary role of the cellular microenvironment in tissue genesis. Here, we characterized the extracellular matrix (ECM), with a focus on collagen IV and its variant, spongin short-chain collagens, of non-bilaterian animal phyla. We identified basement membrane (BM) and collagen IV in Ctenophora, and show that the structural and genomic features of collagen IV are homologous to those of non-bilaterian animal phyla and Bilateria. Yet, ctenophore features are more diverse and distinct, expressing up to twenty genes compared to six in vertebrates. Moreover, collagen IV is absent in unicellular sister-groups. Collectively, we conclude that collagen IV and its variant, spongin, are primordial components of the extracellular microenvironment, and as a component of BM, collagen IV enabled the assembly of a fundamental architectural unit for multicellular tissue genesis. DOI:http://dx.doi.org/10.7554/eLife.24176.001 The emergence of the diversity of multicellular animals involved cells joining together to form tissues and organs. The ‘glue’ that enabled the cells to work together is made of rope-like molecules called collagen, which assemble into scaffolds. These smart scaffolds tether proteins forming basement membranes that connect cells, provide strength to tissues, and transmit information that influences how the cells behave. How did collagen evolve over millions of years to enable the ever-increasing complexity, size and diversity of animals? To investigate, Fidler, Darris, Chetyrkin et al. explored the tissues of the most ancient of currently living animals – the comb jellies and sponges. This revealed that among all the collagens that make up the human body, a type called collagen IV was a key innovation that enabled single celled organisms to evolve into multicellular animals. Collagen IV, as molecular glue, enabled the formation of a fundamental architectural unit of basement membrane and cells that allowed multicellular tissues and organs to evolve. The findings presented by Fidler, Darris, Chetyrkin et al. pose questions about how collagen IV glues cells together, and how information is stored in the rope-like scaffolds to influence cell behavior. Understanding these processes could ultimately lead to the development of new treatments for diseases in which the collagen smart scaffolds play a key role, such as in kidney diseases and cancer. DOI:http://dx.doi.org/10.7554/eLife.24176.002
Collapse
Affiliation(s)
- Aaron L Fidler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States.,Aspirnaut Program, Vanderbilt University Medical Center, Nashville, United States.,Department of Biological Sciences, Tennessee State University, Nashville, United States
| | - Carl E Darris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States
| | - Sergei V Chetyrkin
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Vadim K Pedchenko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Sergei P Boudko
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Kyle L Brown
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, United States.,Center for Structural Biology, Vanderbilt University Medical Center, Nashville, United States
| | - W Gray Jerome
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Julie K Hudson
- Aspirnaut Program, Vanderbilt University Medical Center, Nashville, United States.,Department of Medical Education and Administration, Vanderbilt University Medical Center, Nashville, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, United States.,Aspirnaut Program, Vanderbilt University Medical Center, Nashville, United States.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
13
|
Nakayama S, Arima K, Kawai K, Mohri K, Inui C, Sugano W, Koba H, Tamada K, Nakata Y, Kishimoto K, Arai-Shindo M, Kojima C, Matsumoto T, Fujimori T, Agata K, Funayama N. Dynamic Transport and Cementation of Skeletal Elements Build Up the Pole-and-Beam Structured Skeleton of Sponges. Curr Biol 2015; 25:2549-54. [DOI: 10.1016/j.cub.2015.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/17/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
14
|
Adsorption of C.I. Natural Red 4 onto Spongin Skeleton of Marine Demosponge. MATERIALS 2014; 8:96-116. [PMID: 28787926 PMCID: PMC5455230 DOI: 10.3390/ma8010096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/18/2014] [Indexed: 01/19/2023]
Abstract
C.I. Natural Red 4 dye, also known as carmine or cochineal, was adsorbed onto the surface of spongin-based fibrous skeleton of Hippospongia communis marine demosponge for the first time. The influence of the initial concentration of dye, the contact time, and the pH of the solution on the adsorption process was investigated. The results presented here confirm the effectiveness of the proposed method for developing a novel dye/biopolymer hybrid material. The kinetics of the adsorption of carmine onto a marine sponge were also determined. The experimental data correspond directly to a pseudo-second-order model for adsorption kinetics (r2 = 0.979–0.999). The hybrid product was subjected to various types of analysis (FT-IR, Raman, 13C CP/MAS NMR, XPS) to investigate the nature of the interactions between the spongin (adsorbent) and the dye (the adsorbate). The dominant interactions between the dye and spongin were found to be hydrogen bonds and electrostatic effects. Combining the dye with a spongin support resulted with a novel hybrid material that is potentially attractive for bioactive applications and drug delivery systems.
