1
|
He S, Wang Z, Zhu Y, Sun M, Lin X. Elucidating the immunomodulatory roles and mechanisms of CUL4B in the immune system: a comprehensive review. Front Immunol 2025; 16:1473817. [PMID: 40230836 PMCID: PMC11994656 DOI: 10.3389/fimmu.2025.1473817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Cullin 4B (CUL4B), a pivotal member of the Cullins protein family, plays a crucial role in immune regulation and has garnered significant research attention. CUL4B, through the Cullin 4B-RING E3 ubiquitin ligase (CRL4B) complex, regulates CD4+ T cell differentiation, fostering a balance between TH1 and TH2 subsets, and expedites DNA damage repair to bolster T cell persistence. In B cells, CUL4B upregulation stimulates immune responses but is linked to an unfavorable prognosis in lymphoma. In innate immunity, CUL4B modulates Toll-like receptor (TLR)-mediated anti-inflammatory responses, enhancing macrophage migration and adhesion. CUL4B also plays a role in potentiating anti-tumor immunity by restricting the activity of myeloid-derived suppressor cells (MDSCs). In disease pathogenesis, CUL4B limits MDSCs to enhance anti-tumor effects, and its inhibition in experimental autoimmune encephalomyelitis (EAE) models have demonstrated beneficial effects, underscoring its potential therapeutic significance in autoimmune diseases. Furthermore, CUL4B is involved in various immune-related cancers and inflammation, including pleural mesothelioma, human osteosarcoma, and colitis-associated cancer. In metabolic diseases, CUL4B regulates adipose tissue and insulin sensitivity, with its depletion improving metabolic phenotypes. This review highlights the pivotal role of CUL4B in maintaining immune homeostasis and provides novel perspectives and insights into the understanding and development of treatments for immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Mingfang Sun
- Department of Pathology, The First Hospital of China Medical University,
Shenyang, Liaoning, China
| | - Xuyong Lin
- Department of Pathology, The First Hospital of China Medical University,
Shenyang, Liaoning, China
| |
Collapse
|
2
|
Ouyang J. Transcription as a double-edged sword in genome maintenance. FEBS Lett 2025; 599:147-156. [PMID: 39704019 DOI: 10.1002/1873-3468.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways. The transcription-coupled nucleotide excision repair (TC-NER) pathway has been well studied for decades, while the transcription-coupled homologous recombination repair (TC-HR) pathway has recently gained attention. Importantly, recent studies have uncovered crucial roles of RNA transcripts in TC-HR, opening exciting directions for future research. Transcription also plays pivotal roles in regulating the stability of highly specialized genomic structures such as telomeres, centromeres, and fragile sites. Despite their positive function in genome maintenance, transcription and RNA transcripts can also be the sources of genomic instability, especially when colliding with DNA replication and forming unscheduled pathological RNA:DNA hybrids (R-loops), respectively. Pathological R-loops can result from transcriptional stress, which may be induced by transcription dysregulation. Future investigation into the interplay between transcription and DNA repair will reveal novel molecular bases for genome maintenance and transcriptional stress-associated genomic instability, providing therapeutic targets for human disease intervention.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Biochemistry and Molecular Biology
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Koldenhof P, Bemelmans MP, Ghosh B, Damm-Ganamet KL, van Vlijmen HWT, Pande V. Application of AlphaFold models in evaluating ligandable cysteines across E3 ligases. Proteins 2024; 92:819-829. [PMID: 38337153 DOI: 10.1002/prot.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.
Collapse
Affiliation(s)
- Patrick Koldenhof
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| | | | - Brahma Ghosh
- Discovery Chemistry, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | | | | | - Vineet Pande
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| |
Collapse
|
4
|
Grønbæk-Thygesen M, Kampmeyer C, Hofmann K, Hartmann-Petersen R. The moonlighting of RAD23 in DNA repair and protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194925. [PMID: 36863450 DOI: 10.1016/j.bbagrm.2023.194925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
A moonlighting protein is one, which carries out multiple, often wholly unrelated, functions. The RAD23 protein is a fascinating example of this, where the same polypeptide and the embedded domains function independently in both nucleotide excision repair (NER) and protein degradation via the ubiquitin-proteasome system (UPS). Hence, through direct binding to the central NER component XPC, RAD23 stabilizes XPC and contributes to DNA damage recognition. Conversely, RAD23 also interacts directly with the 26S proteasome and ubiquitylated substrates to mediate proteasomal substrate recognition. In this function, RAD23 activates the proteolytic activity of the proteasome and engages specifically in well-characterized degradation pathways through direct interactions with E3 ubiquitin-protein ligases and other UPS components. Here, we summarize the past 40 years of research into the roles of RAD23 in NER and the UPS.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Kusakabe M, Kakumu E, Kurihara F, Tsuchida K, Maeda T, Tada H, Kusao K, Kato A, Yasuda T, Matsuda T, Nakao M, Yokoi M, Sakai W, Sugasawa K. Histone deacetylation regulates nucleotide excision repair through an interaction with the XPC protein. iScience 2022; 25:104040. [PMID: 35330687 PMCID: PMC8938288 DOI: 10.1016/j.isci.2022.104040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 12/05/2022] Open
Abstract
The XPC protein complex plays a central role in DNA lesion recognition for global genome nucleotide excision repair (GG-NER). Lesion recognition can be accomplished in either a UV-DDB-dependent or -independent manner; however, it is unclear how these sub-pathways are regulated in chromatin. Here, we show that histone deacetylases 1 and 2 facilitate UV-DDB-independent recruitment of XPC to DNA damage by inducing histone deacetylation. XPC localizes to hypoacetylated chromatin domains in a DNA damage-independent manner, mediated by its structurally disordered middle (M) region. The M region interacts directly with the N-terminal tail of histone H3, an interaction compromised by H3 acetylation. Although the M region is dispensable for in vitro NER, it promotes DNA damage removal by GG-NER in vivo, particularly in the absence of UV-DDB. We propose that histone deacetylation around DNA damage facilitates the recruitment of XPC through the M region, contributing to efficient lesion recognition and initiation of GG-NER. Histone deacetylation by HDAC1/2 promotes the DNA lesion recognition by XPC The HDAC1/2 activators, MTA proteins, also promote the recruitment of XPC XPC tends to localize in hypoacetylated chromatin independently of DNA damage Disordered middle region of XPC interacts with histone H3 tail and promotes GG-NER
Collapse
|
6
|
Yang L, Chen W, Li L, Xiao Y, Fan S, Zhang Q, Xia T, Li M, Hong Y, Zhao T, Li Q, Liu WH, Xiao N. Ddb1 Is Essential for the Expansion of CD4 + Helper T Cells by Regulating Cell Cycle Progression and Cell Death. Front Immunol 2021; 12:722273. [PMID: 34526995 PMCID: PMC8435776 DOI: 10.3389/fimmu.2021.722273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T (TFH) cells are specialized CD4+ helper T cells that provide help to B cells in humoral immunity. However, the molecular mechanism underlying generation of TFH cells is incompletely understood. Here, we reported that Damage-specific DNA binding protein 1 (Ddb1) was required for expansion of CD4+ helper T cells including TFH and Th1 cells, germinal center response, and antibody response to acute viral infection. Ddb1 deficiency in activated CD4+ T cells resulted in cell cycle arrest at G2-M phase and increased cell death, due to accumulation of DNA damage and hyperactivation of ATM/ATR-Chk1 signaling. Moreover, mice with deletion of both Cul4a and Cul4b in activated CD4+ T cells phenocopied Ddb1-deficient mice, suggesting that E3 ligase-dependent function of Ddb1 was crucial for genome maintenance and helper T-cell generation. Therefore, our results indicate that Ddb1 is an essential positive regulator in the expansion of CD4+ helper T cells.
