1
|
León-Reyes G, Argoty-Pantoja AD, Becerra-Cervera A, López-Montoya P, Rivera-Paredez B, Velázquez-Cruz R. Oxidative-Stress-Related Genes in Osteoporosis: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12040915. [PMID: 37107290 PMCID: PMC10135393 DOI: 10.3390/antiox12040915] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis is characterized by a decline in bone mineral density (BMD) and increased fracture risk. Free radicals and antioxidant systems play a central role in bone remodeling. This study was conducted to illustrate the role of oxidative-stress-related genes in BMD and osteoporosis. A systematic review was performed following the PRISMA guidelines. The search was computed in PubMed, Web of Sciences, Scopus, EBSCO, and BVS from inception to November 1st, 2022. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. A total of 427 potentially eligible articles exploring this search question were detected. After removing duplicates (n = 112) and excluding irrelevant manuscripts based on screenings of their titles and abstracts (n = 317), 19 articles were selected for full-text review. Finally, 14 original articles were included in this systematic review after we applied the exclusion and inclusion criteria. Data analyzed in this systematic review indicated that oxidative-stress-related genetic polymorphisms are associated with BMD at different skeletal sites in diverse populations, influencing the risk of osteoporosis or osteoporotic fracture. However, it is necessary to look deep into their association with bone metabolism to determine if the findings can be translated into the clinical management of osteoporosis and its progression.
Collapse
Affiliation(s)
- Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Anna D Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- National Council of Science and Technology (CONACYT), Mexico City 03940, Mexico
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
2
|
Kuiper JR, Braun JM, Calafat AM, Lanphear BP, Cecil KM, Chen A, Xu Y, Yolton K, Kalkwarf HJ, Buckley JP. Associations of pregnancy phthalate concentrations and their mixture with early adolescent bone mineral content and density: The Health Outcomes and Measures of the Environment (HOME) study. Bone 2022; 154:116251. [PMID: 34740813 PMCID: PMC8671261 DOI: 10.1016/j.bone.2021.116251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The developing fetus may be particularly susceptibility to environmental osteotoxicants, but studies of pregnancy phthalate exposures and childhood bone health are scarce. OBJECTIVES To examine relations of pregnancy phthalate exposure biomarkers with early adolescent bone mineral density (BMD) and bone mineral content (BMC) in a prospective birth cohort. METHODS We used data from 223 pregnant mothers and their children enrolled in a Cincinnati, OH area cohort from 2003 to 2006. We quantified monoethyl phthalate (MEP), monoisobutyl phthalate, monobutyl phthalate, monobenzyl phthalate, mono-(3-carboxypropyl) phthalate (MCPP), and four metabolites of di-2-ethylhexyl phthalate in maternal urine collected at 16 and 26 weeks gestation, and calculated the average of creatinine-standardized concentrations. Using dual x-ray absorptiometry measures at age 12 years, we calculated BMD and BMC Z-scores for six skeletal sites. In overall and sex-stratified models, we estimated covariate-adjusted associations per 2-fold increase in phthalate biomarker concentrations using linear regression, and estimated joint effects of the phthalate biomarkers mixture using Bayesian kernel machine regression (BKMR) and quantile g-computation. RESULTS In single phthalate models, several biomarkers were positively associated with BMC and BMD. For example, each doubling of MEP and MCPP, 1/3rd distal radius BMD Z-score increased by 0.09 (95% CI: 0.01, 0.17) and 0.16 (95% CI: 0.01, 0.31), respectively. For phthalate mixtures, associations were generally U-shaped among males and positive-linear among females, using both statistical methods. Mixture associations were strongest with forearm sites: in BKMR models, increasing all biomarkers from the 50th to 90th percentile was associated with a 0.64 (95% CI: 0.01, 1.28) greater 1/3rd distal radius BMD Z-score in males, and a 0.49 (95% CI: -0.13, 1.10) greater ultradistal radius BMD Z-score in females. DISCUSSION In this study, phthalate exposures during gestation were associated with increased BMD Z-scores in early adolescence, though further research is needed to determine implications for long-term skeletal health.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Rozenfeld PA, Crivaro AN, Ormazabal M, Mucci JM, Bondar C, Delpino MV. Unraveling the mystery of Gaucher bone density pathophysiology. Mol Genet Metab 2021; 132:76-85. [PMID: 32782168 DOI: 10.1016/j.ymgme.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Despite the existence of a variety of specific treatments for GD, they cannot completely reverse bone complications. Many studies have evidenced the impairment in bone tissue of GD, and molecular mechanisms of bone density alterations in GD are being studied during the last years and different reports emphasized its efforts trying to unravel why and how bone tissue is affected. The cause of skeletal density affection in GD is a matter of debates between research groups. and there are two opposing hypotheses trying to explain reduced bone mineral density in GD: increased bone resorption versus impaired bone formation. In this review, we discuss the diverse mechanisms of bone alterations implicated in GD revealed until the present, along with a presentation of normal bone physiology and its regulation. With this information in mind, we discuss effectiveness of specific therapies, introduce possible adjunctive therapies and present a novel model for GD-associated bone density pathogenesis. Under the exposed evidence, we may conclude that both sides of the balance of remodeling process are altered. In GD the observed osteopenia/osteoporosis may be the result of contribution of both reduced bone formation and increased bone resorption.
Collapse
Affiliation(s)
- P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| | - A N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Av. Córdoba 2351, (C1120ABG), Buenos Aires, Argentina
| |
Collapse
|
4
|
Florensa-Zanuy E, Garro-Martínez E, Adell A, Castro E, Díaz Á, Pazos Á, Mac-Dowell KS, Martín-Hernández D, Pilar-Cuéllar F. Cannabidiol antidepressant-like effect in the lipopolysaccharide model in mice: Modulation of inflammatory pathways. Biochem Pharmacol 2021; 185:114433. [PMID: 33513342 DOI: 10.1016/j.bcp.2021.114433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Major Depression is a severe psychiatric condition with a still poorly understood etiology. In the last years, evidence supporting the neuroinflammatory hypothesis of depression has increased. In the current clinical scenario, in which the available treatments for depression is far from optimal, there is an urgent need to develop fast-acting drugs with fewer side effects. In this regard, recent pieces of evidence suggest that cannabidiol (CBD), the major non-psychotropic component of Cannabis sativa with anti-inflammatory properties, appears as a drug with antidepressant properties. In this work, CBD 30 mg/kg was administered systemically to mice 30 min before lipopolysaccharide (LPS; 0.83 mg/kg) administration as a neuroinflammatory model, and behavioral tests for depressive-, anhedonic- and anxious-like behavior were performed. NF-ĸB, IκBα and PPARγ levels were analyzed by western blot in nuclear and cytosolic fractions of cortical samples. IL-6 and TNFα levels were determined in plasma and prefrontal cortex using ELISA and qPCR techniques, respectively. The precursor tryptophan (TRP), and its metabolites kynurenine (KYN) and serotonin (5-HT) were measured in hippocampus and cortex by HPLC. The ratios KYN/TRP and KYN/5-HT were used to estimate indoleamine 2,3-dioxygenase (IDO) activity and the balance of both metabolic pathways, respectively. CBD reduced the immobility time in the tail suspension test and increased sucrose preference in the LPS model, without affecting locomotion and central activity in the open-field test. CBD diminished cortical NF-ĸB activation, IL-6 levels in plasma and brain, and the increased KYN/TRP and KYN/5-HT ratios in hippocampus and cortex in the LPS model. Our results demonstrate that CBD produced antidepressant-like effects in the LPS neuroinflammatory model, associated to a reduction in the kynurenine pathway activation, IL-6 levels and NF-ĸB activation. As CBD stands out as a promising antidepressant drug, more research is needed to completely understand its mechanisms of action in depression linked to inflammation.