Collapse
|
15
|
|
16
|
Pozzolini M, Bruzzone F, Berilli V, Mussino F, Cerrano C, Benatti U, Giovine M. Molecular characterization of a nonfibrillar collagen from the marine sponge Chondrosia reniformis Nardo 1847 and positive effects of soluble silicates on its expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:281-293. [PMID: 22072047 DOI: 10.1007/s10126-011-9415-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
We report here the complete cDNA sequence of a nonfibrillar collagen (COLch) isolated from the marine sponge Chondrosia reniformis, Nardo 1847 using a PCR approach. COLch cDNA consists of 2,563 nucleotides and includes a 5' untranslated region (UTR) of 136 nucleotides, a 3' UTR of 198 nucleotides, and an open reading frame encoding for a protein of 743 amino acids with an estimated M (r) of 72.12 kDa. The phylogenetic analysis on the deduced amino acid sequence of C-terminal end shows that the isolated sequence belongs to the short-chain spongin-like collagen subfamily, a nonfibrillar group of invertebrate collagens similar to type IV collagen. In situ hybridization analysis shows higher expression of COLch mRNA in the cortical part than in the inner part of the sponge. Therefore, COLch seems to be involved in the formation of C. reniformis ectosome, where it could play a key role in the attachment to the rocky substrata and in the selective sediment incorporation typical of these organisms. qPCR analysis of COLch mRNA level, performed on C. reniformis tissue culture models (fragmorphs), also demonstrates that this matrix protein is directly involved in sponge healing processes and that soluble silicates positively regulate its expression. These findings confirm the essential role of silicon in the fibrogenesis process also in lower invertebrates, and they should give a tool for a sustainable production of marine collagen in sponge mariculture.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department for the Study of Territory and its Resources, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as well as experimental work on choanocyte morphology and function. Special attention is given to pinacocyte epithelia, cell junctions, and the molecules present in sponge epithelia. Studies describing the role of the pinacoderm in sensing, coordination, and secretion are reviewed. A wealth of recent work describes gene presence and expression patterns in sponge tissues during development, and we review this in the context of the previous descriptions of sponge morphology and physiology. A final section addresses recent findings of genes involved in the immune response. This review is far from exhaustive but intends rather to revisit for non-specialists key aspects of sponge morphology and physiology in light of new molecular data as a means to better understand and interpret sponge form and function today.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
18
|
Cárdenas P, Pérez T, Boury-Esnault N. Sponge systematics facing new challenges. ADVANCES IN MARINE BIOLOGY 2012; 61:79-209. [PMID: 22560778 DOI: 10.1016/b978-0-12-387787-1.00010-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Systematics is nowadays facing new challenges with the introduction of new concepts and new techniques. Compared to most other phyla, phylogenetic relationships among sponges are still largely unresolved. In the past 10 years, the classical taxonomy has been completely overturned and a review of the state of the art appears necessary. The field of taxonomy remains a prominent discipline of sponge research and studies related to sponge systematics were in greater number in the Eighth World Sponge Conference (Girona, Spain, September 2010) than in any previous world sponge conferences. To understand the state of this rapidly growing field, this chapter proposes to review studies, mainly from the past decade, in sponge taxonomy, nomenclature and phylogeny. In a first part, we analyse the reasons of the current success of this field. In a second part, we establish the current sponge systematics theoretical framework, with the use of (1) cladistics, (2) different codes of nomenclature (PhyloCode vs. Linnaean system) and (3) integrative taxonomy. Sponges are infamous for their lack of characters. However, by listing and discussing in a third part all characters available to taxonomists, we show how diverse characters are and that new ones are being used and tested, while old ones should be revisited. We then review the systematics of the four main classes of sponges (Hexactinellida, Calcispongiae, Homoscleromorpha and Demospongiae), each time focusing on current issues and case studies. We present a review of the taxonomic changes since the publication of the Systema Porifera (2002), and point to problems a sponge taxonomist is still faced with nowadays. To conclude, we make a series of proposals for the future of sponge systematics. In the light of recent studies, we establish a series of taxonomic changes that the sponge community may be ready to accept. We also propose a series of sponge new names and definitions following the PhyloCode. The issue of phantom species (potential new species revealed by molecular studies) is raised, and we show how they could be dealt with. Finally, we present a general strategy to help us succeed in building a Porifera tree along with the corresponding revised Porifera classification.
