1
|
Aydin Ö, Wahlström A, de Jonge PA, Meijnikman AS, Sjöland W, Olsson L, Henricsson M, de Goffau MC, Oonk S, Bruin SC, Acherman YIZ, Marschall HU, Gerdes VEA, Nieuwdorp M, Bäckhed F, Groen AK. An integrated analysis of bile acid metabolism in humans with severe obesity. Hepatology 2025; 81:19-31. [PMID: 39010331 DOI: 10.1097/hep.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/26/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND AND AIMS Bile acids (BA) are vital regulators of metabolism. BAs are AQ6 secreted in the small intestine, reabsorbed, and transported back to the liver, where they can modulate metabolic functions. There is a paucity of data regarding the portal BA composition in humans. This study aimed to address this knowledge gap by investigating portal BA composition and the relation with peripheral and fecal BA dynamics in conjunction with the gut microbiome. APPROACH AND RESULTS Thirty-three individuals from the BARIA cohort were included. Portal plasma, peripheral plasma, and feces were collected. BA and C4 levels were measured employing mass spectrometry. FGF19 was measured using ELISA. Gut microbiota composition was determined through metagenomics analysis on stool samples. Considerable diversity in the portal BA composition was observed. The majority (n = 26) of individuals had a 9-fold higher portal than peripheral BA concentration. In contrast, 8 individuals showed lower portal BA concentration compared with peripheral and had higher levels of unconjugated and secondary BA in this compartment, suggesting more distal origin. The altered portal BA profile was associated with altered gut microbiota composition. In particular, taxa within Bacteroides were reduced in abundance in the feces of these individuals. CONCLUSIONS Characterization of the portal BA composition in relation to peripheral and fecal BA increased insight into the dynamics of BA metabolism in individuals with obesity. Peripheral BA composition was much more diverse due to microbial metabolism. About 24% of the portal samples was surprisingly low in total BA; the underlying mechanism requires further exploration.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Annika Wahlström
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrick A de Jonge
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Wilhelm Sjöland
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisa Olsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus C de Goffau
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Stijn Oonk
- Department of Scientific Research, Data Science, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Sjoerd C Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victor E A Gerdes
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Bariatric Surgery, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
- Department of Internal Medicine, Spaarne Gasthuis Hospital, Hoofddorp, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Albert K Groen
- Department of Internal and (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, ACS Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
3
|
Ghosh S, Ghzaiel I, Vejux A, Meaney S, Nag S, Lizard G, Tripathi G, Naez F, Paul S. Impact of Oxysterols in Age-Related Disorders and Strategies to Alleviate Adverse Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:163-191. [PMID: 38036880 DOI: 10.1007/978-3-031-43883-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols or cholesterol oxidation products are a class of molecules with the sterol moiety, derived from oxidative reaction of cholesterol through enzymatic and non-enzymatic processes. They are widely reported in animal-origin foods and prove significant involvement in the regulation of cholesterol homeostasis, lipid transport, cellular signaling, and other physiological processes. Reports of oxysterol-mediated cytotoxicity are in abundance and thus consequently implicated in several age-related and lifestyle disorders such as cardiovascular diseases, bone disorders, pancreatic disorders, age-related macular degeneration, cataract, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and some types of cancers. In this chapter, we attempt to review a selection of physiologically relevant oxysterols, with a focus on their formation, properties, and roles in health and disease, while also delving into the potential of natural and synthetic molecules along with bacterial enzymes for mitigating oxysterol-mediated cell damage.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Steve Meaney
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin 7, Ireland
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Falal Naez
- Department of Microbiology, Vijaygarh Jyotish Ray College, University of Calcutta, Kolkata, India
| | - Srijita Paul
- Department of Microbiology, Gurudas College, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Xiang T, Deng Z, Yang C, Tan J, Dou C, Luo F, Chen Y. Bile acid metabolism regulatory network orchestrates bone homeostasis. Pharmacol Res 2023; 196:106943. [PMID: 37777075 DOI: 10.1016/j.phrs.2023.106943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Bile acids (BAs), synthesized in the liver and modified by the gut microbiota, have been widely appreciated not only as simple lipid emulsifiers, but also as complex metabolic regulators and momentous signaling molecules, which play prominent roles in the complex interaction among several metabolic systems. Recent studies have drawn us eyes on the diverse physiological functions of BAs, to enlarge the knowledge about the "gut-bone" axis due to the participation about the gut microbiota-derived BAs to modulate bone homeostasis at physiological and pathological stations. In this review, we have summarized the metabolic processes of BAs and highlighted the crucial roles of BAs targeting bile acid-activated receptors, promoting the proliferation and differentiation of osteoblasts (OBs), inhibiting the activity of osteoclasts (OCs), as well as reducing articular cartilage degradation, thus facilitating bone repair. In addition, we have also focused on the bidirectional effects of BA signaling networks in coordinating the dynamic balance of bone matrix and demonstrated the promising effects of BAs on the development or treatment for pathological bone diseases. In a word, further clinical applications targeting BA metabolism or modulating gut metabolome and related derivatives may be developed as effective therapeutic strategies for bone destruction diseases.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Basic Medical Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zihan Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
5
|
Gillard J, Leclercq IA. Biological tuners to reshape the bile acid pool for therapeutic purposes in non-alcoholic fatty liver disease. Clin Sci (Lond) 2023; 137:65-85. [PMID: 36601783 PMCID: PMC9816373 DOI: 10.1042/cs20220697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Bile acids synthesized within the hepatocytes are transformed by gut microorganisms and reabsorbed into the portal circulation. During their enterohepatic cycling, bile acids act as signaling molecules by interacting with receptors to regulate pathways involved in many physiological processes. The bile acid pool, composed of a variety of bile acid species, has been shown to be altered in diseases, hence contributing to disease pathogenesis. Thus, understanding the changes in bile acid pool size and composition in pathological processes will help to elaborate effective pharmacological treatments. Five crucial steps along the enterohepatic cycle shape the bile acid pool size and composition, offering five possible targets for therapeutic intervention. In this review, we provide an insight on the strategies to modulate the bile acid pool, and then we discuss the potential benefits in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato‐Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Bile acids and their receptors in regulation of gut health and diseases. Prog Lipid Res 2023; 89:101210. [PMID: 36577494 DOI: 10.1016/j.plipres.2022.101210] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.
