1
|
Esposito D, Stephen AG, Turbyville TJ, Holderfield M. New weapons to penetrate the armor: Novel reagents and assays developed at the NCI RAS Initiative to enable discovery of RAS therapeutics. Semin Cancer Biol 2019; 54:174-182. [PMID: 29432816 PMCID: PMC6085166 DOI: 10.1016/j.semcancer.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Abstract
Development of therapeutic strategies against RAS-driven cancers has been challenging due in part to a lack of understanding of the biology of the system and the ability to design appropriate assays and reagents for targeted drug discovery efforts. Recent developments in the field have opened up new avenues for exploration both through advances in the number and quality of reagents as well as the introduction of novel biochemical and cell-based assay technologies which can be used for high-throughput screening of compound libraries. The reagents and assays developed at the NCI RAS Initiative offer a suite of new weapons that could potentially be used to enable the next generation of RAS drug discovery efforts with the hope of finding novel therapeutics for a target once deemed undruggable.
Collapse
Affiliation(s)
- Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA
| | - Matthew Holderfield
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA
| |
Collapse
|
2
|
Gillette W, Frank P, Perkins S, Drew M, Grose C, Esposito D. Production of Farnesylated and Methylated Proteins in an Engineered Insect Cell System. Methods Mol Biol 2019; 2009:259-277. [PMID: 31152410 DOI: 10.1007/978-1-4939-9532-5_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein prenylation is a common posttranslational modification that enhances the ability of proteins to interact with membrane components within the cell. In many cases, these prenylated proteins are involved in important human diseases, including aging-related disorders and cancer. To effectively study these proteins or develop therapeutics, large quantities of properly modified proteins are required. Historically, production of fully modified farnesylated and methylated proteins at high yield has been challenging. Recently, an engineered insect cell system which is capable of producing authentically modified KRAS protein was used to generate material for structural studies and assay development. Here we describe protocols for extending this work to other farnesylated and methylated substrates.
Collapse
Affiliation(s)
- William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Peter Frank
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shelley Perkins
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
3
|
Harrison RL, Jarvis DL. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression. Methods Mol Biol 2016; 1350:359-79. [PMID: 26820868 DOI: 10.1007/978-1-4939-3043-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meets a researcher's needs. This chapter discusses a metabolic engineering approach that addresses this problem. Basically, this approach involves the addition of new or enhancement of existing protein processing functions in established lepidopteran insect cell lines. In addition to improvements in protein processing, this approach has also been used to improve protein expression levels obtained with the BEVS. Methods for engineering cell lines and assessing their properties as improved hosts for the BEVS are detailed. Examples of lepidopteran insect cell lines engineered for improved protein N-glycosylation, folding/trafficking, and expression are described in detail.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol & Behavior Laboratory, USDA, ARS, BARC, Building 007, Room 301, BARC-W, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
4
|
Gillette WK, Esposito D, Abreu Blanco M, Alexander P, Bindu L, Bittner C, Chertov O, Frank PH, Grose C, Jones JE, Meng Z, Perkins S, Van Q, Ghirlando R, Fivash M, Nissley DV, McCormick F, Holderfield M, Stephen AG. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Sci Rep 2015; 5:15916. [PMID: 26522388 PMCID: PMC4629113 DOI: 10.1038/srep15916] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022] Open
Abstract
Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.
