1
|
Kobayashi M, Kanbe F, Ishii R, Tsubouchi H, Hirai K, Miyasaka Y, Ohno T, Oda H, Ikeda S, Katoh H, Ichiyanagi K, Ishikawa A, Murai A, Horio F. C3H/HeNSlc mouse with low phospholipid transfer protein expression showed dyslipidemia. Sci Rep 2023; 13:13813. [PMID: 37620514 PMCID: PMC10449841 DOI: 10.1038/s41598-023-40917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
High serum levels of triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of coronary heart disease in humans. Herein, we first reported that the C3H/HeNSlc (C3H-S) mouse, a C3H/HeN-derived substrain, is a novel model for dyslipidemia. C3H-S showed hypertriglyceridemia and low total cholesterol (TC), HDL-C, and phospholipid (PL) concentrations. To identify the gene locus causing dyslipidemia in C3H-S, we performed genetic analysis. In F2 intercrosses between C3H-S mice and strains with normal serum lipids, the locus associated with serum lipids was identified as 163-168 Mb on chromosome 2. The phospholipid transfer protein (Pltp) gene was a candidate gene within this locus. Pltp expression and serum PLTP activity were markedly lower in C3H-S mice. Pltp expression was negatively correlated with serum TG and positively correlated with serum TC and HDL-C in F2 mice. Genome sequencing analysis revealed that an endogenous retrovirus (ERV) sequence called intracisternal A particle was inserted into intron 12 of Pltp in C3H-S. These results suggest that ERV insertion within Pltp causes aberrant splicing, leading to reduced Pltp expression in C3H-S. This study demonstrated the contribution of C3H-S to our understanding of the relationship between TG, TC, and PL metabolism via PLTP.
Collapse
Affiliation(s)
- Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan.
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.
| | - Fumi Kanbe
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Reika Ishii
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiroki Tsubouchi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kana Hirai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Hiroaki Oda
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Saiko Ikeda
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Hirokazu Katoh
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Kenji Ichiyanagi
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Akira Ishikawa
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Atsushi Murai
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Fumihiko Horio
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
- Department of Life Studies and Environmental Science, Nagoya Women's University, Aichi, Japan
| |
Collapse
|
2
|
Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 2020; 117:1033-1045. [PMID: 32886765 DOI: 10.1093/cvr/cvaa252] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is a post-translational modification consisting in the enzymatic attachment of carbohydrate chains to specific residues of the protein sequence. Several types of glycosylation have been described, with N-glycosylation and O-glycosylation being the most common types impacting on crucial biological processes, such as protein synthesis, trafficking, localization, and function. Genetic defects in genes involved in protein glycosylation may result in altered production and activity of several proteins, with a broad range of clinical manifestations, including dyslipidaemia and atherosclerosis. A large number of apolipoproteins, lipoprotein receptors, and other proteins involved in lipoprotein metabolism are glycosylated, and alterations in their glycosylation profile are associated with changes in their expression and/or function. Rare genetic diseases and population genetics have provided additional information linking protein glycosylation to the regulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| |
Collapse
|
3
|
Liukkonen J, Gürsoy UK, Könönen E, Gürsoy M, Metso J, Salminen A, Kopra E, Jauhiainen M, Mäntylä P, Buhlin K, Paju S, Sorsa T, Nieminen MS, Lokki ML, Sinisalo J, Pussinen PJ. Salivary biomarkers in association with periodontal parameters and the periodontitis risk haplotype. Innate Immun 2018; 24:439-447. [PMID: 30176756 PMCID: PMC6830876 DOI: 10.1177/1753425918796207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic factors play a role in periodontitis. Here we examined whether the risk
haplotype of MHC class III region BAT1-NFKBIL1-LTA and lymphotoxin-α
polymorphisms associate with salivary biomarkers of periodontal disease. A total
of 455 individuals with detailed clinical and radiographic periodontal health
data were included in the study. A 610 K genotyping chip and a Sequenom platform
were used in genotyping analyses. Phospholipid transfer protein activity,
concentrations of lymphotoxin-α, IL-8 and myeloperoxidase, and a cumulative risk
score (combining Porphyromonas gingivalis, IL-1β and matrix
metalloproteinase-8) were examined in saliva samples. Elevated IL-8 and
myeloperoxidase concentrations and cumulative risk scores associated with
advanced tooth loss, deepened periodontal pockets and signs of periodontal
inflammation. In multiple logistic regression models adjusted for periodontal
parameters and risk factors, myeloperoxidase concentration (odds ratio (OR);
1.37, P = 0.007) associated with increased odds for having the
risk haplotype and lymphotoxin-α concentration with its genetic variants
rs2857708, rs2009658 and rs2844482. In conclusion, salivary levels of IL-8,
myeloperoxidase and cumulative risk scores associate with periodontal
inflammation and tissue destruction, while those of myeloperoxidase and
lymphotoxin-α associate with genetic factors as well.
Collapse
Affiliation(s)
| | - Ulvi K Gürsoy
- 1 Institute of Dentistry, University of Turku, Finland
| | - Eija Könönen
- 1 Institute of Dentistry, University of Turku, Finland.,2 Oral Health Care, Welfare Division, Finland
| | - Mervi Gürsoy
- 1 Institute of Dentistry, University of Turku, Finland
| | - Jari Metso
- 3 Minerva Foundation Institute for Medical Research and Genomics and Biomarkers Unit, National Institute for Health and Welfare, Finland
| | - Aino Salminen
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Elisa Kopra
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Matti Jauhiainen
- 3 Minerva Foundation Institute for Medical Research and Genomics and Biomarkers Unit, National Institute for Health and Welfare, Finland
| | - Päivi Mäntylä
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland.,5 Institute of Dentistry, University of Eastern Finland, Finland.,6 Oral and Maxillofacial Diseases, Kuopio University Hospital, Finland
| | - Kåre Buhlin
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland.,7 Department of Periodontology, Institute of Odontology, Karolinska Institutet, Sweden
| | - Susanna Paju
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Timo Sorsa
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland.,7 Department of Periodontology, Institute of Odontology, Karolinska Institutet, Sweden
| | - Markku S Nieminen
- 8 HUCH Heart and Lung Center, Helsinki University Central Hospital, Finland
| | - Marja-Liisa Lokki
- 9 Transplantation Laboratory, Medicum, University of Helsinki, Finland
| | - Juha Sinisalo
- 8 HUCH Heart and Lung Center, Helsinki University Central Hospital, Finland
| | - Pirkko J Pussinen
- 4 Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
4
|
Deckert V, Lemaire S, Ripoll PJ, de Barros JPP, Labbé J, Borgne CCL, Turquois V, Maquart G, Larose D, Desroche N, Ménétrier F, Le Guern N, Lebrun LJ, Desrumaux C, Gautier T, Grober J, Thomas C, Masson D, Houdebine LM, Lagrost L. Recombinant human plasma phospholipid transfer protein (PLTP) to prevent bacterial growth and to treat sepsis. Sci Rep 2017; 7:3053. [PMID: 28596518 PMCID: PMC5465182 DOI: 10.1038/s41598-017-03285-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Although plasma phospholipid transfer protein (PLTP) has been mainly studied in the context of atherosclerosis, it shares homology with proteins involved in innate immunity. Here, we produced active recombinant human PLTP (rhPLTP) in the milk of new lines of transgenic rabbits. We successfully used rhPLTP as an exogenous therapeutic protein to treat endotoxemia and sepsis. In mouse models with injections of purified lipopolysaccharides or with polymicrobial infection, we demonstrated that rhPLTP prevented bacterial growth and detoxified LPS. In further support of the antimicrobial effect of PLTP, PLTP-knocked out mice were found to be less able than wild-type mice to fight against sepsis. To our knowledge, the production of rhPLTP to counter infection and to reduce endotoxemia and its harmful consequences is reported here for the first time. This paves the way for a novel strategy to satisfy long-felt, but unmet needs to prevent and treat sepsis.