Collapse
|
7
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Abdalkareem Jasim S, Kzar HH, Haider Hamad M, Ahmad I, Al-Gazally ME, Ziyadullaev S, Sivaraman R, Abed Jawad M, Thaeer Hammid A, Oudaha KH, Karampoor S, Mirzaei R. The emerging role of 27-hydroxycholesterol in cancer development and progression: An update. Int Immunopharmacol 2022; 110:109074. [PMID: 35978522 DOI: 10.1016/j.intimp.2022.109074] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023]
Abstract
Oxysterols are cholesterol metabolites generated in the liver and other peripheral tissues as a mechanism of removing excess cholesterol. Oxysterols have a wide range of biological functions, including the regulation of sphingolipid metabolism, platelet aggregation, and apoptosis. However, it has been found that metabolites derived from cholesterol play essential functions in cancer development and immunological suppression. In this regard, research indicates that 27-hydroxycholesterol (27-HC) might act as an estrogen, promoting the growth of estrogen receptor (ER) positive breast cancer cells. The capacity of cholesterol to dynamically modulate signaling molecules inside the membrane and particular metabolites serving as signaling molecules are two possible contributory processes. 27-HC is a significant metabolite produced mainly through the CYP27A1 (Cytochrome P450 27A1) enzyme. 27-HC maintains cholesterol balance biologically by promoting cholesterol efflux via the liver X receptor (LXR) and suppressing de novo cholesterol production through the Insulin-induced Genes (INSIGs). It has been demonstrated that 27-HC is able to function as a selective ER regulator. Moreover, enhanced 27-HC production is in favor of the growth of end-stage malignancies in the brain, thyroid organs, and colon, as shown in breast cancer, probably due to pro-survival and pro-inflammatory signaling induced by unbalanced levels of oxysterols. However, the actual role of 27-HC in cancer promotion and progression remains debatable, and many studies are warranted to be performed to unravel the precise function of these molecules. This review article will summarize the latest evidence on the deleterious or beneficial functions of 27-HC in various types of cancer, such as breast cancer, prostate cancer, colon cancer, gastric cancer, ovarian cancer, endometrial cancer, lung cancer, melanoma, glioblastoma, thyroid cancer, adrenocortical cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | - Hamzah H Kzar
- Veterinary medicine college, Al-Qasim green University, Al-Qasim, Iraq
| | - Mohammed Haider Hamad
- Medical Laboratory Techniques Department, Al Mustaqbal University college, Babylon, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Shukhrat Ziyadullaev
- Professor, Doctor of Medical Sciences, No.1 Department of Internal Diseases, Vice-rector for Scientific Affairs and Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - R Sivaraman
- Department of Mathematics, Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, University of Madras, Chennai, India
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University Thi-Qar, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Zhou Y, Zhou Y, Li Y, Sun W, Wang Z, Chen L, He Y, Niu X, Chen J, Yao G. Targeted bile acid profiles reveal the liver injury amelioration of Da-Chai-Hu decoction against ANIT- and BDL-induced cholestasis. Front Pharmacol 2022; 13:959074. [PMID: 36059946 PMCID: PMC9437253 DOI: 10.3389/fphar.2022.959074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Multiple types of liver diseases, particularly cholestatic liver diseases (CSLDs) and biliary diseases, can disturb bile acid (BA) secretion; however, BA accumulation is currently seen as an important incentive of various types of liver diseases’ progression. Da-Chai-Hu decoction (DCHD) has long been used for treating cholestatic liver diseases; however, the exact mechanisms remain unclear. Currently, our study indicates that the liver damage and cholestasis status of the α-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis and bile duct ligation (BDL)-induced extrahepatic cholestasis, following DCHD treatment, were improved; the changes of BA metabolism post-DCHD treatment were investigated by targeted metabolomics profiling by UPLC-MS/MS. DCHD treatment severely downregulated serum biochemical levels and relieved inflammation and the corresponding pathological changes including necrosis, inflammatory infiltration, ductular proliferation, and periductal fibrosis in liver tissue. The experimental results suggested that DCHD treatment altered the size, composition, and distribution of the BAs pool, led the BAs pool of the serum and liver to sharply shrink, especially TCA and TMCA, and enhanced BA secretion into the gallbladder and the excretion of BAs by the urinary and fecal pathway; the levels of BAs synthesized by the alternative pathway were increased in the liver, and the conjugation of BAs and the pathway of BA synthesis were actually affected. In conclusion, DCHD ameliorated ANIT- and BDL-induced cholestatic liver injury by reversing the disorder of BAs profile.
Collapse
Affiliation(s)
- YueHua Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YunZhong Zhou
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - YiFei Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - ZhaoLong Wang
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - Long Chen
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye He
- Institute of Pharmaceutical Preparation Research, Jinghua Pharmaceutical Group Co., Ltd., Jiangsu, China
| | - XiaoLong Niu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangtao Yao,
| |
Collapse
|
10
|
Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. Int J Mol Sci 2022; 23:ijms23116046. [PMID: 35682726 PMCID: PMC9181207 DOI: 10.3390/ijms23116046] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Bile acids (BAs) are a group of amphiphilic molecules consisting of a rigid steroid core attached to a hydroxyl group with a varying number, position, and orientation, and a hydrophilic side chain. While BAs act as detergents to solubilize lipophilic nutrients in the small intestine during digestion and absorption, they also act as hormones. Farnesoid X receptor (FXR) is a nuclear receptor that forms a heterodimer with retinoid X receptor α (RXRα), is activated by BAs in the enterohepatic circulation reabsorbed via transporters in the ileum and the colon, and plays a critical role in regulating gene expression involved in cholesterol, BA, and lipid metabolism in the liver. The FXR/RXRα heterodimer also exists in the distal ileum and regulates production of fibroblast growth factor (FGF) 15/FGF19, a hormone traveling via the enterohepatic circulation that activates hepatic FGF receptor 4 (FGFR4)-β-klotho receptor complex and regulates gene expression involved in cholesterol, BA, and lipid metabolism, as well as those regulating cell proliferation. Agonists for FXR and analogs for FGF15/19 are currently recognized as a promising therapeutic target for metabolic syndrome and cholestatic diseases.
