1
|
Cefalù AB, Spina R, Noto D, Rabacchi C, Giammanco A, Simone ML, Brucato F, Scrimali C, Gueli-Alletti MG, Barbagallo CM, Tarugi P, Averna MR. Comparison of two polygenic risk score to identify non-monogenic primary hypocholesterolemias in a large cohort of Italian hypocholesterolemic subjects. J Clin Lipidol 2022; 16:530-537. [DOI: 10.1016/j.jacl.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
2
|
Wang X, Wang D, Shan Z. Clinical and genetic analysis of a family diagnosed with familial hypobetalipoproteinemia in which the proband was diagnosed with diabetes mellitus. Atherosclerosis 2015; 239:552-6. [PMID: 25733326 DOI: 10.1016/j.atherosclerosis.2015.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To perform clinical and genetic analysis of a family with familial hypobetalipoproteinemia in which the proband had been diagnosed with diabetes mellitus. METHODS Direct sequencing was performed on candidate genes such as APOB, PCSK9, and ANGPTL3. The effect of the mutant gene on lipid profile was investigated using biochemical methods. RESULTS A novel mutation Y344S in ANGPTL3 was identified but no variants were found in PCSK9 or APOB. Lipid profiles showed the levels of TG, TC, and LDL-C to be significantly lower in Y344S carriers than in non-carriers in this family. The levels of HDL-C and plasma concentrations of ANGPTL3 showed no significant differences. Western blot analysis revealed that the mutant ANGPTL3 proteins could not be secreted into the medium. CONCLUSION A novel mutation Y344S was found in ANGPTL3 gene in two diabetic patients with familial hypobetalipoproteinemia. The family study and genetic analysis suggest that this set of gene mutation may be a genetic basis for the lipid phenotypes, and may become a vascular protective factor in the probands with high risk of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.
| | - Dongdong Wang
- Department of Obstetrics and Gynecology of Shengjing Hospital, China Medical University, Shenyang 110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
3
|
Minicocci I, Santini S, Cantisani V, Stitziel N, Kathiresan S, Arroyo JA, Martí G, Pisciotta L, Noto D, Cefalù AB, Maranghi M, Labbadia G, Pigna G, Pannozzo F, Ceci F, Ciociola E, Bertolini S, Calandra S, Tarugi P, Averna M, Arca M. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J Lipid Res 2013; 54:3481-90. [PMID: 24058201 DOI: 10.1194/jlr.p039875] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Angiopoietin-like 3 (ANGPTL3) regulates lipoprotein metabolism by modulating extracellular lipases. Loss-of function mutations in ANGPTL3 gene cause familial combined hypolipidemia (FHBL2). The mode of inheritance and hepatic and vascular consequences of FHBL2 have not been fully elucidated. To get further insights on these aspects, we reevaluated the clinical and the biochemical characteristics of all reported cases of FHBL2. One hundred fifteen FHBL2 individuals carrying 13 different mutations in the ANGPTL3 gene (14 homozygotes, 8 compound heterozygotes, and 93 heterozygotes) and 402 controls were considered. Carriers of two mutant alleles had undetectable plasma levels of ANGPTL3 protein, whereas heterozygotes showed a reduction ranging from 34% to 88%, according to genotype. Compared with controls, homozygotes as well as heterozygotes showed a significant reduction of all plasma lipoproteins, while no difference in lipoprotein(a) [Lp(a)] levels was detected between groups. The prevalence of fatty liver was not different in FHBL2 subjects compared with controls. Notably, diabetes mellitus and cardiovascular disease were absent among homozygotes. FHBL2 trait is inherited in a codominant manner, and the lipid-lowering effect of two ANGPTL3 mutant alleles was more than four times larger than that of one mutant allele. No changes in Lp(a) were detected in FHBL2. Furthermore, our analysis confirmed that FHBL2 is not associated with adverse clinical sequelae. The possibility that FHBL2 confers lower risk of diabetes and cardiovascular disease warrants more detailed investigation.
