1
|
Fidanboylu M, Thomas SA. L-Arginine and asymmetric dimethylarginine (ADMA) transport across the mouse blood-brain and blood-CSF barriers: Evidence of saturable transport at both interfaces and CNS to blood efflux. PLoS One 2024; 19:e0305318. [PMID: 39446890 PMCID: PMC11501026 DOI: 10.1371/journal.pone.0305318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
L-Arginine is the physiological substrate for the nitric oxide synthase (NOS) family, which synthesises nitric oxide (NO) in endothelial and neuronal cells. NO synthesis can be inhibited by endogenous asymmetric dimethylarginine (ADMA). NO has explicit roles in cellular signalling and vasodilation. Impaired NO bioavailability represents the central feature of endothelial dysfunction associated with vascular diseases. Interestingly, dietary supplementation with L-arginine has been shown to alleviate endothelial dysfunctions caused by impaired NO synthesis. In this study the transport kinetics of [3H]-arginine and [3H]-ADMA into the central nervous system (CNS) were investigated using physicochemical assessment and the in situ brain/choroid plexus perfusion technique in anesthetized mice. Results indicated that L-arginine and ADMA are tripolar cationic amino acids and have a gross charge at pH 7.4 of 0.981. L-Arginine (0.00149±0.00016) has a lower lipophilicity than ADMA (0.00226±0.00006) as measured using octanol-saline partition coefficients. The in situ perfusion studies revealed that [3H]-arginine and [3H]-ADMA can cross the blood-brain barrier (BBB) and the blood-CSF barrier. [3H]-Arginine (11.6nM) and [3H]-ADMA (62.5nM) having unidirectional transfer constants (Kin) into the frontal cortex of 5.84±0.86 and 2.49±0.35 μl.min-1.g-1, respectively, and into the CSF of 1.08±0.24 and 2.70±0.90 μl.min-1.g-1, respectively. In addition, multiple-time uptake studies revealed the presence of CNS-to-blood efflux of ADMA. Self- and cross-inhibition studies indicated the presence of transporters at the BBB and the blood-CSF barriers for both amino acids, which were shared to some degree. Importantly, these results are the first to demonstrate: (i) saturable transport of [3H]-ADMA at the blood-CSF barrier (choroid plexus) and (ii) a significant CNS to blood efflux of [3H]-ADMA. Our results suggest that the arginine paradox, in other words the clinical observation that NO-deficient patients respond well to oral supplementation with L-arginine even though the plasma concentration is sufficient to saturate endothelial NOS, could be related to altered ADMA transport (efflux).
Collapse
Affiliation(s)
- Mehmet Fidanboylu
- Pharmaceutical Sciences Research Division, King’s College London, London, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Sarah Ann Thomas
- Pharmaceutical Sciences Research Division, King’s College London, London, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Ishida A, Ashihara A, Nakashima K, Katsumata M. Expression of cationic amino acid transporters in pig skeletal muscles during postnatal development. Amino Acids 2017; 49:1805-1814. [PMID: 28803359 DOI: 10.1007/s00726-017-2478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/01/2017] [Indexed: 11/24/2022]
Abstract
The cationic amino acid transporter (CAT) protein family transports lysine and arginine in cellular amino acid pools. We hypothesized that CAT expression changes in pig skeletal muscles during rapid pig postnatal development. We aimed to investigate the tissue distribution and changes in the ontogenic expression of CATs in pig skeletal muscles during postnatal development. Six piglets at 1, 12, 26, 45, and 75 days old were selected from six litters, and their longissimus dorsi (LD), biceps femoris (BF), and rhomboideus (RH) muscles, and their stomach, duodenum, jejunum, ileum, colon, liver, kidney, heart, and cerebrum were collected. CAT-1 was expressed in all the 12 tissues investigated. CAT-2 (CAT-2A isoform) expression was highest in the skeletal muscle and liver and lowest in the jejunum, ileum, kidney, and heart. CAT-3 was expressed mainly in the colon and detected in the jejunum, ileum, and cerebrum. The CAT-1 expression was higher in the skeletal muscle of day 1 pigs than in that of older pigs (P < 0.05). The CAT-2 mRNA level was lowest at day 1, but increased with postnatal development (P < 0.05). There was no significant change in CAT-1 expression among the LD, BF, and RH during postnatal development (P > 0.05); however, there was a change in CAT-2 expression. The CAT-2 expression was highest in the LD of 12-, 26-, 45-, and 75-day-old pigs, followed by the BF and RH (P < 0.05). These results suggest that CAT-1 and CAT-2 play different roles in pig skeletal muscles during postnatal development.
Collapse
Affiliation(s)
- Aiko Ishida
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan.
| | - Akane Ashihara
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Kazuki Nakashima
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Masaya Katsumata
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan.,School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
3
|
Effect of Copper on l-Cysteine/l-Cystine Influx in Normal Human Erythrocytes and Erythrocytes of Wilson's Disease. Indian J Clin Biochem 2016; 31:468-72. [PMID: 27605746 DOI: 10.1007/s12291-016-0555-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Wilson's disease is a disease of abnormal copper metabolism in which free serum copper level is raised. The objective of the study was to determine, whether in Wilson disease, l-cysteine/l-cystine influx into RBC was decreased or not and the specific amino acid transporter affected by copper in normal human RBC. For l-cysteine/l-cystine influx, ten untreated cases, ten treated cases and ten age and sex matched healthy controls were recruited. To study the effect of copper on l-cysteine/l-cystine influx in RBC, 15 healthy subjects were selected. RBC GSH and l-cysteine/l-cystine influx were estimated by Beautler's and Yildiz's method respectively. In untreated cases, l-cysteine/l-cystine influx and erythrocyte GSH level were decreased showing that elevated level of free copper in serum or media decreased l-cysteine/l-cystine influx in human RBC. Copper treatment inhibited L amino acid transporter in normal RBC specifically.
Collapse
|
4
|
Zakoji N, Akanuma SI, Tachikawa M, Hosoya KI. Involvement of cationic amino acid transporter 1 in L-arginine transport in rat retinal pericytes. Biol Pharm Bull 2015; 38:257-62. [PMID: 25747984 DOI: 10.1248/bpb.b14-00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), a known relaxant, is produced in cells from L-arginine (L-Arg). Because the relaxation of retinal pericytes alters the microcirculatory hemodynamics, it is important to understand the manner of NO production in retinal pericytes. The purpose of this study was to clarify the molecular mechanism(s) of uptake of L-Arg in retinal pericytes using a conditionally immortalized rat retinal pericyte cell line (TR-rPCT1 cells) which expresses the mRNAs of endothelial NO synthase and inducible NO synthase. L-Arg uptake by TR-rPCT1 cells exhibited Na(+)-independence and concentration-dependence with a Km of 28.9 µM. This process was strongly inhibited by substrates of cationic amino acid transporters (CAT), such as L-ornithine and L-lysine. In contrast, L-valine, L-leucine, and L-glutamine, which are substrates of cation/neutral amino acid transport systems, such as system y(+)L, system B(0,+), and system b(0,+), did not strongly inhibit L-Arg uptake by TR-rPCT1 cells. In addition, the expression of mRNA and protein of CAT1 in TR-rPCT1 cells was observed by reverse transcription-polymerase chain reaction and immunoblot analyses. Taking these results into consideration, it appears that CAT1 is involved in L-Arg uptake by retinal pericytes and this is expected to play an important role in the relaxation of retinal pericytes, thereby modulating the microcirculatory hemodynamics in the retina.
Collapse
Affiliation(s)
- Nobuyuki Zakoji
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | |
Collapse
|
5
|
Gu Q, Cui Z. Reply: To PMID 25130427. Hepatology 2015; 62:1327. [PMID: 25711644 DOI: 10.1002/hep.27759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Qilin Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Guo L, Tian S, Chen Y, Mao Y, Cui S, Hu A, Zhang J, Xia SL, Su Y, Du J, Block ER, Wang XL, Cui Z. CAT-1 as a novel CAM stabilizes endothelial integrity and mediates the protective actions of l-Arg via a NO-independent mechanism. J Mol Cell Cardiol 2015; 87:180-91. [DOI: 10.1016/j.yjmcc.2015.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
|
7
|
Weber J, Haberkorn U, Mier W. Cancer stratification by molecular imaging. Int J Mol Sci 2015; 16:4918-46. [PMID: 25749472 PMCID: PMC4394457 DOI: 10.3390/ijms16034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.