Collapse
Affiliation(s)
- Lingtao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yueyue Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shilin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Quan Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Tian Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mengjie Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tongjin Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
8
|
Wang X, Wang HY, Hu GS, Tang WS, Weng L, Zhang Y, Guo H, Yao SS, Liu SY, Zhang GL, Han Y, Liu M, Zhang XD, Cen X, Shen HF, Xiao N, Liu CQ, Wang HR, Huang J, Liu W, Li P, Zhao TJ. DDB1 binds histone reader BRWD3 to activate the transcriptional cascade in adipogenesis and promote onset of obesity. Cell Rep 2021; 35:109281. [PMID: 34161765 DOI: 10.1016/j.celrep.2021.109281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity has become a global pandemic. Identification of key factors in adipogenesis helps to tackle obesity and related metabolic diseases. Here, we show that DDB1 binds the histone reader BRWD3 to promote adipogenesis and diet-induced obesity. Although typically recognized as a component of the CUL4-RING E3 ubiquitin ligase complex, DDB1 stimulates adipogenesis independently of CUL4. A DDB1 mutant that does not bind CUL4A or CUL4B fully restores adipogenesis in DDB1-deficient cells. Ddb1+/- mice show delayed postnatal development of white adipose tissues and are protected from diet-induced obesity. Mechanistically, by interacting with BRWD3, DDB1 is recruited to acetylated histones in the proximal promoters of ELK1 downstream immediate early response genes and facilitates the release of paused RNA polymerase II, thereby activating the transcriptional cascade in adipogenesis. Our findings have uncovered a CUL4-independent function of DDB1 in promoting the transcriptional cascade of adipogenesis, development of adipose tissues, and onset of obesity.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hao-Yan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Wen-Shuai Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Weng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuzhu Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shan-Shan Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shen-Ying Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China
| | - Guo-Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Han
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Cen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Feng Shen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chang-Qin Liu
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
10
|
Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sci Rep 2020; 10:19704. [PMID: 33184426 PMCID: PMC7665181 DOI: 10.1038/s41598-020-76898-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.
Collapse
|
11
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
12
|
Koyen AE, Madden MZ, Park D, Minten EV, Kapoor-Vazirani P, Werner E, Pfister NT, Haji-Seyed-Javadi R, Zhang H, Xu J, Deng N, Duong DM, Pecen TJ, Frazier Z, Nagel ZD, Lazaro JB, Mouw KW, Seyfried NT, Moreno CS, Owonikoko TK, Deng X, Yu DS. EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Oncogene 2020; 39:4798-4813. [PMID: 32457468 PMCID: PMC7305988 DOI: 10.1038/s41388-020-1332-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated with resistance to cisplatin-based chemotherapy. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which silences transcription through trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we show that EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair (NER) and govern cisplatin resistance in SCLC. Using a synthetic lethality screen, we identified important regulators of cisplatin resistance in SCLC cells, including EZH2. EZH2 depletion causes cellular cisplatin and UV hypersensitivity in an epistatic manner with DDB1-DDB2. EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by impairing its ubiquitination independent of methyltransferase activity or PRC2, thereby facilitating DDB2 localization to cyclobutane pyrimidine dimer crosslinks to govern their repair. Furthermore, targeting EZH2 for depletion with DZNep strongly sensitizes SCLC cells and tumors to cisplatin. Our findings reveal a non-catalytic and PRC2-independent function for EZH2 in promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 beyond its catalytic activity for overcoming cisplatin resistance in SCLC.
Collapse
Affiliation(s)
- Allyson E Koyen
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Matthew Z Madden
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erica Werner
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Neil T Pfister
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Hui Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jie Xu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nikita Deng
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Turner J Pecen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zoë Frazier
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Beecher M, Kumar N, Jang S, Rapić-Otrin V, Van Houten B. Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer. DNA Repair (Amst) 2020; 94:102860. [PMID: 32739133 DOI: 10.1016/j.dnarep.2020.102860] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023]
Abstract
UV-damaged DNA binding protein (UV-DDB) is a heterodimeric complex, composed of DDB1 and DDB2, and is involved in global genome nucleotide excision repair. Mutations in DDB2 are associated with xeroderma pigmentosum complementation group E. UV-DDB forms a ubiquitin E3 ligase complex with cullin-4A and RBX that helps to relax chromatin around UV-induced photoproducts through the ubiquitination of histone H2A. After providing a brief historical perspective on UV-DDB, we review our current knowledge of the structure and function of this intriguing repair protein. Finally, this article discusses emerging data suggesting that UV-DDB may have other non-canonical roles in base excision repair and the etiology of cancer.
Collapse
Affiliation(s)
- Maria Beecher
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sunbok Jang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020; 21:ijms21062182. [PMID: 32235701 PMCID: PMC7139726 DOI: 10.3390/ijms21062182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein–protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.
Collapse
|
15
|
Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. Cell 2020; 180:677-687.e16. [PMID: 32004458 DOI: 10.1016/j.cell.2020.01.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 01/27/2023]
Abstract
Admixture has played a prominent role in shaping patterns of human genomic variation, including gene flow with now-extinct hominins like Neanderthals and Denisovans. Here, we describe a novel probabilistic method called IBDmix to identify introgressed hominin sequences, which, unlike existing approaches, does not use a modern reference population. We applied IBDmix to 2,504 individuals from geographically diverse populations to identify and analyze Neanderthal sequences segregating in modern humans. Strikingly, we find that African individuals carry a stronger signal of Neanderthal ancestry than previously thought. We show that this can be explained by genuine Neanderthal ancestry due to migrations back to Africa, predominately from ancestral Europeans, and gene flow into Neanderthals from an early dispersing group of humans out of Africa. Our results refine our understanding of Neanderthal ancestry in African and non-African populations and demonstrate that remnants of Neanderthal genomes survive in every modern human population studied to date.