Collapse
Affiliation(s)
- Valérie Deckert
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Lemaire
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.,University Hospital of Dijon, Dijon, France
| | | | - Jean-Paul Pais de Barros
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Jérôme Labbé
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | | | | | - Guillaume Maquart
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | | | | | - Franck Ménétrier
- CNRS UMR6265, INRA UMR1324, Centre des Sciences du Goût et de l'Alimentation, F-21000, Dijon, France
| | - Naig Le Guern
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Lorène J Lebrun
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.,AgroSup Dijon, Dijon, France
| | - Catherine Desrumaux
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.,INSERM U1198, University Montpellier, Montpellier, France
| | - Thomas Gautier
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - Jacques Grober
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.,AgroSup Dijon, Dijon, France
| | - Charles Thomas
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France
| | - David Masson
- INSERM LNC, UMR1231, Dijon, France.,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France.,University Hospital of Dijon, Dijon, France
| | | | - Laurent Lagrost
- INSERM LNC, UMR1231, Dijon, France. .,University Bourgogne Franche-Comté, LNC UMR1231, Dijon, France. .,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne Franche-Comté, Dijon, France. .,University Hospital of Dijon, Dijon, France.
| |
Collapse
|
5
|
Khetarpal SA, Schjoldager KT, Christoffersen C, Raghavan A, Edmondson AC, Reutter HM, Ahmed B, Ouazzani R, Peloso GM, Vitali C, Zhao W, Somasundara AVH, Millar JS, Park Y, Fernando G, Livanov V, Choi S, Noé E, Patel P, Ho SP, Kirchgessner TG, Wandall HH, Hansen L, Bennett EP, Vakhrushev SY, Saleheen D, Kathiresan S, Brown CD, Abou Jamra R, LeGuern E, Clausen H, Rader DJ. Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metab 2016; 24:234-45. [PMID: 27508872 PMCID: PMC5663192 DOI: 10.1016/j.cmet.2016.07.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/14/2016] [Accepted: 07/20/2016] [Indexed: 02/01/2023]
Abstract
Human genetics studies have implicated GALNT2, encoding GalNAc-T2, as a regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, but the mechanisms relating GALNT2 to HDL-C remain unclear. We investigated the impact of homozygous GALNT2 deficiency on HDL-C in humans and mammalian models. We identified two humans homozygous for loss-of-function mutations in GALNT2 who demonstrated low HDL-C. We also found that GALNT2 loss of function in mice, rats, and nonhuman primates decreased HDL-C. O-glycoproteomics studies of a human GALNT2-deficient subject validated ANGPTL3 and ApoC-III as GalNAc-T2 targets. Additional glycoproteomics in rodents identified targets influencing HDL-C, including phospholipid transfer protein (PLTP). GALNT2 deficiency reduced plasma PLTP activity in humans and rodents, and in mice this was rescued by reconstitution of hepatic Galnt2. We also found that GALNT2 GWAS SNPs associated with reduced HDL-C also correlate with lower hepatic GALNT2 expression. These results posit GALNT2 as a direct modulator of HDL metabolism across mammals.
Collapse
Affiliation(s)
- Sumeet A Khetarpal
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Institute of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet and Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Avanthi Raghavan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew C Edmondson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn 53012, Germany; Department of Neonatology and Pediatric Intensive Care, University of Bonn, Bonn 53012, Germany
| | - Bouhouche Ahmed
- Research Team on Neurodegenerative Diseases, Medical School and Pharmacy, Mohammed V University, 10100 Rabat, Morocco
| | - Reda Ouazzani
- Neurophysiology Division, Hospital of Specialities, CHIS Ibn Sina, 6402 Rabat, Morocco
| | - Gina M Peloso
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Cecilia Vitali
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zhao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amritha Varshini Hanasoge Somasundara
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S Millar
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - YoSon Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gayani Fernando
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Pennington, NJ 08534, USA
| | - Valentin Livanov
- Department of Applied Genomics, Bristol-Myers Squibb, Pennington, NJ 08534, USA
| | - Seungbum Choi
- Gacheon Cardiovascular Research Institute, Gachon University, 21565 Incheon, Korea
| | - Eric Noé
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, and AP-HP, Department of Genetics, Pitié-La Salpêtrière Hospital, 75013 Paris, France
| | - Pritesh Patel
- Department of Applied Genomics, Bristol-Myers Squibb, Pennington, NJ 08534, USA
| | - Siew Peng Ho
- Department of Applied Genomics, Bristol-Myers Squibb, Pennington, NJ 08534, USA
| | - Todd G Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Pennington, NJ 08534, USA
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Institute of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Institute of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Institute of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Institute of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Danish Saleheen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN Cambridge, UK; Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Centre for Non-Communicable Diseases, 75300 Karachi, Pakistan
| | - Sekar Kathiresan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany; Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eric LeGuern
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, and AP-HP, Department of Genetics, Pitié-La Salpêtrière Hospital, 75013 Paris, France
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Institute of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, Zandl M, Fanaee-Danesh E, Pippal JB, Sachdev V, Kratky D, Stefulj J, Jauhiainen M, Panzenboeck U. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem 2014; 289:4683-98. [PMID: 24369175 PMCID: PMC3931031 DOI: 10.1074/jbc.m113.499129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral ("brain parenchymal") compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB.