Collapse
Affiliation(s)
- William K. Gillette
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Dominic Esposito
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Maria Abreu Blanco
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Patrick Alexander
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Lakshman Bindu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Cammi Bittner
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Oleg Chertov
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Peter H. Frank
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Carissa Grose
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Jane E. Jones
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Zhaojing Meng
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Shelley Perkins
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Que Van
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 5 Memorial Drive, Bethesda MD 20892
| | - Matthew Fivash
- Data Management Systems, NCI at Frederick, PO Box B, Frederick, MD 21702
| | - Dwight V. Nissley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Frank McCormick
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Matthew Holderfield
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| | - Andrew G. Stephen
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD 21702
| |
Collapse
|
5
|
Affiliation(s)
- H D Klenk
- Institut für Virologie, Philipps-Universität Marburg, Postfach 2360, 35011, Marburg (Lahn), Germany
| |
Collapse
|
6
|
Osanai K, Oikawa R, Higuchi J, Kobayashi M, Tsuchihara K, Iguchi M, Jongsu H, Toga H, Voelker DR. A mutation in Rab38 small GTPase causes abnormal lung surfactant homeostasis and aberrant alveolar structure in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1265-74. [PMID: 18832574 DOI: 10.2353/ajpath.2008.080056] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chocolate mutation, which is associated with oculocutaneous albinism in mice, has been attributed to a G146T transversion in the conserved GTP/GDP-interacting domain of Rab38, a small GTPase that regulates intracellular vesicular trafficking. Rab38 displays a unique tissue-specific expression pattern with highest levels present in the lung. The purpose of this study was to characterize the effects of Rab38-G146T on lung phenotype and to investigate the molecular basis of the mutant gene product (Rab38(cht) protein). Chocolate lungs exhibited a uniform enlargement of the distal airspaces with mild alveolar destruction as well as a slight increase in lung compliance. Alveolar type II cells were engorged with lamellar bodies of increased size and number. Hydrophobic surfactant constituents (ie, phosphatidylcholine and surfactant protein B) were increased in lung tissues but decreased in alveolar spaces, consistent with a malfunction in lamellar body secretion and the subsequent cellular accumulation of these organelles. In contrast to wild-type Rab38, native Rab38(cht) proteins were found to be hydrophilic and not bound to intracellular membranes. Unexpectedly, recombinant Rab38(cht) proteins retained GTP-binding activity but failed to undergo prenyl modification that is required for membrane-binding activity. These results suggest that the genetic abnormality of Rab38 affects multiple lysosome-related organelles, resulting in lung disease in addition to oculocutaneous albinism.
Collapse
Affiliation(s)
- Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Kahokugun, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H. Lipidated ras and rab peptides and proteins--synthesis, structure, and function. Angew Chem Int Ed Engl 2007; 45:6622-46. [PMID: 17031879 DOI: 10.1002/anie.200600855] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical biology can be defined as the study of biological phenomena from a chemical approach. Based on the analysis of relevant biological phenomena and their structural foundation, unsolved problems are identified and tackled through a combination of chemistry and biology. Thus, new synthetic methods and strategies are developed and employed for the construction of compounds that are used to investigate biological procedures. Solid-phase synthesis has emerged as the preferred method for the synthesis of lipidated peptides, which can be chemoselectively ligated to proteins of the Ras superfamily. The generated peptides and proteins have solved biological questions in the field of the Ras-superfamily GTPases that are not amendable to chemical or biological techniques alone.
Collapse
Affiliation(s)
- Luc Brunsveld
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meets a researcher's needs. This chapter discusses a metabolic engineering approach that addresses this problem. Basically, this approach involves the addition of new or enhancement of existing protein processing functions in established lepidopteran insect cell lines. Methods for engineering these cell lines and assessing their properties as improved hosts for the BEVS are detailed. Examples of lepidopteran insect cell lines engineered for improved protein N-glycosylation and trafficking are described.
Collapse
|
9
|
Brunsveld L, Kuhlmann J, Alexandrov K, Wittinghofer A, Goody RS, Waldmann H. Lipidierte Ras- und Rab-Peptide und -Proteine: Synthese, Struktur und Funktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600855] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
11
|
Osanai K, Iguchi M, Takahashi K, Nambu Y, Sakuma T, Toga H, Ohya N, Shimizu H, Fisher JH, Voelker DR. Expression and localization of a novel Rab small G protein (Rab38) in the rat lung. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1665-75. [PMID: 11337364 PMCID: PMC1891947 DOI: 10.1016/s0002-9440(10)64122-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Rab small G protein family participates in intracellular vesicle transport, including exocytosis and endocytosis. The cDNA encoding a novel Rab-related small G protein (Rab38) has been cloned from rat lung cDNA library and recorded in GenBank (accession no. M94043). However, the expression and localization of the protein in the lung remains primarily unknown. We produced polyhistidine-tagged recombinant Rab38 and a polyclonal antibody with a synthetic peptide. Immunohistochemistry demonstrated that the protein is specifically localized in alveolar type II cells and in bronchial epithelial cells. In situ hybridization using a digoxygenin-labeled RNA riboprobe clearly showed that the mRNA of the protein is localized in alveolar type II cells and bronchial epithelial cells, especially terminal airway epithelial cells. Western blot and reverse transcriptase-polymerase chain reaction showed distinct expression of the protein and mRNA in isolated alveolar type II cells, but not in alveolar macrophages. The native protein was predominantly hydrophobic and was enriched in a high-density vesicle fraction but was barely detectable in nuclear and lamellar body fractions in alveolar type II cells. Immunofluorescence cytochemistry performed on cultured alveolar type II cells showed that Rab38 distributed extensively in the cytoplasm with a distribution pattern similar to endoplasmic reticulum rather than other subcellular organelles. These results suggest that this novel rab small G protein (Rab38) mediates vesicular transport in terminal airway epithelium.