Collapse
Affiliation(s)
- P Cárdenas
- Département Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, UMR 7208 "BOrEA", Paris, France
| | | | | |
Collapse
|
19
|
Leys SP, Riesgo A. Epithelia, an evolutionary novelty of metazoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:438-47. [PMID: 22057924 DOI: 10.1002/jez.b.21442] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/06/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
At the point in animal evolution when cells began to adhere to each other they presumably initially functioned as colonies. The formation of an epithelium that enclosed and controlled an internal milieu would have been the first event to distinguish an individual animal from a colony. To better understand when the first epithelium arose and what its characteristics were, we evaluate the morphological, functional, and molecular characters of epithelia in sponges, considered here the extant representatives of the first metazoans. In particular, we show new claudin-like sequences from sponges align most closely with sequences from Drosophila that have a barrier function in septate junctions. We also show that type IV collagen, the main component of the basement membrane (BM), is present in calcareous sponges, and we confirm the presence of type IV-like collagen (spongin short chain collagen) in other sponges. Though in sponges as in other metazoans the epithelium has grades of specialization with varying complexity of junctions and the BM, the main character of a functional epithelium, the ability to seal and control the ionic composition of the internal milieu, is a property of even the simplest sponge epithelium, and therefore the first metazoans likely also had epithelia with these characteristics, which we consider a "true" epithelium.
Collapse
Affiliation(s)
- Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
20
|
Vallmann K, Aas N, Reintamm T, Lopp A, Kuusksalu A, Kelve M. Expressed 2-5A synthetase genes and pseudogenes in the marine sponge Geodia barretti. Gene 2011; 478:42-9. [PMID: 21272622 DOI: 10.1016/j.gene.2011.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/26/2022]
Abstract
The 2',5'-oligoadenylate synthetases (2-5A synthetases, OAS) form a family of proteins presented in many branches of Metazoa. The phylum Porifera (sponges) contains OAS proteins which are different from those in vertebrates and form a distinct OAS subfamily. In turn, OAS proteins from different genera of Demospongia show rather low similarities in their primary structures. To ascertain divergence of the OAS genes within a particular sponge genus, we identified the OAS genes from the marine sponge Geodia barretti and compared them with those from another member of the genus Geodia, Geodia cydonium. The identity and similarity of the OAS sequences found in G. barretti with those from G. cydonium were considerably higher than identities and similarities compared with those from other sponges, 75% and 85% versus 27-30% and 42-47%, respectively. We also established the presence of a transcriptionally active polymorphic OAS pseudogene in the genome of G. barretti. The transcripts of the OAS pseudogene(s) lack several internal exons encoding necessary motifs for OAS enzymatic activity. The maintenance and further diversification of OAS gene(s) and pseudogene(s) suggest the prevalence of gene duplication events over the loss of gene duplicates in Geodia genomes during the evolution.
Collapse
Affiliation(s)
- Kerli Vallmann
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
21
|
Vilanova E, Coutinho C, Maia G, Mourão PAS. Sulfated polysaccharides from marine sponges: conspicuous distribution among different cell types and involvement on formation of in vitro cell aggregates. Cell Tissue Res 2010; 340:523-31. [DOI: 10.1007/s00441-010-0963-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
22
|
Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-Based Biomaterials for Tissue Engineering Applications. MATERIALS 2010. [PMCID: PMC5445871 DOI: 10.3390/ma3031863] [Citation(s) in RCA: 703] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rémi Parenteau-Bareil
- Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada; E-Mails: (R.P.B.); (R.G.)
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada
| | - Robert Gauvin
- Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada; E-Mails: (R.P.B.); (R.G.)
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada
| | - François Berthod
- Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada; E-Mails: (R.P.B.); (R.G.)