Collapse
Affiliation(s)
| | | | - Jari Metso
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ingrid Lang
- Institute of Cell Biology, Histology, and Embryology, and
| | | | | | - Martina Zandl
- From the Institute of Pathophysiology and Immunology
| | | | | | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jasminka Stefulj
- the Department of Molecular Biology, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Matti Jauhiainen
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ute Panzenboeck
- From the Institute of Pathophysiology and Immunology, , To whom correspondence should be addressed: Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria. Tel.: 43-316-3801955; Fax: 43-316-3809640; E-mail:
| |
Collapse
|
7
|
Albers JJ, Day JR, Wolfbauer G, Kennedy H, Vuletic S, Cheung MC. Impact of site-specific N-glycosylation on cellular secretion, activity and specific activity of the plasma phospholipid transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:908-11. [PMID: 21515415 PMCID: PMC3112057 DOI: 10.1016/j.bbapap.2011.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022]
Abstract
The plasma phospholipid transfer protein (PLTP) plays a key role in lipid and lipoprotein metabolism. It has six potential N-glycosylation sites. To study the impact of these sites on PLTP secretion and activity, six variants containing serine to alanine point mutations were prepared by site-directed mutagenesis and expressed in Chinese hamster ovary Flp-In cells. The apparent size of each of the six PLTP mutants was slightly less than that of wild type by Western blot, indicating that all six sites are glycosylated or utilized. The size of the carbohydrate at each N-glycosylation site ranged from 3.14 to 4.2kDa. The effect of site-specific N-glycosylation removal on PLTP secretion varied from a modest enhancement (15% and 60%), or essentially no effect, to a reduction in secretion (8%, 14% and 32%). Removal of N-glycosylation at any one of the six glycosylation sites resulted in a significant 35-78% decrease in PLTP activity, and a significant 29-80% decrease in PLTP specific activity compared to wild type. These data indicate that although no single N-linked carbohydrate chain is a requirement for secretion or activity, the removal of the carbohydrate chains had a quantitative impact on cellular secretion of PLTP and its phospholipid transfer activity.
Collapse
Affiliation(s)
- John J. Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Gertrud Wolfbauer
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hal Kennedy
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Marian C. Cheung
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Saarela J, Metso J, Schneider WJ, Jauhiainen M. Avian phospholipid transfer protein causes HDL conversion without affecting cholesterol efflux from macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:781-9. [PMID: 19393763 DOI: 10.1016/j.bbalip.2009.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/26/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Circulatory phospholipid transfer protein (PLTP) has two major functions: 1) transfer of phospholipids towards HDL particles; and 2) modulation of HDL size and composition via the HDL conversion process. In the laying hen (Gallus gallus), the massive oocyte-targeted lipid flow is achieved through the concerted actions of lipases, lipid transfer proteins, and relatives of the LDL receptor family. The aim of the study was to gain insights into the structure and functions of chicken PLTP. The results demonstrate that PLTP is highly conserved from chicken to mammals, as (i) chicken PLTP is associated with plasma HDL; (ii) it clearly possesses phospholipid transfer activity; (iii) it is inactivated at +58 degrees C; and (iv) it mediates conversion of avian and human HDL into small prebeta-mobile HDL and large fused alpha-mobile HDL particles. Our data show that HDL from different chicken models is similar in chemical and physical properties to that of man based on PLTP activity, cholesterol efflux, and HDL conversion assays. In contrast to mammals, PLTP-facilitated HDL remodeling did not enhance cholesterol efflux efficiency of chicken HDL particles.
Collapse
Affiliation(s)
- Jani Saarela
- National Institute for Health and Welfare and FIMM, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
9
|
Engler MB, Pullinger CR, Malloy MJ, Natanzon Y, Kulkarni MV, Song J, Eng C, Huuskonen J, Rivera C, Poon A, Bensley M, Sehnert A, Zellner C, Kane J, Aouizerat BE. Genetic variation in phospholipid transfer protein modulates lipoprotein profiles in hyperalphalipoproteinemia. Metabolism 2008; 57:1719-24. [PMID: 19013296 PMCID: PMC2615231 DOI: 10.1016/j.metabol.2008.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 07/17/2008] [Indexed: 02/07/2023]
Abstract
We previously demonstrated the role of a phospholipid transfer protein (PLTP) gene variation (rs2294213) in determining levels of high-density lipoprotein cholesterol (HDL-C) in hypoalphalipoproteinemia (HypoA). We have now explored the role of PLTP in hyperalphalipoproteinemia (HyperA). The human PLTP gene was screened for sequence anomalies by DNA melting in 107 subjects with HyperA. The association with plasma lipoprotein levels was evaluated. We detected 7 sequence variations: 1 previously reported variation (rs2294213) and 5 novel mutations including 1 missense mutation (L106F). The PLTP activity was unchanged in the p.L106F mutation. The frequency of the rs2294213 minor allele was markedly increased in the HyperA group (7.0%) in comparison with a control group (4.3%) and the hypoalphalipoproteinemia group (2.2%). Moreover, rs2294213 was strongly associated with HDL-C levels. Linear regression models predict that possession of the rs2294213 minor allele increases HDL-C independent of triglycerides. These findings extend the association of rs2294213 with HDL-C levels into the extremes of the HDL distribution.
Collapse
Affiliation(s)
- Mary B. Engler
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143
| | - Clive R. Pullinger
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Mary J. Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Yanina Natanzon
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143
| | - Medha V. Kulkarni
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143
| | - James Song
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Celeste Eng
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Jaarko Huuskonen
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Christopher Rivera
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Annie Poon
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Matt Bensley
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143
| | - Amy Sehnert
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143
| | - Christian Zellner
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - John Kane
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Bradley E. Aouizerat
- Department of Physiological Nursing, University of California San Francisco, San Francisco, CA 94143
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
10
|
Kiss RS, Kavaslar N, Okuhira KI, Freeman MW, Walter S, Milne RW, McPherson R, Marcel YL. Genetic etiology of isolated low HDL syndrome: incidence and heterogeneity of efflux defects. Arterioscler Thromb Vasc Biol 2007; 27:1139-45. [PMID: 17303779 DOI: 10.1161/atvbaha.106.137646] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We have used a multitiered approach to identify genetic and cellular contributors to high-density lipoprotein (HDL) deficiency in 124 human subjects. METHODS AND RESULTS We resequenced 4 candidate genes for HDL regulation and identified several functional nonsynonymous mutations including 2 in apolipoprotein A-I (APOA1), 4 in lecithin:cholesterol acyltransferase (LCAT), 1 in phospholipid transfer protein (PLTP), and 7 in the ATP-binding cassette transporter ABCA1, leaving 88% (110/124) of HDL deficient subjects without a genetic diagnosis. Cholesterol efflux assays performed using cholesterol-loaded monocyte-derived macrophages from the 124 low HDL subjects and 48 control subjects revealed that 33% (41/124) of low HDL subjects had low efflux, despite the fact that the majority of these subjects (34/41) were not carriers of dysfunctional ABCA1 alleles. In contrast, only 2% of control subjects presented with low efflux (1/48). In 3 families without ABCA1 mutations, efflux defects were found to cosegregate with low HDL. CONCLUSIONS Efflux defects are frequent in low HDL syndromes, but the majority of HDL deficient subjects with cellular cholesterol efflux defects do not harbor ABCA1 mutations, suggesting that novel pathways contribute to this phenotype.
