1
|
Lu XF, Huang T, Chen C, Zhang J, Fu XY, Cheng B, Zhou YY, Lei J, Lu DL. Association of CYP7B1 expression with the prognosis of endometrial cancer: a retrospective study. World J Surg Oncol 2024; 22:251. [PMID: 39289693 PMCID: PMC11406946 DOI: 10.1186/s12957-024-03504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) tissues express CYP7B1, but its association with prognosis needs to be investigated. METHODS Immunohistochemistry and image analysis software were used to assess CYP7B1 protein expression in paraffin-embedded endometrial tumor sections. Associations between CYP7B1 and clinical factors were tested with the Wilcoxon rank-sum test. Kaplan-Meier curves were employed to describe survival, and differences were assessed using the log-rank test. Cox regression analysis was used to assess the association between CYP7B1 expression and the prognosis of patients with EC. RESULTS A total of 307 patients were enrolled with an average age of 52.6 ± 8.0 years at diagnosis. During the period of follow-up, 46 patients (15.0%) died, and 29 (9.4%) suffered recurrence. The expression of CYP7B1 protein is significantly higher in the cytoplasm than in the nucleus (P < 0.001). Patients aged < 55 years (P = 0.040), ER-positive patients (P = 0.028) and PR-positive patients (P < 0.001) report higher levels of CYP7B1 protein. Both univariate (HR = 0.41, 95% CI: 0.18-0.90, P = 0.025) and multivariate (HR = 0.35, 95%CI:0.16-0.79, P = 0.011) Cox regression analyses demonstrate that high CYP7B1 protein expression predicts longer overall survival (OS). When considering only ER-positive patients (n = 265), CYP7B1 protein expression is more strongly associated with OS (HR = 0.20,95%CI:0.08-0.52, P = 0.001). The 3-year OS and 5-year OS in the low-CYP7B1 subgroup are 81.6% and 76.8%, respectively; while in the high-CYP7B1 subgroup are 93.0% and 92.0%, respectively (P = 0.021). CONCLUSIONS High CYP7B1 protein expression predicted longer OS, suggesting that it may serve as an important molecular marker for EC prognosis.
Collapse
Affiliation(s)
- Xiao-Fang Lu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Tao Huang
- Department of Gynecology, Wuzhou Red Cross Hospital, No. 3-1, Xinxing 1st Road, Wanxiu District, Wuzhou, 543002, China
| | - Chang Chen
- Department of Pathology, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Jing Zhang
- Department of Epidemiology, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Xu-Yong Fu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Bo Cheng
- Department of Pathology, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, China
| | - Ya-Yan Zhou
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jia Lei
- Department of Gynecology, Wuzhou Red Cross Hospital, No. 3-1, Xinxing 1st Road, Wanxiu District, Wuzhou, 543002, China.
| | - Da-Lin Lu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Lakhssassi K, Meneses C, Sarto MP, Serrano M, Calvo JH. Genome-wide analysis reveals that the cytochrome P450 family 7 subfamily B member 1 gene is implicated in growth traits in Rasa Aragonesa ewes. Animal 2023; 17:100975. [PMID: 37734362 DOI: 10.1016/j.animal.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Sheep are very well adapted to changing environments and are able to produce and reproduce with low inputs in feed and water better than other domestic ruminants. Indeed, the ewe body condition score (BCS) and live weight (LW) play a significant role in productive and reproductive performance. This work conducts a genome-wide association study (GWAS) to detect genetic variants associated with growth traits in 225 adult ewes of the Rasa Aragonesa breed by using the genotypes from 50 k and HD Illumina Ovine BeadChip. These ewes were measured for LW, BCS and growth rate (GR) for 2 years, from January to September. Corrected phenotypes for BCS, LW and GR were estimated and used as input for the GWAS. Only one single nucleotide polymorphism (SNP) rs425509273 in chromosome 9 (OAR9), associated with the GR, overcame the genome-wise significance level. One, three and nine SNPs were associated at the chromosome-wise level (FDR 10%) for traits BCS, LW and GR, respectively. The cytochrome P450 family 7 subfamily B member 1 (CYP7B1) candidate gene, located 83 kb upstream from SNP rs425509273 in OAR9, was partially isolated and Sanger-sequenced. Fifteen polymorphisms comprising 12 SNPs, two indels and one polyC, were detected in promoter, exon 1, 3, 5, and intron 1-3 region. The SNP association analysis of the polymorphisms located close to the transcription start site (TSS) showed that a 22 bp insertion located at -58 nucleotides from the TSS (indel (-58)), a polyC (-25), and two A/G SNPs (SNP3 (-114) and SNP5 (-63)) were associated with the GR trait, whereas only the indel (-58) was associated with the BCS trait. The haplotype analysis confirmed these results. The functional characterisation of the polymorphisms at CYP7B1 gene in liver by real-time quantitative PCR analysis confirmed that the mutations in the promoter region affected CYP7B1 gene expression. Our results demonstrated the involvement of the CYP7B1 gene promoter on GR and BCS traits in Rasa Aragonesa. These findings suggest that variations in ovine CYP7B1 may serve as potential genetic markers to be used in breeding programmes to improve growth characteristics that could influence reproductive traits.
Collapse
Affiliation(s)
- K Lakhssassi
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA-IA2), Avda. Montañana 930, 50059 Zaragoza, Spain; Research Unit of Animal Production, National Institute for Agronomic Research (INRA), BP 6356, Institutes 10101, Rabat, Morocco
| | - C Meneses
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - M P Sarto
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA-IA2), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - M Serrano
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain.
| | - J H Calvo
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA-IA2), Avda. Montañana 930, 50059 Zaragoza, Spain; Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Lee SM, Jun DW, Yoon EL, Oh JH, Roh YJ, Lee EJ, Shin JH, Nam YD, Kim HS. Discovery biomarker to optimize obeticholic acid treatment for non-alcoholic fatty liver disease. Biol Direct 2023; 18:50. [PMID: 37626369 PMCID: PMC10463927 DOI: 10.1186/s13062-023-00407-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The response rate to obeticholic acid (OCA), a potential therapeutic agent for non-alcoholic fatty liver disease, is limited. This study demonstrated that upregulation of the alternative bile acid synthesis pathway increases the OCA treatment response rate. The hepatic transcriptome and bile acid metabolite profile analyses revealed that the alternative bile acid synthesis pathway (Cyp7b1 and muricholic acid) in the OCA-responder group were upregulated compared with those in the OCA-non-responder group. Intestinal microbiome analysis also revealed that the abundances of Bacteroidaceae, Parabacteroides, and Bacteroides, which were positively correlated with the alternative bile acid synthesis pathway, were higher in the OCA-responder group than in the non-responder group. Pre-study hepatic mRNA levels of Cyp8b1 (classic pathway) were downregulated in the OCA-responder group. The OCA response rate increased up to 80% in cases with a hepatic Cyp7b1/Cyp8b1 ratio ≥ 5.0. Therefore, the OCA therapeutic response can be evaluated based on the Cyp7b1/Cyp8b1 ratio or the alternative/classic bile acid synthesis pathway activity.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea.
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-792, Republic of Korea.
| | - Eileen Laurel Yoon
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-792, Republic of Korea.
| | - Ju Hee Oh
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Eun Jeoung Lee
- Department of Translational Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyun Sung Kim
- Pathology, Medical genetic, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Petkova-Kirova P, Baas S, Wagenpfeil G, Hartz P, Unger MM, Bernhardt R. SNPs in cytochrome P450 genes decide on the fate of individuals with genetic predisposition to Parkinson's disease. Front Pharmacol 2023; 14:1244516. [PMID: 37601072 PMCID: PMC10436510 DOI: 10.3389/fphar.2023.1244516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurological diseases affecting millions of people worldwide. While the majority of PD cases are of unknown origin (idiopathic), about 5%-10% are familial and linked to mutations in different known genes. However, there are also people with a genetic predisposition to PD who do not develop the disease. To elucidate factors leading to the manifestation of PD we compared the occurrence of single nucleotide polymorphisms (SNPs) in various cytochrome P450 (P450) genes in people with a genetic predisposition and suffering from PD (GPD) to that of people, who are genetically predisposed, but show no symptoms of the disease (GUN). We used the PPMI (Parkinson's Progression Markers Initiative) database and the gene sequences of all 57 P450s as well as their three redox partners. Corresponding odds ratios (OR) and confidence intervals (CI) were calculated to assess the incidence of the various SNPs in the two groups of individuals and consequently their relation to PD. We identified for the first time SNPs that are significantly (up to 10fold!) over- or under-represented in GPD patients compared to GUN. SNPs with OR > 5 were found in 10 P450s being involved in eicosanoid, vitamin A and D metabolism as well as cholesterol degradation pointing to an important role of endogenous factors for the manifestation of PD clinical symptoms. Moreover, 12 P450s belonging to all P450 substrate classes as well as POR have SNPs that are significantly under-represented (OR < 0.2) in GPD compared to GUN, indicating a protective role of those SNPs and the corresponding P450s regarding disease advancement. To the best of our knowledge our data for the first time demonstrate an association between known PD predisposition genes and SNPs in other genes, shown here for different P450 genes and for their redox partner POR, which promote the manifestation of the disease in familial PD. Our results thus shed light onto the pathogenesis of PD, especially the switch from GUN to GPD and might further help to advance novel strategies for preventing the development or progression of the disease.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
5
|
Yu L, Xu L, Chu H, Peng J, Sacharidou A, Hsieh HH, Weinstock A, Khan S, Ma L, Durán JGB, McDonald J, Nelson ER, Park S, McDonnell DP, Moore KJ, Huang LJS, Fisher EA, Mineo C, Huang L, Shaul PW. Macrophage-to-endothelial cell crosstalk by the cholesterol metabolite 27HC promotes atherosclerosis in male mice. Nat Commun 2023; 14:4101. [PMID: 37491347 PMCID: PMC10368733 DOI: 10.1038/s41467-023-39586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center and Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Haiyan Chu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hsi-Hsien Hsieh
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ada Weinstock
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
- Department of Medicine, University of Chicago School of Medicine, Chicago, IL, 60637, USA
| | - Sohaib Khan
- University of Cincinnati Cancer Center, Cincinnati, OH, 45267, USA
| | - Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Jeffrey McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn J Moore
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edward A Fisher
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Linzhang Huang
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Fudan University, Shanghai, 200433, China.