Collapse
|
16
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
17
|
Kusakabe M, Onishi Y, Tada H, Kurihara F, Kusao K, Furukawa M, Iwai S, Yokoi M, Sakai W, Sugasawa K. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ 2019; 41:2. [PMID: 30700997 PMCID: PMC6346561 DOI: 10.1186/s41021-019-0119-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
Nucleotide excision repair (NER) is a versatile DNA repair pathway, which can remove an extremely broad range of base lesions from the genome. In mammalian global genomic NER, the XPC protein complex initiates the repair reaction by recognizing sites of DNA damage, and this depends on detection of disrupted/destabilized base pairs within the DNA duplex. A model has been proposed that XPC first interacts with unpaired bases and then the XPD ATPase/helicase in concert with XPA verifies the presence of a relevant lesion by scanning a DNA strand in 5′-3′ direction. Such multi-step strategy for damage recognition would contribute to achieve both versatility and accuracy of the NER system at substantially high levels. In addition, recognition of ultraviolet light (UV)-induced DNA photolesions is facilitated by the UV-damaged DNA-binding protein complex (UV-DDB), which not only promotes recruitment of XPC to the damage sites, but also may contribute to remodeling of chromatin structures such that the DNA lesions gain access to XPC and the following repair proteins. Even in the absence of UV-DDB, however, certain types of histone modifications and/or chromatin remodeling could occur, which eventually enable XPC to find sites with DNA lesions. Exploration of novel factors involved in regulation of the DNA damage recognition process is now ongoing.
Collapse
Affiliation(s)
- Masayuki Kusakabe
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Yuki Onishi
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Haruto Tada
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Fumika Kurihara
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Kanako Kusao
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Mari Furukawa
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Shigenori Iwai
- 4Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531 Japan
| | - Masayuki Yokoi
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Wataru Sakai
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Kaoru Sugasawa
- 1Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,2Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan.,3Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| |
Collapse
|
18
|
Aleksandrov R, Dotchev A, Poser I, Krastev D, Georgiev G, Panova G, Babukov Y, Danovski G, Dyankova T, Hubatsch L, Ivanova A, Atemin A, Nedelcheva-Veleva MN, Hasse S, Sarov M, Buchholz F, Hyman AA, Grill SW, Stoynov SS. Protein Dynamics in Complex DNA Lesions. Mol Cell 2019; 69:1046-1061.e5. [PMID: 29547717 DOI: 10.1016/j.molcel.2018.02.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/26/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
A single mutagen can generate multiple different types of DNA lesions. How different repair pathways cooperate in complex DNA lesions, however, remains largely unclear. Here we measured, clustered, and modeled the kinetics of recruitment and dissociation of 70 DNA repair proteins to laser-induced DNA damage sites in HeLa cells. The precise timescale of protein recruitment reveals that error-prone translesion polymerases are considerably delayed compared to error-free polymerases. We show that this is ensured by the delayed recruitment of RAD18 to double-strand break sites. The time benefit of error-free polymerases disappears when PARP inhibition significantly delays PCNA recruitment. Moreover, removal of PCNA from complex DNA damage sites correlates with RPA loading during 5'-DNA end resection. Our systematic study of the dynamics of DNA repair proteins in complex DNA lesions reveals the multifaceted coordination between the repair pathways and provides a kinetics-based resource to study genomic instability and anticancer drug impact.
Collapse
Affiliation(s)
- Radoslav Aleksandrov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Anton Dotchev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Dragomir Krastev
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Georgi Georgiev
- Faculty of Mathematics and Informatics, Sofia University, St. Kliment Ohridski, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Greta Panova
- Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA
| | - Yordan Babukov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria; Faculty of Mathematics and Informatics, Sofia University, St. Kliment Ohridski, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Georgi Danovski
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Teodora Dyankova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Lars Hubatsch
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Aneliya Ivanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Aleksandar Atemin
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Marina N Nedelcheva-Veleva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Susanne Hasse
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute for Molecular Cell Biology and Genetics, 108 Pfotenhauerstr., 01307 Dresden, Germany
| | - Stoyno S Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria.
| |
Collapse
|
19
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
DNA Damage and Deficiencies in the Mechanisms of Its Repair: Implications in the Pathogenesis of Systemic Lupus Erythematosus. J Immunol Res 2018; 2018:8214379. [PMID: 30116756 PMCID: PMC6079408 DOI: 10.1155/2018/8214379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a perplexing and potentially severe disease, the pathogenesis of which is yet to be understood. SLE is considered to be a multifactorial disease, in which genetic factors, immune dysregulation, and environmental factors, such as ultraviolet radiation, are involved. Recently, the description of novel genes conferring susceptibility to develop SLE even in their own (monogenic lupus) has raised the interest in DNA dynamics since many of these genes are linked to DNA repair. Damage to DNA induces an inflammatory response and eventually triggers an immune response, including those targeting self-antigens. We review the evidence that indicates that patients with SLE present higher levels of DNA damage than normal subjects do and that several proteins involved in the preservation of the genomic stability show polymorphisms, some of which increase the risk for SLE development. Also, the experience from animal models reinforces the connection between DNA damage and defective repair in the development of SLE-like disease including characteristic features such as anti-DNA antibodies and nephritis. Defining the role of DNA damage response in SLE pathogenesis might be strategic in the quest for novel therapies.
Collapse
|
21
|
Bukowska B, Karwowski BT. Actual state of knowledge in the field of diseases related with defective nucleotide excision repair. Life Sci 2018; 195:6-18. [DOI: 10.1016/j.lfs.2017.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/11/2022]
|
22
|
Ben Rekaya M, Naouali C, Messaoud O, Jones M, Bouyacoub Y, Nagara M, Pippucci T, Jmel H, Chargui M, Jerbi M, Alibi M, Dallali H, Bashamboo A, McElreavey K, Romeo G, Barakat A, Zghal M, Yacoub-Youssef H, Abdelhak S. Whole Exome Sequencing allows the identification of two novel groups of Xeroderma pigmentosum in Tunisia, XP-D and XP-E: Impact on molecular diagnosis. J Dermatol Sci 2018; 89:172-180. [DOI: 10.1016/j.jdermsci.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 08/02/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
|
23
|
Okuda M, Nakazawa Y, Guo C, Ogi T, Nishimura Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res 2017; 45:13043-13055. [PMID: 29069470 PMCID: PMC5727438 DOI: 10.1093/nar/gkx970] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