Collapse
Affiliation(s)
- Robert S Kiss
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Ontario, K1Y 4W7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pompa A, Vitale A. Retention of a bean phaseolin/maize gamma-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. THE PLANT CELL 2006; 18:2608-21. [PMID: 17041149 PMCID: PMC1626613 DOI: 10.1105/tpc.106.042226] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most seed storage proteins of the prolamin class accumulate in the endoplasmic reticulum (ER) as large insoluble polymers termed protein bodies (PBs), through mechanisms that are still poorly understood. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin gamma-zein forms ER-located PBs. Zeolin has 6 Cys residues and, like gamma-zein with 15 residues, is insoluble unless reduced. The contribution of disulfide bonds to zeolin destiny was determined by studying in vivo the effects of 2-mercaptoethanol (2-ME) and by zeolin mutagenesis. We show that in tobacco (Nicotiana tabacum) protoplasts, 2-ME enhances interactions of newly synthesized proteins with the ER chaperone BiP and inhibits the secretory traffic of soluble proteins with or without disulfide bonds. In spite of this general inhibition, 2-ME enhances the solubility of zeolin and relieves its retention in the ER, resulting in increased zeolin traffic. Consistently, mutated zeolin unable to form disulfide bonds is soluble and efficiently enters the secretory traffic without 2-ME treatment. We conclude that disulfide bonds that lead to insolubilization are a determinant for PB-mediated protein accumulation in the ER.
Collapse
Affiliation(s)
- Andrea Pompa
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | | |
Collapse
|
12
|
Siggins S, Ehnholm C, Jauhiainen M, Olkkonen VM. Plasma phospholipid transfer protein fused with green fluorescent protein is secreted by HepG2 cells and displays phosphatidylcholine transfer activity. Biochem Cell Biol 2006; 84:117-25. [PMID: 16609691 DOI: 10.1139/o05-168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is a serum glycoprotein with a central role in high-density lipoprotein metabolism. We created a fusion protein in which enhanced green fluorescent protein (EGFP) was fused to the carboxyl-terminus of PLTP. Stably transfected HepG2 cells, which overexpress this fusion protein, were generated. PLTP-EGFP was translocated into the ER and fluoresced within the biosynthetic pathway, showing a marked concentration in the Golgi complex. The transfected cells secreted into the growth medium phospholipid transfer activity 7-fold higher than that of the mock-transfected controls. The medium of the PLTP-EGFP - expressing cells displayed EGFP fluorescence, demonstrating that both the PLTP and the EGFP moieties had attained a biologically active conformation. However, the specific activity of PLTP-EGFP in the medium was markedly reduced as compared with that of endogenous PLTP. This suggests that the EGFP attached to the carboxyl-terminal tail of PLTP interferes with the interaction of PLTP with its substrates or with the lipid transfer process itself. Fluorescently tagged PLTP is a useful tool for elucidating the intracellular functions of PLTP and the interaction of exogenously added PLTP with cells, and will provide a means of monitoring the distribution of exogenously added PLTP between serum lipoprotein subspecies.
Collapse
Affiliation(s)
- Sarah Siggins
- Department of Molecular Medicine, National Public HealthInstitute, Biomedicum, Helsinki, Finland
| | | | | | | |
Collapse
|
13
|
Aouizerat BE, Engler MB, Natanzon Y, Kulkarni M, Song J, Eng C, Huuskonen J, Rivera C, Poon A, Bensley M, Sehnert A, Zellner C, Malloy M, Kane J, Pullinger CR. Genetic variation of PLTP modulates lipoprotein profiles in hypoalphalipoproteinemia. J Lipid Res 2006; 47:787-93. [PMID: 16388083 DOI: 10.1194/jlr.m500476-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) participates in key processes in lipoprotein metabolism, including interparticle phospholipid transfer, remodeling of HDL, cholesterol and phospholipid efflux from peripheral tissues, and the production of hepatic VLDL. The impact of PLTP on reverse cholesterol transport suggests that the gene may harbor sequence anomalies that contribute to disorders of HDL metabolism. The human PLTP gene was screened for sequence anomalies by DNA melting analysis in 276 subjects with hypoalphalipoproteinemia (HA) and 364 controls. The association with plasma lipid parameters was evaluated. We discovered 18 sequence variations, including four missense mutations and a novel polymorphism (c.-34G > C). In healthy controls, the c.-34G > C minor allele was associated with higher high density lipoprotein-cholesterol (HDL-C) and was depleted in subjects with HA. Linear regression models predict that possession of the rare allele decreases plasma triglyceride (TG) and TG/HDL-C and increases HDL-C independent of TG. Decreased PLTP activity was observed in one (p.R235W) of four (p.E72G, p.S119A, p.S124Y, and p.R235W) mutations in an in vitro activity assay. These findings indicate that PLTP gene variation is an important determinant of plasma lipoproteins and affects disorders of HDL metabolism.
Collapse
Affiliation(s)
- Bradley E Aouizerat
- Department of Physiological Nursing, School of Nursing, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qu SJ, Fan HZ, Gillard BK, Pownall HJ. N-Glycosylation is Required for Secretion-Competent Human Plasma Phospholipid Transfer Protein. Protein J 2006; 25:167-73. [PMID: 16862459 DOI: 10.1007/s10930-006-0008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human plasma phospholipid transfer protein (PLTP) contains six potential N-glycosylation sites (Asn-X-Ser). To study the role of these sites on PLTP structure and function, seven variants in which asparagine (N) residues were converted to glycine (G) were prepared by site-directed mutagenesis. These were N(47)G, N(77)G, N(100)G, N(126)G, N(228)G, N(381)G and N(47, 77, 100, 126, 228, 381)G (N(null)G). These variants and wild-type (WT) PLTP were expressed in COS-7 cells. Intracellular and secreted PLTP mass was analyzed by Western blots and quantitative enzyme-linked immunosorbent assay; PLTP activities in cellular lysates and media were based on the transfer of [(3)H]dipalmitoylphosphatidylcholine from phospholipid single bilayer vesicles to HDL. N(null)G was not detected intracellularly. N(381)G was similar to WT PLTP with respect to specific activity and secretion efficiency. The specific activities of N(47)G, N(77)G, N(100)G, N(126)G, N(228)G and N(381)G were similar in cell lysate (range = 67-90% WT) and medium (range = 65-77% WT). Intracellular masses of these PLTP variants were similar to that of WT (Mean = 103% WT); mean secreted mass was 88% WT. These results suggest that secretion-competent PLTP requires glycosylation but that no single glycosylation site is required.