Collapse
Affiliation(s)
- K Osanai
- Department of Internal Medicine, Division of Respiratory Disease, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fridman M, Maruta H, Gonez J, Walker F, Treutlein H, Zeng J, Burgess A. Point mutants of c-raf-1 RBD with elevated binding to v-Ha-Ras. J Biol Chem 2000; 275:30363-71. [PMID: 10887184 DOI: 10.1074/jbc.m003193200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutational analysis of the Ras-binding domain (RBD) of c-Raf-1 identified three amino acid positions (Asn(64), Ala(85), and Val(88)) where amino acid substitution with basic residues increases the binding of RBD to recombinant v-Ha-Ras. The greatest increase in binding (6-9-fold) was observed with the A85K-RBD mutant. The elevated binding for the A85K-RBD and V88R-RBD mutants was also detected with Ras expressed in cultured mammalian cells, namely NIH-3T3 and BAF cells. None of the wild type residues in RBD positions Asn(64), Ala(85), and Val(88) have been previously implicated in the interaction with Ras (Block, C., Janknecht, R., Herrmann, C., Nassar, N., and Wittinghofer, A. (1996) Nat. Struct. Biol. 3, 244-251; Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) Nature 375, 554-560). The discovery of elevated binding among the mutants in these positions implies that additional RBD residues can be used to generate the Ras. RBD complex. These findings are of particular significance in the design of Ras antagonists based on the RBD prototype. The A85K-RBD mutant can be used to develop an assay for measuring the level of activated Ras in cultured cells; Sepharose-linked A85K-RBD.GST fusion protein served as an activation-specific probe to precipitate Ras.GTP but not Ras.GDP from epidermal growth factor-stimulated cells. A85K-RBD precipitates up to 5-fold more Ras.GTP from mammalian cells than wild type RBD.
Collapse
Affiliation(s)
- M Fridman
- Ludwig Institute for Cancer Research, P. O. Box 2008, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Bader B, Kuhn K, Owen DJ, Waldmann H, Wittinghofer A, Kuhlmann J. Bioorganic synthesis of lipid-modified proteins for the study of signal transduction. Nature 2000; 403:223-6. [PMID: 10646611 DOI: 10.1038/35003249] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological membranes define the boundaries of the cellular compartments in higher eukaryotes and are active in many processes such as signal transduction and vesicular transport. Although post-translational lipid modification of numerous proteins in signal transduction is crucial for biological function, analysis of protein-protein interactions has mainly focused on recombinant proteins in solution under defined in vitro conditions. Here we present a new strategy for the synthesis of such lipid-modified proteins. It involves the bacterial expression of a carboxy-terminally truncated non-lipidated protein, the chemical synthesis of differently lipidated peptides representing the C terminus of the proteins, and their covalent coupling. Our technique is demonstrated using Ras constructs, which exhibit properties very similar to fully processed Ras, but can be produced in high yields and are open for selective modifications. These constructs are operative in biophysical and cellular assay systems, showing specific recognition of effectors by Ras lipoproteins inserted into the membrane surface of biosensors and transforming activity of oncogenic variants after microinjection into cultured cells.