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-418-682-7565; Fax: +1-418-682-8000
| |
Collapse
|
23
|
Elliott GRD, Leys SP. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge. J Exp Biol 2007; 210:3736-48. [DOI: 10.1242/jeb.003392] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARY
In response to mechanical stimuli the freshwater sponge Ephydatia muelleri (Demospongiae, Haplosclerida, Spongillidae) carries out a series of peristaltic-like contractions that is effective in expelling clumps of waste material from the aquiferous system. Rates of contraction depend on the region of tissue they are propagating through: 0.3–1 μm s–1 in the peripheral canals, 1–4 μm s–1 in central canals, and 6–122 μm s–1 in the osculum. Faster events include twitches of the entire sponge choanosome and contraction of the sheet-like apical pinacoderm that forms the outer surface of the animal. Contraction events are temporally and spatially coordinated. Constriction of the tip of the osculum leads to dilation of excurrent canals; fields of ostia in the apical pinacoderm close in unison just prior to contraction of the choanosome, apical pinacoderm and osculum. Relaxation returns the osculum, canals and the apical pinacoderm to their normal state, and three such coordinated `inflation–contraction'responses typically follow a single stimulus. Cells in the mesohyl arrest crawling as a wave of contraction passes, suggesting an extracellular signal may pass between cells. Bundles of actin filaments traverse endopinacocytes of the apical pinacoderm. Actin-dense plaques join actin bundles in adjacent pinacocytes to form continuous tracts spanning the whole sponge. The orchestrated and highly repeatable series of contractions illustrates that cellular sponges are capable of coordinated behavioural responses even in the absence of neurons and true muscle. Propagation of the events through the pinacocytes also illustrates the presence of a functional epithelium in cellular sponges. These results suggest that control over a hydrostatic skeleton evolved prior to the origin of nerves and true muscle.
Collapse
Affiliation(s)
- Glen R. D. Elliott
- Department of Biological Sciences, University of Alberta, Edmonton,Alberta T6G 2E9, Canada
| | - Sally P. Leys
- Department of Biological Sciences, University of Alberta, Edmonton,Alberta T6G 2E9, Canada
| |
Collapse
|
24
|
Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG. Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 2006; 281:12001-9. [PMID: 16495220 DOI: 10.1074/jbc.m512677200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sponges (phylum Porifera) of the class of Demospongiae are stabilized by a siliceous skeleton. It is composed of silica needles (spicules), which provide the morphogenetic scaffold of these metazoans. In the center of the spicules there is an axial filament that consists predominantly of silicatein, an enzyme that catalyzes the synthesis of biosilica. By differential display of transcripts we identified additional proteins involved in silica formation. Two genes were isolated from the marine demosponge Suberites domuncula; one codes for a galectin and the other for a fibrillar collagen. The galectin forms aggregates to which silicatein molecules bind. The extent of the silicatein-mediated silica formation strongly increased if associated with the galectin. By applying a new and mild extraction procedure that avoids hydrogen fluoride treatment, native axial filaments were extracted from spicules of S. domuncula. These filaments contained, in addition to silicatein, the galectin and a few other proteins. Immunogold electron microscopic studies underscored the role of these additional proteins, in particular that of galectin, in spiculogenesis. Galectin, in addition to silicatein, presumably forms in the axial canal as well as on the surface of the spicules an organized net-like matrix. In the extraspicular space most of these complexes are arranged concentrically around the spicules. Taken together, these additional proteins, working together with silicatein, may also be relevant for potential (nano)-biotechnological applications of silicatein in the formation of surface coatings. Finally, we propose a scheme that outlines the matrix (galectin/silicatein)-guided appositional growth of spicules through centripetal and centrifugal synthesis and deposition of biosilica.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Adell T, Gamulin V, Perović-Ottstadt S, Wiens M, Korzhev M, Müller IM, Müller WEG. Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 2005; 59:41-50. [PMID: 15383906 DOI: 10.1007/s00239-004-2602-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 01/12/2004] [Indexed: 11/26/2022]
Abstract
Until recently the positioning of the sponges (phylum Porifera) within the metazoan systematics was hampered by the lack of molecular evidence for the existence of junctional structures in the surface cell layers. In this study two genes related to the tight junctions are characterized from the demosponge Suberites domuncula: tetraspanin (SDTM4SF), a cell surface receptor, and MAGI (SDMAGI), a MAGUK (membrane-associated guanylate kinase homologue) protein. Especially the MAGI protein is known in other metazoan animal phyla to exist exclusively in tight junctions. The characteristic domains of MAGI proteins (six PDZ domains, two WW domains, and a truncated guanylate kinase motif) are conserved in the sponge protein. The functional analysis of SDMAGI done by in situ hybridization shows its expression in the surface epithelial layers (exopinacoderm and endopinacoderm). Northern blot studies reveal that expression of SDMAGI and SDTM4SF increases after formation of the pinacoderm layer in the animals as well as in primmorphs. These results support earlier notions that sponges contain junctional structures. We conclude that sponges contain epithelia whose cells are organized by cell junctions.