Collapse
Affiliation(s)
- Shi-Jing Qu
- MS A-601, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
15
|
Jänis MT, Metso J, Lankinen H, Strandin T, Olkkonen VM, Rye KA, Jauhiainen M, Ehnholm C. Apolipoprotein E activates the low-activity form of human phospholipid transfer protein. Biochem Biophys Res Commun 2005; 331:333-40. [PMID: 15845396 DOI: 10.1016/j.bbrc.2005.03.164] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Indexed: 11/25/2022]
Abstract
Phospholipid transfer protein (PLTP) exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP) in the circulation. LA-PLTP is associated with apoA-I while the HA-PLTP complex is enriched with apoE. To study the interaction of PLTP with apolipoproteins, we carried out surface plasmon resonance analyses. These demonstrated a concentration-dependent binding of recombinant human PLTP, which represents an active PLTP form, and LA-PLTP to apoE, apoA-I, and apoA-IV within a nanomolar K(D) range. To study whether LA-PLTP can be transformed into an active form, we incubated it in the presence of proteoliposomes containing apoE, apoA-I or apoA-IV. The apoE proteoliposomes induced a concentration-dependent activation of LA-PLTP. ApoA-IV proteoliposomes also activated LA-PLTP in a concentration-dependent manner, whereas apoA-I proteoliposomes had no such effect. These observations suggest that PLTP is capable of interacting with apoE, apoA-I, and apoA-IV, and that these interactions regulate PLTP-activity levels in plasma.
Collapse
Affiliation(s)
- Minna T Jänis
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bai H, Buller RML, Chen N, Green M, Nuara AA. Biosynthesis of the IFN-γ binding protein of ectromelia virus, the causative agent of mousepox. Virology 2005; 334:41-50. [PMID: 15749121 DOI: 10.1016/j.virol.2005.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 11/24/2004] [Accepted: 01/11/2005] [Indexed: 11/29/2022]
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, expresses an extracellular interferon-gamma binding protein (IFN-gammaBP) with homology to the ligand binding domains of the IFN-gamma high affinity receptor (IFN-gammaR1). Unlike the cellular receptor, the IFN-gammaBP binds IFN-gamma from several species. The IFN-gammaBP is synthesized early after infection, accumulating in the extracellular milieu as dimers composed of two protein species with Mr of 34.6 or 33.0 kDa. Homodimers are covalently linked by an interchain disulphide bond at position 216. The IFN-gammaBP has complex N-linked oligosaccharides at positions 41 and 149 as determined by site-directed mutagenesis and glycosidase treatment. Glycosylation at position 41 is required for secretion from mammalian cells and may play a role in the activity of the IFN-gammaBP. Glycosylation at position 149 is not required for secretion, and the lack of glycosylation at this site does not diminish ligand binding as measured by surface plasmon resonance (SPR) and ELISA.
Collapse
Affiliation(s)
- Hongdong Bai
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
17
|
Hou J, Yashiro K, Okazaki Y, Saijoh Y, Hayashizaki Y, Hamada H. Identification of a novel left-right asymmetrically expressed gene in the mouse belonging to the BPI/PLUNC superfamily. Dev Dyn 2004; 229:373-9. [PMID: 14745963 DOI: 10.1002/dvdy.10450] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In the process of left-right (L-R) axis formation in the mouse, the node plays a critical role as a structure where the initial breaking of L-R symmetry occurs. Here, we report on the gene LPlunc1, a member of BPI/PLUNC gene superfamily, which is asymmetrically expressed in the developing mouse node. LPlunc1 protein is secreted as a processed form of relative molecular mass 54K-60K and shares sequence features with the other members of BPI/PLUNC superfamily, including the N-terminal and C-terminal homology domains, each of which is considered to form a lipid binding pocket. LPlunc1 is transiently expressed in the crown cells of the node asymmetrically. This expression pattern of Lplunc1 highly overlaps with that of Nodal, a major player during the L-R formation. Interestingly, this asymmetric expression pattern is randomized in the iv mutant and reversed in the inv mutant, indicating that LPlunc1 is downstream of iv and inv. Our results suggest a link between lipid binding/transfer and the axis development.
Collapse
Affiliation(s)
- Juan Hou
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), Osaka, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Siggins S, Jauhiainen M, Olkkonen VM, Tenhunen J, Ehnholm C. PLTP secreted by HepG2 cells resembles the high-activity PLTP form in human plasma. J Lipid Res 2003; 44:1698-704. [PMID: 12810820 DOI: 10.1194/jlr.m300059-jlr200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma phospholipid transfer protein (PLTP) is an important regulator of plasma HDL levels and HDL particle distribution. PLTP is present in plasma in two forms, one with high and the other with low phospholipid transfer activity. We have used the human hepatoma cell line, HepG2, as a model to study PLTP secreted from hepatic cells. PLTP activity was secreted by the cells into serum-free culture medium as a function of time. However, modification of a previously established ELISA assay to include a denaturing sample pretreatment with the anionic detergent sodium dodecyl sulphate was required for the detection of the secreted PLTP protein. The HepG2 PLTP could be enriched by Heparin-Sepharose affinity chromatography and eluted in size-exclusion chromatography at a position corresponding to the size of 160 kDa. PLTP coeluted with apolipoprotein E (apoE) but not with apoB-100 or apoA-I. A portion of PLTP was retained by an anti-apoE immunoaffinity column together with apoE, suggesting an interaction between these two proteins. Furthermore, antibodies against apoE but not those against apoB-100 or apoA-I were capable of inhibiting PLTP activity. These results show that the HepG2-derived PLTP resembles in several aspects the high-activity form of PLTP found in human plasma.