Collapse
Affiliation(s)
- Eva Florensa-Zanuy
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Emilio Garro-Martínez
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Elena Castro
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Álvaro Díaz
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Ángel Pazos
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Karina S Mac-Dowell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Departmento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid (UCM), IUIN-UCM, Imas12 Hospital 12 de Octubre, Madrid, Spain
| | - David Martín-Hernández
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Child and Adolescent Psychiatry, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
5
|
Addison WN, Hall KC, Kokabu S, Matsubara T, Fu MM, Gori F, Baron R. Zfp423 Regulates Skeletal Muscle Regeneration and Proliferation. Mol Cell Biol 2019; 39:e00447-18. [PMID: 30692273 PMCID: PMC6447414 DOI: 10.1128/mcb.00447-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/07/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Satellite cells (SCs) are skeletal muscle stem cells that proliferate in response to injury and provide myogenic precursors for growth and repair. Zfp423 is a transcriptional cofactor expressed in multiple immature cell populations, such as neuronal precursors, mesenchymal stem cells, and preadipocytes, where it regulates lineage allocation, proliferation, and differentiation. Here, we show that Zfp423 regulates myogenic progression during muscle regeneration. Zfp423 is undetectable in quiescent SCs but becomes expressed during SC activation. After expansion, Zfp423 is gradually downregulated as committed SCs terminally differentiate. Mice with satellite-cell-specific Zfp423 deletion exhibit severely impaired muscle regeneration following injury, with aberrant SC expansion, defective cell cycle exit, and failure to transition efficiently from the proliferative stage toward commitment. Consistent with a cell-autonomous role of Zfp423, shRNA-mediated knockdown of Zfp423 in myoblasts inhibits differentiation. Surprisingly, forced expression of Zfp423 in myoblasts induces differentiation into adipocytes and arrests myogenesis. Affinity purification of Zfp423 in myoblasts identified Satb2 as a nuclear partner of Zfp423 that cooperatively enhances Zfp423 transcriptional activity, which in turn affects myoblast differentiation. In conclusion, by controlling SC expansion and proliferation, Zfp423 is essential for muscle regeneration. Tight regulation of Zfp423 expression is essential for normal progression of muscle progenitors from proliferation to differentiation.
Collapse
MESH Headings
- Adipocytes/cytology
- Animals
- Cell Differentiation/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Mesenchymal Stem Cells/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Development/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/physiology
- Signal Transduction
- Stem Cells/cytology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Wound Healing
Collapse
Affiliation(s)
- William N Addison
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Katherine C Hall
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Martin M Fu
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Benayahu D, Wiesenfeld Y, Sapir-Koren R. How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol 2019; 234:12133-12141. [PMID: 30633367 DOI: 10.1002/jcp.28099] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Mechanobiology plays a major role in transducing physical cues from the dynamic cellular environment into biochemical modifications that promote cell-specific differentiation paths. Mesenchymal stem cells in the bone marrow or in other mesenchymal tissues will differentiate according to the expression of transcription factors (TFs) that govern their lineage commitment. The favoring of either osteogenic or adipogenic differentiation relies on TF expression as well as mechanical properties of the cells' niche that are translated into the activation of certain signaling pathways. Physical factors can induce significant shifts in bipotential lineage commitment between osteogenesis and adipogenesis. The stiffness of the extracellular matrix (ECM) surrounding a cell, varying greatly from rigid environments close to the bone surface to softer regions in the bone marrow, can influence the path of differentiation. Additionally, mechanical loading through exercise appears to favor osteogenesis whereas disuse conditions seem to promote adipogenesis.
Collapse
Affiliation(s)
- Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yarden Wiesenfeld
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rony Sapir-Koren
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Bone Marrow Adipose Tissue Deficiency Increases Disuse-Induced Bone Loss in Male Mice. Sci Rep 2017; 7:46325. [PMID: 28402337 PMCID: PMC5389344 DOI: 10.1038/srep46325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 03/16/2017] [Indexed: 12/17/2022] Open
Abstract
Bone marrow adipose tissue (MAT) is negatively associated with bone mass. Since osteoblasts and adipocytes are derived from the same precursor cells, adipocyte differentiation may occur at the expense of osteoblast differentiation. We used MAT-deficient KitW/W−v (MAT-) mice to determine if absence of MAT reduced bone loss in hindlimb-unloaded (HU) mice. Male MAT- and wild-type (WT) mice were randomly assigned to a baseline, control or HU group (n = 10 mice/group) within each genotype and HU groups unloaded for 2 weeks. Femurs were evaluated using micro-computed tomography, histomorphometry and targeted gene profiling. MAT- mice had a greater reduction in bone volume fraction after HU than did WT mice. HU MAT- mice had elevated cancellous bone formation and resorption compared to other treatment groups as well as a unique profile of differentially expressed genes. Adoptive transfer of WT bone marrow-derived hematopoietic stem cells reconstituted c-kit but not MAT in KitW/W−v mice. The MAT- WT → KitW/W−v mice lost cancellous bone following 2 weeks of HU. In summary, results from this study suggest that MAT deficiency was not protective, and was associated with exaggerated disuse-induced cancellous bone loss.
Collapse
|
8
|
Bosetti M, Sabbatini M, Calarco A, Borrone A, Peluso G, Cannas M. Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging. J Bone Miner Metab 2016; 34:65-78. [PMID: 25691285 DOI: 10.1007/s00774-014-0642-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/24/2014] [Indexed: 02/04/2023]
Abstract
Several studies have evidenced that in aging, osteoblast functional activity is impaired: osteoblast proliferation is slower and matrix deposition is less efficient. Because peroxisome-proliferator-activated receptor γ2 (PPARγ2) and fatty acids are important inhibitory signals in osteoblast development, we have investigated in human primary osteoblasts obtained from patients of different ages, the influence of retinoic acid and calcitriol on enzymes involved in differentiative (PPARγ2, β-catenin, and insulin-like growth factor 1) and metabolic (carnitine palmitoyltransferase 1) intracellular pathways, and on transglutaminase 2, as enzyme fundamental for stabilizing the newly deposited extracellular matrix in bone. Retinoic acid and calcitriol influenced, respectively, proliferation and differentiation of osteoblasts, and an increase in PPARγ2 expression was observed following retinoic acid administration, whereas a decrease was observed following calcitriol administration. Aging widely influenced all parameters analyzed (the proliferation, differentiation, and new matrix deposition are significantly reduced in aged osteoblasts), with the exception of PPARγ2, which we found to be constitutively overexpressed and not modulated by retinoic acid or calcitriol administration. Our findings show the impaired ability of aged osteoblasts to perform adequate functional response and draw attention to the therapeutic approaches for bone healing in elderly patients.
Collapse
Affiliation(s)
- Michela Bosetti
- Pharmacy Science Department, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy
| | - Maurizio Sabbatini
- Department of Health Sciences, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy.
- Dipartmento Scienze della Salute, Università del Piemonte Orientale "Amedeo Avogadro", via Solaroli 17, 28100, Novara, Italy.
| | - Anna Calarco
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Alessia Borrone
- Department of Health Sciences, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy
| | | | - Mario Cannas
- Department of Health Sciences, University of Eastern Piedmont, Alessandria, Novara, Vercelli, Italy
| |
Collapse
|
9
|
Thiazolidinediones Inhibit Mouse Osteoblastic MC3T3-E1 Cell Proliferation in Part Through the Wnt Signaling Pathway. J Investig Med 2015; 63:758-64. [DOI: 10.1097/jim.0000000000000191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Li C, Wei G, Gu Q, Wang Q, Tao S, Xu L. Proliferation and differentiation of rat osteoporosis mesenchymal stem cells (MSCs) after telomerase reverse transcriptase (TERT) transfection. Med Sci Monit 2015; 21:845-54. [PMID: 25796354 PMCID: PMC4381855 DOI: 10.12659/msm.893144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to determine whether MSC are excellent materials for MSCs transplantation in the treatment of osteoporosis. Material/Methods We studied normal, osteoporosis, and TERT-transfected MSC from normal and osteoporosis rats to compare the proliferation and osteogenic differentiation using RT-PCR and Western blot by constructing an ovariectomized rat model of osteoporosis (OVX). The primary MSC from model rats were extracted and cultured to evaluate the proliferation and differentiation characteristics. Results MSCs of osteoporosis rats obviously decreased in proliferation ability and osteogenic differentiation compared to that of normal rats. In contrast, in TERT-transfected MSC, the proliferation and differentiation ability, and especially the ability of osteogenic differentiation, were significantly higher than in osteoporosis MSC. Conclusions TERT-transfected MSCs can help osteoporosis patients in whom MSC proliferation and osteogenic differentiation ability are weak, with an increase in both bone mass and bone density, becoming an effective material for autologous transplantation of MSCs in further treatment of osteoporosis. However, studies are still needed to prove the in vivo effect, biological safety, and molecular mechanism of TERT-osteoporosis treatment. Additionally, because the results are from an animal model, more research is needed in generalizing rat model findings to human osteoporosis patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Guojun Wei
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qun Gu
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qiang Wang
- Department of Orthopaedics, Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, Zhejiang, China (mainland)
| | - Shuqin Tao
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Liang Xu
- Department of Orthopaedics, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
11
|
Piccinin MA, Khan ZA. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications. Adipocyte 2014; 3:263-72. [PMID: 26317050 DOI: 10.4161/adip.32215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022] Open
Abstract
Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro- (cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells.