Nucleotide excision repair is initiated by two different damage recognition subpathways, global genome repair (GGR) and transcription-coupled repair (TCR). In GGR, XPC detects DNA lesions and recruits TFIIH via interaction with the pleckstrin homology (PH) domain of TFIIH subunit p62. In TCR, an elongating form of RNA Polymerase II detects a lesion on the transcribed strand and recruits TFIIH by an unknown mechanism. Here, we found that the TCR initiation factor UVSSA forms a stable complex with the PH domain of p62 via a short acidic string in the central region of UVSSA, and determined the complex structure by NMR. The acidic string of UVSSA binds strongly to the basic groove of the PH domain by inserting Phe408 and Val411 into two pockets, highly resembling the interaction mechanism of XPC with p62. Mutational binding analysis validated the structure and identified residues crucial for binding. TCR activity was markedly diminished in UVSSA-deficient cells expressing UVSSA mutated at Phe408 or Val411. Thus, a common TFIIH recruitment mechanism is shared by UVSSA in TCR and XPC in GGR.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuka Nakazawa
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
24
|
Gómez-Moreno A, Garaigorta U. Hepatitis B Virus and DNA Damage Response: Interactions and Consequences for the Infection. Viruses 2017; 9:v9100304. [PMID: 29048354 PMCID: PMC5691655 DOI: 10.3390/v9100304] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is a major etiologic agent of acute and chronic hepatitis, and end-stage liver disease. Establishment of HBV infection, progression to persistency and pathogenesis are determined by viral and cellular factors, some of which remain still undefined. Key steps of HBV life cycle e.g., transformation of genomic viral DNA into transcriptionally active episomal DNA (cccDNA) or transcription of viral mRNAs from cccDNA, take place in the nucleus of infected cells and strongly depend on enzymatic activities provided by cellular proteins. In this regard, DNA damage response (DDR) pathways and some DDR proteins are being recognized as important factors regulating the infection. On one hand, HBV highjacks specific DDR proteins to successfully complete some of the steps of its life cycle. On the other hand, HBV subverts DDR pathways to presumably create a cellular environment that favours its replication. Direct consequences of these interactions are: HBV DNA integration into host chromosomal DNA, and accumulation of mutations in host chromosomal DNA that could eventually trigger carcinogenic processes, which would explain in part the incidence of hepatocellular carcinoma in chronically infected patients. Unravelling the interactions that HBV establishes with DDR pathways might help identify new molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andoni Gómez-Moreno
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| | - Urtzi Garaigorta
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
25
|
Genetic variants in ERCC1 and XPC predict survival outcome of non-small cell lung cancer patients treated with platinum-based therapy. Sci Rep 2017; 7:10702. [PMID: 28878296 PMCID: PMC5587538 DOI: 10.1038/s41598-017-10800-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Nucleotide excision repair (NER) plays a vital role in platinum-induced DNA damage during chemotherapy. We hypothesize that regulatory single nucleotide polymorphisms (rSNPs) of the core NER genes modulate clinical outcome of patients with advanced non-small cell lung cancer (NSCLC) treated with platinum-based chemotherapy (PBS). We investigated associations of 25 rSNPs in eight NER genes with progression free survival (PFS) and overall survival (OS) in 710 NSCLC patients. We found that ERCC1 rs3212924 AG/GG and XPC rs2229090 GC/CC genotypes were associated with patients’ PFS (HRadj = 1.21, 95% CI = 1.03–1.43, Padj = 0.021 for ERCC1 and HRadj = 0.80, 95% CI = 0.68–0.94, Padj = 0.007 for XPC), compared with the AA and GG genotypes, respectively. The association of XPC rs2229090 was more apparent in adenocarcinoma than in squamous cell carcinoma patients. Additionally, ERCC4 rs1799798 GA/AA genotypes were associated with poorer OS (HRadj = 1.32, 95% CI = 1.04–1.69, Padj = 0.026), compared with the GG genotype. The expression quantitative trait loci analysis revealed that ERCC1 rs3212924 and XPC rs2229090 might regulate transcription of their genes, which is consistent with their associations with survival. Larger studies are needed to validate our findings with further functional studies to elucidate the mechanisms underlying these observed associations.
Collapse
|
26
|
Abstract
Nucleotide excision repair (NER) is a highly versatile and efficient DNA repair process, which is responsible for the removal of a large number of structurally diverse DNA lesions. Its extreme broad substrate specificity ranges from DNA damages formed upon exposure to ultraviolet radiation to numerous bulky DNA adducts induced by mutagenic environmental chemicals and cytotoxic drugs used in chemotherapy. Defective NER leads to serious diseases, such as xeroderma pigmentosum (XP). Eight XP complementation groups are known of which seven (XPA-XPG) are caused by mutations in genes involved in the NER process. The eighth gene, XPV, codes for the DNA polymerase ɳ, which replicates through DNA lesions in a process called translesion synthesis (TLS). Over the past decade, detailed structural information of these DNA repair proteins involved in eukaryotic NER and TLS have emerged. These structures allow us now to understand the molecular mechanism of the NER and TLS processes in quite some detail and we have begun to understand the broad substrate specificity of NER. In this review, we aim to highlight recent advances in the process of damage recognition and repair as well as damage tolerance by the XP proteins.
Collapse
|
27
|
Tarrade S, Bhardwaj T, Flegal M, Bertrand L, Velegzhaninov I, Moskalev A, Klokov D. Histone H2AX Is Involved in FoxO3a-Mediated Transcriptional Responses to Ionizing Radiation to Maintain Genome Stability. Int J Mol Sci 2015; 16:29996-30014. [PMID: 26694365 PMCID: PMC4691159 DOI: 10.3390/ijms161226216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
Histone H2AX plays a crucial role in molecular and cellular responses to DNA damage and in the maintenance of genome stability. It is downstream of ataxia telangiectasia mutated (ATM) damage signaling pathway and there is an emerging role of the transcription factor FoxO3a, a regulator of a variety of other pathways, in activating this signaling. We asked whether H2AX may feedback to FoxO3a to affect respective FoxO3a-dependent pathways. We used a genetically matched pair of mouse embryonic fibroblast H2AX+/+ and H2AX−/− cell lines to carry out comprehensive time-course and dose-response experiments and to show that the expression of several FoxO3a-regulated genes was altered in H2AX−/− compared to H2AX+/+ cells at both basal and irradiated conditions. Hspa1b and Gadd45a were down-regulated four- to five-fold and Ddit3, Cdkn1a and Sod2 were up-regulated 2–3-fold in H2AX−/− cells. Using the luciferase reporter assay, we directly demonstrated that transcriptional activity of FoxoO3a was reduced in H2AX−/− cells. FoxO3a localization within the nuclear phospho-ATM (Ser1981) foci in irradiated cells was affected by the H2AX status, as well as its posttranslational modification (phospho-Thr32). These differences were associated with genomic instability and radiosensitivity in H2AX−/− cells. Finally, knockdown of H2AX in H2AX+/+ cells resulted in FoxO3a-dependent gene expression patterns and increased radiosensitivity that partially mimicked those found in H2AX−/− cells. Taken together, our data suggest a role for FoxO3a in the maintenance of genome integrity in response to DNA damage that is mediated by H2AX via yet unknown mechanisms.
Collapse
Affiliation(s)
- Stephane Tarrade
- Canadian Nuclear Laboratories, Stn 51, Chalk River, ON K0J 1P0, Canada.
| | - Tanya Bhardwaj
- Canadian Nuclear Laboratories, Stn 51, Chalk River, ON K0J 1P0, Canada.
| | - Matthew Flegal
- Canadian Nuclear Laboratories, Stn 51, Chalk River, ON K0J 1P0, Canada.
| | - Lindsey Bertrand
- Canadian Nuclear Laboratories, Stn 51, Chalk River, ON K0J 1P0, Canada.
| | - Ilya Velegzhaninov
- Institute of Biology, Komi Science Center of RAS, 28b Kommunisticheskaya St, Syktyvkar 167982, Russia.
| | - Alexey Moskalev
- Institute of Biology, Komi Science Center of RAS, 28b Kommunisticheskaya St, Syktyvkar 167982, Russia.
- Department of Ecology, Syktyvkar State University, Syktyvkar 167001, Russia.