Collapse
Affiliation(s)
- Teresa Adell
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Wiens M, Mangoni A, D'Esposito M, Fattorusso E, Korchagina N, Schröder HC, Grebenjuk VA, Krasko A, Batel R, Müller IM, Müller WEG. The molecular basis for the evolution of the metazoan bodyplan: extracellular matrix-mediated morphogenesis in marine demosponges. J Mol Evol 2004; 57 Suppl 1:S60-75. [PMID: 15008404 DOI: 10.1007/s00239-003-0008-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Molecular data on development/differentiation and on comparative genomics allow insights into the genetic basis of the evolution of a bodyplan. Sponges (phylum Porifera) are animals that are the (still extant) stem group with the hypothetical Urmetazoa as the earliest common ancestor of all metazoans; they possess the basic features of the characteristic metazoan bodyplan also valid for the animals of the crown taxa. Here we describe three homeobox genes from the demosponge Suberites domuncula whose deduced proteins (HOXa1_SUBDO, HOXb1_SUBDO, HOXc1_SUBDO) are to be grouped with the Antennapedia class of homeoproteins (subclasses TIx-Hox11 and NK-2). In addition, a cDNA encoding a LIM/homeobox protein has been isolated which comprises high sequence similarity to the related LIM homeodomain (HD) proteins in its LIM as well as in its HD domains. To elucidate the potential function of these proteins in the sponge a new in vitro system was developed. Primmorphs which are formed from dissociated cells were grown on a homologous galectin matrix. This galectin cDNA was cloned and the recombinant protein was used for the preparation of the matrix. The galectin/polylysine matrix induced in primmorphs the formation of channels, one major morphogenetic process in sponges. Under such conditions the expression of the gene encoding the LIM/homeobox protein is strongly upregulated, while the expression of the other homeobox genes remains unchanged or is even downregulated. Competition experiments with galactosylceramides isolated from S. domuncula were performed. They revealed that a beta-galactosylceramide, named Sdgal-1, prevented the expression of the LIM gene on the galectin matrix, while Sdgal-2, a diglycosylceramide having a terminal alpha-glycosidically linked galactose, caused no effect on the formation of channels in primmorphs or on LIM expression. This study demonstrates for the first time that an extracellular matrix molecule, galectin, induces a morphogenetic process in sponges which is very likely caused by a LIM/homeobox protein. Furthermore, a new model is introduced (galectin-caused channel formation in sponge primmorphs) to investigate basic pathways, thus allowing new insights into the functional molecular evolution of Metazoa.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perović S, Schröder HC, Sudek S, Grebenjuk VA, Batel R, Stifanić M, Müller IM, Müller WEG. Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation. Evol Dev 2003; 5:240-50. [PMID: 12752763 DOI: 10.1046/j.1525-142x.2003.03023.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sponges (Porifera) represent the evolutionary oldest multicellular animals. They are provided with the basic molecules involved in cell-cell and cell-matrix interactions. We report here the isolation and characterization of a complementary DNA from the sponge Suberites domuncula coding for the sponge homeobox gene, SUBDOIRX-a. The deduced polypeptide with a predicted Mr of 44,375 possesses the highly conserved Iroquois-homeodomain. We applied in situ hybridization to localize Iroquois in the sponge. The expression of this gene is highest in cells adjacent to the canals of the sponge in the medulla region. To study the expression of Iroquois during development, the in vitro primmorph system from S. domuncula was used. During the formation of these three-dimensional aggregates composed of proliferating cells, the expression of Iroquois depends on ferric iron and water current. An increased expression in response to water current is paralleled with the formation of canal-like pores in the primmorphs. It is suggested that Iroquois expression is involved in the formation of the aquiferous system, the canals in sponges and the canal-like structures in primmorphs.