Collapse
|
12
|
Peroxisome proliferator-activated receptor γ ligands retard cultured vascular smooth muscle cells calcification induced by high glucose. Cell Biochem Biophys 2014; 66:421-9. [PMID: 23274912 DOI: 10.1007/s12013-012-9490-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and its ligands have profound effects on glucose homeostasis, cardiovascular diseases, and bone metabolism. To explore the pathophysiological roles of PPARγ in diabetes with concomitant vascular calcification, we investigated changes in PPARγ expression and the effect of the PPARγ ligands troglitazone and rosiglitazone on vascular smooth muscle cell (VSMC) calcification induced by high glucose (HG, 25 mmol/L). Compared with low glucose, HG-induced VSMC calcification, and PPARγ mRNA, protein level was decreased. Troglitazone and rosiglitazone treatment markedly attenuated the VSMC calcification, whereas PPARγ antagonist GW9662 abolished the effect of rosiglitazone on calcification. Pretreatment of VSMCs with rosiglitazone, but not troglitazone, restored the loss of lineage marker expression: the protein levels of α-actin and SM-22α were increased 52 % (P < 0.05) and 53.1% (P < 0.01), respectively, as compared with HG alone. Troglitazone and rosiglitazone reversed the change in bone-related protein expression induced by HG: decreased the mRNA levels of osteocalcin, bone morphogenetic protein 2 (BMP2), and core binding factor α 1 (Cbfα-1) by 26.9% (P > 0.05), 50.0 % (P < 0.01), and 24.4% (P < 0.05), and 48.4% (P < 0.05), 41.4% (P < 0.01) and 56.2% (P < 0.05), respectively, and increased that of matrix Gla protein (MGP) 84.2% (P < 0.01) and 70.0%, respectively (P < 0.05), as compared with HG alone. GW9662 abolished the effect of rosiglitazone on Cbfα-1 and MGP expression. PPARγ ligands can inhibit VSMCs calcification induced by high glucose.
Collapse
|
13
|
Schilling T, Ebert R, Raaijmakers N, Schütze N, Jakob F. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol 2014; 139:252-61. [PMID: 23262262 DOI: 10.1016/j.jsbmb.2012.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/13/2023]
Abstract
Phytoestrogens and other plant-derived compounds and extracts have been developed for the treatment of menopause-related complaints and disorders, e.g. hot flushes and osteoporosis. Since estrogens have been discussed to enhance the risk for hormone-sensitive cancers, research activities try to find alternatives. Phytoestrogens like genistein and resveratrol as well as other plant-derived compounds are capable of substituting for estrogens to some extent. Their effects on mesenchymal stem cells and the tissues derived therefrom have been investigated in vitro and in preclinical settings. Besides their well-known estrogenic, i.e. mainly antiresorptive effects on bone via estrogen receptor (ER) signalling, they also directly or indirectly affect osteogenic and adipogenic pathways. As a novel mechanism, phytoestrogens and plant-derived saponins and flavonoids like kaempferol and xanthohumol have been described to reciprocally affect the osteogenic versus the adipogenic differentiation pathway. Both, ER-mediated and other pathways mediate a shift towards osteogenesis by inhibiting PPARγ and C/EBPα, the key adipogenic transcription factors (TFs), while stimulating the key osteogenic TFs Runx2 and Sp7. Besides ER signalling, the broad spectrum of molecular mechanisms supporting osteogenesis comprises the modulation of PPARγ, Wnt/β-catenin, and Sirt1 signalling, which inversely influence the transcription or transactivation of osteogenic versus adipogenic TFs. Preventing the age- and hormone deficiency-related shift towards adipogenesis without provoking adverse estrogenic effects represents a very promising strategy for treating bone loss and other metabolic diseases beyond bone. Research on plant-derived compounds will have to be pursued in vitro as well as in preclinical studies and controlled clinical trials in humans are urgently needed. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Tatjana Schilling
- University of Würzburg, Orthopaedic Department, Orthopaedic Centre for Musculoskeletal Research, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Berendsen AD, Olsen BR. Osteoblast-adipocyte lineage plasticity in tissue development, maintenance and pathology. Cell Mol Life Sci 2013; 71:493-7. [PMID: 23934155 DOI: 10.1007/s00018-013-1440-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 12/13/2022]
Abstract
Osteoblasts and adipocytes share a common precursor in adult bone marrow and there is a degree of plasticity between the two cell lineages. This has important implications for the etiology of not only osteoporosis but also several other diseases involving an imbalance between osteoblasts and adipocytes. Understanding the process of differentiation of osteoblasts and adipocytes and their trans-differentiation is crucial in order to identify genes and other factors that may contribute to the pathophysiology of such diseases. Several transcriptional regulators have been shown to control osteoblast and adipocyte differentiation and function. Regulation of cell commitment occurs at the level of the progenitor cell through cross talk between complex signaling pathways and epigenetic mechanisms such as DNA methylation, chromatin remodeling, and microRNAs. Here we review the complex precursor cell microenvironment controlling osteoblastogenesis and adipogenesis during tissue development, maintenance, and pathology.
Collapse
Affiliation(s)
- Agnes D Berendsen
- Department of Developmental Biology, REB 413, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA, 02115, USA,
| | | |
Collapse
|
15
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
16
|
Xiao WH, Wang YR, Hou WF, Xie C, Wang HN, Hong TP, Gao HW. The effects of pioglitazone on biochemical markers of bone turnover in the patients with type 2 diabetes. Int J Endocrinol 2013; 2013:290734. [PMID: 23843787 PMCID: PMC3697297 DOI: 10.1155/2013/290734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022] Open
Abstract
Aim. To investigate whether pioglitazone had detrimental effects on biochemical markers of bone turnover in patients with type 2 diabetes (T2DM). Methods. Seventy patients with T2DM were included in this study. The patients remained on their previous antihyperglycemic therapies during the trial. Pioglitazone was then added on their regimen for 3 months. Results. After 3 months of treatment with pioglitazone, the levels of fasting blood glucose and HbA1c were significantly decreased (7.9 ± 1.5 mmol/L versus 9.1 ± 1.6 mmol/L and 7.1 ± 1.0% versus 8.2 ± 1.4%, resp., P < 0.01), compared with baseline in the overall patients. Serum concentrations of P1NP and BAP were significantly decreased from baseline (45.0 ± 20.0 μ g/L versus 40.6 ± 17.9 μ g/L and 13.23 ± 4.7 μ g/L versus 12.3 ± 5.0 μ g/L, resp., P < 0.01) in female group, but not in male group. The serum levels of OC and CTX were unchanged in both female and male subgroups. In addition, the levels of serum BAP and P1NP were significantly decreased after pioglitazone treatment in postmenopausal subgroup, comparing with baseline. Conclusion. Pioglitazone inhibits bone formation and does not seem to affect bone resorption. Postmenopausal female patients rather than premenopausal or male patients are particularly vulnerable to this side effect of pioglitazone.
Collapse
Affiliation(s)
- Wen-hua Xiao
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
| | - Yan-rong Wang
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-fang Hou
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
| | - Chao Xie
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
| | - Hai-ning Wang
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
| | - Tian-pei Hong
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
| | - Hong-wei Gao
- Department of Endocrinology, Peking University Third Hospital, Beijing 100191, China
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
- *Hong-wei Gao:
| |
Collapse
|
17
|
Woeckel V, Bruedigam C, Koedam M, Chiba H, van der Eerden B, van Leeuwen J. 1α,25-Dihydroxyvitamin D3 and rosiglitazone synergistically enhance osteoblast-mediated mineralization. Gene 2013; 512:438-43. [DOI: 10.1016/j.gene.2012.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/28/2022]
|
18
|
Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, Griffin MJ, Min J, Baron R, Rosen ED. Regulation of early adipose commitment by Zfp521. PLoS Biol 2012; 10:e1001433. [PMID: 23209378 PMCID: PMC3507953 DOI: 10.1371/journal.pbio.1001433] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/17/2012] [Indexed: 01/17/2023] Open
Abstract
While there has been significant progress in determining the transcriptional cascade involved in terminal adipocyte differentiation, less is known about early events leading to lineage commitment and cell fate choice. It has been recently discovered that zinc finger protein 423 (Zfp423) is an early actor in adipose determination. Here, we show that a close paralog of Zfp423, Zfp521, acts as a key regulator of adipose commitment and differentiation in vitro and in vivo. Zfp521 exerts its actions by binding to early B cell factor 1 (Ebf1), a transcription factor required for the generation of adipocyte progenitors, and inhibiting the expression of Zfp423. Overexpression of Zfp521 in cells greatly inhibits adipogenic potential, whereas RNAi-mediated knock-down or genetic ablation of Zfp521 enhances differentiation. In addition, Zfp521⁻/⁻ embryos exhibit increased mass of interscapular brown adipose tissue and subcutaneous white adipocytes, a cell autonomous effect. Finally, Ebf1 participates in a negative feedback loop to repress Zfp521 as differentiation proceeds. Because Zfp521 is known to promote bone development, our results suggest that it acts as a critical switch in the commitment decision between the adipogenic and osteogenic lineages.