Collapse
Affiliation(s)
- Ilenia Minicocci
- Departments of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Reduced penetrance of autosomal dominant hypercholesterolemia in a high percentage of families: Importance of genetic testing in the entire family. Atherosclerosis 2011; 218:423-30. [DOI: 10.1016/j.atherosclerosis.2011.07.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022]
|
5
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
6
|
Sherva R, Yue P, Schonfeld G, Neuman RJ. Evidence for a quantitative trait locus affecting low levels of apolipoprotein B and low density lipoprotein on chromosome 10 in Caucasian families. J Lipid Res 2007; 48:2632-9. [PMID: 17890784 DOI: 10.1194/jlr.m700078-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High plasma apolipoprotein B (apoB) and LDL cholesterol levels increase cardiovascular disease risk. These highly correlated measures may be partially controlled by common genetic polymorphisms. To identify chromosomal regions that contain genes causing low plasma levels of one or both parameters in Caucasian families ascertained for familial hypobetalipoproteinemia (FHBL), we conducted a whole-genome scan using 443 microsatellite markers typed in nine multigenerational families with at least two members with FHBL. Both variance components and regression-based linkage methods were used to identify regions of interest. Common linkage regions were identified for both measures on chromosomes 10q25.1-10q26.11 [maximum log of the odds (LOD) = 4.2 for LDL and 3.5 for apoB] and 6q24.3 (maximum LOD = 1.46 for LDL and 1.84 for apoB). There was also evidence for linkage to apoB on chromosome 13q13.2 (LOD = 1.97) and to LDL on chromosome 3p14.1 at 94 centimorgan (LOD = 1.52). Bivariate linkage analysis provided further evidence for loci contributing to both traits (6q24.3, LOD = 1.43; 10q25.1, LOD = 1.74). We evaluated single nucleotide polymorphisms (SNPs) in genes within our linkage regions to identify variants associated with apoB or LDL levels. The most significant finding was for rs2277205 in the 5' untranslated region of acyl-coenzyme A dehydrogenase short/branched chain and LDL (P = 10(-7)). Three additional SNPs were associated with apoB and/or LDL (P < 0.01). Although only the linkage signal on chromosome 10 reached genome-wide statistical significance, there are likely multiple chromosomal regions with variants that contribute to low levels of apoB and LDL and that may protect against coronary heart disease.
Collapse
Affiliation(s)
- Richard Sherva
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
7
|
Yue P, Averna M, Lin X, Schonfeld G. The c.43_44insCTG variation inPCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population. Hum Mutat 2006; 27:460-6. [PMID: 16619215 DOI: 10.1002/humu.20316] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic etiology of familial hypobetalipoproteinemia (FHBL) is unclear in the majority of cases. Mutations in apolipoprotein B (APOB) are the only confirmed causes of FHBL. Recently, loss-of-function mutations of PCSK9 gene have been shown to be associated with the hypocholesterolemia phenotype. Our primary goal was to confirm that mutations in PCSK9 could be another cause of FHBL. Using the sequencing approach, we found that the c.43_44insCTG variation in PCSK9, a common in-frame insertion in both African American and Caucasian populations, is associated with the hypocholesterolemia phenotype in three FHBL families. Then we tested whether this variation could be associated with lower cholesterol levels in the general population. A total of 403 subjects from a Caucasian population, in which hypobetalipoprotein (HBL) and normal groups were classified using standard criteria, were sequenced for this variation. The allele frequency of this variation in the HBL group was 0.186, but was only 0.128 in the normal lipid group. The mean plasma low-density lipoprotein (LDL)-cholesterol level in subjects heterozygous for this variant is significantly lower than that in the normal group (p<0.01). Heterozygous subjects also had higher high-density lipoprotein (HDL)-cholesterol levels (p<0.01). In general, LDL-cholesterol concentration in individuals with PCSK9 c.43_44insCTG variation was approximately 10-15 mg/dL lower than that in normal individuals. We conclude that the c.43_44insCTG variant plays a role in lowering cholesterol in the general population.
Collapse
Affiliation(s)
- Pin Yue
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
8
|
Neuroacanthocytosis. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Yue P, Isley WL, Harris WS, Rosipal S, Akin CD, Schonfeld G. Genetic variants of ApoE account for variability of plasma low-density lipoprotein and apolipoprotein B levels in FHBL. Atherosclerosis 2005; 178:107-13. [PMID: 15585207 DOI: 10.1016/j.atherosclerosis.2004.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 06/16/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
We report two novel APOB mutations causing short apolipoprotein B (apoB) truncations undetectable in plasma and familial hypobetalipoproteinemia (FHBL). In Family 56, a 5 bp deletion in APOB exon 7 (870_874del5) causes a frame shift, converting tyrosine to a stop codon (Y220X) and producing an apoB-5 truncation. In Family 59, a point mutation (1941G>T) in APOB exon 13 converts glutamic acid to stop codon (E578X), specifying apoB-13. A recurrent mutation in exon 26 (4432delT) produces apoB-30.9 in Family 58. In some members of these families, we observed that plasma low-density lipoprotein (LDL) cholesterol and apoB levels were unusually low even for subjects heterozygous for FHBL. To ascertain whether genetic variations in apolipoprotein E (apoE) would explain some of the variations of apoB and LDL cholesterol levels, apoE genotypes were assessed in affected subjects from a total of eight FHBL families with short apoB truncations. Heterozygous FHBL with the epsilon3/epsilon4 genotype had 10-1 5mg/dL higher plasma LDL cholesterol and apoB levels compared to subjects with the epsilon2/epsilon3 and epsilon3/epsilon3 genotypes. The apoE genotype has been reported to account for approximately 10% of the variation of LDL cholesterol in the general population. It accounted for 15-60% of the variability of plasma LDL cholesterol or apoB levels in our FHBL subjects. The physiologic bases for the greater effects of apoE in FHBL remain to be determined.