Collapse
Affiliation(s)
- Sanja Perović
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wiens M, Krasko A, Perovic S, Müller WEG. Caspase-mediated apoptosis in sponges: cloning and function of the phylogenetic oldest apoptotic proteases from Metazoa. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:179-89. [PMID: 12581862 DOI: 10.1016/s0167-4889(02)00388-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sponges (phylum Porifera) represent the phylogenetically oldest metazoan phylum. These animals have complex cell adhesion and powerful immune systems which allow the formation of a distinct body plan. Consequently, an apoptotic machinery has to be predicted that allows sponges to eliminate unwanted cells accumulating during development. With the marine sponge Geodia cydonium, it is shown that allografts of these animals undergo apoptosis as demonstrated by apoptotic DNA fragmentation. Extracts from allografts contain an enzymic activity characteristic for caspases; as substrate to determine the cleavage activity, Ac-DEVD-AMC was applied. cDNAs encoding predicted caspase-3-related proteins were isolated; they comprise the characteristic structure known from caspases of other metazoan phyla. The two cDNAs are assumed to originate from one gene by alternative splicing; the longer form comprises a caspase recruitment domain (CARD), whereas the shorter one is missing CARD. The expression of sponge caspase genes is up-regulated during allograft rejection. In vivo incubation experiments with Ac-DEVD-CHO (a caspase-3 inhibitor) showed a reduction of apoptotic DNA fragmentation, whereas Ac-LEHD-CHO (an inhibitor of caspase-9) caused no effect. It is concluded, that for the establishment of the metazoan body plan, both the adhesion molecules and the apoptotic molecules (described here) were essential prerequisites.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | | | | |
Collapse
|
29
|
Exposito JY, Cluzel C, Garrone R, Lethias C. Evolution of collagens. THE ANATOMICAL RECORD 2002; 268:302-16. [PMID: 12382326 DOI: 10.1002/ar.10162] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extracellular matrix is often defined as the substance that gives multicellular organisms (from plants to vertebrates) their structural integrity, and is intimately involved in their development. Although the general functions of extracellular matrices are comparable, their compositions are quite distinct. One of the specific components of metazoan extracellular matrices is collagen, which is present in organisms ranging from sponges to humans. By comparing data obtained in diploblastic, protostomic, and deuterostomic animals, we have attempted to trace the evolution of collagens and collagen-like proteins. Moreover, the collagen story is closely involved with the emergence and evolution of metazoa. The collagen triple helix is one of numerous modules that arose during the metazoan radiation which permit the formation of large multimodular proteins. One of the advantages of this module is its involvement in oligomerization, in which it acts as a structural organizer that is not only relatively resistant to proteases but also permits the creation of multivalent supramolecular networks.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines, Université Claude Bernard, Lyon, France.