Collapse
Affiliation(s)
- Sona Kang
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Akerblad
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Riku Kiviranta
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rana K. Gupta
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Shingo Kajimura
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Michael J. Griffin
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jie Min
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Evan D. Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res 2012; 27:2344-58. [PMID: 22729939 PMCID: PMC3474875 DOI: 10.1002/jbmr.1694] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Wnt signaling is essential for osteogenesis and also functions as an adipogenic switch, but it is not known if interrupting wnt signaling via knockout of β-catenin from osteoblasts would cause bone marrow adiposity. Here, we determined whether postnatal deletion of β-catenin in preosteoblasts, through conditional cre expression driven by the osterix promoter, causes bone marrow adiposity. Postnatal disruption of β-catenin in the preosteoblasts led to extensive bone marrow adiposity and low bone mass in adult mice. In cultured bone marrow-derived cells isolated from the knockout mice, adipogenic differentiation was dramatically increased, whereas osteogenic differentiation was significantly decreased. As myoblasts, in the absence of wnt/β-catenin signaling, can be reprogrammed into the adipocyte lineage, we sought to determine whether the increased adipogenesis we observed partly resulted from a cell-fate shift of preosteoblasts that had to express osterix (lineage-committed early osteoblasts), from the osteoblastic to the adipocyte lineage. Using lineage tracing both in vivo and in vitro we showed that the loss of β-catenin from preosteoblasts caused a cell-fate shift of these cells from osteoblasts to adipocytes, a shift that may at least partly contribute to the bone marrow adiposity and low bone mass in the knockout mice. These novel findings indicate that wnt/β-catenin signaling exerts control over the fate of lineage-committed early osteoblasts, with respect to their differentiation into osteoblastic versus adipocytic populations in bone, and thus offers potential insight into the origin of bone marrow adiposity.
Collapse
Affiliation(s)
- Lige Song
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
20
|
SUN LIJUN, WANG HAOYU, XU HAO, WEI JINHONG, SHI LIANG, LIU XIAOGANG, ZHANG JIANBAO. EFFECTS OF FLUID SHEAR STRESS AND CIGLITAZONE ON OSTEOBLASTS. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519412005022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long-term use of thiazolidinedione (TZD) antidiabetic agents in patients with type 2 diabetes mellitus has been shown to increase the incidence of osteoporosis. Mechanical loading can enhance bone mass by promoting bone formation and suppressing bone resorption, which may be beneficial to patients with TZD-induced osteoporosis. In this study, we examined the cooperative effect of fluid shear stress (FSS) and ciglitazone (CIG), a type of TZD, on osteoblasts. The proliferation, osteoblast differentiation-related mRNA expression and translocation of nuclear factor κB (NFκB) of osteoblasts were assessed. The results show that CIG significantly decreased the proliferation of osteoblasts, inhibited the translocation of NFκB to the nucleus and reduced the mRNA expression of COX-2, IGF, Runx2 and OCN. At the same time, CIG also increased the mRNA expression of PPARγ. Conversely, FSS significantly increased the proliferation of osteoblasts, promoted the translocation of NFκB to the nucleus and increased the mRNA expression of COX-2, IGF, Runx2 and OCN but decreased the mRNA expression of PPARγ. When FSS and CIG were combined, FSS counteracted the effects of CIG on osteoblasts. Taken together, the current results suggest that FSS is able to arrest the effects of CIG on the proliferation and differentiation of osteoblasts.
Collapse
Affiliation(s)
- LIJUN SUN
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - HAOYU WANG
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - HAO XU
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - JINHONG WEI
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - LIANG SHI
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - XIAOGANG LIU
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| | - JIANBAO ZHANG
- The Key Laboratory of Biomedical Information, Engineering of Ministry of Education, School of Life Science and Technology Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
21
|
Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One 2012; 7:e34647. [PMID: 22493705 PMCID: PMC3321026 DOI: 10.1371/journal.pone.0034647] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/05/2012] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis.
Collapse
|
22
|
|
23
|
Pino AM, Rosen CJ, Rodríguez JP. In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res 2012; 45:279-87. [PMID: 23283437 PMCID: PMC8262098 DOI: 10.4067/s0716-97602012000300009] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023] Open
Abstract
The formation, maintenance, and repair of bone tissue involve close interlinks between two stem cell types housed in the bone marrow: the hematologic stem cell originating osteoclasts and mesenchymal stromal cells (MSCs) generating osteoblasts. In this review, we consider malfunctioning of MSCs as essential for osteoporosis. In osteoporosis, increased bone fragility and susceptibility to fractures result from increased osteoclastogenesis and insufficient osteoblastogenesis. MSCs are the common precursors for both osteoblasts and adipocytes, among other cell types. MSCs' commitment towards either the osteoblast or adipocyte lineages depends on suitable regulatory factors activating lineage-specific transcriptional regulators. In osteoporosis, the reciprocal balance between the two differentiation pathways is altered, facilitating adipose accretion in bone marrow at the expense of osteoblast formation; suggesting that under this condition MSCs activity and their microenvironment may be disturbed. We summarize research on the properties of MSCs isolated from the bone marrow of control and osteoporotic post-menopausal women. Our observations indicate that intrinsic properties of MSCs are disturbed in osteoporosis. Moreover, we found that the regulatory conditions in the bone marrow fluid of control and osteoporotic patients are significantly different. These conclusions should be relevant for the use of MSCs in therapeutic applications.
Collapse
Affiliation(s)
- Ana María Pino
- Laboratorio de Biología Celular y Molecular, INTA, Universidad de Chile
| | | | | |
Collapse
|
24
|
Stunes AK, Westbroek I, Gustafsson BI, Fossmark R, Waarsing JH, Eriksen EF, Petzold C, Reseland JE, Syversen U. The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats. BMC Endocr Disord 2011; 11:11. [PMID: 21615901 PMCID: PMC3127763 DOI: 10.1186/1472-6823-11-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 05/26/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats. METHODS Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed. RESULTS Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate. CONCLUSIONS The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.
Collapse
Affiliation(s)
- Astrid K Stunes
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Irene Westbroek
- Internal Medicine and Orthopaedics, Erasmus MC, Rotterdam, the Netherlands
| | - Björn I Gustafsson
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Department of Gastroenterology, St Olav's University Hospital HF, Trondheim, Norway
| | - Reidar Fossmark
- Department of Gastroenterology, St Olav's University Hospital HF, Trondheim, Norway
| | - Jan H Waarsing
- Internal Medicine and Orthopaedics, Erasmus MC, Rotterdam, the Netherlands
| | - Erik F Eriksen
- Hormone Laboratory, Aker University Hospital, Oslo, Norway
| | - Christiane Petzold
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Unni Syversen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- Department of Endocrinology, St Olav's University Hospital HF, Trondheim, Norway
| |
Collapse
|
25
|
Bruedigam C, Eijken M, Koedam M, van de Peppel J, Drabek K, Chiba H, van Leeuwen JPTM. A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone. Stem Cells 2010; 28:916-27. [PMID: 20213769 DOI: 10.1002/stem.405] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone-marrow adipogenesis is an aging-related phenomenon and is correlated with osteoporosis. The latter is a prevalent bone disease in the elderly leading to increased fracture risk and mortality. It is widely hypothesized that the underlying molecular mechanism includes a shift in the commitment of mesenchymal stem cells (MSCs) from the osteogenic lineage to the adipogenic lineage. Lineage skewing is at least partially a result of transcriptional changes. The nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPAR-gamma) has been proposed as a major decision factor in MSC lineage commitment, promoting adipogenesis at the expense of osteogenesis. Here we found that PPAR-gamma acted unexpectedly to stimulate osteoblast differentiation from human bone marrow-derived MSCs. Both rosiglitazone-mediated activation and overexpression of PPAR-gamma caused acceleration of osteoblast differentiation. Conversely, shRNAi-mediated PPAR-gamma knockdown diminished osteoblast differentiation. MSCs that were treated with rosiglitazone did not preferentially differentiate into adipocytes. However, the rosiglitazone-mediated acceleration of osteoblast differentiation was followed by increased accumulation of reactive oxygen species and apoptosis. In contrast to the osteogenic lineage, cells of the adipogenic lineage were protected from this. Our data support a new concept on bone health that adds to the explanation of the clinically observed suppressive action of activated PPAR-gamma on bone and the associated phenomenon of bone marrow adipogenesis. This concept is based on a higher susceptibility of the osteogenic than the adipogenic lineage to oxidative stress and apoptosis that is preferentially triggered in the osteoblasts by activated PPAR-gamma.