Collapse
Affiliation(s)
- Justus Weber
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Uwe Haberkorn
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Walter Mier
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| |
Collapse
|
8
|
Ochiai H, Moriyama J, Kanemaki N, Sato R, Onda K. Analysis of cationic amino acid transport activity in canine lens epithelial cells. Exp Anim 2014; 62:311-7. [PMID: 24172195 PMCID: PMC4160958 DOI: 10.1538/expanim.62.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cationic amino acid transport activity in a canine lens epithelial cells (LEC) line was investigated. The transporter activity of arginine was 0.424 ± 0.047 nmol/mg protein min, while the presence of N-ethylmaleimide, an inhibitor of the canine cationic amino acid transporter (CAT), reduced transport activity by 30%. A full-length cDNA sequence of canine CAT1 was 2558 bp long and was predicted to encode the 629 amino acid polypeptides. The deduced amino acid sequence of canine CAT1 showed similarities of 92.1% and 88.6% to those of the human and mouse, respectively. Western blot analysis detected a band at 70 kDa in a membrane protein sample of LEC. RT-PCR analysis confirmed that CAT1 was ubiquitously detected in all tissues examined.
Collapse
Affiliation(s)
- Hideharu Ochiai
- Research Institute of Biosciences, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | | | | | | |
Collapse
|
9
|
Modeling of Cellular Arginine Uptake by More Than One Transporter. J Membr Biol 2011; 245:1-13. [DOI: 10.1007/s00232-011-9408-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/06/2011] [Indexed: 11/26/2022]
|
10
|
Castilho-Martins EA, Laranjeira da Silva MF, dos Santos MG, Muxel SM, Floeter-Winter LM. Axenic Leishmania amazonensis promastigotes sense both the external and internal arginine pool distinctly regulating the two transporter-coding genes. PLoS One 2011; 6:e27818. [PMID: 22114701 PMCID: PMC3218042 DOI: 10.1371/journal.pone.0027818] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 10/26/2011] [Indexed: 11/29/2022] Open
Abstract
Leishmania (L.) amazonensis uses arginine to synthesize polyamines to support its growth and survival. Here we describe the presence of two gene copies, arranged in tandem, that code for the arginine transporter. Both copies show similar Open Reading Frames (ORFs), which are 93% similar to the L. (L.) donovani AAP3 gene, but their 5′ and 3′ UTR's have distinct regions. According to quantitative RT-PCR, the 5.1 AAP3 mRNA amount was increased more than 3 times that of the 4.7 AAP3 mRNA along the promastigote growth curve. Nutrient deprivation for 4 hours and then supplemented or not with arginine (400 µM) resulted in similar 4.7 AAP3 mRNA copy-numbers compared to the starved and control parasites. Conversely, the 5.1 AAP3 mRNA copy-numbers increased in the starved parasites but not in ones supplemented with arginine (p<0.05). These results correlate with increases in amino acid uptake. Both Meta1 and arginase mRNAs remained constant with or without supplementation. The same starvation experiment was performed using a L. (L.) amazonensis null knockout for arginase (arg-) and two other mutants containing the arginase ORF with (arg-/ARG) or without the glycosomal addressing signal (arg-/argΔSKL). The arg- and the arg-/argΔSKL mutants did not show the same behavior as the wild-type (WT) parasite or the arg-/ARG mutant. This can be an indicative that the internal pool of arginine is also important for controlling transporter expression and function. By inhibiting mRNA transcription or/and mRNA maturation, we showed that the 5.1 AAP3 mRNA did not decay after 180 min, but the 4.7 AAP3 mRNA presented a half-life decay of 32.6 +/− 5.0 min. In conclusion, parasites can regulate amino acid uptake by increasing the amount of transporter-coding mRNA, possibly by regulating the mRNA half-life in an environment where the amino acid is not present or is in low amounts.
Collapse
Affiliation(s)
| | | | - Marcos G. dos Santos
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - Sandra M. Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
| | - Lucile M. Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Post-transcriptional divergence in the regulation of CAT-2A, CAT-2B and iNOS expression by dexamethasone in vascular smooth muscle cells. Amino Acids 2011; 43:667-76. [DOI: 10.1007/s00726-011-1115-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022]
|
12
|
Zhou J, Peluffo RD. D-enantiomers take a close look at the functioning of a cardiac cationic L-amino acid transporter. Biophys J 2011; 99:3224-33. [PMID: 21081070 DOI: 10.1016/j.bpj.2010.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022] Open
Abstract
Cationic amino acid transporters are highly selective for L-enantiomers such as L-arginine (L-Arg). Because of this stereoselectivity, little is known about the interaction of these transporters with D-isomers. To study whether these compounds can provide information on the molecular mechanism of transport, inward currents activated by L-Arg with low apparent affinity were measured in whole-cell voltage-clamped cardiomyocytes as a function of extracellular L-Arg and D-Arg concentrations. D-Arg inhibited L-Arg currents in a membrane-potential (V(M))-dependent competitive manner, indicating the presence of D-Arg binding sites in the carrier. Analysis of these steady-state currents showed that L- and D-Arg binding reactions dissipate a similar small fraction of the membrane electric field. Since D-Arg is not transported, these results suggest that enantiomer recognition occurs at conformational transitions that initiate amino acid translocation. The V(M) dependence of maximal current levels suggests that inward currents arise from the slow outward movement of negative charges in the unliganded transporter. Translocation of the L-Arg-bound complex, on the other hand, appears to be electroneutral. D-Arg-dependent transient charge movements, also detected in these cells, displayed a V(M)-dependent charge distribution and kinetics that are consistent with amino acid binding in an ion well in a shallow, water-filled extracellular binding pocket.
Collapse
Affiliation(s)
- Jiaguo Zhou
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | |
Collapse
|
13
|
Changes in kinetics of amino acid uptake at the ageing ovine blood-cerebrospinal fluid barrier. Neurobiol Aging 2010; 33:121-33. [PMID: 20138405 DOI: 10.1016/j.neurobiolaging.2010.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 01/05/2023]
Abstract
Amino acids (AA) in brain are precisely controlled by blood-brain barriers, which undergo a host of changes in both morphology and function during ageing. The effect of these age-related changes on AA homeostasis in brain is not well described. This study investigated the kinetics of four AA (Leu, Phe, Ala and Lys) uptakes at young and old ovine choroid plexus (CP), the blood-cerebrospinal fluid (CSF) barrier (BCB), and measured AA concentrations in CSF and plasma samples. In old sheep, the weight of lateral CP increased, so did the ratio of CP/brain. The expansion of the CP is consistent with clinical observation of thicker leptomeninges in old age. AA concentrations in old CSF, plasma and their ratio were different from the young. Both V(max) and K(m) of Phe and Lys were significant higher compared to the young, indicating higher trans-stimulation in old BCB. Cross-competition and kinetic inhibition studies found the sensitivity and specificity of these transporters were impaired in old BCB. These changes may be the first signs of a compromised barrier system in ageing brain leading increased AA influx into the brain causing neurotoxicity.
Collapse
|
14
|
Vangelatos I, Vlachakis D, Sophianopoulou V, Diallinas G. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters. Mol Membr Biol 2009; 26:356-70. [PMID: 19670073 DOI: 10.1080/09687680903170546] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Amino acid-Polyamine-Organocation (APC) superfamily is the main family of amino acid transporters found in all domains of life and one of the largest families of secondary transporters. Here, using a sensitive homology threading approach and modelling we show that the predicted structure of APC members is extremely similar to the crystal structures of several prokaryotic transporters belonging to evolutionary distinct protein families with different substrate specificities. All of these proteins, despite having no primary amino acid sequence similarity, share a similar structural core, consisting of two V-shaped domains of five transmembrane domains each, intertwined in an antiparallel topology. Based on this model, we reviewed available data on functional mutations in bacterial, fungal and mammalian APCs and obtained novel mutational data, which provide compelling evidence that the amino acid binding pocket is located in the vicinity of the unwound part of two broken helices, in a nearly identical position to the structures of similar transporters. Our analysis is fully supported by the evolutionary conservation and specific amino acid substitutions in the proposed substrate binding domains. Furthermore, it allows predictions concerning residues that might be crucial in determining the specificity profile of APC members. Finally, we show that two cytoplasmic loops constitute important functional elements in APCs. Our work along with different kinetic and specificity profiles of APC members in easily manipulated bacterial and fungal model systems could form a unique framework for combining genetic, in-silico and structural studies, for understanding the function of one of the most important transporter families.