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200433, China.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Han QJ, Forfia P, Vaidya A, Ramani G, deKemp RA, Mach RH, Mankoff DA, Bravo PE, DiCarli M, Chan SY, Waxman AB, Han Y. Effects of ranolazine on right ventricular function, fluid dynamics, and metabolism in patients with precapillary pulmonary hypertension: insights from a longitudinal, randomized, double-blinded, placebo controlled, multicenter study. Front Cardiovasc Med 2023; 10:1118796. [PMID: 37383703 PMCID: PMC10293744 DOI: 10.3389/fcvm.2023.1118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Right ventricular (RV) function is a major determinant of outcome in patients with precapillary pulmonary hypertension (PH). We studied the effect of ranolazine on RV function over 6 months using multi-modality imaging and biochemical markers in patients with precapillary PH (groups I, III, and IV) and RV dysfunction [CMR imaging ejection fraction (EF) < 45%] in a longitudinal, randomized, double-blinded, placebo-controlled, multicenter study of ranolazine treatment. Methods Enrolled patients were assessed using cardiac magnetic resonance (CMR) imaging, 11C-acetate and 18-F-FDG positron emission tomography (PET), and plasma metabolomic profiling, at baseline and at the end of treatment. Results Twenty-two patients were enrolled, and 15 patients completed all follow-up studies with 9 in the ranolazine arm and 6 in the placebo arm. RVEF and RV/Left ventricle (LV) mean glucose uptake were significantly improved after 6 months of treatment in the ranolazine arm. Metabolomic changes in aromatic amino acid metabolism, redox homeostasis, and bile acid metabolism were observed after ranolazine treatment, and several changes significantly correlated with changes in PET and CMR-derived fluid dynamic measurements. Discussion Ranolazine may improve RV function by altering RV metabolism in patients with precapillary PH. Larger studies are needed to confirm the beneficial effects of ranolazine.
Collapse
Affiliation(s)
- Q. Joyce Han
- Cardiovascular Division, Massachusetts General Hospital, Boston, MA, United States
| | - Paul Forfia
- Pulmonary Hypertension, Right Heart Failure, and CTEPH Program, Department of Cardiology, Temple University Hospital, Philadelphia, PA, United States
| | - Anjali Vaidya
- Pulmonary Hypertension, Right Heart Failure, and CTEPH Program, Department of Cardiology, Temple University Hospital, Philadelphia, PA, United States
| | - Gautam Ramani
- Cardiovascular Division, University of Maryland, Baltimore, MD, United States
| | - Robert A. deKemp
- Cardiac PET Center, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paco E. Bravo
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Cardiovascular Division, University of Pennsylvania, Philadelphia, PA, United States
| | - Marcelo DiCarli
- Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aaron B. Waxman
- Center for Pulmonary Heart Disease, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Yuchi Han
- Cardiovascular Division, University of Pennsylvania, Philadelphia, PA, United States
- Cardiovascular Division, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Xing C, Huang X, Wang D, Yu D, Hou S, Cui H, Song L. Roles of bile acids signaling in neuromodulation under physiological and pathological conditions. Cell Biosci 2023; 13:106. [PMID: 37308953 PMCID: PMC10258966 DOI: 10.1186/s13578-023-01053-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
Bile acids (BA) are important physiological molecules not only mediating nutrients absorption and metabolism in peripheral tissues, but exerting neuromodulation effect in the central nerve system (CNS). The catabolism of cholesterol to BA occurs predominantly in the liver by the classical and alternative pathways, or in the brain initiated by the neuronal-specific enzyme CYP46A1 mediated pathway. Circulating BA could cross the blood brain barrier (BBB) and reach the CNS through passive diffusion or BA transporters. Brain BA might trigger direct signal through activating membrane and nucleus receptors or affecting activation of neurotransmitter receptors. Peripheral BA may also provide the indirect signal to the CNS via farnesoid X receptor (FXR) dependent fibroblast growth factor 15/19 (FGF15/19) pathway or takeda G protein coupled receptor 5 (TGR5) dependent glucagon-like peptide-1 (GLP-1) pathway. Under pathological conditions, alterations in BA metabolites have been discovered as potential pathogenic contributors in multiple neurological disorders. Attractively, hydrophilic ursodeoxycholic acid (UDCA), especially tauroursodeoxycholic acid (TUDCA) can exert neuroprotective roles by attenuating neuroinflammation, apoptosis, oxidative or endoplasmic reticulum stress, which provides promising therapeutic effects for treatment of neurological diseases. This review summarizes recent findings highlighting the metabolism, crosstalk between brain and periphery, and neurological functions of BA to elucidate the important role of BA signaling in the brain under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Chen Xing
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China.
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
| | - Dongxue Wang
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Dengjun Yu
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
- Anhui Medical University, Heifei, 230032, China
| | - Haoran Cui
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China
| | - Lung Song
- Beijing Institute of Basic Medical Sciences, Taiping Road #27, Beijing, 100850, China.
- Anhui Medical University, Heifei, 230032, China.
| |
Collapse
|
8
|
Kakiyama G, Rodriguez-Agudo D, Pandak WM. Mitochondrial Cholesterol Metabolites in a Bile Acid Synthetic Pathway Drive Nonalcoholic Fatty Liver Disease: A Revised "Two-Hit" Hypothesis. Cells 2023; 12:1434. [PMID: 37408268 PMCID: PMC10217489 DOI: 10.3390/cells12101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The rising prevalence of nonalcoholic fatty liver disease (NAFLD)-related cirrhosis highlights the need for a better understanding of the molecular mechanisms responsible for driving the transition of hepatic steatosis (fatty liver; NAFL) to steatohepatitis (NASH) and fibrosis/cirrhosis. Obesity-related insulin resistance (IR) is a well-known hallmark of early NAFLD progression, yet the mechanism linking aberrant insulin signaling to hepatocyte inflammation has remained unclear. Recently, as a function of more distinctly defining the regulation of mechanistic pathways, hepatocyte toxicity as mediated by hepatic free cholesterol and its metabolites has emerged as fundamental to the subsequent necroinflammation/fibrosis characteristics of NASH. More specifically, aberrant hepatocyte insulin signaling, as found with IR, leads to dysregulation in bile acid biosynthetic pathways with the subsequent intracellular accumulation of mitochondrial CYP27A1-derived cholesterol metabolites, (25R)26-hydroxycholesterol and 3β-Hydroxy-5-cholesten-(25R)26-oic acid, which appear to be responsible for driving hepatocyte toxicity. These findings bring forth a "two-hit" interpretation as to how NAFL progresses to NAFLD: abnormal hepatocyte insulin signaling, as occurs with IR, develops as a "first hit" that sequentially drives the accumulation of toxic CYP27A1-driven cholesterol metabolites as the "second hit". In the following review, we examine the mechanistic pathway by which mitochondria-derived cholesterol metabolites drive the development of NASH. Insights into mechanistic approaches for effective NASH intervention are provided.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| | - William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; (D.R.-A.); (W.M.P.)