Collapse
Affiliation(s)
- Pin Yue
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
10
|
Marcil V, Peretti N, Delvin E, Levy E. Les processus digestifs et absorptifs des lipides alimentaires. ACTA ACUST UNITED AC 2004; 28:1257-66. [PMID: 15671937 DOI: 10.1016/s0399-8320(04)95219-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Valérie Marcil
- Centre de Recherche Hôpital Sainte-Justine, Département de Nutrition, Université de Montréal, Canada
| | | | | | | |
Collapse
|
11
|
Alapont Puchalt B, Prósper Sierra M, Ricart Alvarez E, Navarro Hervás M. [Hepatic steatosis associated with heterozygotic familial hypobetalipoproteinemia]. GASTROENTEROLOGIA Y HEPATOLOGIA 2004; 27:256-9. [PMID: 15056412 DOI: 10.1016/s0210-5705(03)70455-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fatty liver disease is now recognized as a major health burden, due to the greater number of cases that are being diagnosed. This trend could partly be explained by the increased use of liver ultrasonography in asymptomatic patients for various reasons, mainly persistent transaminase elevation. The most commonly reported risk factors associated with fatty liver disease are chronic alcohol intake, obesity, type 2 diabetes mellitus, hyperlipidemia, and some drugs. When these factors have been ruled out in a patient with a fatty liver, less frequent causes such as certain inherited metabolic disorders should be considered. Familial hypobetalipoproteinemia is characterized by an alteration of apolipoprotein B (apo B) synthesis, leading to the secretion of truncated forms of the protein, which in turn leads to a marked reduction in excretion of very low-density lipoproteins from the liver and consequently to lipid deposits, especially triglycerides, in the hepatocytes. We report the case of a 23-year-old man who met the diagnostic criteria for heterozygous familial hypobetalipoproteinemia. He presented with mild transaminase elevation and fatty liver. Total cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol and apo B were below normal limits, while levels of high-density lipoprotein cholesterol were normal. Lipid profile determination and liver ultrasonography of first and second-degree relatives were also performed. Molecular studies of the index case revealed an unaffected apo B gene.
Collapse
|
12
|
Lancellotti S, Di Leo E, Penacchioni JY, Balli F, Viola L, Bertolini S, Calandra S, Tarugi P. Hypobetalipoproteinemia with an apparently recessive inheritance due to a “de novo” mutation of apolipoprotein B. Biochim Biophys Acta Mol Basis Dis 2004; 1688:61-7. [PMID: 14732481 DOI: 10.1016/j.bbadis.2003.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Familial hypobetalipoproteinemia (FHBL) is a co-dominant disorder either linked or not linked to apolipoprotein (apo) B gene. Abetalipoproteinemia (ABL) is a recessive disorder due to mutations of microsomal triglyceride transfer protein (MTP) gene. We investigated a patient with apparently recessive hypobetalipoproteinemia consistent with symptomatic heterozygous FHBL or a "mild" form of ABL. The proband had fatty liver associated with LDL-cholesterol (LDL-C) and apo B levels <5th percentile but no truncated apo B forms detectable in plasma. MTP gene sequence revealed that he was a carrier of the I128T polymorphism and an unreported amino acid substitution (V168I) unlikely to be the cause of hypobetalipoproteinemia. Apo B gene sequence showed that he was heterozygous for two single base substitutions in exon 9 and 22 resulting in a nonsense (Q294X) and a missense (R1101H) mutation, respectively. Neither of his parents carried the Q294X; his father and paternal grandmother carried the R1101H mutation. Analysis of polymorphic genetic markers excluded non-paternity. In conclusion, the proband has a "de novo" mutation of apo B gene resulting in a short truncated apo B form (apo B-6.46). Sporadic cases of FHBL with an apparently recessive transmission may be caused by "de novo" mutations of apo B gene.