Collapse
Affiliation(s)
- Ioannis Vangelatos
- Institute of Biology, National Center for Scientific Research Demokritos, Aghia Paraskevi 153 10, Athens, Greece
| | | | | | | |
Collapse
|
15
|
Bosshart PD, Casagrande F, Frederix PLTM, Ratera M, Bippes CA, Müller DJ, Palacin M, Engel A, Fotiadis D. High-throughput single-molecule force spectroscopy for membrane proteins. NANOTECHNOLOGY 2008; 19:384014. [PMID: 21832573 DOI: 10.1088/0957-4484/19/38/384014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ∼400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ∼200 (AdiC) and ∼400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.
Collapse
Affiliation(s)
- Patrick D Bosshart
- M E Müller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Humphrey BD, Kirsch S, Morris D. Molecular cloning and characterization of the chicken cationic amino acid transporter-2 gene. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:301-11. [DOI: 10.1016/j.cbpb.2008.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 11/26/2022]
|
17
|
Chaturvedi R, Asim M, Lewis ND, Algood HMS, Cover TL, Kim PY, Wilson KT. L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect Immun 2007; 75:4305-15. [PMID: 17562760 PMCID: PMC1951193 DOI: 10.1128/iai.00578-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori infection of the stomach causes an active immune response that includes stimulation of inducible nitric oxide (NO) synthase (iNOS) expression. Although NO can kill H. pylori, the bacterium persists indefinitely, suggesting that NO production is inadequate. We determined if the NO derived from iNOS in macrophages was dependent on the availability of its substrate, L-arginine (L-Arg). Production of NO by H. pylori-stimulated RAW 264.7 cells was dependent on the L-Arg concentration in the culture medium, and the 50% effective dose for L-Arg was 220 microM, which is above reported plasma L-Arg levels. While iNOS mRNA induction was L-Arg independent, iNOS protein increased in an L-Arg-dependent manner that did not involve changes in iNOS protein degradation. L-lysine, an inhibitor of L-Arg uptake, attenuated H. pylori-stimulated iNOS protein expression, translation, NO levels, and killing of H. pylori. While L-Arg starvation suppressed global protein translation, at concentrations of L-Arg at which iNOS protein was only minimally expressed in response to H. pylori, global translation was fully restored and eukaryotic translation initiation factor alpha was dephosphorylated. H. pylori lacking the gene rocF, which codes for a bacterial arginase, induced higher levels of NO production by increasing iNOS protein levels. When murine gastric macrophages were activated with H. pylori, supraphysiologic levels of L-Arg were required to permit iNOS protein expression and NO production. These findings indicate that L-Arg is rate limiting for iNOS translation and suggest that the levels of L-Arg that occur in vivo do not permit sufficient NO generation by the host to kill H. pylori.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Closs EI, Boissel JP, Habermeier A, Rotmann A. Structure and Function of Cationic Amino Acid Transporters (CATs). J Membr Biol 2007; 213:67-77. [PMID: 17417706 DOI: 10.1007/s00232-006-0875-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 11/29/2022]
Abstract
The CAT proteins (CAT for cationic amino acid transporter) are amongst the first mammalian amino acid transporters identified on the molecular level and seem to be the major entry path for cationic amino acids in most cells. However, CAT proteins mediate also efflux of their substrates and thus may also deplete cells from cationic amino acids under certain circumstances. The CAT proteins form a subfamily of the solute carrier family 7 (SLC7) that consists of four confirmed transport proteins for cationic amino acids: CAT-1 (SLC7A1), CAT-2A (SLC7A2A), CAT-2B (SLC7A2B), and CAT-3 (SLC7A3). SLC7A4 and SLC7A14 are two related proteins with yet unknown function. One focus of this review lies on structural and functional differences between the different CAT isoforms. The expression of the CAT proteins is highly regulated on the level of transcription, mRNA stability, translation and subcellular localization. Recent advances toward a better understanding of these mechanisms provide a second focus of this review.
Collapse
Affiliation(s)
- E I Closs
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
19
|
Sanchez CP, Rohrbach P, McLean JE, Fidock DA, Stein WD, Lanzer M. Differences in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum. Mol Microbiol 2007; 64:407-20. [PMID: 17493125 PMCID: PMC2944662 DOI: 10.1111/j.1365-2958.2007.05664.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum has remained controversial. Currently discussed models include a carrier or a channel for chloroquine, the former actively expelling the drug, the latter facilitating its passive diffusion, out of the parasite's food vacuole, where chloroquine accumulates and inhibits haem detoxification. Here we have challenged both models using an established trans-stimulation efflux protocol. While carriers may demonstrate trans-stimulation, channels do not. Our data reveal that extracellular chloroquine stimulates chloroquine efflux in the presence and absence of metabolic energy in both chloroquine-sensitive and -resistant parasites, resulting in a hyperbolic increase in the apparent initial efflux rates as the concentration of external chloroquine increases. In the absence of metabolic energy, the apparent initial efflux rates were comparable in both parasites. Significant differences were only observed in the presence of metabolic energy, where consistently higher apparent initial efflux rates were found in chloroquine-resistant parasites. As trans-stimulation is characteristic of a carrier, and not a channel, we interpret our data in favour of a carrier for chloroquine being present in both chloroquine-sensitive and -resistant parasites, however, with different transport modalities.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Petra Rohrbach
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jeremy E. McLean
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - David A. Fidock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wilfred D. Stein
- Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Michael Lanzer
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Visigalli R, Barilli A, Bussolati O, Sala R, Gazzola GC, Parolari A, Tremoli E, Simon A, Closs EI, Dall'Asta V. Rapamycin stimulates arginine influx through CAT2 transporters in human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1479-87. [PMID: 17397797 DOI: 10.1016/j.bbamem.2007.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/25/2007] [Accepted: 02/15/2007] [Indexed: 01/03/2023]
Abstract
In endothelial cells Tumor Necrosis Factor-alpha (TNFalpha) stimulates arginine transport through the increased expression of SLC7A2/CAT2 transcripts. Here we show that also rapamycin, an inhibitor of mTOR kinase, stimulates system y(+)-mediated arginine uptake in human endothelial cells derived from either saphenous (HSVECs) or umbilical veins (HUVECs). When used together with TNFalpha, rapamycin produces an additive stimulation of arginine transport in both cell models. These effects are observed also upon incubation with AICAR, a stimulator of Adenosine-Monophosphate-dependent-Protein Kinase (AMPK) that produces a rapamycin-independent inhibition of the mTOR pathway. Rapamycin increases the V(max) of high affinity arginine transport and causes the appearance of a low affinity component that is particularly evident if the treatment is carried out in the presence of TNFalpha. RT-qPCR studies have demonstrated that these kinetic changes correspond to the induction of both the high affinity transporter CAT2B and the low affinity isoform CAT2A. Western blot and immunocytochemical analyses indicate that, consistently, the expression of CAT2 proteins is also stimulated under the same conditions. These changes are associated with an increase of the intracellular arginine concentration but with a decrease of NO production. Thus, our data suggest that mTOR activity is associated with the repression of CAT2 expression at mRNA and protein level.
Collapse
Affiliation(s)
- Rossana Visigalli
- Department of Experimental Medicine, Unit of General and Clinical Pathology, University of Parma, via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacín M, Lloberas J, Celada A. Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 2006; 36:1516-26. [PMID: 16703566 DOI: 10.1002/eji.200535694] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In murine macrophages, as a result of arginine catabolism during activation, citruline is produced under the effect of IFN-gamma and LPS, and ornithine and polyamines by IL-4 and IL-10. For proliferation, arginine is required from the extracellular medium and is used for protein synthesis. During activation, most arginine (>95% in 6 h) was metabolized, while under proliferation only half was incorporated into proteins. Under basal conditions, this amino acid was preferentially transported by y(+)L activity. During activation, arginine transport increased drastically (4-5-fold) through y(+) cationic amino acid transporter (CAT) activity. By contrast, M-CSF induced only a modest increase in uptake (0.5-fold). The increase in arginine transport during activation, but not proliferation, was mediated by the SLC7A2/Cat2 gene. SLC7A1/Cat1 is constitutively expressed, and is not modified by proliferating or activating agents. M-CSF-dependent proliferation was not affected in the macrophages of SLC7A2 knockout mice; however, these cells showed a drastic reduction in the production of citruline or ornithine and polyamines during activation. The data show that a large increase in a specific transport system (CAT2) is necessary for activation-induced arginine metabolism, while arginine is in excess for the requirements of proliferation and a modest increase in transport occurs.