Collapse
|
11
|
Chiang JYL, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol Cell Endocrinol 2022; 548:111618. [PMID: 35283218 PMCID: PMC9038687 DOI: 10.1016/j.mce.2022.111618] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022]
Abstract
In 1995, the nuclear hormone orphan receptor farnesoid X receptor (FXR, NR1H4) was identified as a farnesol receptor expressed mainly in liver, kidney, and adrenal gland of rats. In 1999, bile acids were identified as endogenous FXR ligands. Subsequently, FXR target genes involved in the regulation of hepatic bile acid synthesis, secretion, and intestinal re-absorption were identified. FXR signaling was proposed as a mechanism of feedback regulation of the rate-limiting enzyme for bile acid synthesis, cholesterol 7⍺-hydroxylase (CYP7A1). The primary bile acids synthesized in the liver are transformed to secondary bile acids by the gut microbiota. The gut-to-liver axis plays a critical role in the regulation of bile acid synthesis, composition and circulating bile acid pool size, which in turn regulates glucose, lipid, and energy metabolism. Dysregulation of bile acid metabolism and FXR signaling in the gut-to-liver axis contributes to metabolic diseases including obesity, diabetes, and non-alcoholic fatty liver disease. This review will cover the discovery of FXR as a bile acid sensor in the regulation of bile acid metabolism and as a metabolic regulator of lipid, glucose, and energy homeostasis. It will also provide an update of FXR functions in the gut-to-liver axis and the drug therapies targeting bile acids and FXR for the treatment of liver metabolic diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4029 SR 44, P.O. Box 95, Rootstown, OH, 44272, United States.
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4029 SR 44, P.O. Box 95, Rootstown, OH, 44272, United States
| |
Collapse
|
12
|
Shulpekova Y, Shirokova E, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izotov A, Butkova T, Shulpekova N, Nechaev V, Damulin I, Okhlobystin A, Ivashkin V. A Recent Ten-Year Perspective: Bile Acid Metabolism and Signaling. Molecules 2022; 27:molecules27061983. [PMID: 35335345 PMCID: PMC8953976 DOI: 10.3390/molecules27061983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Bile acids are important physiological agents required for the absorption, distribution, metabolism, and excretion of nutrients. In addition, bile acids act as sensors of intestinal contents, which are determined by the change in the spectrum of bile acids during microbial transformation, as well as by gradual intestinal absorption. Entering the liver through the portal vein, bile acids regulate the activity of nuclear receptors, modify metabolic processes and the rate of formation of new bile acids from cholesterol, and also, in all likelihood, can significantly affect the detoxification of xenobiotics. Bile acids not absorbed by the liver can interact with a variety of cellular recipes in extrahepatic tissues. This provides review information on the synthesis of bile acids in various parts of the digestive tract, its regulation, and the physiological role of bile acids. Moreover, the present study describes the involvement of bile acids in micelle formation, the mechanism of intestinal absorption, and the influence of the intestinal microbiota on this process.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Elena Shirokova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Maria Zharkova
- Department of Hepatology University Clinical Hospital No.2, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Pyotr Tkachenko
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Alexandra Sinitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | | | - Vladimir Nechaev
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Damulin
- Branch of the V. Serbsky National Medical Research Centre for Psychiatry and Narcology, 127994 Moscow, Russia;
| | - Alexey Okhlobystin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| |
Collapse
|
13
|
Kriaa A, Mariaule V, Jablaoui A, Rhimi S, Mkaouar H, Hernandez J, Korkmaz B, Lesner A, Maguin E, Aghdassi A, Rhimi M. Bile Acids: Key Players in Inflammatory Bowel Diseases? Cells 2022; 11:cells11050901. [PMID: 35269523 PMCID: PMC8909766 DOI: 10.3390/cells11050901] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) have emerged as a public health problem worldwide with a limited number of efficient therapeutic options despite advances in medical therapy. Although changes in the gut microbiota composition are recognized as key drivers of dysregulated intestinal immunity, alterations in bile acids (BAs) have been shown to influence gut homeostasis and contribute to the pathogenesis of the disease. In this review, we explore the interactions involving BAs and gut microbiota in IBDs, and discuss how the gut microbiota–BA–host axis may influence digestive inflammation.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Hela Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Juan Hernandez
- Oniris, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Brice Korkmaz
- INSERM UMR-1100, “Research Center for Respiratory Diseases”, University of Tours, 37032 Tours, France;
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
| | - Ali Aghdassi
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, 78350 Jouy-en-Josas, France; (A.K.); (V.M.); (A.J.); (S.R.); (H.M.); (E.M.)
- Correspondence:
| |
Collapse
|
14
|
Semova I, Levenson AE, Krawczyk J, Bullock K, Gearing ME, Ling AV, Williams KA, Miao J, Adamson SS, Shin DJ, Chahar S, Graham MJ, Crooke RM, Hagey LR, Vicent D, de Ferranti SD, Kidambi S, Clish CB, Biddinger SB. Insulin Prevents Hypercholesterolemia by Suppressing 12a-Hydroxylated Bile Acid Production. Circulation 2022; 145:969-982. [PMID: 35193378 PMCID: PMC9365453 DOI: 10.1161/circulationaha.120.045373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies. Methods: To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and statins in a double-blind crossover study. Results: Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids (12HBAs), cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of FoxO1. FoxO1 is inhibited by insulin, and required for the production of 12HBAs, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of Cyp8b1 normalized 12HBA levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30) as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and LDL-cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20). Conclusions: Insulin, by inhibiting FoxO1 in the liver, reduces 12HBAs, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.
Collapse
Affiliation(s)
- Ivana Semova
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Amy E Levenson
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Joanna Krawczyk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Mary E Gearing
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alisha V Ling
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Kathryn A Williams
- Biostatistics and Research Design Center, ICCTR, Boston Children's Hospital, Boston, MA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stuart S Adamson
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dong-Ju Shin
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Satyapal Chahar
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Lee R Hagey
- Department of Medicine, University of California, San Diego, CA
| | - David Vicent
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Srividya Kidambi
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | | | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int J Mol Sci 2022; 23:ijms23042020. [PMID: 35216140 PMCID: PMC8876989 DOI: 10.3390/ijms23042020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.