Collapse
Affiliation(s)
- Claudia Bruedigam
- Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 2010; 25:2078-88. [PMID: 20229598 PMCID: PMC3127399 DOI: 10.1002/jbmr.82] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 03/04/2010] [Indexed: 12/12/2022]
Abstract
The effects of caloric restriction (CR) on the skeleton are well studied in adult rodents and include lower cortical bone mass but higher trabecular bone volume. Much less is known about how CR affects bone mass in young, rapidly growing animals. This is an important problem because low caloric intake during skeletal acquisition in humans, as in anorexia nervosa, is associated with low bone mass, increased fracture risk, and osteoporosis in adulthood. To explore this question, we tested the effect of caloric restriction on bone mass and microarchitecture during rapid skeletal growth in young mice. At 3 weeks of age, we weaned male C57Bl/6J mice onto 30% caloric restriction (10% kcal/fat) or normal diet (10% kcal/fat). Outcomes at 6 (n = 4/group) and 12 weeks of age (n = 8/group) included body mass, femur length, serum leptin and insulin-like growth factor 1 (IGF-1) values, whole-body bone mineral density (WBBMD, g/cm(2)), cortical and trabecular bone architecture at the midshaft and distal femur, bone formation and cellularity, and marrow fat measurement. Compared with the normal diet, CR mice had 52% and 88% lower serum leptin and 33% and 39% lower serum IGF-1 at 6 and 12 weeks of age (p < .05 for all). CR mice were smaller, with lower bone mineral density, trabecular, and cortical bone properties. Bone-formation indices were lower, whereas bone-resorption indices were higher (p < .01 for all) in CR versus normal diet mice. Despite having lower percent of body fat, bone marrow adiposity was elevated dramatically in CR versus normal diet mice (p < .05). Thus we conclude that caloric restriction in young, growing mice is associated with impaired skeletal acquisition, low leptin and IGF-1 levels, and high marrow adiposity. These results support the hypothesis that caloric restriction during rapid skeletal growth is deleterious to cortical and trabecular bone mass and architecture, in contrast to potential skeletal benefits of CR in aging animals.
Collapse
Affiliation(s)
- Maureen J Devlin
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshiko Y, Oizumi K, Hasegawa T, Minamizaki T, Tanne K, Maeda N, Aubin JE. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model. PLoS One 2010; 5:e11782. [PMID: 20668686 PMCID: PMC2909914 DOI: 10.1371/journal.pone.0011782] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 06/28/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Understanding fate choice and fate switching between the osteoblast lineage (ObL) and adipocyte lineage (AdL) is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPAR)gamma. METHODOLOGY/PRINCIPAL FINDINGS Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL), a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically) when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2), PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment. CONCLUSIONS/SIGNIFICANCE We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively mature developmental stages implies an unexpected plasticity with important implications in normal and pathological bone development.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Recombinant apolipoprotein A-I Milano rapidly reverses aortic valve stenosis and decreases leaflet inflammation in an experimental rabbit model. Eur Heart J 2010; 31:2049-57. [DOI: 10.1093/eurheartj/ehq064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Kim MH, Shim KS, Lee SU, Kim YS, Min YK, Kim SH. Stimulatory effect of undecylenic acid on mouse osteoblast differentiation. Phytother Res 2009; 24:559-64. [PMID: 19777559 DOI: 10.1002/ptr.2984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Natural compounds with bone-forming (or anabolic) activity have been recently focused on in bone research. The present study investigated the effect of undecylenic acid (UA) on osteoblast differentiation in mouse osteoblastic MC3T3-E1 subclone 4 cells and primary mouse calvarial cells. Low concentrations of UA (up to 5 microM) exhibited no cytotoxicity and significantly increased the expression and activity of alkaline phosphatase (early differentiation marker of osteoblast) and calcium deposition with the induction of expression of the osteocalcin gene in both cells. Interestingly, at low concentration of UA, the induction of NF-kappaB p65 translocation into nucleus and the up-regulation of AP-1 and NFATc1 transcript levels were also observed, suggesting that the stimulatory effect of UA on osteoblast differentiation could be mediated through the activation of transcription factors. Additionally, although the patterns of UA-induced activation of MAP kinases (JNK and p38) were not completely consistent with the increase of both ALP activity and calcium deposition by UA, MAP kinases might be partially involved in the biological function of UA during the early and late stages of osteoblast differentiation.
Collapse
Affiliation(s)
- Myung Hee Kim
- Laboratory of Chemical Genomics, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Henriksen K, Byrjalsen I, Nielsen RH, Madsen AN, Larsen LK, Christiansen C, Beck-Nielsen H, Karsdal MA. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats. Eur J Pharmacol 2009; 616:340-5. [DOI: 10.1016/j.ejphar.2009.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
|
32
|
Nishii N, Arai M, Yanai N, Togari A, Nakabayashi T. Effect of bone morphogenetic protein-2 (BMP-2) or troglitazone, as an inducer of osteogenic cells or adipocytes, on differentiation of a bone marrow mesenchymal progenitor cell line established from temperature-sensitive (ts) simian virus (SV) 40 T-antigen gene transgenic mice. Biol Pharm Bull 2009; 32:10-7. [PMID: 19122273 DOI: 10.1248/bpb.32.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TBR31-2 is one of the bone marrow stromal cell lines. Differentiation toward osteogenic cells and calcification was observed when TBR31-2 cells were cultured for 4 weeks. Bone morphogenetic protein-2 (BMP-2) stimulated alkaline phosphatase (ALP) activity in a dose- and time-dependent manner. On the other hand, troglitazone increased oil droplet accumulation in a dose-dependent manner. In the presence of BMP-2, an increase of expression in osteogenic cell differentiation marker genes and a decrease of expression in adipocyte differentiation marker genes were observed with the exception of the induced expression of peroxisome proliferator-activated receptor gamma (PPARgamma), however, troglitazone, a ligand of PPARgamma treatment exhibited the opposite tendency. Interestingly, treatment with both BMP-2 and troglitazone resulted in a decrease of ALP activity and an increase of oil droplet accumulation. Reverse tanscription-polymerase chain reaction (RT-PCR) analysis also indicated that osteogenic differentiation markers decreased and that adipocyte differentiation markers increased. Thus, when the cells were cultured with BMP-2, osteogenic differentiation was enhanced while the expression of PPARgamma was maintained, and the addition of troglitazone caused a significant number of differentiated cells into adipocytes. These findings indicate that BMP-2 enhanced osteogenic differentiation and the expression of adipogenic transcription factor (PPARgamma) followed by osteogenic differentiation without activation of PPARgamma by its ligand.
Collapse
Affiliation(s)
- Naomi Nishii
- First Department of Biochemistry, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | | | | | | | | |
Collapse
|
33
|
Abstract
Recent evidence suggests that the risk of several types of fracture is increased in type 2 diabetes mellitus (T2DM). Thiazolidinediones (TZDs) are now widely used in the management of T2DM, and their use may increase in other diseases characterized by insulin resistance. The PPAR-gamma, the molecular target of the TZDs currently in clinical use, is expressed in skeletal tissue. Evidence from preclinical studies has demonstrated that activation of PPAR-gamma (i) inhibits bone formation by diverting mesenchymal stem cells from the osteogenic to the adipocytic lineage and (ii) may increase bone resorption by stimulating the development of osteoclasts. There is also potential for indirect adverse skeletal effects of PPAR-gamma activation by modulation of circulating levels of hormones and cytokines known to influence bone metabolism. Recent studies in humans have demonstrated that TZDs decrease markers of bone formation decrease bone mass, and increase fracture rates, at least in women. The implication of these findings is that fracture risk should be considered in patients with T2DM for whom TZD therapy is being considered, and appropriate therapy instigated to prevent fractures in individuals ascertained to be at high risk.