Collapse
Affiliation(s)
- Andrée Yeramian
- Macrophage Biology Group, Institute of Research in Biomedicine, Barcelona Science Park, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacín M, Modolell M, Lloberas J, Celada A. Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. THE JOURNAL OF IMMUNOLOGY 2006; 176:5918-24. [PMID: 16670299 DOI: 10.4049/jimmunol.176.10.5918] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arginine is processed by macrophages in response to the cytokines to which these cells are exposed. Th1-type cytokines induce NO synthase 2, which metabolizes arginine into nitrites, while the Th2-type cytokines produce arginase, which converts arginine into polyamines and proline. Activation of bone marrow-derived macrophages by these two types of cytokines increases L-arginine transport only through the y(+) system. Analysis of the expression of the genes involved in this system showed that Slc7A1, encoding cationic amino acid transporters (CAT)1, is constitutively expressed and is not modified by activating agents, while Slc7A2, encoding CAT2, is induced during both classical and alternative activation. Macrophages from Slc7A2 knockout mice showed a decrease in L-arginine transport in response to the two kinds of cytokines. However, while NO synthase 2 and arginase expression were unmodified in these cells, the catabolism of arginine was impaired by both pathways, producing smaller amounts of nitrites and also of polyamines and proline. In addition, the induction of Slc7A2 expression was independent of the arginine available and of the enzymes that metabolize it. In conclusion, the increased arginine transport mediated by activators is strongly regulated by CAT2 expression, which could limit the function of macrophages.
Collapse
Affiliation(s)
- Andrée Yeramian
- Macrophage Biology Group, Institute of Biomedical Research, Barcelona Science Park, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Humphrey BD, Stephensen CB, Calvert CC, Klasing KC. Lysine deficiency and feed restriction independently alter cationic amino acid transporter expression in chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2006; 143:218-27. [PMID: 16406639 DOI: 10.1016/j.cbpa.2005.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
The effect of a lysine-deficient diet on cationic amino acid transporter (CAT1-3) mRNA expression was determined in broiler chickens. Chicks consumed a lysine-adequate (LA; 1.3% lysine) or lysine-deficient (LD; 0.7% lysine) diet. Pair-fed chicks consumed the LA diet in an amount equal to that consumed by LD chicks during the previous day (PLA). CAT 1-3 mRNA expression in the liver, pectoralis and bursa of LD chicks were lower than that of LA and PLA chicks (P<0.05), and levels were not detectable in LD chick thymus. High affinity CAT mRNA expression in isolated bursacytes was 16-fold higher in LD chicks than that of LA chicks (P<0.001). Thymocyte high affinity CAT mRNA expression was 5-fold lower than that of LA chicks (P<0.05). The summed amount of high affinity CAT-1 and CAT-3 mRNA expression in chicks fed a lysine adequate diet was highly correlated (r2=0.51; P<0.001) to a tissue's growth during a lysine deficiency or feed restriction. In the thymus and bursa of LD chicks, CAT mRNA levels differed between resident lymphocytes and their surrounding tissues. By expressing high affinity CAT isoforms, developing lymphocytes may have a greater ability to obtain lysine than their surrounding tissue during a lysine deficiency.
Collapse
Affiliation(s)
- Brooke D Humphrey
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
24
|
Humphrey BD, Klasing KC. The acute phase response alters cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2005; 142:485-94. [PMID: 16321552 DOI: 10.1016/j.cbpa.2005.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 09/30/2005] [Accepted: 10/01/2005] [Indexed: 10/25/2022]
Abstract
The effect of an acute phase response (APR) on cationic amino acid transporter (CAT1-3) mRNA expression in liver, muscle, bursa and thymus was determined in broiler strain chickens. The APR was initiated by injecting Salmonella typhimurium lipopolysaccharide subcutaneously (LPS; 1 mg/kg bw). In Experiment 1, CAT1-3 mRNA expression was determined at multiple time points following LPS administration. LPS increased bursa and liver total and high affinity CAT mRNA expression (P<0.05) and transiently increased pectoralis total CAT mRNA expression (P<0.05). Total CAT mRNA expression in the thymus decreased 7.7-fold from 0 to 8 h after LPS injection (P<0.05). In Experiment 2, fasted chicks were uninjected or LPS-injected. LPS increased total and high affinity CAT mRNA 2-fold in both the bursa and liver (P<0.05) and did not change thymus total and high affinity CAT mRNA expression (P>0.05). LPS increased liver weight only (P<0.05) and did not alter the plasma lysine and arginine concentration (P>0.05). In Experiments 3 and 4, thymocyte proliferation and total protein content were dependent upon the media lysine concentration (P<0.001). The inability of the thymus to compete for lysine and arginine during the APR may limit the ability of thymocytes to develop during infections.
Collapse
Affiliation(s)
- Brooke D Humphrey
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
25
|
Cui Z, Tuladhar R, Hart SL, Marber MS, Pearson JD, Baydoun AR. Rate of transport of l-arginine is independent of the expression of inducible nitric oxide synthase in HEK 293 cells. Nitric Oxide 2004; 12:21-30. [PMID: 15631944 DOI: 10.1016/j.niox.2004.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/19/2004] [Accepted: 11/08/2004] [Indexed: 11/24/2022]
Abstract
Expression of inducible nitric oxide synthase (iNOS) is generally accompanied by a parallel upregulation in l-arginine transport which is dependent, at least in part, on the synthesis of new carrier proteins. It is not clear however whether the induction of iNOS and its subsequent utilisation of l-arginine for NO synthesis contribute to the enhancement in l-arginine transport rates observed following induction of cells with pro-inflammatory mediators. To address this issue, we have transfected an iNOS construct in a pEGFP-N1 vector into HEK-293 cells and investigated the effects this has on l-arginine transport. The expression of iNOS through transfection resulted in the production of significant quantities of NO as detected by the standard Griess assay. Under these conditions, the transport of l-arginine was found to be unaltered, with rate of uptake being comparable in both transfected and non-transfected cells. Characterisation of the transporter(s) involved with uptake of l-arginine revealed features characteristic of the classical cationic amino acid transport system y(+). Further analysis of the expression profile of the cationic amino acid transporter (CAT) involved revealed the presence of transcripts for CAT-1 and CAT-2B. These data demonstrate that iNOS activity does not drive or enhance l-arginine transport despite the fact that HEK-293 cells transport l-arginine via the CATs, including CAT-2B which is thought to be critical for supply of substrate to iNOS.
Collapse
Affiliation(s)
- Zhaoqiang Cui
- Department of Biosciences, University of Hertfordshire, College Lane, Herts AL10 9AB, UK
| | | | | | | | | | | |
Collapse
|
26
|
Hatzoglou M, Fernandez J, Yaman I, Closs E. Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu Rev Nutr 2004; 24:377-99. [PMID: 15459982 DOI: 10.1146/annurev.nutr.23.011702.073120] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of the function of the receptor for the ecotropic retrovirus as a membrane transporter for the essential amino acids lysine and arginine was a landmark finding in the field of molecular nutrition. This finding indicated that cationic amino acid transporters (CATs) act pathologically as viral receptors. The importance of this transporter was further supported by knockout mice that were not viable after birth. CAT-1 was the first amino acid transporter to be cloned; several other CATs were later characterized biochemically and molecularly. These transporters mediate the bidirectional transport of cationic amino acids, thus supporting important metabolic functions, such as synthesis of proteins, nitric oxide (NO) synthesis, polyamine biosynthesis, and interorgan amino acid flow. This review briefly describes the advances in the regulation of cationic amino acid transport, focusing on the molecular mechanisms that regulate the CAT-1 transporter. Of particular interest to this review is the regulation of CAT-1 by nutritional stresses, such as amino acid availability. The studies that are reviewed conclude that the CAT-1 gene is essential for cell survival during stress because it allows cells to resume growth as soon as amino acids become available.