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Stn 51, Chalk River, ON K0J 1P0, Canada.
| |
Collapse
|
28
|
Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Sci Rep 2015; 5:16330. [PMID: 26573481 PMCID: PMC4648065 DOI: 10.1038/srep16330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
UV-DDB, an initiation factor for the nucleotide excision repair pathway, recognizes
6–4PP lesions through a base flipping mechanism. As genomic DNA is
almost entirely accommodated within nucleosomes, the flipping of the
6–4PP bases is supposed to be extremely difficult if the lesion occurs
in a nucleosome, especially on the strand directly contacting the histone surface.
Here we report that UV-DDB binds efficiently to nucleosomal 6–4PPs that
are rotationally positioned on the solvent accessible or occluded surface. We
determined the crystal structures of nucleosomes containing 6–4PPs in
these rotational positions, and found that the 6–4PP DNA regions were
flexibly disordered, especially in the strand exposed to the solvent. This
characteristic of 6–4PP may facilitate UV-DDB binding to the damaged
nucleosome. We present the first atomic-resolution pictures of the detrimental DNA
cross-links of neighboring pyrimidine bases within the nucleosome, and provide the
mechanistic framework for lesion recognition by UV-DDB in chromatin.
Collapse
|
29
|
Candiano G, Santucci L, Petretto A, Lavarello C, Inglese E, Bruschi M, Ghiggeri GM, Boschetti E, Righetti PG. Widening and Diversifying the Proteome Capture by Combinatorial Peptide Ligand Libraries via Alcian Blue Dye Binding. Anal Chem 2015; 87:4814-20. [DOI: 10.1021/acs.analchem.5b00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Candiano
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Laura Santucci
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Andrea Petretto
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Chiara Lavarello
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Elvira Inglese
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | | | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering, “Giulio
Natta”, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
30
|
Kim I, He YY. Ultraviolet radiation-induced non-melanoma skin cancer: Regulation of DNA damage repair and inflammation. Genes Dis 2014; 1:188-198. [PMID: 25642450 PMCID: PMC4307792 DOI: 10.1016/j.gendis.2014.08.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023] Open
Abstract
Exposure to ultraviolet (UV) radiation is associated with approximately 65% of melanoma cases, and 90% of non-melanoma skin cancers (NMSC), including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). While the incidence of most other malignancies has either stabilized or declined, that of NMSC has increased and is developing even in younger age groups. NMSCs account for nearly 15,000 deaths, 3.5 million new cases, and more than 3 billion dollars a year in medical costs in the United States alone, representing a major public health concern. As sun protection efforts have not been proven effective, targeted chemoprevention strategies are much needed. Skin carcinogenesis by DNA damage is considered a predominant paradigm for UV toxicity. Exposure to UV radiation can activate various oncogenes while inactivating tumor suppressor genes, resulting in inappropriate survival and proliferation of keratinocytes that harbor these damages. Moreover, increasing evidence demonstrate that inflammatory responses by the immune cells within the tumor microenvironment also contribute significantly to skin tumorigenesis. Initiation and progression of skin carcinogenesis mediated by UV radiation involve complex pathways, including those of apoptosis, proliferation, autophagy, DNA repair, checkpoint signaling, metabolism, and inflammation. In this review, we highlight the recent advances in two of these key molecular processes that result in UV-mediated skin carcinogenesis. In particular, we discuss 1) pathways that regulate DNA damage repair and 2) the regulation of the inflammatory process its crosstalk with DNA repair potentially leading to non-melanoma skin carcinogenesis.
Collapse
Affiliation(s)
- InYoung Kim
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S. Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 2014; 77:139-51. [PMID: 25224035 DOI: 10.1016/j.freeradbiomed.2014.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
Breast cancer is one of the most common malignancies of all cancers in women worldwide. Many difficulties reside in the prediction of tumor metastatic progression because of the lack of sufficiently reliable predictive biological markers, and this is a permanent preoccupation for clinicians. Manganese superoxide dismutase (MnSOD) may represent a rational candidate as a predictive biomarker of breast tumor metastatic progression, because its gene expression is profoundly altered between early and advanced breast cancer, in contrast to expression in the normal mammary gland. In this review, we report the characterization of some gene polymorphisms and molecular mechanisms of SOD2 gene regulation, which allows a better understanding of how MnSOD is decreased in early breast cancer and increased in advanced breast cancer. Several studies display the biological significance of MnSOD level in proliferation as well as in invasive and angiogenic abilities of breast tumor cells by controlling superoxide anion radical (O2(•-)) and hydrogen peroxide (H2O2). Particularly, they report how these reactive oxygen species may activate some signaling pathways involved in breast tumor growth. Emerging understanding of these findings provides an interesting framework for guiding translational research and suggests a way to define precisely the clinical interest of MnSOD as a prognostic and/or predicting marker in breast cancer, by associating with some regulators involved in SOD2 gene regulation and other well-known biomarkers, in addition to the typical clinical parameters.
Collapse
Affiliation(s)
- Philippe Becuwe
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | - Marie Ennen
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Rémi Klotz
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Claire Barbieux
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphanie Grandemange
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
32
|
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-53. [PMID: 25375928 DOI: 10.1038/nm.3739] [Citation(s) in RCA: 942] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.
Collapse
Affiliation(s)
- Doris Popovic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA
| | - Ivan Dikic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [3] Department of Immunology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
33
|
Cai Q, Fu L, Wang Z, Gan N, Dai X, Wang Y. α-N-methylation of damaged DNA-binding protein 2 (DDB2) and its function in nucleotide excision repair. J Biol Chem 2014; 289:16046-56. [PMID: 24753253 DOI: 10.1074/jbc.m114.558510] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DDB2 exhibits a high affinity toward UV-damaged DNA, and it is involved in the initial steps of global genome nucleotide excision repair. Mutations in the DDB2 gene cause the genetic complementation group E of xeroderma pigmentosum, an autosomal recessive disease manifested clinically by hypersensitivity to sunlight exposure and an increased predisposition to skin cancer. Here we found that, in human cells, the initiating methionine residue in DDB2 was removed and that the N-terminal alanine could be methylated on its α-amino group in human cells, with trimethylation being the major form. We also demonstrated that the α-N-methylation of DDB2 is catalyzed by the N-terminal RCC1 methyltransferase. In addition, a methylation-defective mutant of DDB2 displayed diminished nuclear localization and was recruited at a reduced efficiency to UV-induced cyclobutane pyrimidine dimer foci. Moreover, loss of this methylation conferred compromised ATM (ataxia telangiectasia mutated) activation, decreased efficiency in cyclobutane pyrimidine dimer repair, and elevated sensitivity of cells toward UV light exposure. Our study provides new knowledge about the posttranslational regulation of DDB2 and expands the biological functions of protein α-N-methylation to DNA repair.