Collapse
Affiliation(s)
- Andrew Grey
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
34
|
McDonough AK, Rosenthal RS, Cao X, Saag KG. The effect of thiazolidinediones on BMD and osteoporosis. ACTA ACUST UNITED AC 2008; 4:507-13. [PMID: 18695700 DOI: 10.1038/ncpendmet0920] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/25/2008] [Indexed: 01/12/2023]
Abstract
Thiazolidinediones, also known as glitazones, are insulin-sensitizing medications that account for approximately 21% of oral antihyperglycemic drugs used in the US. Although the main therapeutic effects occur in adipose tissue, muscles and the liver, studies suggest effects in bone as well. Currently, two thiazolidinediones are marketed in the US-rosiglitazone and pioglitazone-and several others are under investigation. This Review examines the evidence regarding the effects of thiazolidinediones on skeletal health. These drugs appear to trigger preferential differentiation of mesenchymal stem cells into adipocytes rather than osteoblasts, leading to decreased bone formation and increased adipogenesis. Although only a few small, randomized studies have examined the effects of thiazolidinediones on bone in humans, the available data suggest that these agents contribute to bone loss in postmenopausal women; the relationship is less clear in men. On the basis of this limited evidence, the absolute increase in fracture risk associated with thiazolidinediones seems to be small. Pending data from future randomized, controlled trials of the association between thiazolidinediones and low bone mass, prescribers should consider use of these drugs as a risk factor for the development of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Allyson K McDonough
- University of Alabama at Birmingham, Division of Clinical Immunology/Rheumatology, FOT 820D, 1530 3rd Avenue South, Birmingham, AL 35294-3408, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Over the last decades, the prevalence of obesity and related diseases has increased rapidly in the Western world. Obesity is a disorder of energy balance and is associated with hyper-insulinemia, insulin resistance, and abnormalities in lipid metabolism, and it is one of the most important risk factors in the development of Type II diabetes, cardiovascular disease, atherosclerosis, and certain cancers. Because of the lower frequency of these diseases in Asian countries, attention has been turned toward the Asian diet, which consists highly of soy and soy-based products. The health benefits associated with soy consumption have been linked to the content of isoflavones, the main class of the phytoestrogens. As a result of their structural similarities to endogenous estrogens, isoflavones elicit weak estrogenic effects by competing with 17beta-estradiol (E2) for binding to the intranuclear estrogen receptors (ERs) and exert estrogenic or antiestrogenic effects in various tissues. The estrogenic activities of soy isoflavones are thought to play an important role in their health-enhancing properties. Additionally, the isoflavones have been proved to exert non-ER-mediated effects through numerous other pathways. Genistein, daidzein, and glycitein are the principal isoflavones in soy. Genistein is the most thoroughly examined of these, because it is the most prevalent isoflavone in soy and the most active of these compounds, because of its higher binding affinity for the ER. Genistein and daidzein can be obtained in high levels in humans under certain nutritional conditions, and epidemiologic and laboratory data suggest that these compounds could have health benefits in human obesity. This review will focus on the latest results of research on isoflavones and their effect on obesity in cell cultures, rodents, and humans.
Collapse
Affiliation(s)
- Anne Ørgaard
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
36
|
MacArthur BD, Please CP, Oreffo ROC. Stochasticity and the molecular mechanisms of induced pluripotency. PLoS One 2008; 3:e3086. [PMID: 18769478 PMCID: PMC2517845 DOI: 10.1371/journal.pone.0003086] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 08/07/2008] [Indexed: 12/27/2022] Open
Abstract
The generation of induced pluripotent stem cells from adult somatic cells by ectopic expression of key transcription factors holds significant medical promise. However, current techniques for inducing pluripotency rely on viral infection and are therefore not, at present, viable within a clinical setting. Thus, there is now a need to better understand the molecular basis of stem cell pluripotency and lineage specification in order to investigate alternative methods to induce pluripotency for clinical application. However, the complexity of the underlying molecular circuitry makes this a conceptually difficult task. In order to address these issues, we considered a computational model of transcriptional control of cell fate specification. The model comprises two mutually interacting sub-circuits: a central pluripotency circuit consisting of interactions between stem-cell specific transcription factors OCT4, SOX2 and NANOG coupled to a differentiation circuit consisting of interactions between lineage-specifying master genes.The molecular switches which arise from feedback loops within these circuits give rise to a well-defined sequence of successive gene restrictions corresponding to a controlled differentiation cascade in response to environmental stimuli. Furthermore, we found that this differentiation cascade is strongly unidirectional: once silenced, core transcription factors cannot easily be reactivated. In the context of induced pluripotency, this indicates that differentiated cells are robustly resistant to reprogramming to a more primitive state. However, our model suggests that under certain circumstances, amplification of low-level fluctuations in transcriptional status (transcriptional "noise") may be sufficient to trigger reactivation of the core pluripotency switch and reprogramming to a pluripotent state. This interpretation offers an explanation of a number of experimental observations concerning the molecular mechanisms of cellular reprogramming by defined factors and suggests a role for stochasticity in reprogramming of somatic cells to pluripotency.
Collapse
Affiliation(s)
- Ben D MacArthur
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom.
| | | | | |
Collapse
|
37
|
Zoico E, Zamboni M, Di Francesco V, Mazzali G, Fantin F, De Pergola G, Zivelonghi A, Adami S, Bosello O. Relation between adiponectin and bone mineral density in elderly post-menopausal women: role of body composition, leptin, insulin resistance, and dehydroepiandrosterone sulfate. J Endocrinol Invest 2008; 31:297-302. [PMID: 18475046 DOI: 10.1007/bf03346361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Adipocytokines have been proposed as new mediators of the protective effects of fat mass on the skeleton. The aim of this study was to test the relationship between adiponectin, leptin, and bone mineral density (BMD), independently of body composition, insulin resistance, and other factors known to affect bone metabolism. METHODS Thirty-six post-menopausal non-diabetic elderly women, with ages ranging from 66 to 77 yr took part in the study. In all subjects we evaluated body weight, height, body mass index (BMI), waist circumference, adiponectin, leptin, insulin, DHEAS, and homeostasis model assessment of insulin resistance (HOMA), as well as yr since menopause. Total body fat mass (FM) and BMD at whole body and femoral level were measured with Dual energy X-ray Absorptiometry (DXA). Volumetric BMD was defined as the ratio between total body BMD and height. RESULTS Leptin was positively and adiponectin negatively related with whole body and femoral BMD. Positive associations between insulin, HOMA, DHEAS, and BMD measures were also found. After adjusting for FM, only adiponectin maintained a significant relation with whole body and femoral BMD; the strength of this association was reduced after adjustment for insulin resistance, estimated by HOMA. In stepwise multiple linear regression analyses adiponectin explained 11.7% of total BMD variance, 17.4% of femoral neck BMD variance, and 30.7% of volumetric BMD variance, independently of BMI, FM, leptin, HOMA, and DHEAS. CONCLUSIONS The present study may suggest possible involvement of adiponectin in bone metabolism, independently of FM and insulin resistance even in elderly post-menopausal women.
Collapse
Affiliation(s)
- E Zoico
- Department of Geriatric Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Thiazolidinediones (TZDs) are agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) nuclear transcription factor. Two members of this drug class, rosiglitazone and pioglitazone, are commonly used in the management of type II diabetes mellitus, and play emerging roles in the treatment of other clinical conditions characterized by insulin resistance. Over the past decade, a consistent body of in vitro and animal studies has demonstrated that PPARgamma signaling regulates the fate of pluripotent mesenchymal cells, favoring adipogenesis over osteoblastogenesis. Treatment of rodents with TZDs decreases bone formation and bone mass. Until recently, there were no bone-related data available from studies of TZDs in humans. In the past year, however, several clinical studies have reported adverse skeletal actions of TZDs in humans. Collectively, these investigations have demonstrated that the TZDs currently in clinical use decrease bone formation and accelerate bone loss in healthy and insulin-resistant individuals, and increase the risk of fractures in the appendicular skeleton in women with type II diabetes mellitus. These observations should prompt clinicians to evaluate fracture risk in patients for whom TZD therapy is being considered, and initiate skeletal protection in at-risk individuals.
Collapse
Affiliation(s)
- A Grey
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
39
|
Lin TH, Yang RS, Tang CH, Lin CP, Fu WM. PPARgamma inhibits osteogenesis via the down-regulation of the expression of COX-2 and iNOS in rats. Bone 2007; 41:562-74. [PMID: 17669705 DOI: 10.1016/j.bone.2007.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 05/24/2007] [Accepted: 06/11/2007] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand-activated transcription factor, is considered as an anti-osteoblastic factor associated with adiposity and the elderly osteoporosis due to a defect in osteoblastogenesis. We have found that oral administration of PPARgamma activator rosiglitazone decreased tibia BMD and serum ALP but left serum calcium and osteoclast marker C-terminal telopeptide unaffected. In addition, we examined the inhibitory mechanisms of PPARgamma on the bone formation by using PPARgamma activators ciglitazone and 15-deoxy-Delta(12,14)-prostaglandin-J2 (15d-PGJ2). Our data indicated that PPARgamma ligands decreased both mineralized bone nodules and alkaline phosphatase (ALP) activities in cultured primary osteoblasts. Reverse transcription polymerase chain reaction (RT-PCR) showed that the expression of bone morphogenetic protein-2 (BMP-2) and osteocalcin (OCN) was inhibited by ciglitizone and 15d-PGJ2. Furthermore, PPARgamma ligands inhibited NF-kappaB associated downstream COX-2 and iNOS osteogenic signaling. The ultrasound (US)-induced elevation of COX-2 and iNOS expression and nitric oxide (NO) production were attenuated in the presence of PPARgamma ligands. Furthermore, local administration of PPARgamma ligands into the metaphysis of rat tibia decreased the bone volume in secondary spongiosa. These results suggest that the activation of PPARgamma inhibits osteoblastic differentiation and the expression of several anabolic mediators involved in bone formation. These data may reflect osteoporosis and less bone formation in the aging people and patients treated with thiazolidinediones.