Collapse
Affiliation(s)
- Maria Hatzoglou
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
27
|
Schwartz IF, Iaina A, Benedict Y, Wollman Y, Chernichovski T, Brasowski E, Misonzhnik F, Ben-Dor A, Blum M, Levo Y, Schwartz D. Augmented arginine uptake, through modulation of cationic amino acid transporter-1, increases GFR in diabetic rats. Kidney Int 2004; 65:1311-9. [PMID: 15086470 DOI: 10.1111/j.1523-1755.2004.00508.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND It is suggested that either arginine or its metabolites, nitric oxide and polyamines play a role in the renal hemodynamic alterations observed in the early stages of diabetes. Yet, the regulation of arginine transport in diabetic kidneys has never been studied. METHODS Arginine uptake was determined in glomeruli harvested from control rats; diabetic rats (2 weeks following an intraperitoneal injection of streptozotocin, 60 mg/kg body weight); rats, 4 days following left nephrectomy (a nondiabetic model of hyperfiltration); diabetes + lysine (0.5% in the drinking water to attenuate arginine uptake); and control + lysine. RESULTS Glomerular arginine transport was significantly increased in diabetic rats, but remained unchanged following uninephrectomy. Lysine abolished the increase in arginine uptake in diabetic rats but had no effect in controls. The increase in creatinine clearance observed in diabetes was completely abolished by lysine. Using reverse transcription-polymerase chain reaction (RT-PCR), Northern blotting, and immunohistochemistry, we found a significant increase in glomerular cationic amino acid transporter-1 (CAT-1) expression in diabetic animals, which was unaffected by lysine. When human endothelial cells were incubated with arginine end products no effect on arginine transport was observed. However, only in the presence of 0.5 mM/L sodium nitroprusside (SNP) an augmented steady-state CAT-1 mRNA was demonstrated by RT-PCR. CONCLUSION In a rat model of early diabetes, glomerular arginine uptake is elevated through modulation of CAT-1 expression, thus, contributing to the pathogenesis of hyperfiltration. Increased nitric oxide formation may play a role in this process.
Collapse
Affiliation(s)
- Idit F Schwartz
- Nephrology Department, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Humphrey BD, Stephensen CB, Calvert CC, Klasing KC. Glucose and cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2004; 138:515-25. [PMID: 15369841 DOI: 10.1016/j.cbpb.2004.06.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/25/2022]
Abstract
Tissue glucose transporter (GLUT1-3) and cationic amino acid transporter (CAT1-3) mRNA expression was determined in growing broiler chicks posthatch. In two experiments, tissues were either collected on days 1, 3 and 7 or days 1 and 14 posthatch. Heart and liver were the only tissues expressing a GLUT isoform on day 1. All tissues expressed a GLUT isoform on day 7 except for the thymus. Most tissues expressing a CAT isoform on day 1 decreased mRNA levels through day 7 (P<0.05), except for bursa CAT-1 which tended to increase (P=0.05). The thymus and spleen did not express any CAT isoform mRNA until day 7. The liver was the only tissue expressing GLUT-2 mRNA through day 14. On day 14, GLUT-1, CAT-1 and CAT-2 mRNA were differentially expressed across tissues (P<0.05). High-affinity GLUT and CAT mRNA expression was highest in the heart and bursa, respectively (P<0.05). Total CAT mRNA expression was greatest in the bursa (P<0.05). The thymus had the lowest high affinity GLUT and total CAT mRNA expression on day 14 posthatch. Therefore, T lymphocytes within the thymus may be most susceptible to glucose and cationic amino acid supply.
Collapse
Affiliation(s)
- Brooke D Humphrey
- Department of Animal Science, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
29
|
Tavoularis SN, Tazebay UH, Diallinas G, Sideridou M, Rosa A, Scazzocchio C, Sophianopoulou V. Mutational analysis of the major proline transporter (PrnB) of Aspergillus nidulans. Mol Membr Biol 2004; 20:285-97. [PMID: 14578044 DOI: 10.1080/0968768031000106339] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PrnB, the l-proline transporter of Aspergillus nidulans, belongs to the Amino acid Polyamine Organocation (APC) transporter family conserved in prokaryotes and eukaryotes. In silico analysis and limited biochemical evidence suggest that APC transporters comprise 12 transmembrane segments (TMS) connected with relatively short hydrophilic loops (L). However, very little is known on the structure-function relationships in APC transporters. This work makes use of the A. nidulans PrnB transporter to address structure-function relationships by selecting, constructing and analysing several prnB mutations. In the sample, most isolated missense mutations affecting PrnB function map in the borders of cytoplasmic loops with transmembrane domains. These are I119N and G120W in L2-TMS3, F278V in L6-TMS7, NRT378NRTNRT and PY382PYPY in L8-TMS9 and T456N in L10-TMS11. A single mutation (G403E) causing, however, a very weak phenotype, maps in the borders of an extracellular loop (L9-TMS10). An important role of helix TMS6 for proline binding and transport is supported by mutations K245L and, especially, F248L that clearly affect PrnB uptake kinetics. The critical role of these residues in proline binding and transport is further shown by constructing and analysing isogenic strains expressing selected prnB alleles fused to the gene encoding the Green Fluorescent Protein (GFP). It is shown that, while some prnB mutations affect proper translocation of PrnB in the membrane, at least two mutants, K245E and F248L, exhibit physiological cellular expression of PrnB and, thus, the corresponding mutations can be classified as mutations directly affecting proline binding and/or transport. Finally, comparison of these results with analogous studies strengthens conclusions concerning amino acid residues critical for function in APC transporters.
Collapse
Affiliation(s)
- S N Tavoularis
- Institute of Biology National Center for Scientific Research Demokritos (NCSRD), Aghia Paraskevi 153 10 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
30
|
Jiménez-Vidal M, Gasol E, Zorzano A, Nunes V, Palacín M, Chillarón J. Thiol modification of cysteine 327 in the eighth transmembrane domain of the light subunit xCT of the heteromeric cystine/glutamate antiporter suggests close proximity to the substrate binding site/permeation pathway. J Biol Chem 2004; 279:11214-21. [PMID: 14722095 DOI: 10.1074/jbc.m309866200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We measured sensitivity to thiol modification of the heteromeric glutamate/cystine transporter 4F2hc-xCT expressed in Xenopus oocytes. p-Chloromercuribenzoate (pCMB) and p-chloromercuribenzenesulfonate (pCMBS) rapidly blocked transport activity. Cys(327), located in the middle of the eighth transmembrane domain of the light subunit (xCT), was found to be the main target of inactivation. Cysteine, an impermeant reducing reagent, reversed pCMB and pCMBS effects only when applied from the extracellular medium. l-Glutamate and l-cystine, but not l-arginine, protected from the inactivation with an IC(50) similar to the K(m). Protection was not temperature-dependent, suggesting that it did not depend on large substrate-induced conformational changes. Mutation of Cys(327) to Ala and Ser slightly modified the K(m) and a C327L mutant abolished transport function without compromising transporter expression at the plasma membrane. The results indicate that Cys(327) is a functionally important residue accessible to the aqueous extracellular environment and is structurally linked to the permeation pathway and/or the substrate binding site.
Collapse
Affiliation(s)
- Maite Jiménez-Vidal
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29-106. [PMID: 12932075 DOI: 10.1007/978-3-642-19012-4_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence obtained during the last few years has greatly extended our understanding of the cell surface receptors that mediate infections of retroviruses and has provided many surprising insights. In contrast to other cell surface components such as lectins or proteoglycans that influence infections indirectly by enhancing virus adsorption onto specific cells, the true receptors induce conformational changes in the viral envelope glycoproteins that are essential for infection. One surprise is that all of the cell surface receptors for gamma-retroviruses are proteins that have multiple transmembrane (TM) sequences, compatible with their identification in known instances as transporters for important solutes. In striking contrast, almost all other animal viruses use receptors that exclusively have single TM sequences, with the sole proven exception we know of being the coreceptors used by lentiviruses. This evidence strongly suggests that virus genera have been prevented because of their previous evolutionary adaptations from switching their specificities between single-TM and multi-TM receptors. This evidence also implies that gamma-retroviruses formed by divergent evolution from a common origin millions of years ago and that individual viruses have occasionally jumped between species (zoonoses) while retaining their commitment to using the orthologous receptor of the new host. Another surprise is that many gamma-retroviruses use not just one receptor but pairs of closely related receptors as alternatives. This appears to have enhanced viral survival by severely limiting the likelihood of host escape mutations. All of the receptors used by gamma-retroviruses contain hypervariable regions that are often heavily glycosylated and that control the viral host range properties, consistent with the idea that these sequences are battlegrounds of virus-host coevolution. However, in contrast to previous assumptions, we propose that gamma-retroviruses have become adapted to recognize conserved sites that are important for the receptor's natural function and that the hypervariable sequences have been elaborated by the hosts as defense bulwarks that surround the conserved viral attachment sites. Previously, it was believed that binding to receptors directly triggers a series of conformational changes in the viral envelope glycoproteins that culminate in fusion of the viral and cellular membranes. However, new evidence suggests that gamma-retroviral association with receptors triggers an obligatory interaction or cross-talk between envelope glycoproteins on the viral surface. If this intermediate step is prevented, infection fails. Conversely, in several circumstances this cross-talk can be induced in the absence of a cell surface receptor for the virus, in which case infection can proceed efficiently. This new evidence strongly implies that the role of cell surface receptors in infections of gamma-retroviruses (and perhaps of other enveloped animal viruses) is more complex and interesting than was previously imagined. Recently, another gammaretroviral receptor with multiple transmembrane sequences was cloned. See Prassolov, Y., Zhang, D., Ivanov, D., Lohler, J., Ross, S.R., and Stocking, C. Sodium-dependent myo-inositol transporter 1 is a receptor for Mus cervicolor M813 murine leukemia virus.