- Research Services, Central Virginia Veterans Affairs Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
9
|
Chiang JL. My lifelong dedication to bile acid research. J Biol Chem 2023:103070. [PMID: 36842499 DOI: 10.1016/j.jbc.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
It is a great honor to be invited to write a reflection of my lifelong bile acid research for the Journal of Biological Chemistry, the premier biochemistry journal in which I am proud to have published 24 manuscripts. I published 21 manuscripts in the Journal of Lipid Research, also a journal of American Society of Biochemistry and Molecular Biology. I started my reflection from my early education in Taiwan, my coming to America for graduate study, my postdoctoral training in cytochrome P450 research, and my lifelong bile acid research career at the not so "visible" Northeast Ohio Medical University. I have witnesses and help to transform this sleepy rural medical school to a well-funded powerhouse in liver research. Writing this reflection of my long, exciting, and rewarding journey in bile acid research brought back many good memories. I am proud of my scientific contribution. I attribute my lifelong academic success to working hard, perseverance, good mentoring, and networking. I hope that this reflection of my academic career may provide guidance to younger investigators who are pursuing academic teaching and research and might inspire the next generation of researchers in biochemistry and metabolic diseases.
Collapse
Affiliation(s)
- JohnY L Chiang
- Northeast Ohio Medical University, Rootstown, OH, 44272.
| |
Collapse
|
10
|
Hartz P, Fehlmann T, Wagenpfeil G, Unger MM, Bernhardt R. A CYPome-wide study reveals new potential players in the pathogenesis of Parkinson's disease. Front Pharmacol 2023; 13:1094265. [PMID: 36744208 PMCID: PMC9892771 DOI: 10.3389/fphar.2022.1094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Genetic and environmental factors lead to the manifestation of Parkinson's disease (PD) but related mechanisms are only rudimentarily understood. Cytochromes P450 (P450s) are involved in the biotransformation of toxic compounds and in many physiological processes and thus predestinated to be involved in PD. However, so far only SNPs (single nucleotide polymorphisms) in CYP2D6 and CYP2E1 have been associated with the susceptibility of PD. Our aim was to evaluate the role of all 57 human P450s and their redox partners for the etiology and pathophysiology of PD and to identify novel potential players which may lead to the identification of new biomarkers and to a causative treatment of PD. The PPMI (Parkinson's Progression Markers Initiative) database was used to extract the gene sequences of all 57 P450s and their three redox partners to analyze the association of SNPs with the occurrence of PD. Applying statistical analyses of the data, corresponding odds ratios (OR) and confidence intervals (CI) were calculated. We identified SNPs significantly over-represented in patients with a genetic predisposition for PD (GPD patients) or in idiopathic PD (IPD patients) compared to HC (healthy controls). Xenobiotic-metabolizing P450s show a significant accumulation of SNPs in PD patients compared with HC supporting the role of toxic compounds in the pathogenesis of PD. Moreover, SNPs with high OR values (>5) in P450s catalyzing the degradation of cholesterol (CYP46A1, CY7B1, CYP39A1) indicate a prominent role of cholesterol metabolism in the brain for PD risk. Finally, P450s participating in the metabolism of eicosanoids show a strong over-representation of SNPs in PD patients underlining the effect of inflammation on the pathogenesis of PD. Also, the redox partners of P450 show SNPs with OR > 5 in PD patients. Taken together, we demonstrate that SNPs in 26 out of 57 P450s are at least 5-fold over-represented in PD patients suggesting these P450s as new potential players in the pathogenesis of PD. For the first time exceptionally high OR values (up to 12.9) were found. This will lead to deeper insight into the origin and development of PD and may be applied to develop novel strategies for a causative treatment of this disease.
Collapse
Affiliation(s)
- Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| | - Tobias Fehlmann
- Institut für Klinische Bioinformatik, Universität des Saarlandes, Saarbrücken, Germany
| | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Marcus Michael Unger
- KLinik für Neurologie, Fachbereich Klinische Medizin, Universität des Saarlandes, Homburg, Germany
- Klinik für Neurologie, SHG Kliniken Sonnenberg, Saarbrücken, Germany
| | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| |
Collapse
|
11
|
Abdalkareem Jasim S, Kzar HH, Haider Hamad M, Ahmad I, Al-Gazally ME, Ziyadullaev S, Sivaraman R, Abed Jawad M, Thaeer Hammid A, Oudaha KH, Karampoor S, Mirzaei R. The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Hamzah H Kzar
- Veterinary medicine college, Al-Qasim green University, Al-Qasim, Iraq
| | - Mohammed Haider Hamad
- Medical Laboratory Techniques Department, Al Mustaqbal University college, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Shukhrat Ziyadullaev
- Professor, Doctor of Medical Sciences, No.1 Department of Internal Diseases, Vice-rector for Scientific Affairs and Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - R Sivaraman
- Department of Mathematics, Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, University of Madras, Chennai, India
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University Thi-Qar, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Frascoli M, Reboldi A, Kang J. Dietary Cholesterol Metabolite Regulation of Tissue Immune Cell Development and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:645-653. [PMID: 35961669 PMCID: PMC10215006 DOI: 10.4049/jimmunol.2200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023]
Abstract
Obesity is considered the primary environmental factor associated with morbidity and severity of wide-ranging inflammatory disorders. The molecular mechanism linking high-fat or cholesterol diet to imbalances in immune responses, beyond the increased production of generic inflammatory factors, is just beginning to emerge. Diet cholesterol by-products are now known to regulate function and migration of diverse immune cell subsets in tissues. The hydroxylated metabolites of cholesterol oxysterols as central regulators of immune cell positioning in lymphoid and mucocutaneous tissues is the focus of this review. Dedicated immunocyte cell surface receptors sense spatially distributed oxysterol tissue depots to tune cell metabolism and function, to achieve the "right place at the right time" axiom of efficient tissue immunity.
Collapse
Affiliation(s)
- Michela Frascoli
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
13
|
Liang T, Zhang X, Liang A, Wu H, Wang Q, He J, Long M, Jin T. The effect of CYP7B1 polymorphisms on the risk of coronary heart disease in Hainan Han population. BMC Med Genomics 2021; 14:220. [PMID: 34493281 PMCID: PMC8422734 DOI: 10.1186/s12920-021-01067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is the leading cause of human death worldwide. Genetic factors play an important role in the occurrence of CHD. Our study is designed to investigate the influence of CYP7B1 polymorphisms on CHD risk. METHODS In this case-control study, 508 CHD patients and 510 healthy individuals were recruited to determine the correlation between CYP7B1 polymorphisms (rs7836768, rs6472155, and rs2980003) and CHD risk. The associations were evaluated by computing odds ratios (OR) and 95% confidence intervals (CI) with logistic regression analysis. The association between SNP-SNP interaction and CHD susceptibility was carried out by multifactor dimensionality reduction analyses. RESULTS Our study found that rs6472155 is significantly associated with an increased risk of CHD in age > 60 years (OR 2.20, 95% CI = 1.07-4.49, p = 0.031), women (OR 3.17, 95% CI = 1.19-8.44, p = 0.021), and non-smokers (3.43, 95% CI = 1.16-10.09, p = 0.025). Rs2980003 polymorphism has a lower risk of CHD in drinkers (OR 0.47, 95% CI = 0.24-0.91, p = 0.025). Further analyses based on false-positive report probability validated these significant results. Besides, it was found that rs6472155 polymorphism was associated with uric acid level (p = 0.034). CONCLUSION Our study indicated that CYP7B1 polymorphisms are related to the risk of CHD, which provides a new perspective for prevent of CHD.
Collapse
Affiliation(s)
- Tiebiao Liang
- Department of Cardiovascular Internal Medicine, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Xianbo Zhang
- Department of Cardiovascular Internal Medicine, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Anshan Liang
- Department of Cardiovascular Internal Medicine, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Haiqing Wu
- Department of Cardiovascular Internal Medicine, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Qi Wang
- Department of General Practice, Affiliated Haikou Hospital of Xiangya Medical College, Haikou, 570311, Hainan, China
| | - Jun He
- Department of Cardiovascular Internal Medicine, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Ming Long
- Department of Cardiovascular Internal Medicine, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
14
|
Kakiyama G, Marques D, Martin R, Takei H, Rodriguez-Agudo D, LaSalle SA, Hashiguchi T, Liu X, Green R, Erickson S, Gil G, Fuchs M, Suzuki M, Murai T, Nittono H, Hylemon PB, Zhou H, Pandak WM. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J Lipid Res 2020; 61:1629-1644. [PMID: 33008924 PMCID: PMC7707165 DOI: 10.1194/jlr.ra120000924] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic/alternative" pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Rebecca Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Sandra A LaSalle
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | | | - Xiaoying Liu
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard Green
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra Erickson
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gregorio Gil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Phillip B Hylemon
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Huiping Zhou
- Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Veterans Affairs, McGuire Veterans Administration Medical Center, Richmond, VA, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
16
|
Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Cloning and tissue expression of cytochrome P450 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 in marmosets. Drug Metab Pharmacokinet 2019; 35:244-247. [PMID: 31980379 DOI: 10.1016/j.dmpk.2019.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
Common marmoset (Callithrix jacchus) is an attractive animal model primate species for potential use in drug metabolism and pharmacokinetic studies. In this study, marmoset cytochrome P450 (P450) 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 cDNAs were isolated from marmoset tissues (brains, lungs, livers, kidneys, and jejunums). Deduced amino acid sequences (89-98% homologous) of the marmoset P450 gene suggested similarity of molecular characteristics of marmoset P450s to human counterparts, compared with those of pig, rabbit, and rodents. Phylogenetic analysis using amino acid sequences indicated 11 marmoset P450 forms clustered with those of human and other primate counterparts, suggesting marmoset P450s have an evolutionary close relationship to human and other primate counterparts. Tissue expression patterns of these P450 mRNAs except for P450 7B1 mRNA were generally similar to those of human P450s in the five tissue types analyzed. These results suggest similarity of molecular characteristics for P450 2S1, 4V2, 7A1, 7B1, 8B1, 24A1, 26A1, 26C1, 27A1, 39A1, and 51A1 between marmosets and humans, in addition to the orthologs of human P450 1, 2, 3, and 4 families previously identified and characterized in marmosets.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan.