Collapse
|
16
|
Yue H, Cai W, Li Y, Feng X, Dong P, Xue C, Wang J. A Novel Sialoglycopeptide from Gadus morhua Eggs Prevents Liver Fibrosis Induced by CCl 4 via Downregulating FXR/FGF15 and TLR4/TGF-β/Smad Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13093-13101. [PMID: 34714650 DOI: 10.1021/acs.jafc.1c05411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liver fibrosis plays a critical role in liver disease progression. A sialoglycopeptide from the Gadus morhua eggs (Gm-SGPP) was identified having a 7000 Da molecular weight with a core pentasaccharide structure and osteogenesis activity. However, whether Gm-SGPP is beneficial to liver fibrosis remains unknown. In this study, mice with liver fibrosis were intraperitoneally injected with 2.5% CCl4 (10 mL/kg) and orally administered with Gm-SGPP (500 mg/kg) for 30 days. Results showed that Gm-SGPP alleviated oxidative liver damage and lipid metabolism disorder and reduced hepatocyte necrosis and lipid droplet accumulation. Notably, we found that Gm-SGPP increased the number and changed the composition of bile acids via increasing cholesterol 7a-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) expression, which caused inhibition of ileum farnesoid X receptor (FXR) expression and accelerated the cholesterol conversion. Cholesterol accumulation is a risk factor for liver fibrosis. Masson staining showed that Gm-SGPP significantly reduced the degree of collagen deposition. Western blotting further suggested that Gm-SGPP downregulated the key gene of the toll-like receptor 4 (TLR4)-mediated transforming growth factor-β (TGF-β)/Smad pathway. To our best knowledge, this is the first report that Gm-SGPP prevented liver fibrosis via attenuating cholesterol accumulation. Our present results provide new ideas for the Gadus morhua egg's high-value utilization.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Yanqi Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Xiaoxuan Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province 266237, P.R. China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong 266003, China
| |
Collapse
|
17
|
Zheng X, Chen T, Zhao A, Ning Z, Kuang J, Wang S, You Y, Bao Y, Ma X, Yu H, Zhou J, Jiang M, Li M, Wang J, Ma X, Zhou S, Li Y, Ge K, Rajani C, Xie G, Hu C, Guo Y, Lu A, Jia W, Jia W. Hyocholic acid species as novel biomarkers for metabolic disorders. Nat Commun 2021; 12:1487. [PMID: 33674561 PMCID: PMC7935989 DOI: 10.1038/s41467-021-21744-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
Hyocholic acid (HCA) is a major bile acid (BA) species in the BA pool of pigs, a species known for its exceptional resistance to spontaneous development of diabetic phenotypes. HCA and its derivatives are also present in human blood and urine. We investigate whether human HCA profiles can predict the development of metabolic disorders. We find in the first cohort (n = 1107) that both obesity and diabetes are associated with lower serum concentrations of HCA species. A separate cohort study (n = 91) validates this finding and further reveals that individuals with pre-diabetes are associated with lower levels of HCA species in feces. Serum HCA levels increase in the patients after gastric bypass surgery (n = 38) and can predict the remission of diabetes two years after surgery. The results are replicated in two independent, prospective cohorts (n = 132 and n = 207), where serum HCA species are found to be strong predictors for metabolic disorders in 5 and 10 years, respectively. These findings underscore the association of HCA species with diabetes, and demonstrate the feasibility of using HCA profiles to assess the future risk of developing metabolic abnormalities.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhangchi Ning
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junliang Kuang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yijun You
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengci Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieyi Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohui Ma
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co. Ltd, Tianjin, China
| | - Shuiping Zhou
- Department of Pharmacology and Toxicology, Tasly Pharmaceutical Co. Ltd, Tianjin, China
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kun Ge
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Yike Guo
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Weiping Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China.
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
- University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
18
|
Win A, Delgado A, Jadeja RN, Martin PM, Bartoli M, Thounaojam MC. Pharmacological and Metabolic Significance of Bile Acids in Retinal Diseases. Biomolecules 2021; 11:292. [PMID: 33669313 PMCID: PMC7920062 DOI: 10.3390/biom11020292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bile acids (BAs) are amphipathic sterols primarily synthesized from cholesterol in the liver and released in the intestinal lumen upon food intake. BAs play important roles in micellination of dietary lipids, stimulating bile flow, promoting biliary phospholipid secretion, and regulating cholesterol synthesis and elimination. Emerging evidence, however, suggests that, aside from their conventional biological function, BAs are also important signaling molecules and therapeutic tools. In the last decade, the therapeutic applications of BAs in the treatment of ocular diseases have gained great interest. Despite the identification of BA synthesis, metabolism, and recycling in ocular tissues, much remains unknown with regards to their biological significance in the eye. Additionally, as gut microbiota directly affects the quality of circulating BAs, their analysis could derive important information on changes occurring in this microenvironment. This review aims at providing an overview of BA metabolism and biological function with a focus on their potential therapeutic and diagnostic use for retinal diseases.
Collapse
Affiliation(s)
- Alice Win
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Amanda Delgado
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
| | - Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pamela M. Martin
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Menaka C. Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (A.W.); (A.D.); (P.M.M.); (M.B.)