Collapse
Affiliation(s)
- C S Tailor
- Infection, Immunity Injury and Repair Program, Hospital for Sick Children, Toronto, ON M5G 1XB, Canada
| | | | | | | |
Collapse
|
32
|
Recker K, Klapperstück T, Kehlen A, Wohlrab J. The Importance of Cationic Amino Acid Transporter Expression in Human Skin. J Invest Dermatol 2003; 121:1552-3. [PMID: 14675209 DOI: 10.1046/j.1523-1747.2003.12646.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Habermeier A, Wolf S, Martiné U, Gräf P, Closs EI. Two amino acid residues determine the low substrate affinity of human cationic amino acid transporter-2A. J Biol Chem 2003; 278:19492-9. [PMID: 12637504 DOI: 10.1074/jbc.m210254200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cationic amino acid transporters (CAT) differ in their substrate affinity and sensitivity to trans-stimulation. The apparent Km values for cationic amino acids and the sensitivity to trans-stimulation of CAT-1, -2B, and -3 are characteristic of system y+. In contrast, CAT-2A exhibits a 10-fold lower substrate affinity and is largely independent of substrate at the trans-side of the membrane. CAT-2A and -2B demonstrate such divergent transport properties, even though their amino acid sequences differ only in a stretch of 42 amino acids. Here, we identify two amino acid residues within this 42-amino acid domain of the human CAT-2A protein that are responsible for the apparent low affinity of both the extracellular and intracellular substrate-binding sites. These residues are located in the fourth intracellular loop, suggesting that they are not part of the translocation pathway. Rather, they may be responsible for the low affinity conformation of the substrate-binding sites. The sensitivity to trans-stimulation is not determined by the same amino acid residues as the substrate affinity and must involve a more complex interaction between individual amino acid residues. In addition to the 42-amino acid domain, the adjacent transmembrane domain X seems to be involved in this function.
Collapse
Affiliation(s)
- Alice Habermeier
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
34
|
Schwartz D, Schwartz IF, Gnessin E, Wollman Y, Chernichovsky T, Blum M, Iaina A. Differential regulation of glomerular arginine transporters (CAT-1 and CAT-2) in lipopolysaccharide-treated rats. Am J Physiol Renal Physiol 2003; 284:F788-95. [PMID: 12475743 DOI: 10.1152/ajprenal.00221.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The decrease in glomerular filtration rate (GFR) that is characteristic of sepsis has been shown to result from inhibition of glomerular endothelial nitric oxide synthase (eNOS) by nitric oxide (NO) generated from the inducible isoform of NOS (iNOS). Although l-arginine is the sole precursor for NO biosynthesis, its intracellular availability in glomeruli from septic animals has never been investigated. Arginine uptake was measured in freshly harvested glomeruli from the following experimental groups: 1) untreated rats; 2) rats pretreated with LPS (4 mg/kg body wt, 4 h before experiments); 3) rats treated with LPS as above with either l-N(6)-(1-iminoethyl)lysine hydrochloride (l-NIL), a selective iNOS antagonist, or 7-nitroindazole, a selective neuronal NOS antagonist; and 4) rats treated with l-NIL only. Both glomeular and mesangial arginine transport characteristics were found compatible with a y(+) system. Arginine uptake was augmented in glomeruli from LPS-treated rats. Treatment with l-NIL completely abolished this effect whereas l-NIL alone had no effect. Similar results were obtained when primary cultures of rat mesangial cells were preincubated with LPS (10 microg/ml for 24 h) with or without l-NIL. Using RT-PCR, we found that in vivo administration of LPS resulted in a significant increase in glomerular cationic amino acid transporter-2 (CAT-2) mRNA expression whereas CAT-1 mRNA was undetected. Northern blotting further confirmed a significant increase in glomerular CAT-2 by LPS. In mesangial cells, the expression of both CAT-1 and CAT-2 mRNA was augmented after incubation with LPS. In conclusion, in vivo administration of LPS augments glomerular arginine transport through upregulation of steady-state CAT-2 mRNA while downregulating CAT-1 mRNA. These results may correspond to the changes in glomerular iNOS and eNOS activity in sepsis.
Collapse
Affiliation(s)
- Doron Schwartz
- Nephrology Department, The Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.
| | | | | | | | | | | | | |
Collapse
|
35
|
Peteroy-Kelly MA, Venketaraman V, Talaue M, Seth A, Connell ND. Modulation of J774.1 macrophage L-arginine metabolism by intracellular Mycobacterium bovis BCG. Infect Immun 2003; 71:1011-5. [PMID: 12540586 PMCID: PMC145349 DOI: 10.1128/iai.71.2.1011-1015.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a Mycobacterium bovis BCG mutant (AS1) lacking a Bacillus subtilis L-arginine transporter homolog, we demonstrate here that the interaction between intracellular mycobacteria and the macrophage with respect to L-arginine transport and metabolism is quite complex. Intracellular AS1 stimulates macrophage L-arginine transport and accumulates 2.5-fold more (3)H label derived from L-arginine than does the wild type. These studies suggest that the accumulation of (3)H label reflects the acquisition of metabolites of L-arginine produced by the macrophage.
Collapse
Affiliation(s)
- Marcy A Peteroy-Kelly
- Department of Microbiology and Molecular Genetics, International Center for Public Health, UMDNJ/New Jersey Medical School, Newark 07101-1709, USA
| | | | | | | | | |
Collapse
|
36
|
Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 2003; 83:183-252. [PMID: 12506130 DOI: 10.1152/physrev.00022.2002] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
While transport processes for amino acids and glucose have long been known to be expressed in the luminal and abluminal membranes of the endothelium comprising the blood-brain and blood-retinal barriers, it is only within the last decades that endothelial and smooth muscle cells derived from peripheral vascular beds have been recognized to rapidly transport and metabolize these nutrients. This review focuses principally on the mechanisms regulating amino acid and glucose transporters in vascular endothelial cells, although we also summarize recent advances in the understanding of the mechanisms controlling membrane transport activity and expression in vascular smooth muscle cells. We compare the specificity, ionic dependence, and kinetic properties of amino acid and glucose transport systems identified in endothelial cells derived from cerebral, retinal, and peripheral vascular beds and review the regulation of transport by vasoactive agonists, nitric oxide (NO), substrate deprivation, hypoxia, hyperglycemia, diabetes, insulin, steroid hormones, and development. In view of the importance of NO as a modulator of vascular tone under basal conditions and in disease and chronic inflammation, we critically review the evidence that transport of L-arginine and glucose in endothelial and smooth muscle cells is modulated by bacterial endotoxin, proinflammatory cytokines, and atherogenic lipids. The recent colocalization of the cationic amino acid transporter CAT-1 (system y(+)), nitric oxide synthase (eNOS), and caveolin-1 in endothelial plasmalemmal caveolae provides a novel mechanism for the regulation of NO production by L-arginine delivery and circulating hormones such insulin and 17beta-estradiol.
Collapse
Affiliation(s)
- Giovanni E Mann
- Centre for Cardiovascular Biology and Medicine, Guy's, King's, and St. Thomas' School of Biomedical Sciences, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
37
|
Ben-Shalom E, Kobayashi K, Shaag A, Yasuda T, Gao HZ, Saheki T, Bachmann C, Elpeleg O. Infantile citrullinemia caused by citrin deficiency with increased dibasic amino acids. Mol Genet Metab 2002; 77:202-8. [PMID: 12409267 DOI: 10.1016/s1096-7192(02)00167-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In an infant who suffered from prolonged icterus and hepatocellular dysfunction we detected an increase of citrulline and dibasic amino acids in plasma and urine. The amino acid levels along with all the abnormal liver tests normalized upon replacing breast-milk by formula feeding; there was no relapse after human milk was tentatively reintroduced. A novel mutation, a approximately 9.5-kb genomic duplication, was identified in the citrin gene (SLC25A13) resulting in the insertion of exon 15. No mutation was detected in the CAT2A specific exon of the SLC7A2 gene which encodes for the liver transporter of cationic amino acids. This is the first report of infantile citrin deficiency in non-Asian patients.