| |
Collapse
|
17
|
Pariente A, Peláez R, Pérez-Sala Á, Larráyoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res 2019; 187:107746. [DOI: 10.1016/j.exer.2019.107746] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
|
18
|
Pandak WM, Kakiyama G. The acidic pathway of bile acid synthesis: Not just an alternative pathway ☆. LIVER RESEARCH 2019; 3:88-98. [PMID: 32015930 PMCID: PMC6996149 DOI: 10.1016/j.livres.2019.05.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the prevalence of obesity, and metabolic syndromes (MS) such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), have dramatically increased. Bile acids play a major role in the digestion, absorption of nutrients, and the body's redistribution of absorbed lipids as a function of their chemistry and signaling properties. As a result, a renewed interest has developed in the bile acid metabolic pathways with the challenge of gaining insight into novel treatment approaches for this rapidly growing healthcare problem. Of the two major pathways of bile acid synthesis in the liver, the foremost role of the acidic (alternative) pathway is to generate and control the levels of regulatory oxysterols that help control cellular cholesterol and lipid homeostasis. Cholesterol transport to mitochondrial sterol 27-hydroxylase (CYP27A1) by steroidogenic acute regulatory protein (StarD1), and the subsequent 7α-hydroxylation of oxysterols by oxysterol 7α-hydroxylase (CYP7B1) are the key regulatory steps of the pathway. Recent observations suggest CYP7B1 to be the ultimate controller of cellular oxysterol levels. This review discusses the acidic pathway and its contribution to lipid, cholesterol, carbohydrate, and energy homeostasis. Additionally, discussed is how the acidic pathway's dysregulation not only leads to a loss in its ability to control cellular cholesterol and lipid homeostasis, but leads to inflammatory conditions.
Collapse
Affiliation(s)
- William M. Pandak
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Veterans Affairs, Richmond, VA, USA
| | - Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA,Department of Veterans Affairs, Richmond, VA, USA,Corresponding author. Department of Internal Medicine, Virginia Commonwealth University and Department of Veterans Affairs, Richmond, VA, USA. (G. Kakiyama)
| |
Collapse
|
19
|
Kakiyama G, Marques D, Takei H, Nittono H, Erickson S, Fuchs M, Rodriguez-Agudo D, Gil G, Hylemon PB, Zhou H, Bajaj JS, Pandak WM. Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols. J Steroid Biochem Mol Biol 2019; 189:36-47. [PMID: 30710743 DOI: 10.1016/j.jsbmb.2019.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
The aim of this paper was to more completely study the mitochondrial CYP27A1 initiated acidic pathway of cholesterol metabolism. The mitochondrial CYP27A1 initiated pathway of cholesterol metabolism (acidic pathway) is known to synthesize two well-described vital regulators of cholesterol/lipid homeostasis, (25R)-26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). Both 26HC and 25HC have been shown to be subsequently 7α-hydroxylated by Cyp7b1; reducing their regulatory abilities and furthering their metabolism to chenodeoxycholic acid (CDCA). Cholesterol delivery into the inner mitochondria membrane, where CYP27A1 is located, is considered the pathway's only rate-limiting step. To further explore the pathway, we increased cholesterol transport into mitochondrial CYP27A1 by selectively increased expression of the gene encoding the steroidogenic acute transport protein (StarD1). StarD1 overexpression led to an unanticipated marked down-regulation of oxysterol 7α-hydroxylase (Cyp7b1), a marked increase in 26HC, and the formation of a third vital regulatory oxysterol, 24(S)-hydroxycholesterol (24HC), in B6/129 mice livers. To explore the further metabolism of 24HC, as well as, 25HC and 26HC, characterizations of oxysterols and bile acids using three murine models (StarD1 overexpression, Cyp7b1-/-, Cyp27a1-/-) and human Hep G2 cells were conducted. This report describes the discovery of a new mitochondrial-initiated pathway of oxysterol/bile acid biosynthesis. Just as importantly, it provides evidence for CYP7B1 as a key regulator of three vital intracellular regulatory oxysterol levels.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Sandra Erickson
- School of Medicine, University of California, San Francisco, United States
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Gregorio Gil
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, United States
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Jasmohan S Bajaj
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| |
Collapse
|
20
|
Meljon A, Crick PJ, Yutuc E, Yau JL, Seckl JR, Theofilopoulos S, Arenas E, Wang Y, Griffiths WJ. Mining for Oxysterols in Cyp7b1-/- Mouse Brain and Plasma: Relevance to Spastic Paraplegia Type 5. Biomolecules 2019; 9:biom9040149. [PMID: 31013940 PMCID: PMC6523844 DOI: 10.3390/biom9040149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023] Open
Abstract
Deficiency in cytochrome P450 (CYP) 7B1, also known as oxysterol 7α-hydroxylase, in humans leads to hereditary spastic paraplegia type 5 (SPG5) and in some cases in infants to liver disease. SPG5 is medically characterized by loss of motor neurons in the corticospinal tract. In an effort to gain a better understanding of the fundamental biochemistry of this disorder, we have extended our previous profiling of the oxysterol content of brain and plasma of Cyp7b1 knockout (-/-) mice to include, amongst other sterols, 25-hydroxylated cholesterol metabolites. Although brain cholesterol levels do not differ between wild-type (wt) and knockout mice, we find, using a charge-tagging methodology in combination with liquid chromatography-mass spectrometry (LC-MS) and multistage fragmentation (MSn), that there is a build-up of the CYP7B1 substrate 25-hydroxycholesterol (25-HC) in Cyp7b1-/- mouse brain and plasma. As reported earlier, levels of (25R)26-hydroxycholesterol (26-HC), 3β-hydroxycholest-5-en-(25R)26-oic acid and 24S,25-epoxycholesterol (24S,25-EC) are similarly elevated in brain and plasma. Side-chain oxysterols including 25-HC, 26-HC and 24S,25-EC are known to bind to INSIG (insulin-induced gene) and inhibit the processing of SREBP-2 (sterol regulatory element-binding protein-2) to its active form as a master regulator of cholesterol biosynthesis. We suggest the concentration of cholesterol in brain of the Cyp7b1-/- mouse is maintained by balancing reduced metabolism, as a consequence of a loss in CYP7B1, with reduced biosynthesis. The Cyp7b1-/- mouse does not show a motor defect; whether the defect in humans is a consequence of less efficient homeostasis of cholesterol in brain has yet to be uncovered.
Collapse
Affiliation(s)
- Anna Meljon
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
- Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Joyce L Yau
- Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Jonathan R Seckl
- Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Spyridon Theofilopoulos
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
21
|
Hong J, Oh SH, Yoo HW, Nittono H, Kimura A, Kim KM. Complete Recovery of Oxysterol 7α-Hydroxylase Deficiency by Living Donor Transplantation in a 4-Month-Old Infant: the First Korean Case Report and Literature Review. J Korean Med Sci 2018; 33:e324. [PMID: 30546280 PMCID: PMC6291407 DOI: 10.3346/jkms.2018.33.e324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Oxysterol 7α-hydroxylase deficiency is a very rare liver disease categorized as inborn errors of bile acid synthesis, caused by CYP7B1 mutations. As it may cause rapid progression to end-stage liver disease even in early infancy, a high index of suspicion is required to prevent fatal outcomes. We describe the case of a 3-month-old boy with progressive cholestatic hepatitis and severe hepatic fibrosis. After excluding other etiologies for his early liver failure, we found that he had profuse urinary excretion of 3β-monohydroxy-Δ5-bile acid derivatives by gas chromatography/mass spectrometry analysis with dried urine spots on filter paper. He was confirmed to have a compound heterozygous mutation (p.Arg388Ter and p.Tyr469IlefsX5) of the CYP7B1 gene. After undergoing liver transplantation (LT) from his mother at 4 months of age, his deteriorated liver function completely normalized, and he had normal growth and development until the current follow-up at 33 months of age. We report the first Korean case of oxysterol 7α-hydroxylase deficiency in the youngest infant reported to undergo successful living donor LT to date.