Collapse
Affiliation(s)
- B Bader
- Max-Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Rubio I, Wittig U, Meyer C, Heinze R, Kadereit D, Waldmann H, Downward J, Wetzker R. Farnesylation of Ras is important for the interaction with phosphoinositide 3-kinase gamma. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:70-82. [PMID: 10542052 DOI: 10.1046/j.1432-1327.1999.00815.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The correct functioning of Ras proteins requires post-translational modification of the GTP hydrolases (GTPases). These modifications provide hydrophobic moieties that lead to the attachment of Ras to the inner side of the plasma membrane. In this study we investigated the role of Ras processing in the interaction with various putative Ras-effector proteins. We describe a specific, GTP-independent interaction between post-translationally modified Ha- and Ki-Ras4B and the G-protein responsive phosphoinositide 3-kinase p110gamma. Our data demonstrate that post-translational processing increases markedly the binding of Ras to p110gamma in vitro and in Sf9 cells, whereas the interaction with p110alpha is unaffected under the same conditions. Using in vitro farnesylated Ras, we show that farnesylation of Ras is sufficient to produce this effect. The complex of p110gamma and farnesylated RasGTP exhibits a reduced dissociation rate leading to the efficient shielding of the GTPase from GTPase activating protein (GAP) action. Moreover, Ras processing affects the dissociation rate of the RasGTP complex with the Ras binding domain (RBD) of Raf-1, indicating that processing induces alterations in the conformation of RasGTP. The results suggest a direct interaction between a moiety present only on fully processed or farnesylated Ras and the putative target protein p110gamma.
Collapse
Affiliation(s)
- I Rubio
- Research Unit Molecular Cell Biology, Medical Faculty, Friedrich- Schiller-University, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Veldhuizen EJ, Batenburg JJ, Vandenbussche G, Putz G, van Golde LM, Haagsman HP. Production of surfactant protein C in the baculovirus expression system: the information required for correct folding and palmitoylation of SP-C is contained within the mature sequence. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1416:295-308. [PMID: 9889385 DOI: 10.1016/s0005-2736(98)00230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surfactant protein C (SP-C) is synthesized in the alveolar type II cells of the lung as a 21 kDa propeptide which is proteolytically processed to a 4.2 kDa mature active form. The main function of this extremely hydrophobic protein is to enhance lipid insertion into the air/liquid interface in the lung upon inhalation. This is necessary to maintain a relatively low surface tension at this interface during breathing. In this report we describe the production of mature human SP-C in the baculovirus expression system. The recombinant protein contains a secondary structure with a high alpha-helical content (73%), comparable to native SP-C, as determined by circular dichroism and attenuated total reflection Fourier transform infrared analysis. The expressed protein is a mixture of dipalmitoylated (15%) and non-palmitoylated SP-C. This suggests that the information required for palmitoylation is contained within the sequence of the mature protein. The activity of the protein to insert phospholipids into a preformed monolayer of lipids at an air/liquid interface was determined with a captive bubble surfactometer. Recombinant SP-C significantly reduced the surface tension at the air/liquid interface during dynamic expansion and compression. We conclude that correctly folded, dipalmitoylated and active SP-C can be expressed in the baculovirus expression system. Our results may facilitate investigations into the relation between structure and function of SP-C and into protein palmitoylation in general.
Collapse
Affiliation(s)
- E J Veldhuizen
- Laboratory of Veterinary Biochemistry and Institute of Biomembranes, Utrecht University, 3508 TD, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Xia Z, Kam CM, Huang C, Powers JC, Mandle RJ, Stevens RL, Lieberman J. Expression and purification of enzymatically active recombinant granzyme B in a baculovirus system. Biochem Biophys Res Commun 1998; 243:384-9. [PMID: 9480818 DOI: 10.1006/bbrc.1998.8102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Granzyme B (GranB), a serine protease stored in the granules of cytotoxic T lymphocytes and natural killer cells, can initiate target cell apoptosis. To produce large amounts of purified active enzyme, recombinant murine granzyme B (rGranB) was expressed from baculovirus in insect cells. The expressed rGranB is secreted into the culture medium and can be readily purified to homogeneity by one-step affinity chromatography to yield 1.5 mg enzyme per liter insect cell medium. RGranB is recognized by a GranB-specific anti-peptide antibody and is active against synthetic substrate Boc-Ala-Ala-Asp-SBzl with kinetic constant (kcat/Km 45,000 M-1s-1) comparable to purified human GranB, RGranB processes the caspase pro-CPP32 into its enzymatically active form and induces DNA fragmentation in isolated nuclei in the presence of cytosolic factors. The ability to express enzymatically active rGranB using the baculovirus system will help elucidate the role of this granzyme in the immune response.