Collapse
Affiliation(s)
- Tzu-Hung Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Giaginis C, Tsantili-Kakoulidou A, Theocharis S. Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism. Fundam Clin Pharmacol 2007; 21:231-44. [PMID: 17521292 DOI: 10.1111/j.1472-8206.2007.00486.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that regulate the storage and catabolism of dietary fats. PPARs constitute molecular targets for the treatment of human metabolic disorders, and also play a crucial role in inflammatory-related disease and cancer. Recent evidence has revealed the presence of three different PPAR isotypes (alpha, beta/delta, and gamma) in different cells of the bone tissue, as well as the possible role of PPAR ligands in bone turnover. In the present review, the latest knowledge of the expression of PPARs in bone tissue and the diverse effects of PPAR ligands on bone metabolism is summarized. PPARs, especially of the gamma isotype, could be targets for the treatment of diverse bone diseases such as osteoporosis and osteopenia related to either diabetes or aging.
Collapse
Affiliation(s)
- Costas Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | | | | |
Collapse
|
41
|
Mullin BH, Spector TD, Curtis CC, Ong GN, Hart DJ, Hakim AJ, Worthy T, Wilson SG. Polymorphisms in ALOX12, but not ALOX15, are significantly associated with BMD in postmenopausal women. Calcif Tissue Int 2007; 81:10-7. [PMID: 17520163 DOI: 10.1007/s00223-007-9023-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/24/2007] [Indexed: 12/16/2022]
Abstract
The murine arachidonate 15-lipoxygenase gene (Alox15) has recently been identified as a negative regulator of peak bone mineral density (BMD). The human ALOX15 gene shares significant sequence homology with the murine Alox15 gene; however, the human arachidonate 12-lipoxygenase gene (ALOX12) is functionally more similar to the mouse gene. Multiple single-nucleotide polymorphisms (SNPs) in the human ALOX15 and ALOX12 genes have previously been reported to be significantly associated with BMD in humans. On the basis of these data, we carried out our own investigation of the human ALOX15 and ALOX12 genes and their relationship with hip and spine BMD parameters. The study population consisted of 779 postmenopausal women with a mean (+/- standard deviation) age of 62.5 +/- 5.9 years at BMD measurement and was recruited from a single large general practice in Chingford, northeast London. Three SNPs from ALOX15 and five from ALOX12 were analyzed. None of the SNPs that we analyzed in ALOX15 were significantly associated with any of the BMD parameters or fracture data. However, we found that three SNPs from ALOX12, all previously associated with spine BMD in women, were significantly associated with spine and various hip BMD parameters in our cohort (P = 0.029-0.049). In conclusion, we found no association between polymorphism in ALOX15 and BMD phenotypes but were able to replicate previous findings that genetic variation in ALOX12 seems to play a role in determining bone structure in Caucasian women.
Collapse
Affiliation(s)
- B H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, 6009, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 2007; 92:1305-10. [PMID: 17264176 DOI: 10.1210/jc.2006-2646] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CONTEXT Thiazolidinediones, which are peroxisome proliferator-activated receptor-gamma agonists, are widely prescribed to patients with disorders characterized by insulin resistance. Preclinical studies suggest that peroxisome proliferator-activated receptor-gamma signaling negatively regulates bone formation and bone density. Human data on the skeletal effects of thiazolidinediones are currently available only from observational studies. OBJECTIVE The objective of the study was to determine whether rosiglitazone, a thiazolidinedione, inhibits bone formation. DESIGN The study was a 14-wk randomized, double-blind, placebo-controlled trial. SETTING The study was conducted in the general community. PATIENTS Fifty healthy, postmenopausal women participated in the study. INTERVENTION Intervention was rosiglitazone 8 mg/d. MAIN OUTCOME MEASURES The primary end point was biochemical markers of bone formation, and secondary end points were a bone resorption marker and bone mineral density. RESULTS The osteoblast markers procollagen type I N-terminal propeptide and osteocalcin declined by 13% (P<0.005 vs. placebo) and 10% (P=0.04 vs. placebo), respectively, in the rosiglitazone group. These changes were evident by 4 wk and persisted for the duration of the study. There was no change in the serum beta-C-terminal telopeptide of type I collagen, a marker of bone resorption (P=0.9 vs. placebo). Total hip bone density fell in the rosiglitazone group (mean change from baseline rosiglitazone -1.9%, placebo -0.2%; between-group difference 1.7%, 95% confidence interval 0.6-2.7, P<0.01); lumbar spine bone density fell significantly from baseline values in the rosiglitazone group (P=0.02 vs. baseline) but was not significantly different between groups (mean change from baseline rosiglitazone -1.2%, placebo -0.2%; between-group difference 1.0%, 95% confidence interval -0.2-2.3, P=0.13). CONCLUSIONS Short-term therapy with rosiglitazone exerts detrimental skeletal effects by inhibiting bone formation. Skeletal end points should be included in future long-term studies of thiazolidinedione use.
Collapse
Affiliation(s)
- Andrew Grey
- Department of Medicine, University of Auckland, and LabPlus, Auckland City Hospital, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem 2007; 282:14515-24. [PMID: 17351296 DOI: 10.1074/jbc.m700030200] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal precursor cells have the potential to differentiate into several cell types, including adipocytes and osteoblasts. Activation of Wnt/beta-catenin signaling shifts mesenchymal cell fate toward osteoblastogenesis at the expense of adipogenesis; however, molecular mechanisms by which Wnt signaling alters mesenchymal cell fate have not been fully investigated. Our prior work indicates that multipotent precursors express adipogenic and osteoblastogenic transcription factors at physiological levels and that ectopic expression of Wnt10b in bipotential ST2 cells suppresses expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) and increases expression of Runx2, Dlx5, and osterix. Here, we demonstrate that transient activation of Wnt/beta-catenin signaling rapidly suppresses C/EBPalpha and PPARgamma, followed by activation of osteoblastogenic transcription factors. Enforced expression of C/EBPalpha or PPARgamma partially rescues lipid accumulation and decreases mineralization in ST2 cells expressing Wnt10b, suggesting that suppression of C/EBPalpha and PPARgamma is required for Wnt/beta-catenin to alter cell fate. Furthermore, knocking down expression of C/EBPalpha, PPARgamma, or both greatly reduces adipogenic potential and causes spontaneous osteoblastogenesis in ST2 cells and mouse embryonic fibroblasts, suggesting that Wnt signaling alters the fate of mesenchymal precursor cells primarily by suppressing C/EBPalpha and PPARgamma.
Collapse
Affiliation(s)
- Sona Kang
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | |
Collapse
|
44
|
Giaginis C, Tsantili-Kakoulidou A, Theocharis S. Peroxisome proliferator-activated receptor-γ ligands as bone turnover modulators. Expert Opin Investig Drugs 2007; 16:195-207. [PMID: 17243939 DOI: 10.1517/13543784.16.2.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PPAR-gamma ligands are being used for the treatment of human metabolic disorders; they also exert anti-inflammatory and antineoplastic properties that are now being explored in clinical studies. Recent data have further extended the crucial role of PPAR-gamma and its ligands in bone turnover. This review summarises the latest knowledge of the expression of PPAR-gamma in bone tissue and the regulatory effect of diverse synthetic and natural PPAR-gamma ligands on bone formation and resorption. Taking into account the data so far, PPAR-gamma ligands seem to be able to contribute to the treatment of various bone disorders including osteoporosis, as well as diabetic and age-related osteopoenia.