Collapse
Affiliation(s)
- Jeana Hong
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seak Hee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Akihiko Kimura
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Herein, we review the role of FXR and TGR5 in the regulation of hepatic bile acid metabolism, with a focus on how our understanding of bile acid metabolic regulation by these receptors has evolved in recent years and how this improved understanding may facilitate targeting bile acids for type 2 diabetes treatment. RECENT FINDINGS Bile acid profile is a key regulator of metabolic homeostasis. Inhibition of expression of the enzyme that is required for cholic acid synthesis and thus determines bile acid profile, Cyp8b1, may be an effective target for type 2 diabetes treatment. FXR and, more recently, TGR5 have been shown to regulate bile acid metabolism and Cyp8b1 expression and, therefore, may provide a mechanism with which to target bile acid profile for type 2 diabetes treatment. Inhibition of Cyp8b1 expression is a promising therapeutic modality for type 2 diabetes; however, further work is needed to fully understand the pathways regulating Cyp8b1 expression.
Collapse
Affiliation(s)
- Karolina E Zaborska
- Department of Biomedical Sciences, Cornell University, T3 014A Veterinary Research Tower, Ithaca, NY, 14853, USA
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, T3 014A Veterinary Research Tower, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Chen JM, Zhang QS, Li XY, Gong X, Ruan YJ, Zeng SJ, Lu LL, Qi XX, Wang Y, Hu M, Zhu LJ, Liu ZQ. Tissue Distribution and Gender-Specific Protein Expression of Cytochrome P450 in five Mouse Genotypes with a Background of FVB. Pharm Res 2018; 35:114. [DOI: 10.1007/s11095-018-2389-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 01/21/2023]
|
24
|
Yoshimoto FK, Arman HD, Griffith WP, Yan F, Wherritt DJ. Chemical synthesis of 7α-hydroxypregnenolone, a neuroactive steroid that stimulates locomotor activity. Steroids 2017; 128:50-57. [PMID: 29061488 DOI: 10.1016/j.steroids.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
7α-Hydroxypregnenolone is an endogenous neuroactive steroid that stimulates locomotor activity. A synthesis of 7α-hydroxypregnenolone from pregnenolone, which takes advantage of an orthogonal protecting group strategy, is described. In detail, the C7-position was oxidized with CrO3 and 3,5-dimethylpyrazole to yield a 7-keto steroid intermediate. The resulting 7-ketone was stereoselectively reduced to the 7α-hydroxy group with lithium tri-sec-butylborohydride. In contrast, reduction of the same 7-ketone intermediate with NaBH4 resulted in primarily the 7β-hydroxy epimer. Furthermore, in an alternative route to the target compound, the 7α-hydroxy group was successfully incorporated by direct C-H allylic benzoyloxylation of pregnenolone-3-acetate with CuBr and tert-butyl peroxybenzoate followed by saponification. The disclosed syntheses to 7-oxygenated steroids are amenable to potentially obtain other biologically active sterols and steroids.
Collapse
Affiliation(s)
- Francis K Yoshimoto
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States.
| | - Hadi D Arman
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| | - Wendell P Griffith
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| | - Fangzhi Yan
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| | - Daniel J Wherritt
- Department of Chemistry at the University of Texas at San Antonio, TX 78249-0698, United States
| |
Collapse
|
25
|
Cheung TT, Weston MK, Wilson MJ. Selection and evaluation of reference genes for analysis of mouse (Mus musculus) sex-dimorphic brain development. PeerJ 2017; 5:e2909. [PMID: 28133578 PMCID: PMC5251938 DOI: 10.7717/peerj.2909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
The development of the brain is sex-dimorphic, and as a result so are many neurological disorders. One approach for studying sex-dimorphic brain development is to measure gene expression in biological samples using RT-qPCR. However, the accuracy and consistency of this technique relies on the reference gene(s) selected. We analyzed the expression of ten reference genes in male and female samples over three stages of brain development, using popular algorithms NormFinder, GeNorm and Bestkeeper. The top ranked reference genes at each time point were further used to quantify gene expression of three sex-dimorphic genes (Wnt10b, Xist and CYP7B1). When comparing gene expression between the sexes expression at specific time points the best reference gene combinations are: Sdha/Pgk1 at E11.5, RpL38/Sdha E12.5, and Actb/RpL37 at E15.5. When studying expression across time, the ideal reference gene(s) differs with sex. For XY samples a combination of Actb/Sdha. In contrast, when studying gene expression across developmental stage with XX samples, Sdha/Gapdh were the top reference genes. Our results identify the best combination of two reference genes when studying male and female brain development, and emphasize the importance of selecting the correct reference genes for comparisons between developmental stages.
Collapse
Affiliation(s)
- Tanya T Cheung
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | | | - Megan J Wilson
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| |
Collapse
|
26
|
Zhou D, Hlady RA, Schafer MJ, White TA, Liu C, Choi JH, Miller JD, Roberts LR, LeBrasseur NK, Robertson KD. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver. Epigenetics 2016; 12:55-69. [PMID: 27858497 DOI: 10.1080/15592294.2016.1261239] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.
Collapse
Affiliation(s)
- Dan Zhou
- a Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Ryan A Hlady
- a Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA
| | - Marissa J Schafer
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA.,c Department of Physical Medicine & Rehabilitation , Mayo Clinic , Rochester , MN , USA
| | - Thomas A White
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA
| | - Chen Liu
- d Department of Pathology and Laboratory Medicine , Rutgers University , NJ , USA
| | - Jeong-Hyeon Choi
- e Department of Applied Research , Marine Biodiversity Institute of Korea , Korea
| | - Jordan D Miller
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA.,f Department of Surgery , Mayo Clinic , Rochester , MN , USA
| | - Lewis R Roberts
- g Mayo Clinic Cancer Center , Mayo Clinic , Rochester , MN , USA.,h Division of Gastroenterology and Hepatology, Mayo Clinic , Rochester , MN , USA
| | - Nathan K LeBrasseur
- b Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester , MN , USA.,c Department of Physical Medicine & Rehabilitation , Mayo Clinic , Rochester , MN , USA
| | - Keith D Robertson
- a Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic , Rochester , MN , USA.,g Mayo Clinic Cancer Center , Mayo Clinic , Rochester , MN , USA.,i Center for Individualized Medicine, Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
27
|
Leach DA, Powell SM, Bevan CL. WOMEN IN CANCER THEMATIC REVIEW: New roles for nuclear receptors in prostate cancer. Endocr Relat Cancer 2016; 23:T85-T108. [PMID: 27645052 DOI: 10.1530/erc-16-0319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Prostate cancer has, for decades, been treated by inhibiting androgen signalling. This is effective in the majority of patients, but inevitably resistance develops and patients progress to life-threatening metastatic disease - hence the quest for new effective therapies for 'castrate-resistant' prostate cancer (CRPC). Studies into what pathways can drive tumour recurrence under these conditions has identified several other nuclear receptor signalling pathways as potential drivers or modulators of CRPC.The nuclear receptors constitute a large (48 members) superfamily of transcription factors sharing a common modular functional structure. Many of them are activated by the binding of small lipophilic molecules, making them potentially druggable. Even those for which no ligand exists or has yet been identified may be tractable to activity modulation by small molecules. Moreover, genomic studies have shown that in models of CRPC, other nuclear receptors can potentially drive similar transcriptional responses to the androgen receptor, while analysis of expression and sequencing databases shows disproportionately high mutation and copy number variation rates among the superfamily. Hence, the nuclear receptor superfamily is of intense interest in the drive to understand how prostate cancer recurs and how we may best treat such recurrent disease. This review aims to provide a snapshot of the current knowledge of the roles of different nuclear receptors in prostate cancer - a rapidly evolving field of research.
Collapse
Affiliation(s)
- Damien A Leach
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Sue M Powell
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| | - Charlotte L Bevan
- Division of CancerImperial Centre for Translational & Experimental Medicine, Imperial, College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
28
|
To Unveil the Molecular Mechanisms of Qi and Blood through Systems Biology-Based Investigation into Si-Jun-Zi-Tang and Si-Wu-Tang formulae. Sci Rep 2016; 6:34328. [PMID: 27677604 PMCID: PMC5039637 DOI: 10.1038/srep34328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is increasingly getting clinical application worldwide. But its theory like QI-Blood is still abstract. Actually, Qi deficiency and blood deficiency, which were treated by Si-Jun-Zi-Tang (SJZT) and Si-Wu-Tang (SWT) respectively, have characteristic clinical manifestations. Here, we analyzed targets of the ingredients in SJZT and SWT to unveil potential biologic mechanisms between Qi deficiency and blood deficiency through biomedical approaches. First, ingredients in SWT and SJZT were retrieved from TCMID database. The genes targeted by these ingredients were chosen from STITCH. After enrichment analysis by Gene Ontology (GO) and DAVID, enriched GO terms with p-value less than 0.01 were collected and interpreted through DAVID and KEGG. Then a visualized network was constructed with ClueGO. Finally, a total of 243 genes targeted by 195 ingredients of SWT formula and 209 genes targeted by 61 ingredients of SJZT were obtained. Six metabolism pathways and two environmental information processing pathways enriched by targets were correlated with 2 or more herbs in SWT and SJZT formula, respectively.