Collapse
Affiliation(s)
- Sarah Siggins
- National Public Health Institute, Department of Molecular Medicine, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | | | | | | | | |
Collapse
|
19
|
Desrumaux CM, Mak PA, Boisvert WA, Masson D, Stupack D, Jauhiainen M, Ehnholm C, Curtiss LK. Phospholipid transfer protein is present in human atherosclerotic lesions and is expressed by macrophages and foam cells. J Lipid Res 2003; 44:1453-61. [PMID: 12730304 DOI: 10.1194/jlr.m200281-jlr200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) in plasma promotes phospholipid transfer from triglyceride-rich lipoproteins to HDL and plays a major role in HDL remodeling. Recent in vivo observations also support a key role for PLTP in cholesterol metabolism. Our immunohistochemical analysis of human carotid endarterectomy samples identified immunoreactive PLTP in areas that colocalized with CD68-positive macrophages, suggesting that PLTP could be produced locally by intimal macrophages. Using RT-PCR, Western blot analysis with a monoclonal anti-PLTP antibody, and a PLTP activity assay, we observed PLTP mRNA and protein expression in human macrophages. In adherent peripheral blood human macrophages, this PLTP expression was increased by culture with granulocyte macrophage colony-stimulating factor. Incubation of macrophages with acetylated-LDL induced an increase in PLTP mRNA and protein expression that paralleled cholesterol loading. PLTP expression was observed in elicited mouse peritoneal macrophages and in cultured Raw264.7 cells as well. Thus, this study demonstrates that PLTP is expressed by macrophages, is regulated by cholesterol loading, and is present in atherosclerotic lesions.
Collapse
|
20
|
Vuletic S, Jin LW, Marcovina SM, Peskind ER, Moller T, Albers JJ. Widespread distribution of PLTP in human CNS: evidence for PLTP synthesis by glia and neurons, and increased levels in Alzheimer's disease. J Lipid Res 2003; 44:1113-23. [PMID: 12671035 DOI: 10.1194/jlr.m300046-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma phospholipid transfer protein (PLTP) is one of the key proteins in lipid and lipoprotein metabolism. We examined PLTP distribution in human brain using PLTP mRNA dot-blot, Northern blot, immunohistochemistry (IHC), Western blot, and phospholipid transfer activity assay analyses. PLTP mRNA of 1.8 kb was widely distributed in all the examined regions of the central nervous system at either comparable or slightly lower levels than in the other major organs, depending on the region. Cerebrospinal fluid phospholipid transfer activity represented 15% of the plasma activity, indicating active PLTP synthesis in the brain. Western blot and phosholipid transfer activity assay demonstrated secretion of active PLTP by neurons, microglia, and astrocytes in culture. IHC demonstrated PLTP presence in neurons, astrocytes, microglia, and oligodendroglia. Some neuronal groups, such as nucleus hypoglossus and CA2 neurons in hippocampus, ependymal layer, and choroid plexus were particularly strongly stained, with substantial glial and neuropil immunostaining throughout the brain. Comparison between brain tissues from patients with Alzheimer's disease (AD) and nonAD subjects revealed a significant increase (P = 0.02) in PLTP levels in brain tissue homogenates and increased PLTP immunostaining in AD.
Collapse
Affiliation(s)
- Simona Vuletic
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lee M, Metso J, Jauhiainen M, Kovanen PT. Degradation of phospholipid transfer protein (PLTP) and PLTP-generated pre-beta-high density lipoprotein by mast cell chymase impairs high affinity efflux of cholesterol from macrophage foam cells. J Biol Chem 2003; 278:13539-45. [PMID: 12531890 DOI: 10.1074/jbc.m210847200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human atherosclerotic lesions contain mast cells filled with the neutral protease chymase. Here we studied the effect of human chymase on (i) phospholipid transfer protein (PLTP)-mediated phospholipid (PL) transfer activity, and (ii) the ability of PLTP to generate pre-beta-high density lipoprotein (HDL). Immunoblot analysis of PLTP after incubation with chymase for 6 h revealed, in addition to the original 80-kDa band, four specific proteolytic fragments of PLTP with approximate molecular masses of 70, 52, 48, and 31 kDa. This specific pattern of PLTP degradation remained stable for at least 24 h of incubation with chymase. Such proteolyzed PLTP had reduced ability (i) to transfer PL from liposome donor particles to acceptor HDL(3) particles, and (ii) to facilitate the formation of pre-beta-HDL. However, when PLTP was incubated with chymase in the presence of HDL(3), only one major cleavage product of PLTP (48 kDa) was generated, and PL transfer activity was almost fully preserved. Moreover, chymase effectively depleted the pre-beta-HDL particles generated from HDL(3) by PLTP and significantly inhibited the high affinity component of cholesterol efflux from macrophage foam cells. These results suggest that the mast cells in human atherosclerotic lesions, by secreting chymase, may prevent PLTP-dependent formation of pre-beta-HDL particles from HDL(3) and so impair the anti-atherogenic function of PLTP.
Collapse
Affiliation(s)
- Miriam Lee
- Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland
| | | | | | | |
Collapse
|
22
|
Cao G, Beyer TP, Yang XP, Schmidt RJ, Zhang Y, Bensch WR, Kauffman RF, Gao H, Ryan TP, Liang Y, Eacho PI, Jiang XC. Phospholipid transfer protein is regulated by liver X receptors in vivo. J Biol Chem 2002; 277:39561-5. [PMID: 12177004 DOI: 10.1074/jbc.m207187200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver X receptors (LXR) belong to the nuclear receptor superfamily that can regulate important lipid metabolic pathways. The plasma phospholipid transfer protein (PLTP) is known to mediate transfer of phospholipids from triglyceride-rich lipoproteins to high density lipoprotein (HDL) and plays a critical role in HDL metabolism. We report here that a specific LXR agonist, T0901317, elevated HDL cholesterol and phospholipid in C57/BL6 mice and generated enlarged HDL particles that were enriched in cholesterol, ApoAI, ApoE, and phospholipid. The appearance of these HDL particles upon oral dosing of T0901317 in C57/BL6 mice was closely correlated with the increased plasma PLTP activity and liver PLTP mRNA levels. Nuclear run-on assay indicated that the effect of LXR agonist on PLTP expression was at the transcriptional level. In mouse peritoneal macrophage cells, PLTP expression was also up-regulated by the LXR/RXR (retinoid X receptor) heterodimer. However, cholesterol efflux in mouse peritoneal macrophage cells from PLTP-deficient mice (PLTP0) was not significantly different from wild type animals. Although in PLTP-deficient mice, the induction of HDL cholesterol as well as HDL particle size increase persisted, the extent of the induction was greatly attenuated. We conclude that PLTP is a direct target gene of LXRs in vivo and plays an important role in LXR agonist-mediated HDL cholesterol and size increase in mice.