Collapse
Affiliation(s)
- Z Xia
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Siddiqui AA, Garland JR, Dalton MB, Sinensky M. Evidence for a high affinity, saturable, prenylation-dependent p21Ha-ras binding site in plasma membranes. J Biol Chem 1998; 273:3712-7. [PMID: 9452502 DOI: 10.1074/jbc.273.6.3712] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncogenic p21ras proteins can only exert their stimulation of cellular proliferation when plasma membrane-associated. This membrane association has an absolute requirement for post-translational modification with isoprenoids. The mechanism by which isoprenoids participate in the specific association of p21ras with plasma membranes is the subject of this report. We present in vitro evidence for a plasma membrane binding protein for p21(ras) that can recognize the isoprenoid substituent and, therefore, may facilitate the localization of p21ras.
Collapse
Affiliation(s)
- A A Siddiqui
- Department of Biochemistry and Molecular Biology, East Tennessee State University, James H. Quillen College of Medicine, Box 70581, Johnson City, Tennessee 37614-0581, USA
| | | | | | | |
Collapse
|
18
|
Cowger NL, O'Connor KC, Bivins JE. Influence of simulated microgravity on the longevity of insect-cell culture. Enzyme Microb Technol 1997; 20:326-32. [PMID: 11536801 DOI: 10.1016/s0141-0229(96)00153-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Simulated microgravity within the NASA High Aspect Rotating-Wall Vessel (HARV) provides a quiescent environment to culture fragile insect cells. In this vessel, the duration of stationary and death phase for cultures of Spodoptera frugiperda cells was greatly extended over that achieved in shaker-flask controls. For both HARV and control cultures, S. frugiperda cells grew to concentrations in excess of 1 x 10(7) viable cells ml-1 with viabilities greater than 90%. In the HARV, stationary phase was maintained 9-15 days in contrast to 4-5 days in the shaker flask. Furthermore, the rate of cell death was reduced in the HARV by a factor of 20-90 relative to the control culture and was characterized with a death rate constant of 0.01-0.02 day-1. Beginning in the stationary phase and continuing in the death phase, there was a significant decrease in population size in the HARV versus an increase in the shaker flask. This phenomenon could represent cell adaptation to simulated microgravity and/or a change in the ratio of apoptotic to necrotic cells. Differences observed in this research between the HARV and its control were attributed to a reduction in hydrodynamic forces in the microgravity vessel.
Collapse
Affiliation(s)
- N L Cowger
- Department of Chemical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
19
|
Gorman C, Skinner RH, Skelly JV, Neidle S, Lowe PN. Equilibrium and kinetic measurements reveal rapidly reversible binding of Ras to Raf. J Biol Chem 1996; 271:6713-9. [PMID: 8636091 DOI: 10.1074/jbc.271.12.6713] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Raf is a serine/threonine kinase that binds through its amino-terminal regulatory domain to the GTP form of Ras and thereby activates the mitogen-activated protein kinase pathway. In this study, we have characterized the interaction of the Ras-binding domain of Raf with Ras using equilibrium binding methods (scintillation proximity assay and fluorescence anisotropy), rather than with more widely used nonequilibrium procedures (such as enzyme-linked immunosorbent assay and affinity precipitation). Initial studies using glutathione S-transferase fusion proteins with either residues 1-257 or 1-190 of Raf showed that although it was possible to detect Ras binding using an enzyme-linked immunosorbent assay or affinity precipitation, it was substoichiometric; under equilibrium conditions with only a small excess of Raf almost no binding was detected. This difference was probably due to the presence of a high percentage of inactive Raf protein. Further studies used protein containing residues 51-131 of Raf, which expressed in Escherichia coli as a stable glutathione S-transferase fusion. With this protein, binding with Ras could readily be measured under equilibrium conditions. The catalytic domain of neurofibromin inhibited binding of Ras to Raf, and Raf inhibited the binding of Ras to neurofibromin showing that Raf and neurofibromin cannot be bound simultaneously to Ras. The affinities of interaction of neurofibromin and Raf with Harvey-RasLeu-61 were similar. The rate constant for dissociation of Raf from Ras was estimated to be >1 min-1, suggesting that Ras, Raf, and neurofibromin may be in rapid equilibrium in the cell. In contrast to previous reports, under equilibrium conditions there was no evidence for a difference in affinity between the minimal Ras binding domain of Raf (residues 51-131) and a region containing an additional 16 carboxyl-terminal amino acids, suggesting that residues 132-147 do not form a critical binding determinant.