Collapse
|
29
|
Xi XP, Zhuang J, Teng MJ, Xia LJ, Yang MY, Liu QG, Chen JB. MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. Int J Mol Med 2016; 38:499-506. [PMID: 27278684 DOI: 10.3892/ijmm.2016.2624] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/26/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-17 (miRNA-17/miR‑17) expression has been confirmed to be significantly higher in colorectal cancer tissues than in normal tissues. However, its exact role in colorectal cancer has not yet been fully elucidated. In this study, we found that miR-17 not only promoted epithelial-mesenchymal transition (EMT), but also promoted the formation of a stem cell-like population in colon cancer DLD1 cells. We also wished to determine the role of cytochrome P450, family 7, subfamily B, polypeptide 1 (CYP7B1) in CRC. miR-17 was overexpressed using a recombinant plasmid and CYP7B1 was silenced by transfection with shRNA. Western blot analysis was used to determine protein expression in the DLD1 cells and in tumor tissues obtained from patients with colon cancer. Our results revealed that miR‑17 overexpression led to the degradation of CYP7B1 mRNA expression in DLD1 cells. In addition, we found that the silencing of CYB7B1 promoted EMT and the formation of a stem cell-like population in the cells. Thus, our findings demonstrate that miR‑17 induces EMT consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer.
Collapse
Affiliation(s)
- Xiang-Peng Xi
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jing Zhuang
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Mu-Jian Teng
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Li-Jian Xia
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ming-Yu Yang
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Qing-Gen Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Jing-Bo Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
30
|
Coignion C, Banneau G, Goizet C. Paraplegie spastiche ereditarie. Neurologia 2016. [DOI: 10.1016/s1634-7072(16)77572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Abstract
(25R)-26-Hydroxycholesterol (27-hydroxycholesterol) has been found to accumulate in breast tissue and to stimulate tumor growth via the estrogen receptor. Although most tissues express CYP27A1, the highest levels are in macrophages and most attention had been given to the production of 27-hydroxycholesterol in sub-endothelial macrophages as part of reverse cholesterol transport. In view of the newly identified biologic activity, it is important to consider the determinants of the levels of 27-hydroxycholesterol in macrophages that infiltrate breast tissue. Among these determinants are the oxysterol binding proteins expressed in macrophages, the level of expression of CYP7B1, the oxysterol 7 alpha hydroxylase that generates an inactive triol, and further oxidation of 27-hydroxycholestrol to the C27 acid by multifunctional CYP27A1. Transport of 27-hydroxycholesterol from macrophages to plasma is HDL-associated. In many tissues the ratio of 27-hydroxycholesterol to cholesterol (ng/μg) is higher than that in plasma. Tamoxifen, an effective estrogen receptor antagonist that prevents breast cancer, also has the biologic property of blocking several steps in the lanosterol to cholesterol metabolic pathway. In genetically disposed women, tamoxifen may increase the amount of 27-hydroxycholesterol in breast tissue.
Collapse
|
32
|
Lee JW, Huang JD, Rodriguez IR. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:605-19. [PMID: 25617738 DOI: 10.1016/j.bbalip.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
Abstract
Accumulation of 7-ketocholesterol (7KCh) in tissues has been previously associated with various chronic aging diseases. Orally ingested 7KCh is readily metabolized by the liver and does not pose a toxicity threat. However, 7KCh formed in situ, usually associated with lipoprotein deposits, can adversely affect surrounding tissues by causing inflammation and cytotoxicity. In this study we have investigated various mechanisms for extra-hepatic metabolism of 7KCh (e.g. hydroxylation, sulfation) and found only esterification to fatty acids. The esterification of 7KCh to fatty acids involves the combined action of cytosolic phospholipase A2 alpha (cPLA2α) and sterol O-acyltransferase (SOAT1). Inhibition of either one of these enzymes ablates 7KCh-fatty acid ester (7KFAE) formation. The 7KFAEs are not toxic and do not induce inflammatory responses. However, they can be unstable and re-release 7KCh. The higher the degree of unsaturation, the more unstable the 7KFAE (e.g. 18:0>18:1>18:2>18:3≫20:4). Biochemical inhibition and siRNA knockdown of SOAT1 and cPLA2α ablated the 7KFAE synthesis in cultured ARPE19 cells, but had little effect on the 7KCh-induced inflammatory response. Overexpression of SOAT1 reduced the 7KCh-induced inflammatory response and provided some protection from cell death. This effect is likely due to the increased conversion of 7KCh to 7KFAEs, which reduced the intracellular 7KCh levels. Addition of HDL selectively increased the efflux of 7KFAEs and enhanced the effect of SOAT1 overexpression. Our data suggests an additional function for HDL in aiding extra-hepatic tissues to eliminate 7KCh by returning 7KFAEs to the liver for bile acid formation.
Collapse
Affiliation(s)
- Jung Wha Lee
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jiahn-Dar Huang
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ignacio R Rodriguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
van Reyk DM, Brown AJ, Hult'en LM, Dean RT, Jessup W. Oxysterols in biological systems: sources, metabolism and pathophysiological relevance. Redox Rep 2013; 11:255-62. [PMID: 17207307 DOI: 10.1179/135100006x155003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oxysterols are the 27-carbon products of cholesterol oxidation by both enzymic and non-enzymic mechanisms. Their roles in cholesterol homeostasis, as well as in diseases in which oxidative damage and lipid peroxidation are implicated (e.g. atherosclerosis), have been investigated extensively. However, there are a number of important considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols. First, in both normal and diseased tissues, the levels of oxysterols are very low when compared to the native sterol. Also, when assessing studies that have measured the levels of oxysterols in biological samples, there must be careful consideration as to the method of sample isolation, storage and sampling. This is because of the potential generation or loss of oxysterols during these procedures. Additionally, the relevance of in vitro studies which examine the effects of oxysterols upon cell function should be judged as to cellular oxysterol content (both in terms of the levels of oxysterol and the degree of esterification) resulting from the oxysterol treatment. We present evidence that the means by which oxysterol is delivered in vitro determines whether the oxysterol content reflects what has been found in vivo. Studies identifying the specific cellular targets of oxysterol indicate that several oxysterols may be regulators of cellular lipid metabolism via control of gene transcription.
Collapse
Affiliation(s)
- David M van Reyk
- Department of Medical and Molecular Biosciences, University of Technology, Sydney, Australia.
| | | | | | | | | |
Collapse
|
34
|
Murashita K, Yoshiura Y, Chisada SI, Furuita H, Sugita T, Matsunari H, Yamamoto T. Postprandial response and tissue distribution of the bile acid synthesis-related genes, cyp7a1, cyp8b1 and shp, in rainbow trout Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:361-9. [DOI: 10.1016/j.cbpa.2013.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023]
|
35
|
On the formation and possible biological role of 25-hydroxycholesterol. Biochimie 2013; 95:455-60. [DOI: 10.1016/j.biochi.2012.06.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
|
36
|
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120431. [PMID: 23297354 DOI: 10.1098/rstb.2012.0431] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
37
|
Kuver R. Mechanisms of oxysterol-induced disease: insights from the biliary system. CLINICAL LIPIDOLOGY 2012; 7:537-548. [PMID: 23630545 PMCID: PMC3636558 DOI: 10.2217/clp.12.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxysterols are oxidized species of cholesterol that are derived from exogenous (e.g. dietary) and endogenous (in vivo) sources. Oxysterols play critical roles in normal physiologic functions as well as in pathophysiologic processes in a variety of organ systems. This review provides an overview of oxysterol biology from the vantage point of the biliary system. Several oxysterols have been identified in human bile in the context of biliary tract infection and inflammation. This finding has led to investigations regarding the potential pathophysiologic significance of biliary oxysterols in diseases affecting the biliary system, with an emphasis on cholangiocarcinoma. Emerging evidence implicates specific oxysterols in the development and progression of this malignancy. This review will summarize the literature on oxysterols in the biliary system and discuss how the accumulated evidence contributes to a hypothesis describing the molecular basis of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Rahul Kuver
- Division of Gastroenterology, Box 356424, Department of Medicine, University of Washington School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA, Tel.: +1 206 543 1305, ,
| |
Collapse
|
38
|
Mizuochi T, Kimura A, Suzuki M, Ueki I, Takei H, Nittono H, Kakiuchi T, Shigeta T, Sakamoto S, Fukuda A, Nakazawa A, Shimizu T, Kurosawa T, Kasahara M. Successful heterozygous living donor liver transplantation for an oxysterol 7α-hydroxylase deficiency in a Japanese patient. Liver Transpl 2011; 17:1059-65. [PMID: 21567895 DOI: 10.1002/lt.22331] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Only 2 patients with an oxysterol 7α-hydroxylase deficiency caused by mutations of the cytochrome P450 7B1 (CYP7B1) gene have been reported; for both, the outcome was fatal. We describe the clinical and laboratory features, the hepatic and renal histological findings, and the results of bile acid and CYP7B1 gene analyses for a third patient. This Japanese infant presented with progressive cholestatic liver disease and underwent successful heterozygous living donor liver transplantation. Sources of relevant data included medical records, hepatic and renal histopathological findings, gas chromatography/mass spectrometry analyses of bile acids in serum and urine samples, and analyses of the CYP7B1 gene in the DNA of peripheral blood lymphocytes. Large excesses of 3β-hydroxy-5-cholen-24-oic acid were detected in the patient's serum and urine. Cirrhosis and polycystic changes in the kidneys were documented. The demonstration of compound heterozygous mutations (R112X/R417C) of the CYP7B1 gene led to the diagnosis of an oxysterol 7α-hydroxylase deficiency. After liver transplantation with an allograft from a heterozygous living donor (the patient's mother), the features of decompensated hepatocellular failure abated, and the renal abnormalities were resolved. In conclusion, we report the first Japanese patient with an oxysterol 7α-hydroxylase deficiency associated with compound heterozygous mutations of the CYP7B1 gene; in this patient, liver transplantation with an allograft from a parental donor was effective.