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
20
|
Chen MJ, Liu C, Wan Y, Yang L, Jiang S, Qian DW, Duan JA. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 2021; 165:108757. [PMID: 33161055 DOI: 10.1016/j.steroids.2020.108757] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) are amphiphilic molecules with a nonpolar steroid carbon skeleton and a polar carboxylate side chain. Recently, BAs have aroused the attention of scholars due to their potential roles on metabolic diseases. As important endogenous ligands, BAs are wildly active in the enterohepatic circulation, during which microbiota play a significant role in promoting the hydrolysis and dehydroxylation of BAs. Besides, many pathways initiated by BAs including glucolipid metabolism and inflammation signaling pathways have been reported to regulate the host metabolism and maintain immune homeostasis. Herein, the characteristics on the enterohepatic circulation and metabolism of BAs are systematically summarized. Moreover, the regulation mechanism of the glucolipid metabolism by BAs is intensively discussed. Worthily, FXR and TGR5, which are involved in glucolipid metabolism, are the prime candidates for targeted therapies of chronic metabolic diseases such as diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Meng-Jun Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
21
|
Zhen J, Jiao K, Yang K, Wu M, Zhou Q, Yang B, Xiao W, Hu C, Zhou M, Li Z. The 14-3-3η/GSK-3β/β-catenin complex regulates EndMT induced by 27-hydroxycholesterol in HUVECs and promotes the migration of breast cancer cells. Cell Biol Toxicol 2020; 37:515-529. [PMID: 33131013 DOI: 10.1007/s10565-020-09564-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
Endothelial-mesenchymal transition (EndMT) is the transformation of endothelial cell morphology to mesenchymal cell morphology, accompanied by decline of endothelial function and enhancement of mesenchymal function, which promotes tumor progression and tumor cell invasion and metastasis. 27-Hydroxycholesterol (27-HC) is a cholesterol metabolite, which has a high content in human blood. 27-HC promotes breast cancer cell proliferation, invasion, and migration. We previously showed that 27-HC promotes EndMT; however, the underlying mechanism still needs to be further explored. We studied the role of the 14-3-3η/GSK-3β/β-catenin complex in EndMT. Our results show that 27-HC induces oxidative stress in HUVECs and activates the p38 signaling pathway, thereby inhibiting the binding of 14-3-3η/GSK-3β/β-catenin, promoting the increase of free β-catenin and nuclear translocation, and finally inducing EndMT. Treatment with N-acetylcysteine (NAC) blocked 27-HC-induced ROS generation and p38 signaling pathway activation, prevented β-catenin from release from binding, and inhibited EndMT. Blocking ROS production or p38 signaling or knocking down 14-3-3η inhibited 27-HC-induced EndMT and inhibited breast cancer cell metastasis. These findings indicate 14-3-3η is necessary for interactions between the p38 kinase and the GSK-3β/β-catenin complex and serves as an adaptor to transmit the upstream kinase signal to the downstream signal, thereby promoting EndMT and breast cancer cell migration.
Collapse
Affiliation(s)
- Jing Zhen
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Kailin Jiao
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Keke Yang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Maoxuan Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bingmo Yang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Xiao
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
22
|
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol 2020; 318:G554-G573. [PMID: 31984784 PMCID: PMC7099488 DOI: 10.1152/ajpgi.00223.2019] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile acid synthesis is the most significant pathway for catabolism of cholesterol and for maintenance of whole body cholesterol homeostasis. Bile acids are physiological detergents that absorb, distribute, metabolize, and excrete nutrients, drugs, and xenobiotics. Bile acids also are signal molecules and metabolic integrators that activate nuclear farnesoid X receptor (FXR) and membrane Takeda G protein-coupled receptor 5 (TGR5; i.e., G protein-coupled bile acid receptor 1) to regulate glucose, lipid, and energy metabolism. The gut-to-liver axis plays a critical role in the transformation of primary bile acids to secondary bile acids, in the regulation of bile acid synthesis to maintain composition within the bile acid pool, and in the regulation of metabolic homeostasis to prevent hyperglycemia, dyslipidemia, obesity, and diabetes. High-fat and high-calorie diets, dysbiosis, alcohol, drugs, and disruption of sleep and circadian rhythms cause metabolic diseases, including alcoholic and nonalcoholic fatty liver diseases, obesity, diabetes, and cardiovascular disease. Bile acid-based drugs that target bile acid receptors are being developed for the treatment of metabolic diseases of the liver.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica M. Ferrell
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
23
|
Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, Howie F, Fowler PA, Duncan WC, Rae MT. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep 2019; 9:20195. [PMID: 31882954 PMCID: PMC6934666 DOI: 10.1038/s41598-019-56790-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen signalling is a critical driver of male development. Fetal steroid signalling can be dysregulated by a range of environmental insults and clinical conditions. We hypothesised that poor adult male health was partially attributable to aberrant androgen exposure during development. Testosterone was directly administered to developing male ovine fetuses to model excess prenatal androgenic overexposure associated with conditions such as polycystic ovary syndrome (PCOS). Such in utero androgen excess recreated the dyslipidaemia and hormonal profile observed in sons of PCOS patients. 1,084 of 15,134 and 408 of 2,766 quantifiable genes and proteins respectively, were altered in the liver during adolescence, attributable to fetal androgen excess. Furthermore, prenatal androgen excess predisposed to adolescent development of an intrahepatic cholestasis-like condition with attendant hypercholesterolaemia and an emergent pro-fibrotic, pro-oxidative stress gene and protein expression profile evident in both liver and circulation. We conclude that prenatal androgen excess is a previously unrecognised determinant of lifelong male metabolic health.
Collapse
Affiliation(s)
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alex Douglas
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Sally Mulroy
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Forbes Howie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mick T Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
24
|