Collapse
Affiliation(s)
- Sandra Lancellotti
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Via Campi 287, I-41100 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen Z, Fitzgerald RL, Li G, Davidson NO, Schonfeld G. Hepatic secretion of apoB-100 is impaired in hypobetalipoproteinemic mice with an apoB-38.9-specifying allele. J Lipid Res 2004; 45:155-63. [PMID: 13130124 DOI: 10.1194/jlr.m300275-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.
Collapse
Affiliation(s)
- Zhouji Chen
- Division of Atherosclerosis, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
We review the genetics and pathophysiology of familial hypobetalipoproteinemia (FHBL), a mildly symptomatic genetically heterogeneous autosomal trait. The minority of human FHBL is caused by truncation-specifying mutations of the APOB gene on chromosome 2. In seven families, linkage to chromosome 2 is absent, linkage is instead to chromosome 3 (3p21). In others, linkage is absent to both APOB and to 3p21. Apolipoprotein B-100 (apoB-100) levels are approximately 25% of normal, instead of the 50% expected based on the presence of one normal allele due to reduced rates of production. The presence of the truncating mutation seems to have a "dominant recessive" effect on apoB-100 secretion. Concentrations of apoB truncations in plasma differ by truncation but average at approximately 10% of normal levels. Lipoproteins bearing truncated forms of apoB are cleared more rapidly than apoB-100 particles. In contrast with apoB-100 particles cleared primarily in liver via the LDL receptor, most apoB truncation particles are cleared in renal proximal tubular cells via megalin. Since apoB defects cause a dysfunctional VLDL-triglyceride transport system, livers accumulate fat. Hepatic synthesis of fatty acids is reduced in compensation. Informational lacunae remain about genes affecting fat accumulation in liver, and the modulation of liver fat in the presence apoB truncation defects.
Collapse
Affiliation(s)
- Gustav Schonfeld
- Washington University School of Medicine St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Schonfeld G, Patterson BW, Yablonskiy DA, Tanoli TSK, Averna M, Elias N, Yue P, Ackerman J. Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis. J Lipid Res 2003; 44:470-8. [PMID: 12562873 DOI: 10.1194/jlr.m200342-jlr200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) subjects may develop fatty liver. Liver fat was assessed in 21 FHBL with six different apolipoprotein B (apoB) truncations (apoB-4 to apoB-89) and 14 controls by magnetic resonance spectroscopy (MRS). Liver fat percentages were 16.7 +/- 11.5 and 3.3 +/- 2.9 (mean +/- SD) (P = 0.001). Liver fat percentage was positively correlated with body mass index, waist circumference, and areas under the insulin curves of 2 h glucose tolerance tests, suggesting that obesity may affect the severity of liver fat accumulation in both groups. Despite 5-fold differences in liver fat percentage, mean values for obesity and insulin indexes were similar. Thus, for similar degrees of obesity, FHBL subjects have more hepatic fat. VLDL-triglyceride (TG)-fatty acids arise from plasma and nonplasma sources (liver and splanchnic tissues). To assess the relative contributions of each, [2H2]palmitate was infused over 12 h in 13 FHBL subjects and 11 controls. Isotopic enrichment of plasma free palmitate and VLDL-TG-palmitate was determined by mass spectrometry. Non-plasma sources contributed 51 +/- 15% in FHBL and 37 +/- 13% in controls (P = 0.02). Correlations of liver fat percentage and percent VLDL-TG-palmitate from liver were r = 0.89 (P = 0.0001) for FHBL subjects and r = 0.69 (P = 0.01) for controls. Thus, apoB truncation-producing mutations result in fatty liver and in altered assembly of VLDL-TG.