Collapse
Affiliation(s)
- C Gorman
- Wellcome Research Laboratories, Langley Court, South Eden Park Road, Beckenham, Kent BR3 3BS, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Post-translational modifications in insect cells. INSECT CELL CULTURE: FUNDAMENTAL AND APPLIED ASPECTS 1996. [DOI: 10.1007/0-306-46850-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Affiliation(s)
- A J Self
- MRC Laboratory for Molecular Cell Biology, University College London, United Kingdom
| | | |
Collapse
|
22
|
Porfiri E, Evans T, Bollag G, Clark R, Hancock JF. Purification of baculovirus-expressed recombinant Ras and Rap proteins. Methods Enzymol 1995; 255:13-21. [PMID: 8524096 DOI: 10.1016/s0076-6879(95)55004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E Porfiri
- Onyx Pharmaceuticals, Richmond, California 94806, USA
| | | | | | | | | |
Collapse
|
23
|
Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370:527-32. [PMID: 8052307 DOI: 10.1038/370527a0] [Citation(s) in RCA: 1535] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ras (p21ras) interacts directly with the catalytic subunit of phosphatidylinositol-3-OH kinase in a GTP-dependent manner through the Ras effector site. In vivo, dominant negative Ras mutant N17 inhibits growth factor induced production of 3' phosphorylated phosphoinositides in PC12 cells, and transfection of Ras, but not Raf, into COS cells results in a large elevation in the level of these lipids. Therefore Ras can probably regulate phosphatidylinositol-3-OH kinase, providing a point of divergence in signalling pathways downstream of Ras.
Collapse
|
24
|
Identification of a ras-related protein in murine erythroleukemia cells that is a cAMP-dependent protein kinase substrate and is phosphorylated during chemically induced differentiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Yang C, Mollat P, Chaffotte A, McCaffrey M, Cabanié L, Goud B. Comparison of the biochemical properties of unprocessed and processed forms of the small GTP-binding protein, rab6p. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:1027-37. [PMID: 8223626 DOI: 10.1111/j.1432-1033.1993.tb18334.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rab6 protein (rab6p) belongs to a large family of ras-like low-molecular-mass GTP-binding proteins thought to be involved in the regulation of intracellular transport in mammalian cells. When expressed in the baculovirus/insect cell system, two major forms of rab6p are obtained; a 24-kDa cytosolic unprocessed form and a 23-kDa membrane-bound form which represents the processed lipid-modified protein. Here, we have purified both forms to homogeneity and we have studied and compared their biochemical properties. Unprocessed and processed rab6p display similar binding-rate constants (kon) for GDP and GTP (1-1.9 microM-1 min-1). However, significant differences exist in the dissociation constants of bound guanine nucleotides. Processed rab6p in low and high magnesium solutions displays similar koff values for GTP and GDP. However, unprocessed rab6p has a koff value higher for GDP than for GTP in both low and high magnesium solutions. Their intrinsic GTPase activities also differ; unprocessed rab6p has an almost undetectable GTPase activity, whereas that of processed rab6p is in the same range as that reported for other ras and ras-like GTP-binding proteins (0.012 +/- 0.002 min-1). These results suggest that post-translational modifications of rab6p might induce subtle changes in the three-dimensional structure of the protein which affect the guanine-nucleotide-binding/hydrolysis activity.