Fan S, Liu C, Jiang Y, Gao Y, Chen Y, Fu K, Yao X, Huang M, Bi H. Lignans from Schisandra sphenanthera protect against lithocholic acid-induced cholestasis by pregnane X receptor activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112103. [PMID: 31336134 DOI: 10.1016/j.jep.2019.112103] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis is a clinical syndrome caused by toxic bile acid retention that will lead to serious liver diseases. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are the only two FDA-approved drugs for its treatment. Thus, there is a clear need to develop new therapeutic approaches for cholestasis. Here, anti-cholestasis effects of the lignans from a traditional Chinese herbal medicine, Schisandra sphenanthera, were investigated as well as the involved mechanisms. MATERIALS AND METHODS Adult male C57BL/6J mice were randomly divided into 9 groups including the control group, LCA group, LCA with specific lignan treatment of Schisandrin A (SinA), Schisandrin B (SinB), Schisandrin C (SinC), Schisandrol A (SolA), Schisandrol B (SolB), Schisantherin A (StnA) and Schisantherin B (StnB), respectively. Mice were treated with each drug (qd) for 7 days, while the administration of lithocholic acid (LCA) (bid) was launched from the 4th day. Twelve hours after the last LCA injection, mice were sacrificed and samples were collected. Serum biochemical measurement and histological analysis were conducted. Metabolomics analysis of serum, liver, intestine and feces were performed to study the metabolic profile of bile acids. RT-qPCR and Western blot analysis were conducted to determine the hepatic expression of genes and proteins related to bile acid homeostasis. Dual-luciferase reporter gene assay was performed to investigate the transactivation effect of lignans on human pregnane X receptor (hPXR). RT-qPCR analysis was used to detect induction effects of lignans on hPXR-targeted genes in HepG2 cells. RESULTS Lignans including SinA, SinB, SinC, SolA, SolB, StnA, StnB were found to significantly protect against LCA-induced intrahepatic cholestasis, as evidenced by significant decrease in liver necrosis, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activity. More importantly, serum total bile acids (TBA) and total bilirubin (Tbili) were also significantly reduced. Metabolomics analysis revealed these lignans accelerated the metabolism of bile acids and increased the bile acid efflux from liver into the intestine or feces. Gene analysis revealed these lignans induced the hepatic expressions of PXR-target genes such as Cyp3a11 and Ugt1a1. Luciferase reporter gene assays illustrated that these bioactive lignans can activate hPXR. Additionally, they can all upregulate hPXR-regulate genes such as CYP3A4, UGT1A1 and OATP2. CONCLUSION These results clearly demonstrated the lignans from Schisandra sphenanthera exert hepatoprotective effects against LCA-induced cholestasis by activation of PXR. These lignans may provide an effective approach for the prevention and treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Shicheng Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Conghui Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiming Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaili Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinpeng Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
26
|
Browning MG, Pessoa BM, Khoraki J, Campos GM. Changes in Bile Acid Metabolism, Transport, and Signaling as Central Drivers for Metabolic Improvements After Bariatric Surgery. Curr Obes Rep 2019; 8:175-184. [PMID: 30847736 DOI: 10.1007/s13679-019-00334-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We review current evidence regarding changes in bile acid (BA) metabolism, transport, and signaling after bariatric surgery and how these might bolster fat mass loss and energy expenditure to promote improvements in type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS The two most common bariatric techniques, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), increase the size and alter the composition of the circulating BA pool that may then impact energy metabolism through altered activities of BA targets in the many tissues perfused by systemic blood. Recent reports in human patients indicate that gene expression of the major BA target, the farnesoid X receptor (FXR), is increased in the liver but decreased in the small intestine after RYGB. In contrast, intestinal expression of the transmembrane G protein-coupled BA receptor (TGR5) is upregulated after surgery. Despite these apparent conflicting changes in receptor transcription, changes in BAs after both RYGB and VSG are associated with elevated postprandial systemic levels of fibroblast growth factor 19 (from FXR activation) and glucagon-like peptide 1 (from TGR5 activation). These signaling activities are presumed to support fat mass loss and related metabolic benefits of bariatric surgery, and this supposition is in agreement with findings from rodent models of RYGB and VSG. However, inter-species differences in BA physiology limit direct translation and mechanistic understanding of how changes in individual BA species contribute to post-operative improvements of T2D and NAFLD in humans. Thus, details of all these changes and their influences on BAs' biological actions are still under scrutiny. Changes in BA physiology and receptor activities after RYGB and VSG likely support weight loss and promote sustained metabolic improvements.
Collapse
Affiliation(s)
- Matthew G Browning
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA
| | - Bernardo M Pessoa
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA
| | - Jad Khoraki
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA
| | - Guilherme M Campos
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Medical College of Virginia, Virginia Commonwealth University School of Medicine, 1200 East Broad Street, PO Box 980519, Richmond, VA, 23298, USA.
| |
Collapse
|
27
|
Abstract
Bile acids have important roles in the regulation of lipid, glucose and energy metabolism. Metabolic diseases linked to obesity, including type 2 diabetes mellitus and non-alcoholic fatty liver disease, are associated with dysregulation of bile acid homeostasis. Here, the basic chemistry and regulation of bile acids as well as their metabolic effects will be reviewed. Changes in circulating bile acids associated with obesity and related diseases will be reviewed. Finally, pharmaceutical manipulation of bile acid homeostasis as therapy for metabolic diseases will be outlined.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
28
|
27-hydroxycholesterol decreases cell proliferation in colon cancer cell lines. Biochimie 2018; 153:171-180. [PMID: 30009860 DOI: 10.1016/j.biochi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer in the western world, affecting 1 out of approximately 22 people in their lifetime. Several epidemiological studies suggest a positive association between high plasma cholesterol levels and colorectal cancer. However, the molecular mechanisms by which cholesterol may alter the risk of colorectal cancer (CRC) are ill-defined as the cholesterol lowering drugs statins do not appear to decrease a patient's risk of developing colorectal cancer. Cholesterol is metabolized to active derivatives including cholesterol oxidization products (COP), known as oxysterols, which have been shown to alter cellular proliferation. These metabolites and not cholesterol per se, may therefore affect the risk of developing colorectal cancer. The cholesterol metabolite or the oxysterol 27-hydroxycholesterol (27-OHC) is the most abundant oxysterol in the plasma and has been shown to be involved in the pathogenesis of several cancers including breast and prostate cancer. However, the role of 27-OHC in colorectal cancer has not been investigated. We treated Caco2 and SW620, two well characterized colon cancer cells with low, physiological and high concentrations of 27-OHC, and found that 27-OHC reduces cellular proliferation in these cells. We also found that the effects of 27-OHC on cell proliferation are not due to cellular cytotoxicity or apoptotic cellular death. Additionally, 27-OHC-induced reduction in cell proliferation is independent of actions on its target nuclear receptors, liver-X-receptors (LXR) and estrogen receptors (ER) activation. Instead, our study demonstrates that 27-OHC significantly decreases AKT activation, a major protein kinase involved in the pathogenesis of cancer as it regulates cell cycle progression, protein synthesis, and cellular survival. Our data shows that treatment with 27-OHC substantially decreases the activation of AKT by reducing levels of its active form, p-AKT, in Caco2 cells but not SW620 cells. All-together, our results show for the first time that the cholesterol metabolite 27-OHC reduces cell proliferation in colorectal cancer cells.