Collapse
Affiliation(s)
- Gustav Schonfeld
- Department of Internal Medicine, Washington University, St. Louis, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yue P, Yuan B, Gerhard DS, Neuman RJ, Isley WL, Harris WS, Schonfeld G. Novel mutations of APOB cause ApoB truncations undetectable in plasma and familial hypobetalipoproteinemia. Hum Mutat 2002; 20:110-6. [PMID: 12124991 DOI: 10.1002/humu.10101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Familial hypobetalipoproteinemia (FHBL) is a genetic disorder characterized by low levels of apoB-100 and LDL cholesterol. Truncation-producing mutations of apoB (chromosome 2) are among several potential causes of FHBL in patients. Ten new families with FHBL linked to chromosome 2 were identified. In Family 8, a 4432delT in exon 26 produces a frame-shift and a premature stop codon predicted to produce a truncated apoB-30.9. Even though this truncation is just 10 amino acid shorter than the well-documented apoB-31, which is readily detectable in plasma, apoB-30.9 is undetectable. Most truncations shorter than apoB-30 are not detectable in plasma. In Family 34, an acceptor splicing mutation at position -1 of exon 14 changes the acceptor splice site AG to AA. Two families (Family 50 and 52) had mutations (apoB-9 and apoB-29) reported previously. In Family 98, a novel point mutation in exon 26 (11163T>G) causes a premature stop codon, and produces a truncated apoB-80.5 readily detectable in plasma. Sequencing of the ApoB gene in families 1, 5, 18, 58, and 59 did not reveal mutations.
Collapse
Affiliation(s)
- Pin Yue
- Division of Atherosclerosis, Nutrition and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Levy E, Stan S, Delvin E, Menard D, Shoulders C, Garofalo C, Slight I, Seidman E, Mayer G, Bendayan M. Localization of microsomal triglyceride transfer protein in the Golgi: possible role in the assembly of chylomicrons. J Biol Chem 2002; 277:16470-7. [PMID: 11830580 DOI: 10.1074/jbc.m102385200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although a critical role of microsomal transfer protein (MTP) has been recognized in the assembly of nascent apolipoprotein B (apoB)-containing lipoproteins, it remains unclear where and how MTP transfers lipids in the secretory pathway during the maturational process of apoB lipidation. The aims of this study were to determine whether MTP functions in the secretory pathway as well as in the endoplasmic reticulum and whether its large 97-kDa subunit interacts with the small 58-kDa protein disulfide isomerase (PDI) subunit and apoB, particularly in the Golgi apparatus. Using a high resolution immunogold approach combined with specific polyclonal antibodies, the large and small subunits of MTP were observed over the rough endoplasmic reticulum and the Golgi. Double immunocytochemical detection unraveled the colocalization of MTP and PDI as well as MTP and apoB in these same subcellular compartments. To confirm the spatial contact of these proteins, Golgi fractions were isolated, homogenized, and incubated with an anti-MTP large subunit antibody. Immunoprecipitates were applied on SDS-PAGE and then transferred on to nitrocellulose. Immunoblotting the membrane with PDI and apoB antibodies confirmed the colocalization of these proteins with MTP. Furthermore, MTP activity assay disclosed a substantial triglyceride transfer in the Golgi fractions. The occurrence of membrane-associated apoB in the Golgi, coupled with its interaction with active MTP, suggests an important role for the Golgi in the biogenesis of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, Hôpital Sainte-Justine and University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen Z, Fitzgerald RL, Schonfeld G. Hypobetalipoproteinemic mice with a targeted apolipoprotein (Apo) B-27.6-specifying mutation: in vivo evidence for an important role of amino acids 1254-1744 of ApoB in lipid transport and metabolism of the apoB-containing lipoprotein. J Biol Chem 2002; 277:14135-45. [PMID: 11839763 DOI: 10.1074/jbc.m200617200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carboxyl-terminal deletion of apoB-100 may impair its triglyceride (TG)-transporting capability and alter its catabolism. Here, we compare our newly generated apoB gene (Apob)-targeted apoB-27.6-bearing mice to our previously reported apoB-38.9 mice to understand further the relationship between the size of a truncated apoB variant and its function/metabolism in vivo. The apoB-27.6-specifying mutation produces a premature stop codon six amino acids (aa) downstream of the last codon of mouse Apob exon 24 (corresponding to aa 1254 of human apoB-100). ApoB-27.6 transcripts were 3- and 5-fold more abundant than apoB wild type and apoB-38.9 transcripts in the liver. Likewise, hepatic secretion rates of apoB-27.6 were 7-fold higher than those of apoB-48 and apoB-38.9. In contrast, apoB-27.6 heterozygotes (Apob(27.6/+)) had lower hepatic TG secretion rates and higher liver TG contents than both apoB-38.9 heterozygotes (Apob(38.9/+)) and apoB wild type mice (Apob(+/+)). ApoB-27.6 was secreted by Apob(27.6/+) hepatocytes as dense high density lipoprotein particles. Moreover, despite its high secretion rates, apoB-27.6 was barely detectable in plasma. Disruption of apoE gene in Apob(38.9/+) and Apob(27.6/+) dramatically increased plasma levels of apoB-38.9 as well as apoB-48 but caused no change in plasma apoB-27.6 concentrations. Finally, the birth rate of apoB-27.6 homozygotes (Apob(27.6/27.6)) from intercrosses of Apob(27.6/+) was 7-fold lower than that of Apob(38.9/38.9) from Apob(38.9/+) intercrosses (1.8% versus 12%). Crossbreeding of Apob(27.6/27.6) and Apob(38.9/38.9) produced viable Apob(27.6/38.9) offspring, but Apob(27.6/27.6) intercrosses produced no offspring. Together, these results demonstrate in vivo that the apoB-27.6-apoB-38.9 peptide segment (aa 1254-1744) plays a critical role, not only in supporting hepatic TG-secretion and in modulating catabolism of apoB-containing lipoproteins, but also in normal mouse embryonic development.