Collapse
Affiliation(s)
- C Yang
- Unité de Génétique Somatique, URA CNRS 361, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Camp L, Hofmann S. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41567-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, Bruder JT, Rapp UR, Avruch J. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364:308-13. [PMID: 8332187 DOI: 10.1038/364308a0] [Citation(s) in RCA: 690] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In higher eukaryotes, the Ras and Raf-1 proto-oncoproteins transduce growth and differentiation signals initiated by tyrosine kinases. The Ras polypeptide and the amino-terminal regulatory domain of Raf-1 (residues 1-257) are shown to interact, directly in vitro and in a yeast expression system. Raf-1 (1-257) binds GTP-Ras in preference to GDP-Ras, and inhibits Ras-GAP activity. Mutations in and around the Ras effector domain impair Ras binding to Raf-1 (1-257) and Ras transforming activity in parallel.
Collapse
Affiliation(s)
- X F Zhang
- Diabetes Unit, Harvard Medical School, Charlestown, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kuroda Y, Suzuki N, Kataoka T. The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science 1993; 259:683-6. [PMID: 8430318 DOI: 10.1126/science.8430318] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ras proteins undergo a series of posttranslational modifications that are critical for their cellular function. These modifications are necessary to anchor Ras proteins to the membrane. Yeast Ras2 proteins were purified with various degrees of modification and examined for their ability to activate their effector, adenylyl cyclase. The farnesylated intermediate form of Ras2 had more than 100 times higher affinity for adenylyl cyclase than for the unprocessed form. The subsequent palmitoylation reaction had little effect. In contrast, palmitoylation was required for efficient membrane localization of the Ras2 protein. These results indicate the importance of farnesylation in the interaction of Ras2 with its effector.
Collapse
Affiliation(s)
- Y Kuroda
- Department of Physiology, Kobe University School of Medicine, Japan
| | | | | |
Collapse
|
29
|
Labrecque J, Caron M, Torossian K, Plamondon J, Dennis M. Baculovirus expression of mammalian G protein alpha subunits. FEBS Lett 1992; 304:157-62. [PMID: 1618317 DOI: 10.1016/0014-5793(92)80609-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complementary DNAs encoding three subtypes of the alpha subunit (alpha i-1, alpha o and alpha s) of rat guanyl nucleotide regulatory proteins were used to construct recombinant baculoviruses which direct high-level expression of the corresponding proteins in cultured Sf9 insect cells. The expressed proteins were recognized by polyclonal antisera specific for the different alpha chains, and co-migrated with the native proteins from rat brain membranes in immunoblotting analyses. Soluble and particulate forms of all three immunoreactive alpha chains were observed following ultracentrifugation of cell lysates. Biosynthetic radiolabelling of infected cells with [35S]methionine or [3H]myristate showed that both soluble and particulate forms of alpha i-1 and alpha o were myristoylated; in contrast, alpha s did not incorporate myristate. The soluble fractions from cells expressing alpha chains showed high levels of GTP-binding activity over that observed in uninfected cells, or in cells infected with wild-type virus. The peak expression levels observed at 72 h post-infection were highest for alpha o at ca. 400 pmol of GTP-gamma-35S/mg protein, or roughly 2% of the total soluble protein. The results of this work show that the baculovirus system can be employed for high-level production of mammalian G protein alpha chains which retain GTP-binding activity and are appropriately modified by myristoylation.
Collapse
Affiliation(s)
- J Labrecque
- Biotechnology Research Institute, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
30
|
Ferreira G, Pedersen P. Overexpression of higher eukaryotic membrane proteins in bacteria. Novel insights obtained with the liver mitochondrial proton/phosphate symporter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42788-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Yang C, Mayau V, Godeau F, Goud B. Characterization of the unprocessed and processed forms of rab6 expressed in baculovirus/insect cell systems. Biochem Biophys Res Commun 1992; 182:1499-505. [PMID: 1540193 DOI: 10.1016/0006-291x(92)91903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rab6 protein (rab6p) belongs to a family of ras-like GTP-binding proteins thought to be involved in the regulation of intracellular transport in mammalian cells. We have constructed a recombinant baculovirus in order to express rab6p in insect cells. We report here the characterization of four forms of this protein which are found in cytosolic and membrane fractions of infected Sf9 cells. The two major forms are a cytosolic 24 kD protein which represents the unprocessed precursor form of rab6p and a membrane-bound isoprenylated 23 kD protein which represents the processed form. Two other minor forms were also detected: a cytosolic isoprenylated 23 kD protein which may represent a pool in equilibrium with the 23 kD membrane-bound form and a 24 kD non-isoprenylated membrane-bound form which may represent an intermediate in the processing of rab6p.