Collapse
|
29
|
Csanaky IL, Lickteig AJ, Klaassen CD. Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid homeostasis in mice. Toxicol Appl Pharmacol 2018; 343:48-61. [PMID: 29452137 DOI: 10.1016/j.taap.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023]
Abstract
The effects of the most potent aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on bile acid (BA) homeostasis was examined in male and female wild-type and AhR-null mice shortly after 4-day exposure, rather than at a later time when secondary non-AhR dependent effects are more likely to occur. TCDD had similar effects on BA homeostasis in male and female mice. TCDD decreased the concentration of total-(Σ) BAs in liver by approximately 50% (all major BA categories except for the non-6,12-OH BAs), without decreasing the expression of the rate limiting BA synthetic enzyme (Cyp7a1) or altering the major BA regulatory pathways (FXR) in liver and intestine. Even though the Σ-BAs in liver were markedly decreased, the Σ-BAs excreted into bile were not altered. TCDD decreased the relative amount of 12-OH BAs (TCA, TDCA, CA, DCA) in bile and increased the biliary excretion of TCDCA and its metabolites (TαMCA, TUDCA); this was likely due to the decreased Cyp8b1 (12α-hydroxylase) in liver. The concentration of Σ-BAs in serum was not altered by TCDD, indicating that serum BAs do not reflect BA status in liver. However, proportions of individual BAs in serum reflected the decreased expression of Cyp8b1. All these TCDD-induced changes in BA homeostasis were absent in AhR-null mice. In summary, through the AhR, TCDD markedly decreases BA concentrations in liver and reduces the 12α-hydroxylation of BAs without altering Cyp7a1 and FXR signaling. The TCDD-induced decrease in Σ-BAs in liver did not result in a decrease in biliary excretion or serum concentrations of Σ-BAs.
Collapse
Affiliation(s)
- Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, MO 64108; USA; Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
30
|
Ikegami T, Honda A. Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatol Res 2018; 48:15-27. [PMID: 29150974 DOI: 10.1111/hepr.13001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
The gut microbiota (GM) play a central role in their host's metabolism of bile acids (BAs) by regulating deconjugation, dehydroxylation, dehydrogenation, and epimerization reactions to generate unconjugated free BAs and secondary BAs. These BAs generated by the GM are potent signaling molecules that interact with BA receptors, such as the farnesoid X receptor and Takeda G-protein-coupled receptor 5. Each BA has a differential affinity to these receptors; therefore, alterations in BA composition by GM could modify the intensity of receptor signaling. Bile acids also act as antimicrobial agents by damaging bacterial membranes and as detergents by altering intracellular macromolecular structures. Therefore, BAs and the GM reciprocally control each other's compositions. In this review, we discuss the latest findings on the mutual effects of BAs and GM on each other; we also describe their roles in the pathophysiology of liver disease progression and potential therapeutic applications of targeting this cross-talk.
Collapse
Affiliation(s)
- Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.,Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
31
|
Baila-Rueda L, Cenarro A, Lamiquiz-Moneo I, Mateo-Gallego R, Bea AM, Perez-Calahorra S, Marco-Benedi V, Civeira F. Bile acid synthesis precursors in subjects with genetic hypercholesterolemia negative for LDLR/APOB/PCSK9/APOE mutations. Association with lipids and carotid atherosclerosis. J Steroid Biochem Mol Biol 2017; 169:226-233. [PMID: 27769814 DOI: 10.1016/j.jsbmb.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022]
Abstract
Some oxysterols are precursors of bile acid synthesis and play an important role in cholesterol homeostasis. However, if they are involved in the pathogeny of genetic hypercholesterolemia has not been previously explored. We have studied non-cholesterol sterol markers of cholesterol synthesis (lanosterol and desmosterol) and oxysterols (7α-hydroxy-4-cholesten-3-one, 24S-hydroxycholesterol and 27-hydroxycholesterol) in 200 affected subjects with primary hypercholesterolemia of genetic origin, negative for mutations in LDLR, APOB, PCSK9 and APOE genes (non-FH GH) and 100 normolipemic controls. All studied oxysterols and cholesterol synthesis markers were significantly higher in affected subjects than controls (P<0.001). Ratios of oxysterols to total cholesterol were higher in non-FH GH than in controls, although only 24S-hydroxycholesterol showed statistical significance (P<0.001). Cholesterol synthesis markers had a positive correlation with BMI, triglycerides, cholesterol and apoB in control population. However, these correlations disappeared in non-FH GH with the exception of a weak positive correlation for non-HDL cholesterol and apoB. The same pattern was observed for oxysterols with high positive correlation in controls and absence of correlation for non-FH GH, except non-HDL cholesterol for 24S-hydroxycholesterol and 27-hydroxycholesterol and apoB for 27-hydroxycholesterol. All non-cholesterol sterols had positive correlation among them in patients and in controls. A total of 65 (32.5%) and 35 (17.5%) affected subjects presented values of oxysterols ratios to total cholesterol above the 95th percentile of the normal distribution (24S-hydroxycholesterol and 27-hydroxycholesterol, respectively). Those patients with the highest levels of 24S-hydroxycholesterol associated an increase in the carotid intima media thickness. These results suggest that bile acid metabolism is affected in some patients with primary hypercholesterolemia of genetic origin, negative for mutations in the candidate genes, and may confer a higher cardiovascular risk. Our results confirm that cholesterol synthesis overproduction is a primary defect in non-HF GH and suggest that subjects with non-FH GH show high levels of oxysterols in response to hepatic overproduction of cholesterol.
Collapse
Affiliation(s)
- L Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain.
| | - A Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - I Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - R Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - A M Bea
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - S Perez-Calahorra
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - V Marco-Benedi
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - F Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
32
|
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152:1679-1694.e3. [PMID: 28214524 DOI: 10.1053/j.gastro.2017.01.055] [Citation(s) in RCA: 653] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Bile acids are signaling molecules that coordinately regulate metabolism and inflammation via the nuclear farnesoid X receptor (FXR) and the Takeda G protein-coupled receptor 5 (TGR5). These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in bile acid, lipid and carbohydrate metabolism, energy expenditure, and inflammation by acting predominantly in enterohepatic tissues, but also in peripheral organs. In this review, we discuss the most recent findings on the inter-organ signaling and interplay with the gut microbiota of bile acids and their receptors in meta-inflammation, with a focus on their pathophysiologic roles in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic steatohepatitis, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France.
| |
Collapse
|
33
|
Shen Z, Zhu D, Liu J, Chen J, Liu Y, Hu C, Li Z, Li Y. 27-Hydroxycholesterol induces invasion and migration of breast cancer cells by increasing MMP9 and generating EMT through activation of STAT-3. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:1-8. [PMID: 28257824 DOI: 10.1016/j.etap.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Breast carcinoma plays a vital role in the reasons of global women's death. ER-related invasion and migration play an important part in the development and prognosis of breast cancer. Here, we found that 27-Hydroxycholesterol (27HC) could induce epithelial-mesenchymal transition (EMT) and increase the expression of the matrix metalloproteinase 9 (MMP9) at mRNA level and the active form. Meanwhile, interestingly, we found 27HC activated signal transducer and activator of transcription 3 (STAT-3) in ER positive cells except activation of ER signaling. Furthermore, inhibition of STAT-3 by siRNA attenuated the 27HC-induced improvement of MMP9 and decreased the invasion and migration ability in MCF7 and T47D cells. In addition, 27HC could also promote MMP9, vimentin and active STAT-3 in the ER negative cells MDA-MB-231. All these results not only raise a mechanism whereby 27HC enhances the invasion and metastasis, but also is helpful to realize 27HC as a potential endogenous detrimental factor in breast tumor patients.