| | | | | | | |
Collapse
|
30
|
Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WE. Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 2000; 14:2022-31. [PMID: 11023986 DOI: 10.1096/fj.00-0043com] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The body wall of sponges (Porifera), the lowest metazoan phylum, is formed by two epithelial cell layers of exopinacocytes and endopinacocytes, both of which are associated with collagen fibrils. Here we show that a myotrophin-like polypeptide from the sponge Suberites domuncula causes the expression of collagen in cells from the same sponge in vitro. The cDNA of the sponge myotrophin was isolated; the potential open reading frame of 360 nt encodes a 120 aa long protein (Mr of 12,837). The sequence SUBDOMYOL shares high similarity with the known metazoan myotrophin sequences. The expression of SUBDOMYOL is low in single cells but high after formation of primmorph aggregates as well as in intact animals. Recombinant myotrophin was found to stimulate protein synthesis by fivefold, as analyzed by incorporation studies using [3H] lysine. In addition, it is shown that after incubation of single cells with myotrophin, the primmorphs show an unusual elongated, oval-shaped appearance. It is demonstrated that in the presence of recombinant myotrophin, the cells up-regulate the expression of the collagen gene. The cDNA for S. domuncula collagen was isolated; the deduced aa sequence shows that the collagenous internal domain is rather short, with only 24 G-x-y collagen triplets. We conclude that the sponge myotrophin causes in homologous cells the same/similar effect as the cardiac myotrophin in mammalian cells, where it is involved in initiation of cardial ventricular hypertrophy. We assume that an understanding of sponge molecular cell biology will also contribute to a further elucidation of human diseases, here of the cardiovascular system.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lawson PR, Perkins VC, Holmskov U, Reid KB. Genomic organization of the mouse gene for lung surfactant protein D. Am J Respir Cell Mol Biol 1999; 20:953-63. [PMID: 10226065 DOI: 10.1165/ajrcmb.20.5.3343] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung surfactant protein (SP)-D belongs to the family of soluble collagenous C-type lectins, named collectins. SP-D participates in the local innate immune defense of the lung, eliciting various effector functions by acting as a pattern recognition receptor for the carbohydrate structures on inhaled microorganisms and particulate matter. This work describes the isolation and characterization of the mouse SP-D gene (Sftpd), which spans 8 exons over 14 kb of sequence and shows an overall organization similar to other collectin genes. The complete 5' untranslated region of the messenger RNA, absent from the published complementary DNA for mouse SP-D, was also cloned and is shown to be encoded by a single exon. Analysis of 3.5 kb of 5' flanking nucleotide sequence for Sftpd is described and reveals positional conservation of a number of transcription factor binding sites on comparison of Sftpd with the human SP-D gene and the bovine conglutinin gene. In addition, a single copy SP-D-like gene has been shown to be present in mammals, birds, and amphibians but is absent in fish. An atypical, rodent-specific, long terminal repeat of retroviral origin containing a minisatellite that has become inserted in Sftpd is described. Three new polymorphic microsatellites are also described, one of which is just 160 base pairs upstream of Sftpd. This microsatellite was used to map the gene to the central region of chromosome 14; fine-scale mapping indicates that it lies in a 5. 64-centimorgan area between D14Mit45 and D14Mit60. This will allow the easy identification of the collectin gene cluster and aid in the construction of a physical map over this region.
Collapse
Affiliation(s)
- P R Lawson
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- R Garrone
- CNRS Institute of Biology and Chemistry of Proteins, Claude Bernard University, Lyons, France
| |
Collapse
|
33
|
Garrone R. Collagen, a common thread in extracellular matrix evolution. J CHEM SCI 1999. [DOI: 10.1007/bf02869895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Fernàndez-Busquets X, Burger MM. The main protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J Biol Chem 1997; 272:27839-47. [PMID: 9346930 DOI: 10.1074/jbc.272.44.27839] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Species-specific cell recognition in sponges, the oldest living metazoans, is based on a proteoglycan-like aggregation factor. We have screened individual sponge cDNA libraries, identifying multiple related forms for the aggregation factor core protein (MAFp3). Northern blots show the presence in several human tissues of transcripts strongly binding a MAFp3-specific probe. The open reading frame for MAFp3 is not interrupted in the 5' direction, revealing variable protein sequences that contain numerous introns equally spaced. We have studied tissue histocompatibility within a sponge population, finding 100% correlation between rejection behavior and the individual-specific restriction fragment length polymorphism pattern using aggregation factor-related probes. PCR amplifications with specific primers showed that at least some of the MAFp3 forms are allelic and distribute in the population used. A pronounced polymorphism is also observed when analyzing purified aggregation factor in polyacrylamide gels. Protease digestion of the polymorphic glycosaminoglycan-containing bands indicates that glycans are also responsible for the variability. The data presented reveal a high polymorphism of aggregation factor components, which matches the elevated sponge alloincompatibility, suggesting an involvement of the cell adhesion system in sponge allogeneic reactions.
Collapse
|
35
|
Brower DL, Brower SM, Hayward DC, Ball EE. Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. Proc Natl Acad Sci U S A 1997; 94:9182-7. [PMID: 9256456 PMCID: PMC23098 DOI: 10.1073/pnas.94.17.9182] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin beta subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral betaCn1 and, especially, the sponge betaPo1 sequences are the most divergent of the "beta1-class" integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other beta subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in betaCn1 and betaPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.