Collapse
Affiliation(s)
- Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume-Shi, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Siam A, Brancale A, Simons C. Comparative modeling of 25-hydroxycholesterol-7α-hydroxylase (CYP7B1): ligand binding and analysis of hereditary spastic paraplegia type 5 CYP7B1 mutations. J Mol Model 2011; 18:441-53. [DOI: 10.1007/s00894-011-1084-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 04/06/2011] [Indexed: 02/06/2023]
|
40
|
Auci DL, Ahlem CN, Kennedy MR, Page TM, Reading CL, Frincke JM. A potential role for 5-androstene-3β,7β,17β-triol in obesity and metabolic syndrome. Obesity (Silver Spring) 2011; 19:806-11. [PMID: 20847733 DOI: 10.1038/oby.2010.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic syndrome is marked by perturbed glucocorticoid (GC) signaling, systemic inflammation, and altered immune status. Dehydroepiandrosterone (DHEA), a major circulating adrenal steroid and dietary supplement, demonstrates antiobesity, anti-inflammatory, GC-opposing and immune-modulating activity when administered to rodents. However, plasma DHEA levels failed to correlate with metabolic syndrome and oral replacement therapy provided only mild benefits to patients. Androstene-3β,7β,17β-triol (β-AET) an anti-inflammatory metabolite of DHEA, also exhibits GC-opposing and immune-modulating activity when administered to rodents. We hypothesized a role for β-AET in obesity. We now report that plasma levels of β-AET positively correlate with BMI in healthy men and women. Together with previous studies, the observations reported here may suggest a compensatory role for β-AET in preventing the development of metabolic syndrome. The β-AET structural core may provide the basis for novel pharmaceuticals to treat this disease.
Collapse
|
41
|
Umetani M, Shaul PW. 27-Hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab 2011; 22:130-5. [PMID: 21353593 PMCID: PMC3070823 DOI: 10.1016/j.tem.2011.01.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 12/12/2022]
Abstract
The cholesterol metabolite 27-hydroxycholesterol (27OHC) classically delivers sterols from peripheral tissues to the liver and is a substrate for bile acid synthesis. Recent studies have revealed that 27OHC also binds to and modifies the function of estrogen receptors ERα and ERβ. Experiments in mice lacking the enzyme which synthesizes 27OHC, CYP27A1, or the enzyme which catabolizes 27OHC, CYP7B1, have demonstrated that 27OHC adversely affects estrogen-related cardiovascular protection and bone mineralization. Work in breast cancer cells further indicates that 27OHC alters ER target gene expression to promote cell growth. Therefore, 27OHC is the first identified endogenous selective estrogen receptor modulator (SERM) and could have an important impact upon the cardiovascular system, bone biology, and cancer.
Collapse
Affiliation(s)
- Michihisa Umetani
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Philip W. Shaul
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
42
|
Fakheri RJ, Javitt NB. Autoregulation of cholesterol synthesis: physiologic and pathophysiologic consequences. Steroids 2011; 76:211-5. [PMID: 20951718 DOI: 10.1016/j.steroids.2010.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Autoregulation of cholesterol synthesis focuses on the 19 metabolic steps from lanosterol to cholesterol. Although synchronization of their rates of synthesis in all tissues was the paradigm, a known exception occurs in the ovary where a local increase in a sterol intermediate, FF-MAS (follicular fluid meiosis activating sterol), activates meiosis during oocyte maturation. Mutations in the genes that govern synchronization cause an increase in sterol intermediates that follow an alternate, oxysterol, pathway of metabolism. Experimental models in animals imply that oxysterol metabolites are determinants of the dysmorphism that occurs during fetal development in these genetic diseases. These few examples may portend a much broader role for sterol intermediates and their novel oxysterol metabolites in physiologic and pathophysiologic processes.
Collapse
Affiliation(s)
- Robert J Fakheri
- Department of Medicine, NYU School of Medicine, New York, NY 10016, United States
| | | |
Collapse
|
43
|
Arnoldi A, Crimella C, Tenderini E, Martinuzzi A, D'Angelo MG, Musumeci O, Toscano A, Scarlato M, Fantin M, Bresolin N, Bassi MT. Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clin Genet 2011; 81:150-7. [PMID: 21214876 DOI: 10.1111/j.1399-0004.2011.01624.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spastic paraplegia type 5 (SPG5) is caused by mutations in CYP7B1, a gene encoding the cytochrome P-450 oxysterol 7-α-hydroxylase, CYP7B1, an enzyme implicated in the cholesterol metabolism. Mutations in CYP7B1 were found in both pure and complicated forms of the disease with a mutation frequency of 7.7% in pure recessive cases. The mutation frequency in complex forms, approximately 6.6%, is more controversial and needs to be refined. We studied in more detail the SPG5-related spectrum of complex phenotypes by screening CYPB1 for mutations in a large cohort of 105 Italian hereditary spastic paraplegias (HSPs) index patients including 50 patients with a complicated HSP (cHSP) phenotype overlapping the SPG11- and the SPG15-related forms except for the lack of thin corpus callosum and 55 pure patients. Five CYP7B1 mutations, three of which are novel, were identified in four patients, two with a complex form of the disease and two with a pure phenotype. The CYP7B1 mutation frequencies obtained in both complicated and pure familial cases are comparable to the known ones. These results obtained extend the range of SPG5-related phenotypes and reveal variability in clinical presentation, disease course and functional profile in the SPG5-related patients while providing with some clues for molecular diagnosis in cHSP.
Collapse
Affiliation(s)
- A Arnoldi
- E. Medea Scientific Institute, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Niro S, Hennebert O, Morfin R. New insights into the protective effects of DHEA1). Horm Mol Biol Clin Investig 2010; 4:489-98. [PMID: 25961225 DOI: 10.1515/hmbci.2010.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 11/15/2022]
Abstract
Numerous studies investigated the effects of pharmacological doses of DHEA in animals. Among protective effects, antiglucocorticoid potencies, triggering and modulation of immunity and anticancerous effects were reported. Because DHEA levels decrease in aging humans, this steroid has been assayed as replacement therapy in elderly volunteers without striking evidence for beneficial effects. Examination of the investigations carried out in animals lead to suspect that, rather than DHEA, its metabolites produced in tissues could be responsible for some of the observed effects. Known as the "mother steroid", DHEA is a precursor for androgenic and estrogenic steroid hormones. In addition, DHEA is hydroxylated at the 7α position by the cytochrome P450 7B1 (CYP7B1), and the 7α-hydroxy-DHEA produced is a substrate for the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) which converts it into 7β-hydroxy-DHEA. Both 7-hydroxylated metabolites were shown to favor the onset of immunity in mice and the activation of memory T cells in humans. Other DHEA and testosterone-derived metabolites, namely epiandrosterone and 5α-androstane-3β,17β-diol, are also substrates for the CYP7B1 and their 7α-hydroxylated products were also converted into the 7β epimer by the 11β-HSD1. When assayed at doses 104 lower than DHEA, 7β-hydroxy-epiandrosterone was shown to shift the prostaglandin metabolism patterns from prostaglandin E2 (PGE2) to PGD2 production, thus triggering the resolution of inflammation. In addition, 7β-hydroxy-epiandrosterone (1 nM) exerted the same effects as tamoxifen (1 μM) on the proliferation of MCF-7 and MDA-231 human breast cancer cells. These findings suggest that the observed effects of 7β-hydroxy-epiandrosterone could be mediated by estrogen receptors. This overview of recent research implies that DHEA does not act directly and that its effects are due to its metabolites when produced in tissues. Treatments with DHEA should take into account the target tissue abilities to produce the desired metabolites through the two key enzymes, CYP7B1 and 11β-HSD1.