Collapse
MESH Headings
- Animals
- Anticholesteremic Agents/pharmacology
- Blotting, Western
- Carrier Proteins/blood
- Carrier Proteins/metabolism
- Cholesterol/metabolism
- Cholesterol, HDL/metabolism
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Hydrocarbons, Fluorinated
- Ligands
- Lipid Metabolism
- Lipoproteins, HDL/metabolism
- Liver/enzymology
- Liver X Receptors
- Macrophages/metabolism
- Membrane Proteins/blood
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Orphan Nuclear Receptors
- Phospholipid Transfer Proteins
- Phospholipids/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/agonists
- Receptors, Thyroid Hormone/metabolism
- Sulfonamides
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Guoqing Cao
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kärkkäinen M, Oka T, Olkkonen VM, Metso J, Hattori H, Jauhiainen M, Ehnholm C. Isolation and partial characterization of the inactive and active forms of human plasma phospholipid transfer protein (PLTP). J Biol Chem 2002; 277:15413-8. [PMID: 11854286 DOI: 10.1074/jbc.m112247200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. Two forms of PLTP exist in human plasma, one catalytically active (high activity form, HA-PLTP) and the other inactive (low activity form, LA-PLTP) (Oka, T., Kujiraoka, T., Ito, M., Egashira, T., Takahashi, S., Nanjee, N. M., Miller, N. E., Metso, J., Olkkonen, V. M., Ehnholm, C., Jauhiainen, M., and Hattori, H. (2000) J. Lipid Res. 41, 1651-1657). The two forms are associated with macromolecular complexes of different size. The apparent size of LA-PLTP is 520 kDa and that of HA-PLTP is 160 kDa. Of the circulating PLTP mass only a minor portion is in the HA-PLTP form in normolipidemic subjects. In the present study we have isolated and partially characterized the LA and HA forms of PLTP. Both LA- and HA-PLTP bind to heparin-Sepharose and can be separated by elution with 0-0.5 m NaCl gradient, with HA-PLTP displaying higher affinity for the matrix. LA-PLTP was further purified using hydrophobic butyl-Sepharose and anti-PLTP immunoaffinity chromatography steps. HA-PLTP was subjected to a second heparin-Sepharose step and hydroxylapatite chromatography. Analysis of the two forms of PLTP by SDS-PAGE, Western blotting, immunoprecipitation, and gel filtration demonstrates that LA-PLTP is complexed with apoA-I whereas HA-PLTP is not. Instead, HA-PLTP copurified with apoE. Based on these findings we suggest a model in which nascent PLTP enters the circulation as a high specific activity form not associated with apoA-I. During or after the transfer of lipolytic surface remnants to HDL, PLTP is transferred to apoA-I-containing HDL particles and thereby becomes part of the low activity complex.
Collapse
Affiliation(s)
- Minna Kärkkäinen
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, P. O. Box 104, Helsinki FIN-00251, Finland
| | | | | | | | | | | | | |
Collapse
|
24
|
Settasatian N, Duong M, Curtiss LK, Ehnholm C, Jauhiainen M, Huuskonen J, Rye KA. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J Biol Chem 2001; 276:26898-905. [PMID: 11325961 DOI: 10.1074/jbc.m010708200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipid transfer protein (PLTP) remodels high density lipoproteins (HDL) into large and small particles. It also mediates the dissociation of lipid-poor or lipid-free apolipoprotein A-I (apoA-I) from HDL. Remodeling is enhanced markedly in triglyceride (TG)-enriched HDL (Rye, K.-A., Jauhiainen, M., Barter, P. J., and Ehnholm. C. (1998) J. Lipid. Res. 39, 613-622). This study defines the mechanism of the remodeling of HDL by PLTP and determines why it is enhanced in TG-enriched HDL. Homogeneous populations of spherical reconstituted HDL (rHDL) containing apoA-I and either cholesteryl esters only (CE-rHDL; diameter 9.3 nm) or CE and TG in their core (TG-rHDL; diameter 9.5 nm) were used. After 24 h of incubation with PLTP, all of the TG-rHDL, but only a proportion of the CE-rHDL, were converted into large (11.3-nm diameter) and small (7.7-nm diameter) particles. Only small particles were formed during the first 6 h of incubation of CE-rHDL with PLTP. The large particles and dissociated apoA-I were apparent after 12 h. In the case of TG-rHDL, small particles appeared after 1 h of incubation, while dissociated apoA-I and large particles were apparent at 3 h. The composition of the large particles indicated that they were derived from a fusion product. Spectroscopic studies indicated that the apoA-I in TG-rHDL was less stable than the apoA-I in CE-rHDL. In conclusion, these results show that (i) PLTP mediates rHDL fusion, (ii) the fusion product rearranges by two independent processes into small and large particles, and (iii) the more rapid remodeling of TG-rHDL by PLTP may be due to the destabilization of apoA-I.
Collapse
Affiliation(s)
- N Settasatian
- Lipid Research Laboratory, The Hanson Centre, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Huuskonen J, Olkkonen VM, Jauhiainen M, Ehnholm C. The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 2001; 155:269-81. [PMID: 11254896 DOI: 10.1016/s0021-9150(01)00447-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-density lipoproteins (HDL) play a major protective role against the development of coronary artery disease. Phospholipid transfer protein (PLTP) is a main factor regulating the size and composition of HDL in the circulation and plays an important role in controlling plasma HDL levels. This is achieved via both the phospholipid transfer activity of PLTP and its capability to cause HDL conversion. The present review focuses on the impact of PLTP on HDL metabolism. The basic characteristics and structure of the PLTP protein are described. The two main functions of PLTP, PLTP-mediated phospholipid transfer and HDL conversion are reviewed, and the mechanisms and control, as well as the physiological significance of these processes are discussed. The relationship between PLTP and the related cholesteryl ester transfer protein (CETP) is reviewed. Thereafter other functions of PLTP are recapitulated: the ability of PLTP to transfer cholesterol, alpha-tocopherol and lipopolysaccharide (LPS), and the suggested involvement of PLTP in cellular cholesterol traffic. The discussion on PLTP activity and mass in (patho)physiological settings includes new data on the presence of two forms of PLTP in the circulation, one catalytically active and the other inactive. Finally, future directions for PLTP research are outlined.