Collapse
Affiliation(s)
- Qian Cai
- From the Environmental Toxicology Graduate Program and
| | - Lijuan Fu
- From the Environmental Toxicology Graduate Program and
| | - Zi Wang
- From the Environmental Toxicology Graduate Program and
| | - Nanqin Gan
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- From the Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
34
|
Seo KI, Lee JH, Nezames CD, Zhong S, Song E, Byun MO, Deng XW. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. THE PLANT CELL 2014; 26:695-711. [PMID: 24563203 PMCID: PMC3967034 DOI: 10.1105/tpc.113.119974] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/26/2013] [Accepted: 02/05/2014] [Indexed: 05/17/2023]
Abstract
Members of the DDB1-CUL4-associated factors (DCAFs) family directly bind to DAMAGED DNA BINDING PROTEIN1 (DDB1) and function as the substrate receptors in CULLIN4-based E3 (CUL4) ubiquitin ligases, which regulate the selective ubiquitination of proteins. Here, we describe a DCAF protein, ABD1 (for ABA-hypersensitive DCAF1), that negatively regulates abscisic acid (ABA) signaling in Arabidopsis thaliana. ABD1 interacts with DDB1 in vitro and in vivo, indicating that it likely functions as a CUL4 E3 ligase substrate receptor. ABD1 expression is induced by ABA, and mutations in ABD1 result in ABA- and NaCl-hypersensitive phenotypes. Loss of ABD1 leads to hyperinduction of ABA-responsive genes and higher accumulation of the ABA-responsive transcription factor ABA INSENSITIVE5 (ABI5), hypersensitivity to ABA during seed germination and seedling growth, enhanced stomatal closure, reduced water loss, and, ultimately, increased drought tolerance. ABD1 directly interacts with ABI5 in yeast two-hybrid assays and associates with ABI5 in vivo by coimmunoprecipitation, and the interaction was found in the nucleus by bimolecular fluorescence complementation. Furthermore, loss of ABD1 results in a retardation of ABI5 degradation by the 26S proteasome. Taken together, these data suggest that the DCAF-CUL4 E3 ubiquitin ligase assembled with ABD1 is a negative regulator of ABA responses by directly binding to and affecting the stability of ABI5 in the nucleus.
Collapse
Affiliation(s)
- Kyoung-In Seo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Jae-Hoon Lee
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Biology Education, Pusan National University, Pusan 609-735, Korea
| | - Cynthia D. Nezames
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Shangwei Zhong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Eunyoung Song
- Department of Biology Education, Pusan National University, Pusan 609-735, Korea
| | - Myung-Ok Byun
- Department of Molecular Physiology and Biochemistry, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Address correspondence to
| |
Collapse
|
35
|
Dreze M, Calkins AS, Gálicza J, Echelman DJ, Schnorenberg MR, Fell GL, Iwai S, Fisher DE, Szüts D, Iglehart JD, Lazaro JB. Monitoring repair of UV-induced 6-4-photoproducts with a purified DDB2 protein complex. PLoS One 2014; 9:e85896. [PMID: 24489677 PMCID: PMC3904869 DOI: 10.1371/journal.pone.0085896] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/03/2013] [Indexed: 01/01/2023] Open
Abstract
Because cells are constantly subjected to DNA damaging insults, DNA repair pathways are critical for genome integrity [1]. DNA damage recognition protein complexes (DRCs) recognize DNA damage and initiate DNA repair. The DNA-Damage Binding protein 2 (DDB2) complex is a DRC that initiates nucleotide excision repair (NER) of DNA damage caused by ultraviolet light (UV) [2]–[4]. Using a purified DDB2 DRC, we created a probe (“DDB2 proteo-probe”) that hybridizes to nuclei of cells irradiated with UV and not to cells exposed to other genotoxins. The DDB2 proteo-probe recognized UV-irradiated DNA in classical laboratory assays, including cyto- and histo-chemistry, flow cytometry, and slot-blotting. When immobilized, the proteo-probe also bound soluble UV-irradiated DNA in ELISA-like and DNA pull-down assays. In vitro, the DDB2 proteo-probe preferentially bound 6-4-photoproducts [(6-4)PPs] rather than cyclobutane pyrimidine dimers (CPDs). We followed UV-damage repair by cyto-chemistry in cells fixed at different time after UV irradiation, using either the DDB2 proteo-probe or antibodies against CPDs, or (6-4)PPs. The signals obtained with the DDB2 proteo-probe and with the antibody against (6-4)PPs decreased in a nearly identical manner. Since (6-4)PPs are repaired only by nucleotide excision repair (NER), our results strongly suggest the DDB2 proteo-probe hybridizes to DNA containing (6-4)PPs and allows monitoring of their removal during NER. We discuss the general use of purified DRCs as probes, in lieu of antibodies, to recognize and monitor DNA damage and repair.
Collapse
Affiliation(s)
- Matija Dreze
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Anne S. Calkins
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Judit Gálicza
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Daniel J. Echelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mathew R. Schnorenberg
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Gillian L. Fell
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - David E. Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - David Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - J. Dirk Iglehart
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Jean-Bernard Lazaro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication.
Collapse
|
37
|
Zhang L, Lubin A, Chen H, Sun Z, Gong F. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 2012; 11:4378-84. [PMID: 23159851 PMCID: PMC3552920 DOI: 10.4161/cc.22688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL USA
| | | | | | | | | |
Collapse
|
38
|
Lai YS, Hsieh FJ, Hsu T. Affinity isolation and mass spectral analysis of 1,10-phenanthroline (OP)-stimulated UV-damaged-DNA binding proteins expressed in zebrafish (Danio rerio) embryos. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1117-1129. [PMID: 22252336 DOI: 10.1007/s10695-011-9598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/30/2011] [Indexed: 05/31/2023]
Abstract
Our earlier studies indicated the high expression of a UV-damaged-DNA binding activity in zebrafish (Danio rerio) embryos at 12 h postfertilization (hpf). Two 30- to 35-kDa polypeptides homologous to the N-terminal lipovitellin 1 (Lv1) domain of the 150-kDa zebrafish vitellogenin 1 (zfVg1) were identified as the damage recognition factors in zebrafish extracts, and the metal-chelating agent 1,10-phenanthroline (OP) was found to inhibit the embryonic UV-damaged-DNA binding activity. This study further explored the DNA damage-sensing components in 12 hpf zebrafish extracts. UV-damaged-DNA binding proteins were enriched from zebrafish extracts by isoelectrofocusing. Both OP-sensitive and OP-stimulated, UV-damaged-DNA binding activities were detected in fractionated zebrafish extracts. Two-dimensional gel electrophoresis of proteins captured by an immobilized oligonucleotide carrying a UV-induced (6-4)photoproduct (6-4PP) revealed a 25-kDa polypeptide as the major 6-4PP-binding factor in an OP-stimulated fraction. Three 25-kDa factors that bound weakly to 6-4PPs were also isolated. The four polypeptides having pIs between 7.0 and 7.3 were unreactive to an anti-zfVg1 antibody targeting the Lv1 domain. Mass spectral analysis showed the appearance of amino acid sequences LPIIVTTYAK and IPEITMSK in all 25-kDa polypeptides and sequences exactly matching those contained in the four factors exist only in the C-terminal Lv2 domain of zfVg1, reflecting the origination of these factors from enzymatic cleavage of the Lv2 domain at slightly different positions. The OP-stimulated fraction produced a much stronger UV-dependent DNA incision activity in the presence than in the absence of OP, suggesting the association of these factors with DNA damage repair under metal-deficient conditions.