Collapse
Affiliation(s)
- Efrat Ben-Shalom
- The Metabolic Disease Unit, Faculty of Medicine, Shaare-Zedek Medical Center, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Shasby DM. System N in eNdothelium. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1190-1. [PMID: 12003773 DOI: 10.1152/ajplung.00046.2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 2002; 27:139-47. [PMID: 11893511 DOI: 10.1016/s0968-0004(01)02054-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When comparing the transporters of three completely sequenced eukaryotic genomes--Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens--transporter types can be distinguished according to phylogeny, substrate spectrum, transport mechanism and cell specificity. The known amino acid transporters belong to five different superfamilies. Two preferentially Na(+)-coupled transporter superfamilies are not represented in the yeast and Arabidopsis genomes, whereas the other three groups, which often function as H(+)-coupled systems, have members in all investigated genomes. Additional superfamilies exist for organellar transport, including mitochondrial and plastidic carriers. When used in combination with phylogenetic analyses, functional comparison might aid our prediction of physiological functions for related but uncharacterized open reading frames.
Collapse
Affiliation(s)
- Daniel Wipf
- ZMBP, Plant Physiology, Auf der Morgenstelle 1, Eberhard-Karls-Universität Tübingen, D-72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Closs EI. Expression, regulation and function of carrier proteins for cationic amino acids. Curr Opin Nephrol Hypertens 2002; 11:99-107. [PMID: 11753094 DOI: 10.1097/00041552-200201000-00015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Different carrier proteins exhibiting distinct transport properties participate in cationic amino acid transport. There are sodium-independent systems, such as b+, y+, y+L and b0,+, and a sodium-dependent system B0,+, most of which have now been identified at the molecular level. In most non-epithelial cells, members of the cationic amino acid transporter (CAT) family mediating system y+ activity seem to be the major entry pathway for cationic amino acids. CAT proteins underlie complex regulation at the transcriptional, post-transcriptional and activity levels. Recent evidence indicates that individual CAT isoforms are necessary for providing the substrate for nitric oxide synthesis, for example CAT-1 for Ca2+-independent nitric oxide production in endothelial cells and CAT-2B for sustained nitric oxide production in macrophages.
Collapse
Affiliation(s)
- Ellen I Closs
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
42
|
Peteroy-Kelly M, Venketaraman V, Connell ND. Effects of Mycobacterium bovis BCG infection on regulation of L-arginine uptake and synthesis of reactive nitrogen intermediates in J774.1 murine macrophages. Infect Immun 2001; 69:5823-31. [PMID: 11500460 PMCID: PMC98700 DOI: 10.1128/iai.69.9.5823-5831.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The generation of nitric oxide (NO) by activated macrophages is believed to control mycobacterial infection in the murine system. In this study we examined the effect of Mycobacterium bovis BCG infection on the L-arginine-dependent NO pathway in J774.1 murine macrophages. We have confirmed previous results by demonstrating that stimulation of J774.1 with lipopolysaccharide (LPS) and gamma interferon (IFN-gamma) results in an increase in the uptake of 3H-labeled L-arginine and a concomitant increase in the production of NO. We have also shown that BCG can mimic LPS treatment, leading to enhanced L-[3H]arginine uptake by IFN-gamma-stimulated macrophages. Lipoarabinomannan, a component of the BCG cell wall that is structurally similar to LPS, is not responsible for the uptake stimulation in IFN-gamma stimulated macrophages. Although we demonstrated that there was a 2.5-fold increase in NO production by macrophages 4 h after LPS-IFN-gamma stimulation, BCG infection (with or without IFN-gamma stimulation) did not lead to the production of NO by the macrophages by 4 h postinfection. At 24 h postinfection, the infected macrophages that were stimulated with IFN-gamma produced amounts of NO similar to those of macrophages stimulated with LPS-IFN-gamma. This suggests that there are multiple regulatory pathways involved in the production of NO. Finally, our data suggest that increased expression of the arginine permease, MCAT2B, after 4 h of LPS-IFN-gamma treatment or BCG infection-IFN-gamma treatment is not sufficient to account for the increases in L-[3H]arginine uptake detected. This suggests that the activity of the L-arginine transporter(s) is also altered in response to macrophage activation.
Collapse
Affiliation(s)
- M Peteroy-Kelly
- Department of Microbiology and Molecular Genetics and National Tuberculosis Center, UMDNJ/New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | | | |
Collapse
|
43
|
Overbaugh J, Miller AD, Eiden MV. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol Mol Biol Rev 2001; 65:371-89, table of contents. [PMID: 11528001 PMCID: PMC99032 DOI: 10.1128/mmbr.65.3.371-389.2001] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the past few years, many retrovirus receptors, coreceptors, and cofactors have been identified. These molecules are important for some aspects of viral entry, although in some cases it remains to be determined whether they are required for binding or postbinding stages in entry, such as fusion. There are certain common features to the molecules that many retroviruses use to gain entry into the cell. For example, the receptors for most mammalian oncoretroviruses are multiple membrane-spanning transport proteins. However, avian retroviruses use single-pass membrane proteins, and a sheep retrovirus uses a glycosylphosphatidylinositol-anchored molecule as its receptor. For some retroviruses, particularly the lentiviruses, two cell surface molecules are required for efficient entry. More recently, a soluble protein that is required for viral entry has been identified for a feline oncoretrovirus. In this review, we will focus on the various strategies used by mammalian retroviruses to gain entry into the cell. The choice of receptors will also be discussed in light of pressures that drive viral evolution and persistence.
Collapse
Affiliation(s)
- J Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave., Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|
44
|
Abstract
The biochemistry and physiology of L-arginine have to be reconsidered in the light of the recent discovery that the amino acid is the only substrate of all isoforms of nitric oxide synthase (NOS). Generation of nitric oxide, NO, a versatile molecule in signaling processes and unspecific immune defense, is intertwined with synthesis, catabolism and transport of arginine which thus ultimately participates in the regulation of a fine-tuned balance between normal and pathophysiological consequences of NO production. The complex composition of the brain at the cellular level is reflected in a complex differential distribution of the enzymes of arginine metabolism. Argininosuccinate synthetase (ASS) and argininosuccinate lyase which together can recycle the NOS coproduct L-citrulline to L-arginine are expressed constitutively in neurons, but hardly colocalize with each other or with NOS in the same neuron. Therefore, trafficking of citrulline and arginine between neurons necessitates transport capacities in these cells which are fulfilled by well-described carriers for cationic and neutral amino acids. The mechanism of intercellular exchange of argininosuccinate, a prerequisite also for its proposed function as a neuromodulator, remains to be elucidated. In cultured astrocytes transcription and protein expression of arginine transport system y(+) and of ASS are upregulated concomittantly with immunostimulant-mediated induction of NOS-2. In vivo ASS-immunoreactivity was found in microglial cells in a rat model of brain inflammation and in neurons and glial cells in the brains of Alzheimer patients. Any attempt to estimate the contributions of arginine transport and synthesis to substrate supply for NOS has to consider competition for arginine between NOS and arginase, the latter enzyme being expressed as mitochondrial isoform II in nervous tissue. Generation of NOS inhibitors agmatine and methylarginines is documented for the nervous system. Suboptimal supply of NOS with arginine leads to production of detrimental peroxynitrite which may result in neuronal cell death. Data have been gathered recently which point to a particular role of astrocytes in neural arginine metabolism. Arginine appears to be accumulated in astroglial cells and can be released after stimulation with a variety of signals. It is proposed that an intercellular citrulline-NO cycle is operating in brain with astrocytes storing arginine for the benefit of neighbouring cells in need of the amino acid for a proper synthesis of NO.
Collapse
Affiliation(s)
- H Wiesinger
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler-Strasse 4, D-72076, Tübingen, Germany.
| |
Collapse
|
45
|
Kawahara K, Gotoh T, Oyadomari S, Kajizono M, Kuniyasu A, Ohsawa K, Imai Y, Kohsaka S, Nakayama H, Mori M. Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:165-73. [PMID: 11406294 DOI: 10.1016/s0169-328x(01)00100-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) produced by activated microglia has been implicated in many pathophysiological events in the brain including neurodegenerative diseases. Cellular NO production depends absolutely on the availability of arginine, a substrate of NO synthase (NOS). Murine microglial MG5 cells were treated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), and expression of inducible NO synthase (iNOS) and arginine-supplying enzymes was investigated by RNA blot analysis. iNOS mRNA was strongly induced after treatment and reached a maximum at 6-12 h. mRNA for argininosuccinate synthetase (AS), a citrulline-arginine recycling enzyme, increased at 6 h and reached a maximum at 12 h. Immunoblot analysis showed that iNOS and AS proteins were also induced. In addition, mRNA encoding the cationic amino acid transporter-2 (CAT-2) was strongly induced shortly after treatment. Induction of mRNAs for iNOS, AS, and CAT-2 by LPS/IFN-gamma was also observed following stimulation of rat primary microglial cells. These results strongly suggest that both arginine transport by CAT-2 and citrulline-arginine recycling are important for high-output production of NO in activated microglial cells.