Collapse
Affiliation(s)
- J Huuskonen
- Department of Biochemistry, National Public Health Institute, Mannerheimintie 166, 00300, Helsinki, Finland
| | | | | | | |
Collapse
|
26
|
Desrumaux C, Labeur C, Verhee A, Tavernier J, Vandekerckhove J, Rosseneu M, Peelman F. A hydrophobic cluster at the surface of the human plasma phospholipid transfer protein is critical for activity on high density lipoproteins. J Biol Chem 2001; 276:5908-15. [PMID: 11083872 DOI: 10.1074/jbc.m008420200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family, together with the cholesteryl ester transfer protein, the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI). In the present study, we used the crystallographic data available for BPI to build a three-dimensional model for PLTP. Multiple sequence alignment suggested that, in PLTP, a cluster of hydrophobic residues substitutes for a cluster of positively charged residues found on the surface of LBP and BPI, which is critical for interaction with lipopolysaccharides. According to the PLTP model, these hydrophobic residues are situated on an exposed hydrophobic patch at the N-terminal tip of the molecule. To assess the role of this hydrophobic cluster for the functional activity of PLTP, single point alanine mutants were engineered. Phospholipid transfer from liposomes to high density lipoprotein (HDL) by the W91A, F92A, and F93A PLTP mutants was drastically reduced, whereas their transfer activity toward very low density lipoprotein and low density lipoprotein did not change. The HDL size conversion activity of the mutants was reduced to the same extent as the PLTP transfer activity toward HDL. Based on these results, we propose that a functional solvent-exposed hydrophobic cluster in the PLTP molecule specifically contributes to the PLTP transfer activity on HDL substrates.
Collapse
Affiliation(s)
- C Desrumaux
- Laboratory for Lipoprotein Chemistry, Faculty of Medicine, University of Ghent, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
27
|
Huuskonen J, Olkkonen VM, Ehnholm C, Metso J, Julkunen I, Jauhiainen M. Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion. Biochemistry 2000; 39:16092-8. [PMID: 11123937 DOI: 10.1021/bi0019287] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipid transfer protein (PLTP) is an important regulator of high-density lipoprotein (HDL) metabolism. The two main functions of PLTP are transfer of phospholipids between lipoprotein particles and modulation of HDL size and composition in a process called HDL conversion. These PLTP-mediated processes are physiologically important in the transfer of surface remnants from lipolyzed triglyceride-rich lipoproteins to nascent HDL particles and in the generation of prebeta-HDL, the initial acceptor of excess peripheral cell cholesterol. The aim of the study presented here was to investigate the interrelationship between the two functions of PLTP. Plasma PLTP was chemically modified using diethylpyrocarbonate or ethylmercurithiosalicylate. The modified proteins displayed a dose-dependent decrease in phospholipid transfer activity and a parallel decrease in the ability to cause HDL conversion. Two recombinant PLTP mutant proteins, defective in phospholipid transfer activity due to a mutation in the N-terminal lipid-binding pocket, were produced, isolated, and incubated together with radioactively labeled HDL(3). HDL conversion was analyzed using three methods: native gradient gel electrophoresis, ultracentrifugation, and crossed immunoelectrophoresis. The results demonstrate that the mutant proteins (i) are able to induce only a modest increase in HDL particle size compared to the wild-type protein, (ii) are unable to release apoA-I from HDL(3), and (iii) do not generate prebeta-mobile particles following incubation with HDL(3). These data suggest that phospholipid transfer is a prerequisite for HDL conversion and demonstrate the close interrelationship between the two main activities of PLTP.
Collapse
Affiliation(s)
- J Huuskonen
- Departments of Biochemistry and Virology, National Public Health Institute, 00300 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
28
|
Huuskonen J, Ekström M, Tahvanainen E, Vainio A, Metso J, Pussinen P, Ehnholm C, Olkkonen VM, Jauhiainen M. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis 2000; 151:451-61. [PMID: 10924722 DOI: 10.1016/s0021-9150(99)00429-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A sensitive sandwich-type enzyme-linked immunosorbent assay (ELISA) for human plasma phospholipid transfer protein (PLTP) has been developed using a monoclonal capture antibody and a polyclonal detection antibody. The ELISA allows for the accurate quantification of PLTP in the range of 25-250 ng PLTP/assay. Using the ELISA, the mean plasma PLTP concentration in a Finnish population sample (n = 159) was determined to be 15.6 +/- 5.1 mg/l, the values ranging from 2.30 to 33.4 mg/l. PLTP mass correlated positively with HDL-cholesterol (r = 0.36, P < 0.001), apoA-I (r = 0.37, P < 0.001), apoA-II (r = 0.20, P < 0.05), Lp(A-I) (r=0.26, P=0.001) and Lp(A-I/A-II) particles (r=0.34, P<0.001), and negatively with body mass index (BMI) (r = -0.28, P < 0.001) and serum triacylglycerol (TG) concentration (r = -0.34, P < 0.001). PLTP mass did not correlate with phospholipid transfer activity as measured with a radiometric assay. The specific activity of PLTP, i.e. phospholipid transfer activity divided by PLTP mass, correlated positively with plasma TG concentration (r=0.568, P<0.001), BMI (r=0.45, P<0.001), apoB (r = 0.45, P < 0.001). total cholesterol (r=0.42, P < 0.001), LDL-cholesterol (r = 0.34, P < 0.001) and age (r = 0.36, P < 0.001), and negatively with HDL-cholesterol (r= -0.33, P < 0.001), Lp(A-I) (r= -0.21, P < 0.01) as well as Lp(A-I/A-II) particles (r = -0.32, P < 0.001). When both PLTP mass and phospholipid transfer activity were adjusted for plasma TG concentration, a significant positive correlation was revealed (partial correlation, r = 0.31, P < 0.001). The results suggest that PLTP mass and phospholipid transfer activity are strongly modulated by plasma lipoprotein composition: PLTP mass correlates positively with parameters reflecting plasma high density lipoprotein (HDL) levels, but the protein appears to be most active in subjects displaying high TG concentration.
Collapse
Affiliation(s)
- J Huuskonen
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Phospholipid transfer protein (PLTP) is one of the main modulators of plasma HDL size and composition. The publications discussed in the present review have substantially increased our knowledge on the physiological importance of PLTP-mediated phospholipid transfer, especially between triglyceride-rich lipoproteins and HDL. Furthermore, novel data have provided clues about the transfer mechanism, and evidence for the direct involvement of PLTP in atheroprotection has recently been presented. The development of assays for PLTP mass determination has offered new tools for the elucidation of the physiological role of PLTP.
Collapse
Affiliation(s)
- J Huuskonen
- National Public Health Institute, Department of Biochemistry, Helsinki, Finland
| | | |
Collapse
|
30
|
Huuskonen J, Wohlfahrt G, Jauhiainen M, Ehnholm C, Teleman O, Olkkonen VM. Structure and phospholipid transfer activity of human PLTP: analysis by molecular modeling and site-directed mutagenesis. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33516-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|