Collapse
Affiliation(s)
- D L Brower
- Research School of Biological Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | | | | | | |
Collapse
|
36
|
Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. CAN J ZOOL 1996. [DOI: 10.1139/z96-231] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sequenced 18S rRNA genes of a calcareous sponge, Clathrina cerebrum, a demosponge, Axinella polypoides, and a zoanthid cnidarian, Parazoanthus axinellae. Our phylogenetic analysis supports the monophyly of kingdom Animalia and confirms that choanoflagellate protozoans are their closest relatives. Sponges as a whole are monophyletic, but possibly paraphyletic; demosponges and hexactinellids form a monophyletic group of silicious sponges. Our phylogenetic trees support a monophyletic origin of the nervous system in the immediate common ancestor of Cnidaria and Ctenophora. They weakly suggest that animals with a nervous system may be more closely related to calcareous sponges than to silicious sponges; the nervous system might have originated in an early calcareous sponge. Our trees confirm that Myxozoa and Placozoa are animals that arose by secondary loss of the nervous system, but suggest that Myxozoa may be sisters of, rather than derived from, Bilateria. Kingdom Animalia is divided into four subkingdoms: Radiata (Porifera, Cnidaria, Placozoa, Ctenophora), Myxozoa, Mesozoa, and Bilateria. The 18S rRNA genes of Myxozoa evolved over twice as fast as in Radiata. Comparison with the fossil record reveals a brief 10-fold (or greater) acceleration in the rate of rRNA evolution in early Bilateria followed by normal low rates for about 500 million years.
Collapse
|
37
|
|
38
|
Cell adhesion to extracellular matrix is different in marine hydrozoans compared with vertebrates. ACTA ACUST UNITED AC 1995; 204:465-476. [DOI: 10.1007/bf00360854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/1994] [Accepted: 01/25/1995] [Indexed: 11/25/2022]
|
39
|
Abstract
The hox/hom homeobox genes code for DNA-binding proteins that confer positional information during animal development; these genes have been found in a wide range of triploblasts and in cnidarians. We report here the identification of a hox/hom gene and two other homeobox genes in the genomes of sponges. This finding extends the detection of hox/hom genes to the lowest metazoan phylum and suggests a monophyletic origin of the kingdom Animalia. Because, in culture, sponge cells quickly reaggregate, differentiate and construct tissue after disaggregation, they can provide a useful model system for characterization of the basic roles of homeobox genes in the control of cellular differentiation.
Collapse
Affiliation(s)
- B M Degnan
- Marine Biotechnology Center, University of California, Santa Barbara 93106, USA
| | | | | | | |
Collapse
|
40
|
Humbert-David N, Garrone R. A six-armed, tenascin-like protein extracted from the Porifera Oscarella tuberculata (Homosclerophorida). EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:255-60. [PMID: 7689964 DOI: 10.1111/j.1432-1033.1993.tb18140.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A six-armed complex could be extracted from the marine sponge Oscarella tuberculata by a two-step incubation, first in Tris-buffered saline containing EDTA, then in Tris-buffered saline containing urea. The crude extracts contained, in addition, collagen fibrils with surface filaments, individual filaments resembling collagen molecules, and laminin/nidogen-like complexes. The extracts were subsequently purified by gel-filtration chromatography and low-pressure ion-exchange chromatography on DEAE-cellulose, then analyzed by SDS/PAGE and immunoblotting methods. A glycoprotein of high molecular mass was isolated, and reduced to subunits of 230 kDa. After transfer to nitrocellulose, both the complex and its subunits were faintly stained by antibodies against amphibian tenascin. Electron microscopy of the purified extracts demonstrated the presence of a large population of tenascin-like molecules and complexes of several molecules interacting with each other by their central globule.
Collapse
Affiliation(s)
- N Humbert-David
- Laboratoire de Cytologie moléculaire, Université Lyon I, France
| | | |
Collapse
|
41
|
Genomic organization of human surfactant protein D (SP-D). SP-D is encoded on chromosome 10q22.2-23.1. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53869-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Rest MVD, Garrone R, Herbage D. Collagen: A Family of Proteins with many Facets. EXTRACELLULAR MATRIX 1993. [DOI: 10.1016/s1569-2558(08)60198-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|