Collapse
Affiliation(s)
- K Kawahara
- Department of Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Ohe-Honmachi, 862-0973, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sato H, Kuriyama-Matsumura K, Hashimoto T, Sasaki H, Wang H, Ishii T, Mann GE, Bannai S. Effect of oxygen on induction of the cystine transporter by bacterial lipopolysaccharide in mouse peritoneal macrophages. J Biol Chem 2001; 276:10407-12. [PMID: 11136724 DOI: 10.1074/jbc.m007216200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acid transport in mouse peritoneal macrophages is mediated by several membrane carriers with different substrate specificity and sensitivity to environmental stimuli. We reported previously that transport activities of cystine and arginine in the macrophages were induced markedly by low concentrations of bacterial lipopolysaccharide (LPS). It is known that a variety of macrophage functions are affected by ambient oxygen tension. In this study, we have investigated the effects of oxygen on the induction of amino acid transport activity by LPS and found that the induction of cystine, but not arginine, transport activity was dependent on the ambient oxygen tension. When the macrophages were cultured with 2% O(2) in the presence of 1 ng/ml LPS, induction of cystine transport activity was reduced by approximately 70% compared with cells cultured under normoxic conditions. In macrophages, transport of cystine is mediated by a Na(+)-independent anionic amino acid transporter named system x(c)(-). System x(c)(-) is composed of two protein components, xCT and 4F2hc, and the expression of xCT was closely correlated with system x(c)(-) activity. A putative NF-kappaB binding site was found in the 5'-flanking region of the xCT gene, but the enhanced expression of xCT by LPS and oxygen was not mediated by NF-kappaB binding. An increase in intracellular GSH in macrophages paralleled induction of xCT, but not gamma-glutamylcysteine synthetase. These results suggest the importance of system x(c)(-) in antioxidant defense in macrophages exposed to LPS and oxidative stress.
Collapse
Affiliation(s)
- H Sato
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI. Transforming growth factor-beta(1) stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 2001; 103:1121-7. [PMID: 11222476 DOI: 10.1161/01.cir.103.8.1121] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transforming growth factor-beta(1) (TGF-beta(1)) contributes to arterial remodeling by stimulating vascular smooth muscle cell (VSMC) growth and collagen synthesis at sites of vascular injury. Because L-arginine is metabolized to growth-stimulatory polyamines and to the essential collagen precursor L-proline, we examined whether TGF-beta(1) regulates the transcellular transport and metabolism of L-arginine by VSMCs. METHODS AND RESULTS TGF-beta(1) increased L-arginine uptake, and this was associated with a selective increase in cationic amino acid transporter-1 (CAT-1) mRNA. In addition, TGF-beta(1) stimulated L-arginine metabolism by inducing arginase I mRNA and arginase activity. TGF-beta(1) also stimulated L-ornithine catabolism by elevating ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) activity. TGF-beta(1) markedly increased the capacity of VSMCs to generate the polyamine putrescine and L-proline from extracellular L-arginine. The TGF-beta(1)-mediated increase in putrescine and L-proline production was reversed by methyl-L-arginine, a competitive inhibitor of cationic amino acid transport, or by hydroxy-L-arginine, an arginase inhibitor. Furthermore, the formation of putrescine was inhibited by the ODC inhibitor alpha-difluoromethylornithine, and L-proline generation was blocked by the OAT inhibitor L-canaline. L-Canaline also inhibited TGF-beta(1)-stimulated type I collagen synthesis. CONCLUSIONS These results demonstrate that TGF-beta(1) stimulates polyamine and L-proline synthesis by inducing the genes that regulate the transport and metabolism of L-arginine. In addition, they show that TGF-beta(1)-stimulated collagen production is dependent on L-proline formation. The ability of TGF-beta(1) to upregulate L-arginine transport and direct its metabolism to polyamines and L-proline may contribute to arterial remodeling at sites of vascular damage.
Collapse
Affiliation(s)
- W Durante
- Houston VA Medical Center and the Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
48
|
Stathopulos PB, Lu X, Shen J, Scott JA, Hammond JR, McCormack DG, Arnold JM, Feng Q. Increased L-arginine uptake and inducible nitric oxide synthase activity in aortas of rats with heart failure. Am J Physiol Heart Circ Physiol 2001; 280:H859-67. [PMID: 11158987 DOI: 10.1152/ajpheart.2001.280.2.h859] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-Arginine crosses the cell membrane primarily through the system y(+) transporter. The aim of this study was to investigate the role of L-arginine transport in nitric oxide (NO) production in aortas of rats with heart failure induced by myocardial infarction. Tumor necrosis factor-alpha levels in aortas of rats with heart failure were six times higher than in sham rats (P < 0.01). L-Arginine uptake was increased in aortas of rats with heart failure compared with sham rats (P < 0.01). Cationic amino acid transporter-2B and inducible (i) nitric oxide synthase (NOS) expression were increased in aortas of rats with heart failure compared with sham rats (P < 0.05). Aortic strips from rats with heart failure treated with L-arginine but not D-arginine increased NO production (P < 0.05). The effect of L-arginine on NO production was blocked by L-lysine, a basic amino acid that shares the same system y(+) transporter with L-arginine, and by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Treatment with L-lysine and L-NAME in vivo decreased plasma nitrate and nitrite levels in rats with heart failure (P < 0.05). Our data demonstrate that NO production is dependent on iNOS activity and L-arginine uptake and suggest that L-arginine transport plays an important role in enhanced NO production in heart failure.
Collapse
Affiliation(s)
- P B Stathopulos
- Cardiology Research Laboratory, Departments of Medicine, Pharmacology, and Toxicology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada N6A 4G5
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hammermann R, Dreißig MDM, Mössner J, Fuhrmann M, Berrino L, Göthert M, Racké K. Nuclear Factor-κB Mediates Simultaneous Induction of Inducible Nitric-Oxide Synthase and Up-Regulation of the Cationic Amino Acid Transporter CAT-2B in Rat Alveolar Macrophages. Mol Pharmacol 2000. [DOI: 10.1124/mol.58.6.1294] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Nawrath H, Wegener JW, Rupp J, Habermeier A, Closs EI. Voltage dependence of L-arginine transport by hCAT-2A and hCAT-2B expressed in oocytes from Xenopus laevis. Am J Physiol Cell Physiol 2000; 279:C1336-44. [PMID: 11029280 DOI: 10.1152/ajpcell.2000.279.5.c1336] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane potential and currents were investigated with the two-electrode voltage-clamp technique in Xenopus laevis oocytes expressing hCAT-2A or hCAT-2B, the splice variants of the human cationic amino acid transporter hCAT-2. Both hCAT-2A- and hCAT-2B-expressing oocytes exhibited a negative extracellular L-arginine concentration ([L-Arg](o))-sensitive membrane potential, additive to the K(+) diffusion potential, when cells were incubated in Leibovitz medium (containing 1.45 mM L-Arg and 0.25 mM L-lysine). The two carrier proteins produced inward and outward currents, which were dependent on the L-Arg gradient and membrane potential. Ion substitution experiments showed that the hCAT-induced currents were independent of external Na(+), K(+), Ca(2+), or Mg(2+). The apparent Michaelis-Menten constant values at -60 mV, obtained from plots of L-Arg-induced currents against [L-Arg](o), were 0.97 and 0.13 mM in oocytes expressing hCAT-2A and hCAT-2B, respectively; maximal currents amounted to -194 +/- 8 and -84 +/- 2 nA, respectively. At saturating [L-Arg](o), the current-voltage relationships of hCAT-2A-expressing oocytes became steeper, yielding an additional conductance up to 2 microS/oocyte, whereas those of hCAT-2B-expressing oocytes were simply shifted to the right, resulting in voltage-independent difference currents. The distinct electrochemical properties of the two isoforms of hCAT-2 are assumed to contribute differentially to the membrane transport and the maintenance of cationic amino acids in various tissues.
Collapse
Affiliation(s)
- H Nawrath
- Department of Pharmacology, Johannes Gutenberg University, 55101 Mainz, Germany.
| | | | | | | | | |
Collapse
|