Collapse
Affiliation(s)
- C Yang
- Unité de Génétique Somatique, URA CNRS 361, INSERM U 277, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
32
|
Peakman TC, Reynolds CH, Willson MG, Moore JD, Spence P, Sydenham M, Linstead DJ, Gewert DR, Page MJ. Expression of the mouse c-abl type IV proto-oncogene product in the insect cell baculovirus system. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1138:68-74. [PMID: 1737071 DOI: 10.1016/0925-4439(92)90153-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cellular gene c-abl is the normal homologue of the transforming gene (v-abl) within the genome of the Abelson leukaemia virus. The cDNA sequence coding for the cellular form of the murine abl gene (c-abl type IV) has been inserted into the baculovirus transfer vector, pAc36C, so that the c-abl gene is under the control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV). Spodoptera frugiperda cells infected with the recombinant transfer vector in the presence of wild type AcNPV DNA yielded recombinant, polyhedrin negative virus that expressed moderate levels of the c-Abl protein (representing approx. 0.5-1% of the stained cellular proteins as determined by densitometric scanning). The insect derived c-Abl protein was compared to the P210-BCR/ABL protein from K562 cells, a cell line derived from a patient with chronic myelogenous leukaemia. Antibodies raised against synthetic peptides based on c-abl encoded peptides react with the insect derived c-Abl. In addition, the baculovirus derived c-Abl protein has a tyrosine kinase activity as demonstrated by phosphorylation of a synthetic polypeptide and also by autophosphorylation. Phosphoamino acid analysis of immunoprecipitated, autophosphorylated baculovirus derived c-Abl protein indicates that the majority of label incorporated is on the tyrosine residues. Immunofluorescence microscopy has been used to show that the majority of the c-Abl protein expressed in cells infected with recombinant virus is located in the nuclear and plasma membranes.
Collapse
Affiliation(s)
- T C Peakman
- Department of Cell Biology, Wellcome Research Laboratories, Beckenham, Kent, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fraser MJ. The baculovirus-infected insect cell as a eukaryotic gene expression system. Curr Top Microbiol Immunol 1992; 158:131-72. [PMID: 1582243 DOI: 10.1007/978-3-642-75608-5_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M J Fraser
- Department of Biological Sciences, University of Notre Dame, Indiana 46556
| |
Collapse
|
34
|
Matsuura Y, Maekawa M, Hattori S, Ikegami N, Hayashi A, Yamazaki S, Morita C, Takebe Y. Purification and characterization of human immunodeficiency virus type 1 nef gene product expressed by a recombinant baculovirus. Virology 1991; 184:580-6. [PMID: 1909480 DOI: 10.1016/0042-6822(91)90428-e] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have constructed the recombinant baculovirus which expresses the human immunodeficiency virus type 1 negative factor (nef) gene. Spodoptera frugiperda cells infected with the recombinant virus produced a 27-kDa protein which reacted with rabbit antisera raised against a carboxy-terminal synthetic peptide of the Nef protein by immunoblot analysis. Labeling experiment showed that the recombinant Nef protein was myristoylated. The recombinant Nef protein was purified to near homogeneity by DEAE-Sephacel, phenyl-Sepharose 4B, blue-Sepharose, and Sephadex G-150 column chromatography. No detectable GTP binding activity was observed in the purified recombinant Nef product.
Collapse
Affiliation(s)
- Y Matsuura
- Department of Veterinary Science, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lowe PN, Page MJ, Bradley S, Rhodes S, Sydenham M, Paterson H, Skinner RH. Characterization of recombinant human Kirsten-ras (4B) p21 produced at high levels in Escherichia coli and insect baculovirus expression systems. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52347-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
|