Collapse
|
45
|
Christakoudi S, Cowan DA, Taylor NF. A new marker for early diagnosis of 21-hydroxylase deficiency: 3beta,16alpha,17alpha-trihydroxy-5alpha-pregnane-7,20-dione. J Steroid Biochem Mol Biol 2010; 121:574-81. [PMID: 20302934 DOI: 10.1016/j.jsbmb.2010.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 03/01/2010] [Accepted: 03/08/2010] [Indexed: 11/29/2022]
Abstract
In neonates with 21-hydroxylase deficiency the specific marker 11-oxo-pregnanetriol is at low levels in the first days of life and this drives the search for alternatives. We describe the structural characterisation of a new early marker, 3beta,16alpha,17alpha-trihydroxy-5alpha-pregnane-7,20-dione. Urine samples from 87 untreated and 11 recently treated newborns with 21-hydroxylase deficiency (42 males and 56 females) between birth and 40 days of age and control samples from 7 healthy neonates (4 males, 3 females) were compared. Steroids were analyzed as methyloxime-trimethylsilyl ether derivatives by GC-MS and GC-MS/MS, after extraction and enzymatic conjugate hydrolysis. Microchemical methods and deuterated derivatives were used. The new steroid was identified by comparison with 3beta,16alpha,17alpha-trihydroxy-preg-5-en-20-one and 3beta-hydroxy-5alpha-pregnane-7,20-dione standards. It was present for the first 4 weeks after birth (with a maximum around day 4) and showed a marked inter-individual variability. No effect of treatment was evident and levels were much higher than for 11-oxo-pregnanetriol in the first days of life. Only traces were found in controls. The likely involvement of oxysterol 7alpha-hydroxylase (CYP7B1) from the 'acidic' pathway of bile acid synthesis and 11beta-hydroxysteroid dehydrogenase-1 in the generation of the 7-oxo group is discussed. We conclude that this steroid is a useful early marker of 21-hydroxylase deficiency.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Clinical Biochemistry, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | | | | |
Collapse
|
46
|
Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 2010; 51:2847-62. [PMID: 20567027 DOI: 10.1194/jlr.r004820] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an "age-related" risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration.
Collapse
Affiliation(s)
- Ignacio R Rodríguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Haraguchi S, Koyama T, Hasunuma I, Vaudry H, Tsutsui K. Prolactin increases the synthesis of 7alpha-hydroxypregnenolone, a key factor for induction of locomotor activity, in breeding male Newts. Endocrinology 2010; 151:2211-22. [PMID: 20219980 DOI: 10.1210/en.2009-1229] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently found that the Japanese red-bellied newt, Cynops pyrrhogaster, actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. 7alpha-Hydroxypregnenolone stimulates locomotor activity of male newts. Locomotor activity of male newts increases during the breeding period as in other wild animals, but the molecular mechanism for such a change in locomotor activity is poorly understood. Here we show that the adenohypophyseal hormone prolactin (PRL) stimulates 7alpha-hydroxypregnenolone synthesis in the brain, thus increasing locomotor activity of breeding male newts. In this study, cytochrome P450(7alpha) (CYP7B), a steroidogenic enzyme catalyzing the formation of 7alpha-hydroxypregnenolone, was first identified to analyze seasonal changes in 7alpha-hydroxypregnenolone synthesis. Only males exhibited marked seasonal changes in 7alpha-hydroxypregnenolone synthesis and CYP7B expression in the brain, with a maximum level in the spring breeding period when locomotor activity of males increases. Subsequently we identified PRL as a key component of the mechanism regulating 7alpha-hydroxypregnenolone synthesis. Hypophysectomy decreased 7alpha-hydroxypregnenolone synthesis in the male brain, whereas administration of PRL but not gonadotropins to hypophysectomized males caused a dose-dependent increase in 7alpha-hydroxypregnenolone synthesis. To analyze the mode of PRL action, CYP7B and the receptor for PRL were localized in the male brain. PRL receptor was expressed in the neurons expressing CYP7B in the magnocellular preoptic nucleus. Thus, PRL appears to act directly on neurosteroidogenic magnocellular preoptic nucleus neurons to regulate 7alpha-hydroxypregnenolone synthesis, thus inducing seasonal locomotor changes in male newts. This is the first report describing the regulation of neurosteroidogenesis in the brain by an adenohypophyseal hormone in any vertebrate.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Stiles AR, McDonald JG, Bauman DR, Russell DW. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J Biol Chem 2009; 284:28485-9. [PMID: 19687010 PMCID: PMC2781391 DOI: 10.1074/jbc.r109.042168] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CYP7B1 cytochrome P450 enzyme hydroxylates carbons 6 and 7 of the B ring of oxysterols and steroids. Hydroxylation reduces the biological activity of these substrates and facilitates their conversion to end products that are readily excreted from the body. CYP7B1 is expressed in the liver, reproductive tract, and brain and performs different physiological functions in each tissue. Hepatic CYP7B1 activity is crucial for the inactivation of oxysterols and their subsequent conversion into bile salts. Loss of CYP7B1 activity is associated with liver failure in children. In the reproductive tract, the enzyme metabolizes androgens that antagonize estrogen action; mice without CYP7B1 have abnormal prostates and ovaries. The role of CYP7B1 in brain is under investigation; recent studies show that spastic paraplegia type 5, a progressive neuropathy, is caused by loss-of-function mutations in the human gene.
Collapse
Affiliation(s)
- Ashlee R. Stiles
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Jeffrey G. McDonald
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - David R. Bauman
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - David W. Russell
- From the Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| |
Collapse
|
49
|
The bile acid synthesis pathway is present and functional in the human ovary. PLoS One 2009; 4:e7333. [PMID: 19806215 PMCID: PMC2752198 DOI: 10.1371/journal.pone.0007333] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/16/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Bile acids, end products of the pathway for cholesterol elimination, are required for dietary lipid and fat-soluble vitamin absorption and maintain the balance between cholesterol synthesis in the liver and cholesterol excretion. They are composed of a steroid structure and are primarily made in the liver by the oxidation of cholesterol. Cholesterol is also highly abundant in the human ovarian follicle, where it is used in the formation of the sex steroids. METHODOLOGY/PRINCIPAL FINDINGS Here we describe for the first time evidence that all aspects of the bile acid synthesis pathway are present in the human ovarian follicle, including the enzymes in both the classical and alternative pathways, the nuclear receptors known to regulate the pathway, and the end product bile acids. Furthermore, we provide functional evidence that bile acids are produced by the human follicular granulosa cells in response to cholesterol presence in the culture media. CONCLUSIONS/SIGNIFICANCE These findings establish a novel pathway present in the human ovarian follicle that has the capacity to compete directly with sex steroid synthesis.
Collapse
|
50
|
Pettersson H, Lundqvist J, Oliw E, Norlin M. CYP7B1-mediated metabolism of 5alpha-androstane-3alpha,17beta-diol (3alpha-Adiol): a novel pathway for potential regulation of the cellular levels of androgens and neurosteroids. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1206-15. [PMID: 19732851 DOI: 10.1016/j.bbalip.2009.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
The current study presents data indicating that 5alpha-androstane-3alpha,17beta-diol (3alpha-Adiol) undergoes a previously unknown metabolism into hydroxymetabolites, catalyzed by CYP7B1. 3alpha-Adiol is an androgenic steroid which serves as a source for the potent androgen dihydrotestosterone and also can modulate gamma-amino butyric acid A (GABA(A)) receptor function in the brain. The steroid hydroxylase CYP7B1 is known to metabolize cholesterol derivatives, sex hormone precursors and certain estrogens, but has previously not been thought to act on androgens or 3alpha-hydroxylated steroids. 3alpha-Adiol was found to undergo NADPH-dependent metabolism into 6- and 7-hydroxymetabolites in incubations with porcine microsomes and human kidney-derived HEK293 cells, which are high in CYP7B1 content. This metabolism was suppressed by addition of steroids known to be metabolized by CYP7B1. In addition, 3alpha-Adiol significantly suppressed CYP7B1-mediated catalytic reactions, in a way as would be expected for substrates that compete for the same enzyme. Recombinant expression of human CYP7B1 in HEK293 cells significantly increased the rate of 3alpha-Adiol hydroxylation. Furthermore, the observed hydroxylase activity towards 3alpha-Adiol was very low or undetectable in livers of Cyp7b1(-/-) knockout mice. The present results indicate that CYP7B1-mediated catalysis may play a role for control of the cellular levels of androgens, not only of estrogens. These findings suggest a previously unknown mechanism for metabolic elimination of 3alpha-Adiol which may impact intracellular levels of dihydrotestosterone and GABA(A)-modulating steroids.
Collapse
Affiliation(s)
- Hanna Pettersson
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Biomedical Centre Box 578, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|