Collapse
Affiliation(s)
- Yi-Show Lai
- Institute of Bioscience and Biotechnology, Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Rd., Keelung, 20224, Taiwan, ROC
| | - Feng-Ju Hsieh
- Institute of Bioscience and Biotechnology, Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Rd., Keelung, 20224, Taiwan, ROC
| | - Todd Hsu
- Institute of Bioscience and Biotechnology, Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Rd., Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
39
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
40
|
Stratmann JW, Gusmaroli G. Many jobs for one good cop - the COP9 signalosome guards development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:50-64. [PMID: 22325866 DOI: 10.1016/j.plantsci.2011.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 05/08/2023]
Abstract
The COP9 signalosome (CSN) is a multiprotein complex that regulates the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate substrate proteins and thus target them for proteasomal degradation. This post-translational modification of proteins is arguably as important as reversible protein phosphorylation. The number of putative CRLs that recognize specific substrate proteins is vast, and known CRL substrates are involved in many cellular plant processes such as hormone signaling, the cell cycle, and regulation of growth, development, and defenses. By controlling the activity of CRLs, the CSN may integrate and fine-tune all of these processes. Recent research has unraveled in great mechanistic detail how the two multiprotein complexes CSN and CRL interact. As a consequence of CSN pleiotropy, complete loss of CSN function results in seedling lethality. However, recent work on plants that exhibit a partial loss of CSN function, has uncovered a role of the CSN during later life stages in processes such as development and defenses against pathogens and herbivorous insects. Not all aspects of development and defense are affected equally by CSN silencing, probably due to the differential participation and importance of CSN-regulated CRLs in these processes. This review will provide an overview of the highly complex regulation of CRL activity by CSN, and the many roles of the CSN in plant development and defense.
Collapse
Affiliation(s)
- Johannes W Stratmann
- University of South Carolina, Department of Biological Sciences, Columbia, SC 29208, USA.
| | | |
Collapse
|
41
|
Sugasawa K. Multiple DNA damage recognition factors involved in mammalian nucleotide excision repair. BIOCHEMISTRY (MOSCOW) 2011; 76:16-23. [PMID: 21568836 DOI: 10.1134/s0006297911010044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nucleotide excision repair (NER) subpathway operating throughout the mammalian genome is a versatile DNA repair system that can remove a wide variety of helix-distorting base lesions. This system contributes to prevention of blockage of DNA replication by the lesions, thereby suppressing mutagenesis and carcinogenesis. Therefore, it is of fundamental significance to understand how the huge genome can be surveyed for occurrence of a small number of lesions. Recent studies have revealed that this difficult task seems to be accomplished through sequential actions of multiple DNA damage recognition factors, including UV-DDB, XPC, and TFIIH. Notably, these factors adopt completely different strategies to recognize DNA damage. XPC detects disruption and/or destabilization of the base pairing, which ensures a broad spectrum of substrate specificity for global genome NER. In contrast, UV-DDB directly recognizes particular types of lesions, such as UV-induced photoproducts, thereby vitally recruiting XPC as well as further extending the substrate specificity. After DNA binding by XPC, moreover, the helicase activity associated with TFIIH scans a DNA strand to make a final search for the presence of aberrant chemical modifications of DNA. The combination of these different strategies makes a crucial contribution to simultaneously achieving efficiency, accuracy, and versatility of the entire repair system.
Collapse
Affiliation(s)
- K Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Hyogo, Japan.
| |
Collapse
|
42
|
|
43
|
Scrima A, Fischer ES, Lingaraju GM, Böhm K, Cavadini S, Thomä NH. Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best! FEBS Lett 2011; 585:2818-25. [PMID: 21550341 DOI: 10.1016/j.febslet.2011.04.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 12/27/2022]
Abstract
The DDB1-DDB2-CUL4-RBX1 complex serves as the primary detection device for UV-induced lesions in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 damage binding module is merely one of a large family of possible DDB1-CUL4 associated factors (DCAF), most of which are substrate receptors for other DDB1-CUL4 complexes. DDB2 and the Cockayne-syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors operate in a wide range of other biological pathways. We will examine the modular architecture of DDB1-CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting and regulatory principles.
Collapse
Affiliation(s)
- Andrea Scrima
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Braun S, Garcia JF, Rowley M, Rougemaille M, Shankar S, Madhani HD. The Cul4-Ddb1(Cdt)² ubiquitin ligase inhibits invasion of a boundary-associated antisilencing factor into heterochromatin. Cell 2011; 144:41-54. [PMID: 21215368 PMCID: PMC3645473 DOI: 10.1016/j.cell.2010.11.051] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 10/14/2010] [Accepted: 11/18/2010] [Indexed: 12/27/2022]
Abstract
Partitioning of chromosomes into euchromatic and heterochromatic domains requires mechanisms that specify boundaries. The S. pombe JmjC family protein Epe1 prevents the ectopic spread of heterochromatin and is itself concentrated at boundaries. Paradoxically, Epe1 is recruited to heterochromatin by HP1 silencing factors that are distributed throughout heterochromatin. We demonstrate here that the selective enrichment of Epe1 at boundaries requires its regulation by the conserved Cul4-Ddb1(Cdt)² ubiquitin ligase, which directly recognizes Epe1 and promotes its polyubiquitylation and degradation. Strikingly, in cells lacking the ligase, Epe1 persists in the body of heterochromatin thereby inducing a defect in gene silencing. Epe1 is the sole target of the Cul4-Ddb1(Cdt)² complex whose destruction is necessary for the preservation of heterochromatin. This mechanism acts parallel with phosphorylation of HP1/Swi6 by CK2 to restrict Epe1. We conclude that the ubiquitin-dependent sculpting of the chromosomal distribution of an antisilencing factor is critical for heterochromatin boundaries to form correctly.
Collapse
Affiliation(s)
- Sigurd Braun
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16 Street, GH-N372C, San Francisco, CA 94158, USA
| | - Jennifer F. Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16 Street, GH-N372C, San Francisco, CA 94158, USA
| | - Margot Rowley
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16 Street, GH-N372C, San Francisco, CA 94158, USA
| | - Mathieu Rougemaille
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16 Street, GH-N372C, San Francisco, CA 94158, USA
| | - Smita Shankar
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16 Street, GH-N372C, San Francisco, CA 94158, USA
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16 Street, GH-N372C, San Francisco, CA 94158, USA
| |
Collapse
|
45
|
Guerrero-Santoro J, Levine AS, Rapić-Otrin V. Co-localization of DNA repair proteins with UV-induced DNA damage in locally irradiated cells. Methods Mol Biol 2011; 682:149-61. [PMID: 21057927 DOI: 10.1007/978-1-60327-409-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter describes a technique in which indirect immunofluorescence is applied to visualize the process of nucleotide excision repair (NER) at the site of locally induced damage in DNA. UV-irradiation of cells through an isopore polycarbonate membrane filter generates cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PP) on a subnuclear area, which corresponds to the size of a pore on the membrane. Specific antibodies to CPD and 6-4PP define the damaged spot. The NER components co-localize at the damaged-DNA subnuclear spot, where the proteins are stained with the appropriate fluorescent antibodies. This relatively simple and affordable method facilitates the examination of the sequential assembly of NER proteins in the chromatin-embedded DNA photoproducts. The method also enhances the identification of repair auxiliary proteins and complexes, such as ubiquitin E3 ligases, involved in the initiation of NER on non-transcribed DNA.