Collapse
Affiliation(s)
- Zhouji Chen
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
19
|
Neuman RJ, Yuan B, Gerhard DS, Liu KY, Yue P, Duan S, Averna M, Schonfeld G. Replication of linkage of familial hypobetalipoproteinemia to chromosome 3p in six kindreds. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30147-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Diego Núñez M, Cortijo González C. Hipobetalipoproteinemia familiar. Descripción de una familia y revisión de las aportaciones españolas. An Pediatr (Barc) 2002. [DOI: 10.1016/s1695-4033(02)77769-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
21
|
Hegele RA. Monogenic dyslipidemias: window on determinants of plasma lipoprotein metabolism. Am J Hum Genet 2001; 69:1161-77. [PMID: 11704922 PMCID: PMC1235529 DOI: 10.1086/324647] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 09/27/2001] [Indexed: 12/19/2022] Open
Affiliation(s)
- R A Hegele
- John P. Robarts Research Institute, London, Ontario, Canada.
| |
Collapse
|
22
|
Tarugi P, Lonardo A, Gabelli C, Sala F, Ballarini G, Cortella I, Previato L, Bertolini S, Cordera R, Calandra S. Phenotypic expression of familial hypobetalipoproteinemia in three kindreds with mutations of apolipoprotein B gene. J Lipid Res 2001; 42:1552-1561. [PMID: 11590210 DOI: 10.1016/s0022-2275(20)32208-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We report the clinical phenotype in three kindreds with familial heterozygous hypobetalipoproteinemia (FHBL) carrying novel truncated apolipoprotein Bs (apoBs) of different sizes (apoB-8.15, apoB-33.4 and apoB-75.7). In D.A. kindred, we found three carriers of a C-deletion in exon 10 leading to the synthesis of apoB-8.15 not detectable in plasma. They showed steatorrhea and fatty liver. In N.L. kindred, the proband is heterozygous for a nonsense mutation in exon 26, leading to the formation of apoB-33.4. He had premature cerebrovascular disease and fatty liver; two apoB-33.4 carriers in this kindred showed only fatty liver. In B.E. kindred, the proband is heterozygous for a T-deletion in exon 26, which converts tyrosine at codon 3435 into a stop codon, resulting in apoB-75.7. The proband, a heavy alcohol drinker, had steatohepatitis, whereas his teetotaller daughter, an apoB-75.7 carrier, had no detectable fatty liver. This study suggests that: i) fatty liver invariably develops in FHBL carriers of short and medium-size truncated apoBs (< apoB-48), but its occurrence needs additional environmental factors in carriers of longer apoB forms; ii) intestinal lipid malabsorption develops only in carriers of short truncated apoBs, which are not secreted into the plasma; and iii) cerebrovascular disease due to premature atherosclerosis may occur even in FHBL subjects.