Collapse
Affiliation(s)
- Costas Giaginis
- University of Athens, Department of Forensic Medicine and Toxicology, Medical School, 75 Mikras Asias Street, Athens 11527, Greece.
| | | | | |
Collapse
|
45
|
Ebert R, Schütze N, Schilling T, Seefried L, Weber M, Nöth U, Eulert J, Jakob F. Influence of hormones on osteogenic differentiation processes of mesenchymal stem cells. Expert Rev Endocrinol Metab 2007; 2:59-78. [PMID: 30743749 DOI: 10.1586/17446651.2.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone development, regeneration and maintenance are governed by osteogenic differentiation processes from mesenchymal stem cells through to mature bone cells, which are directed by local growth and differentiation factors and modulated strongly by hormones. Mesenchymal stem cells develop from both mesoderm and neural crest and can give rise to development, regeneration and maintenance of mesenchymal tissues, such as bone, cartilage, muscle, tendons and discs. There are only limited data regarding the effects of hormones on early events, such as regulation of stemness and maintenance of the mesenchymal stem cell pool. Hormones, such as estrogens, vitamin D-hormone and parathyroid hormone, besides others, are important modulators of osteogenic differentiation processes and bone formation, starting off with fate decision and the development of osteogenic offspring from mesenchymal stem cells, which end up in osteoblasts and osteocytes. Hormones are involved in fetal bone development and regeneration and, in childhood, adolescence and adulthood, they control adaptive needs for growth and reproduction, nutrition, physical power and crisis adaptation. As in other tissues, aging in mesenchymal stem cells and their osteogenic offspring is accompanied by the accumulation of genomic and proteomic damage caused by oxidative burden and insufficient repair. Failsafe programs, such as apoptosis and cellular senescence avoid tumorigenesis. Hormones can influence the pace of such events, thus supporting the quality of tissue regeneration in aging organisms in vivo; for example, by delaying osteoporosis development. The potential for hormones in systemic therapeutic strategies is well appreciated and some concepts are approved for clinical use already. Their potential for cell-based therapeutic strategies for tissue regeneration is probably underestimated and could enhance the quality of tissue-engineering constructs for transplantation and the concept of in situ-guided tissue regeneration.
Collapse
Affiliation(s)
- Regina Ebert
- a University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Norbert Schütze
- b University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Tatjana Schilling
- c University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Lothar Seefried
- d University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Meike Weber
- e University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Ulrich Nöth
- f University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Jochen Eulert
- g University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Franz Jakob
- h University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| |
Collapse
|
46
|
Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone 2006; 39:1361-72. [PMID: 16904389 DOI: 10.1016/j.bone.2006.06.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 11/26/2022]
Abstract
Whereas continuous PTH infusion increases bone resorption and bone loss, intermittent PTH treatment stimulates bone formation, in part, via reactivation of quiescent bone surfaces and reducing osteoblast apoptosis. We investigated the possibility that intermittent and continuous PTH treatment also differentially regulates osteogenic and adipocytic lineage commitment of bone marrow stromal progenitor/mesenchymal stem cells (MSC). The MSC were cultured under mildly adipogenic conditions in medium supplemented with dexamethasone, insulin, isobutyl-methylxanthine and troglitazone (DIIT), and treated with 50 nM human PTH(1-34) for either 1 h/day or continuously (PTH replenished every 48 h). After 6 days, cells treated with PTH for 1 h/day retained their normal fibroblastic appearance whereas those treated continuously adopted a polygonal, irregular morphology. After 12-18 days numerous lipid vacuole and oil red O-positive adipocytes had developed in cultures treated with DIIT alone, or with DIIT and continuous PTH. In contrast, adipocyte number was reduced and alkaline phosphatase staining increased in the cultures treated with DIIT and 1 h/day PTH, indicating suppression of adipogenesis and possible promotion of early osteoblastic differentiation. Furthermore, intermittent but not continuous PTH treatment suppressed markers of differentiated adipocytes such as mRNA expression of lipoprotein lipase and PPARgamma as well as glycerol 3-phosphate dehydrogenase activity. All of these effects of intermittent PTH were also produced by a 1 h/day treatment with AH3960 (30 microM), a small molecule, non-peptide agonist of the PTH1 receptor. AH3960, like PTH, activates both the cAMP and calcium signaling pathways. Treatment with the adenylyl cyclase activator forskolin for 1 h/day, mimicked the anti-adipogenic effect of intermittent PTH, whereas pretreatment with the protein kinase-A inhibitor H89 prior to intermittent PTH resulted in almost complete conversion to adipocytes. In contrast, the MAP kinase inhibitor PD 98059 failed to prevent the anti-adipocytic effect of intermittent PTH, suggesting that the inhibitory effect of PTH on adipocyte differentiation is predominantly cAMP-dependent. These results demonstrate a differential effect of PTH1 receptor agonists on the adipocytic commitment and differentiation of adult human bone marrow mesenchymal stem cells. This response may represent an additional mechanism that contributes to the overall bone anabolic action of intermittent PTH.
Collapse
Affiliation(s)
- David J Rickard
- Musculoskeletal Diseases Biology, GlaxoSmithKline Research and Development, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 2006; 7:1-16. [PMID: 17051438 DOI: 10.1007/s11154-006-9001-5] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We present an overview of the concepts of tissue-specific transcriptional control mechanisms essential for development of the bone cell phenotype. BMP2 induced transcription factors constitute a network of activities and molecular switches for bone development and osteoblast differentiation. Among these regulators are Runx2 (Cbfa1/AML3), the principal osteogenic master gene for bone formation, as well as homeodomain proteins and osterix. Runx2 has multiple regulatory activities, including activation or repression of gene expression, and integration of biological signals from developmental cues, such as BMP/TGFbeta, Wnt and Src signaling pathways. Runx2 provides a new paradigm for transcriptional control by functioning as a principal scaffolding protein in nuclear microenvironments to control gene expression in response to physiologic signals (growth factors, cytokines and hormones). The protein serves as a hub for the coordination of activities essential for the expansion and differentiation of osteogenic lineage cells through the formation of co-regulatory protein complexes organized in subnuclear domains. Mechanisms by which Runx2 supports commitment to osteogenesis and determines cell fate involve its retention on mitotic chromosomes. Disruption of a unique protein module, the subnuclear targeting signal of Runx2, has profound effects on osteoblast differentiation and metastasis of cancer cells in the bone microenvironment. Runx2 target genes include regulators of cell growth control, components of the bone extracellular matrix, angiogenesis, and signaling proteins for development of the osteoblast phenotype and bone turnover. The specificity of Runx2 regulatory activities provides a basis for novel therapeutic strategies to correct bone disorders.
Collapse
Affiliation(s)
- Jane B Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Mesenchymal stem cells (MSCs) have become one of the most studied stem cells, especially toward the healing of diseased and damaged tissues and organs. MSCs can be readily isolated from a number of adult tissues by means of minimally invasive approaches. MSCs are capable of self-replication to many passages and, therefore, can potentially be expanded to sufficient numbers for tissue and organ regeneration. MSCs are able to differentiate into multiple cell lineages that resemble osteoblasts, chondrocytes, myoblasts, adipocytes, and fibroblasts and express some of the key markers typical of endothelial cells, neuron-like cells, and cardiomyocytes. MSCs have been used alone for cell delivery or seeded in biomaterial scaffolds toward the healing of tissue and organ defects. After an increasing number of the "proof of concept" studies, the remaining tasks are many, such as to determine MSC interactions with host cells and signaling molecules, to investigate the interplay between MSCs and biological scaffold materials, and to apply MSC-based therapies toward clinically relevant defect models. The ultimate goal of MSC-based therapies has valid biological rationale in that clusters of MSCs differentiate to form virtually all connective tissue during development. MSC-based therapies can only be realized our improved understanding of not only their fundamental properties such as population doubling and differentiation pathways but also translational studies that use MSCs in the de novo formation and/or regeneration of diseased or damaged tissues and organs.
Collapse
Affiliation(s)
- Nicholas W Marion
- College of Dental Medicine - Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, New York, USA
| | | |
Collapse
|
49
|
Wein MN, Jones DC, Glimcher LH. Turning down the system: counter-regulatory mechanisms in bone and adaptive immunity. Immunol Rev 2005; 208:66-79. [PMID: 16313341 DOI: 10.1111/j.0105-2896.2005.00322.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Major advances have been made in recent years toward the identification of transcription factors that control cell-type-specific gene expression in the skeletal and adaptive immune systems. However, the identification of factors necessary and sufficient to drive production of effector cell proteins such as matrix components and cytokines represents the first step toward understanding how cells in bone and the adaptive system achieve their highly specialized functions. Here, we provide selected examples of counter-regulatory mechanisms that serve to turn down cells involved in extracellular matrix biosynthesis and adaptive immunity at the level of the transcription factors Runx2 and nuclear factor for the activation of T cells.
Collapse
Affiliation(s)
- Marc N Wein
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Abstract
Osteoporosis and atherosclerosis are both widely prevalent in an ageing population, and induce serious morbidities and death. There is growing evidence that in addition to their relationship to ageing, osteoporosis and atherosclerosis are also linked by biological associations. This article reviews their clinical interrelations, discusses the basic biology of bone and the arterial wall, and presents five examples that illustrate their biological linkages. Current therapeutic approaches emerging from these linkages, including statins, bisphosphonates, and the thiazolidinediones, have dual effects on bone and the vasculature. Additional therapies derived from experimental studies that enhance bone density and reduce atherogenesis hold further promise to diminish the morbidity and mortality of osteoporosis and atherosclerosis, with attendant benefits to society.
Collapse
Affiliation(s)
- D Hamerman
- Department of Medicine and Resnick Gerontology Center, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA.
| |
Collapse
|