Collapse
Affiliation(s)
- Jennifer Guerrero-Santoro
- Department of Microbiology and Molecular Genetics, Hillman Cancer Center, University of Pittsburgh School of Medicine, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | | | | |
Collapse
|
46
|
Grosskopf C, Schwerdtle T, Mullenders LHF, Hartwig A. Antimony impairs nucleotide excision repair: XPA and XPE as potential molecular targets. Chem Res Toxicol 2010; 23:1175-83. [PMID: 20509621 DOI: 10.1021/tx100106x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trivalent antimony is a known genotoxic agent classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC) and as an animal carcinogen by the German MAK Commission. Nevertheless, the underlying mechanism for its genotoxicity remains elusive. Because of the similarities between antimony and arsenic, the inhibition of DNA repair has been a promising hypothesis. Investigations on the removal of DNA lesions now revealed a damage specific impairment of nucleotide excision repair (NER). After irradiation of A549 human lung carcinoma cells with UVC, a higher number of cyclobutane pyrimidine dimers (CPD) remained in the presence of SbCl(3), whereas processing of the 6-4 photoproducts (6-4PP) and benzo[a]pyrene diol epoxide (BPDE)-induced DNA adducts was not impaired. Nevertheless, cell viability was reduced in a more than additive mode after combined treatment of SbCl(3) with UVC as well as with BPDE. In search of the molecular targets, a decrease in gene expression and protein level of XPE was found, which is known to be indispensable for the recognition of CPD. Moreover, trivalent antimony was shown to interact with the zinc finger domain of XPA, another NER protein, since SbCl(3) mediated a concentration dependent release of zinc from a peptide consistent with this domain. In the cellular system, association of XPA to and dissociation from damaged DNA was diminished in the presence of SbCl(3). These results show for the first time that trivalent antimony interferes with proteins involved in nucleotide excision repair and partly impairs this pathway, pointing to an indirect mechanism in the genotoxicity of trivalent antimony.
Collapse
Affiliation(s)
- Claudia Grosskopf
- Fachgebiet Lebensmittelchemie und Toxikologie, Institut fur Lebensmitteltechnologie und Lebensmittelchemie, Technische Universitat Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | | | | | | |
Collapse
|
47
|
Roy N, Stoyanova T, Dominguez-Brauer C, Park HJ, Bagchi S, Raychaudhuri P. DDB2, an essential mediator of premature senescence. Mol Cell Biol 2010; 30:2681-2692. [PMID: 20351176 PMCID: PMC2876515 DOI: 10.1128/mcb.01480-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/27/2009] [Accepted: 03/21/2010] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species (ROS) is critical for premature senescence, a process significant in tumor suppression and cancer therapy. Here, we reveal a novel function of the nucleotide excision repair protein DDB2 in the accumulation of ROS in a manner that is essential for premature senescence. DDB2-deficient cells fail to undergo premature senescence induced by culture shock, exogenous oxidative stress, oncogenic stress, or DNA damage. These cells do not accumulate ROS following DNA damage. The lack of ROS accumulation in DDB2 deficiency results from high-level expression of the antioxidant genes in vitro and in vivo. DDB2 represses antioxidant genes by recruiting Cul4A and Suv39h and by increasing histone-H3K9 trimethylation. Moreover, expression of DDB2 also is induced by ROS. Together, our results show that, upon oxidative stress, DDB2 functions in a positive feedback loop by repressing the antioxidant genes to cause persistent accumulation of ROS and induce premature senescence.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Tanya Stoyanova
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Hyun Jung Park
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Srilata Bagchi
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), Cancer Center, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, Illinois 60607, Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave., Chicago, Illinois 60612
| |
Collapse
|
48
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
49
|
Sun NK, Sun CL, Lin CH, Pai LM, Chao CCK. Damaged DNA-binding protein 2 (DDB2) protects against UV irradiation in human cells and Drosophila. J Biomed Sci 2010; 17:27. [PMID: 20398405 PMCID: PMC2864207 DOI: 10.1186/1423-0127-17-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/17/2010] [Indexed: 11/23/2022] Open
Abstract
Background We observed previously that cisplatin-resistant HeLa cells were cross-resistant to UV light due to accumulation of DDB2, a protein implicated in DNA repair. More recently, we found that cFLIP, which represents an anti-apoptotic protein whose level is induced by DDB2, was implicated in preventing apoptosis induced by death-receptor signaling. In the present study, we investigated whether DDB2 has a protective role against UV irradiation and whether cFLIP is also involved in this process. Methods We explored the role of DDB2 in mediating UV resistance in both human cells and Drosophila. To do so, DDB2 was overexpressed by using a full-length open reading frame cDNA. Conversely, DDB2 and cFLIP were suppressed by using antisense oligonucleotides. Cell survival was measured using a colony forming assay. Apoptosis was monitored by examination of nuclear morphology, as well as by flow cytometry and Western blot analyses. A transcription reporter assay was also used to assess transcription of cFLIP. Results We first observed that the cFLIP protein was upregulated in UV-resistant HeLa cells. In addition, the cFLIP protein could be induced by stable expression of DDB2 in these cells. Notably, the anti-apoptotic effect of DDB2 against UV irradiation was largely attenuated by knockdown of cFLIP with antisense oligonucleotides in HeLa cells. Moreover, overexpression of DDB2 did not protect against UV in VA13 and XP-A cell lines which both lack cFLIP. Interestingly, ectopic expression of human DDB2 in Drosophila dramatically inhibited UV-induced fly death compared to control GFP expression. On the other hand, expression of DDB2 failed to rescue a different type of apoptosis induced by the genes Reaper or eiger. Conclusion Our results show that DDB2 protects against UV stress in a cFLIP-dependent manner. In addition, the protective role of DDB2 against UV irradiation was found to be conserved in divergent living organisms such as human and Drosophila. In addition, UV irradiation may activate a cFLIP-regulated apoptotic pathway in certain cells.
Collapse
Affiliation(s)
- Nian-Kang Sun
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | | | | | | | | |
Collapse
|
50
|
DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA. Mol Cell Biol 2010; 30:2708-23. [PMID: 20368362 DOI: 10.1128/mcb.01460-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UV-damaged-DNA-binding protein (UV-DDB) is a heterodimer comprised of DDB1 and DDB2 and integrated in a complex that includes a ubiquitin ligase component, cullin 4A, and Roc1. Here we show that the ubiquitin ligase activity of the DDB2 complex is required for efficient global genome nucleotide excision repair (GG-NER) in chromatin. Mutant DDB2 proteins derived from xeroderma pigmentosum group E patients are not able to mediate ubiquitylation around damaged sites in chromatin. We also found that CSN, a negative regulator of cullin-based ubiquitin ligases, dissociates from the DDB2 complex when the complex binds to damaged DNA and that XPC and Ku oppositely regulate the ubiquitin ligase activity, especially around damaged sites. Furthermore, the DDB2 complex-mediated ubiquitylation plays a role in recruiting XPA to damaged sites. These findings shed some light on the early stages of GG-NER.
Collapse
|