Collapse
Affiliation(s)
- P Tarugi
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via Campi 287, I-41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ko C, Lee TL, Lau PW, Li J, Davis BT, Voyiaziakis E, Allison DB, Chua SC, Huang LS. Two novel quantitative trait loci on mouse chromosomes 6 and 4 independently and synergistically regulate plasma apoB levels. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Chen Z, Fitzgerald RL, Averna MR, Schonfeld G. A targeted apolipoprotein B-38.9-producing mutation causes fatty livers in mice due to the reduced ability of apolipoprotein B-38.9 to transport triglycerides. J Biol Chem 2000; 275:32807-15. [PMID: 10893242 DOI: 10.1074/jbc.m004913200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonphysiological truncations of apolipoprotein (apo) B-100 cause familial hypobetalipoproteinemia (FHBL) in humans and mice. An elucidation of the mechanisms underlying the FHBL phenotypes may provide valuable information on the metabolism of apo B-containing lipoproteins and the structure-function relationship of apo B. To generate a faithful mouse model of human FHBL, a subtle mutation was introduced into the mouse apo B gene by targeting embryonic stem cells using homologous recombination followed by removal of the selection marker gene by Cre-loxP-mediated site-specific recombination. The engineered mice bear a premature stop codon at residue 1767 and a 42-base pair loxP inserted into intron 24 of the apo B gene, thus closely resembling the apo B-38.9-producing mutation in humans. Apo B-38.9 was the sole apo B protein in homozygote (apob(38.9/38.9)) plasma. In heterozygotes (apob(+/)(38. 9)), apo B-100 and apo B-48 were reduced by 75 and 40%, respectively, and apo B-38.9 represented 20% of total circulating apo B. Hepatic apo B-38.9 mRNA levels were reduced by 40%. In cultured apob(+/)(38. 9) hepatocytes, apo B-100 was produced in trace quantities, and the synthesis rate of apo B-38.9 relative to apo B-48 was reduced by 40%. However, almost equimolar amounts of apo B-38.9 and apo B-48 were secreted into the media. Pulse-chase studies revealed that apo B-38. 9 was secreted at a faster rate and more efficiently than apoB-48. Nevertheless, both apob(+/)(38.9) and apob(38.9/38.9) mice had reduced hepatic triglyceride secretion rates and fatty livers. Thus, low mRNA levels or defective secretion of apo B-38.9 may not be responsible for the FHBL phenotypes caused by the apo B-38.9 mutation. Rather, a reduced capacity of apo B-38.9 for triglyceride transport may account for the fatty livers in these mice.
Collapse
Affiliation(s)
- Z Chen
- Division of Atherosclerosis, Nutrition and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
25
|
Yuan B, Neuman R, Duan SH, Weber JL, Kwok PY, Saccone NL, Wu JS, Liu KY, Schonfeld G. Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1-22. Am J Hum Genet 2000; 66:1699-704. [PMID: 10762553 PMCID: PMC1378026 DOI: 10.1086/302904] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Accepted: 02/28/2000] [Indexed: 11/03/2022] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) is an apparently autosomal dominant disorder of lipid metabolism characterized by less than fifth percentile age- and sex-specific levels of apolipoprotein beta (apobeta) and low-density lipoprotein-cholesterol. In a minority of cases, FHBL is due to truncation-producing mutations in the apobeta gene on chromosome 2p23-24. Previously, we reported on a four-generation FHBL kindred in which we had ruled out linkage of the trait to the apobeta gene. To locate other loci containing genes for low apobeta levels in the kindred, a genomewide search was conducted. Regions on 3p21.1-22 with two-point LOD scores >1.5 were identified. Additional markers were typed in the region of these signals. Two-point LOD scores in the region of D3S2407 increased to 3.35 at O = 0. GENEHUNTER confirmed this finding with an nonparametric multipoint LOD score of 7.5 (P=.0004). Additional model-free analyses were conducted with the square root of the apobeta level as the phenotype. Results from the Loki and SOLAR programs further confirmed linkage of FHBL to 3p21.1-22. Weaker linkage to a region near D19S916 was also indicated by Loki and SOLAR. Thus, a heretofore unidentified genetic susceptibility locus for FHBL may reside on chromosome 3.
Collapse
Affiliation(s)
- B Yuan
- Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Elias N, Patterson BW, Schonfeld G. In vivo metabolism of ApoB, ApoA-I, and VLDL triglycerides in a form of hypobetalipoproteinemia not linked to the ApoB gene. Arterioscler Thromb Vasc Biol 2000; 20:1309-15. [PMID: 10807747 DOI: 10.1161/01.atv.20.5.1309] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hypobetalipoproteinemia (FHBL) is an autosomal codominant disorder that may result from different mutations in the apolipoprotein B (apoB) gene or chromosome 2. However, linkage of FHBL to the apoB gene was ruled out in 2 kindreds reported to date, and the genetic and metabolic bases for FHBL remain unknown. One of the reported kindreds is our 40-member F kindred, in which we found linkage of FHBL to a novel susceptibility region on chromosome 3p21. 1-2. In addition to having low apoB levels, some, but not all, of the affected subjects in the F kindred also had low levels of high density lipoprotein (HDL) cholesterol and apoA-I. Our aim was to define the metabolic bases of the disorder in the F kindred. Therefore, we studied the in vivo kinetics of apoB and apoA-I and very low density lipoprotein (VLDL) triglycerides in 4 affected subjects and 5 normolipidemic relatives. Deuterated leucine and deuterated glycerol were used to label the apolipoproteins and triglycerides, respectively. Compartmental modeling was used to obtain the kinetic parameters. Affected subjects had (1) normal fractional catabolic rates (FCRs) for VLDL apoB, (2) increased FCRs for low density lipoprotein (LDL) apoB (0.050+/-0.009 versus 0. 030+/-0.006 pools per hour for normal subjects, P=0.005), and (3) decreased production rates of VLDL apoB (11.4+/-1.7 versus 25.6+/-4. 9 mg. kg(-1). d(-1), P=0.003), LDL apoB (7.8+/-1.3 versus 12.7+/-3.7 mg. kg(-1). d(-1), P=0.04), and VLDL triglycerides (8.2+/-4.5 versus 19.6+/-10.8 58 micromol. kg(-1). h(-1), P=0.09). These data differ from those obtained in previously studied FHBL heterozygotes bearing apoB-2 and apoB-9, 2 very short truncations of apoB. Low HDL cholesterol and apoA-I levels were caused by higher apoA-I FCRs (0. 035+/-0.005 versus 0.018+/-0.005 pools per hour in controls, P<0.01) without significant decrease in apoA-I production rates (18.7+/-2.7 versus 22.8+/-5.6 mg. kg(-1). d(-1)). In conclusion, decreased secretion of apoB-containing lipoproteins and hypercatabolism of LDL account for low apoB and cholesterol levels in this novel form of FHBL.
Collapse
Affiliation(s)
- N Elias
- Division of Atherosclerosis, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | |
Collapse
|
27
|
Elias N, Patterson BW, Schonfeld G. Decreased production rates of VLDL triglycerides and ApoB-100 in subjects heterozygous for familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 1999; 19:2714-21. [PMID: 10559016 DOI: 10.1161/01.atv.19.11.2714] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hypobetalipoproteinemia (FHBL) is an autosomal codominant disorder characterized by low levels of apolipoprotein (apo) B and low-density lipoprotein (LDL) cholesterol. Decreased production rates of apoB have been demonstrated in vivo in FHBL heterozygotes. In the present study, we wished to investigate whether the transport of triglycerides was similarly affected in these subjects. Therefore, we studied the in vivo kinetics of very-low-density lipoprotein (VLDL) triglycerides and VLDL apoB-100 simultaneously in 7 FHBL heterozygotes from 2 well-characterized kindreds and 7 healthy normolipidemic subjects. In both kindreds, hypobetalipoproteinemia is caused by mutations in the 5' portion of the apoB gene specifying short truncations of apoB undetectable in plasma. A bolus injection of deuterated palmitate and a primed constant infusion of deuterated leucine were given simultaneously, and their incorporation into VLDL triglycerides and VLDL apoB, respectively, were determined by gas chromatography-mass spectrometry. Kinetic parameters were calculated by using compartmental modeling. VLDL apoB fractional catabolic rates (FCRs) in FHBL heterozygotes and controls were similar (11. 6+/-3.9 and 10.9+/-2.4 pools per day, respectively, P=0.72). On the other hand, FHBL heterozygotes had a 75% decrease in VLDL apoB production rates compared with normal subjects (5.8+/-1.8 versus 23.4+/-7.1 mg/kg per day, P<0.001). The decreased production rates of VLDL apoB accounts for the very low concentrations of plasma apoB found in heterozygotes from these kindreds (24% of normal). Mean VLDL triglyceride FCRs in FHBL subjects and controls were not significantly different (1.06+/-0.74 versus 0.89+/-0.50 pools per hour, respectively, P=0.61). There was a good correlation between VLDL apoB FCR and VLDL triglyceride FCR in the 2 groups (r=0.84, P<0. 001). VLDL triglyceride production rates were decreased by 60% in FHBL heterozygotes compared with controls (9.3+/-6.0 versus 23.0+/-9. 6 micromol/kg per hour, P=0.008). Thus, the hepatic secretion of VLDL triglycerides is reduced in FHBL heterozygotes but to a lesser extent than the decrease in apoB-100 secretion. This is probably achieved by the secretion of VLDL particles enriched with triglycerides.
Collapse
Affiliation(s)
- N Elias
- Division of Atherosclerosis, Lipid Research, and Nutrition, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|