Collapse
Affiliation(s)
- Zhaoxia Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
34
|
Holzer G, Markov GV, Laudet V. Evolution of Nuclear Receptors and Ligand Signaling. Curr Top Dev Biol 2017; 125:1-38. [DOI: 10.1016/bs.ctdb.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Ferrell JM, Boehme S, Li F, Chiang JYL. Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders. J Lipid Res 2016; 57:1144-54. [PMID: 27146480 DOI: 10.1194/jlr.m064709] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
Cholesterol 7α-hydroxylase (CYP7A1) is the first and rate-limiting enzyme in the conversion of cholesterol to bile acids in the liver. In addition to absorption and digestion of nutrients, bile acids play a critical role in the regulation of lipid, glucose, and energy homeostasis. We have backcrossed Cyp7a1(-/-) mice in a mixed B6/129Sv genetic background to C57BL/6J mice to generate Cyp7a1(-/-) mice in a near-pure C57BL/6J background. These mice survive well and have normal growth and a bile acid pool size ∼60% of WT mice. The expression of the genes in the alternative bile acid synthesis pathway are upregulated, resulting in a more hydrophilic bile acid composition with reduced cholic acid (CA). Surprisingly, Cyp7a1(-/-) mice have improved glucose sensitivity with reduced liver triglycerides and fecal bile acid excretion, but increased fecal fatty acid excretion and respiratory exchange ratio (RER) when fed a high-fat/high-cholesterol diet. Supplementing chow and Western diets with CA restored bile acid composition, reversed the glucose tolerant phenotype, and reduced the RER. Our current study points to a critical role of bile acid composition, rather than bile acid pool size, in regulation of glucose, lipid, and energy metabolism to improve glucose and insulin tolerance, maintain metabolic homeostasis, and prevent high-fat diet-induced metabolic disorders.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shannon Boehme
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
36
|
Frommherz L, Bub A, Hummel E, Rist MJ, Roth A, Watzl B, Kulling SE. Age-Related Changes of Plasma Bile Acid Concentrations in Healthy Adults--Results from the Cross-Sectional KarMeN Study. PLoS One 2016; 11:e0153959. [PMID: 27092559 PMCID: PMC4836658 DOI: 10.1371/journal.pone.0153959] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BA) play an important role in lipid metabolism. They facilitate intestinal lipid absorption, and BA synthesis is the main catabolic pathway for cholesterol. The objective of this study was to investigate associations of age, sex, diet (fat intake) and parameters of lipid metabolism (triglycerides, LDL, HDL, body fat content) with fasting plasma BA concentration of healthy individuals. Fasting plasma samples from a cross-sectional study were used to determine the concentrations of 14 BA using an LC-MS stable isotope dilution assay. Triglycerides, LDL and HDL were analyzed by standard clinical chemistry methods and body fat content was measured with a DXA instrument. The dietary fat intake of the 24 h period prior to the sampling was assessed on the basis of a 24 h recall. Subsequent statistical data processing was done by means of a median regression model. Results revealed large inter-individual variations. Overall, higher median plasma concentrations of BA were observed in men than in women. Quantile regression showed significant interactions of selected BA with age and sex, affecting primarily chenodeoxycholic acid and its conjugates. No associations were found for LDL and the amount of fat intake (based on the percentage of energy intake from dietary fat as well as total fat intake). Additional associations regarding body fat content, HDL and triglycerides were found for some secondary BA plasma concentrations. We conclude that age and sex are associated with the fasting plasma concentrations. Those associations are significant and need to be considered in studies investigating the role of BA in the human metabolism.
Collapse
Affiliation(s)
- Lara Frommherz
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- * E-mail:
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Eva Hummel
- Department of Nutritional Behaviour, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alexander Roth
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine E. Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
37
|
Li J, Papadopoulos V, Vihma V. Steroid biosynthesis in adipose tissue. Steroids 2015; 103:89-104. [PMID: 25846979 DOI: 10.1016/j.steroids.2015.03.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.
Collapse
Affiliation(s)
- Jiehan Li
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Biochemistry, McGill University, Montreal, Canada.
| | - Veera Vihma
- Folkhälsan Research Center, Helsinki, Finland; University of Helsinki and Helsinki University Central Hospital, Heart and Lung Center, Helsinki, Finland.
| |
Collapse
|
38
|
The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Mol Cell Biochem 2015; 410:187-95. [PMID: 26350565 DOI: 10.1007/s11010-015-2551-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/02/2015] [Indexed: 01/04/2023]
Abstract
Estrogen is synthesized from cholesterol and high cholesterol levels are suggested to be associated with increased risk of estrogen receptor(ER)-positive breast cancer. The cholesterol metabolite 27-hydroxycholesterol (27-OHC) was recently identified as a selective estrogen receptor modulator (SERM) and may therefore impact breast cancer progression. However, the mechanisms by which 27-OHC may contribute to breast cancer are not all known. We determined the extent to which 27-OHC regulates cell proliferation in MCF7 ER-positive breast cancer cell line involving the tumor suppressor protein p53. We found that treatment of MCF7 cells with 27-OHC resulted reduced p53 transcriptional activity. Conversely, treatment of the ER-negative MDA-MB 231 cells with 27-OHC induced no significant change in p53 activity. Exposure of MCF7 cells to 27-OHC was also associated with increased protein levels of the E3 ubiquitin protein ligase MDM2 and decreased levels of p53. Moreover, 27-OHC also enhanced physical interaction between p53 and MDM2. Furthermore, 27-OHC-induced proliferation was attenuated using either the p53 activator Tenovin-1 or the MDM2 inhibitor Nutlin-3 and Mdm2 siRNA. Taken together, our results indicate that 27-OHC may contribute to ER-positive breast cancer progression by disrupting constitutive p53 signaling in an MDM2-dependent manner.
Collapse
|
39
|
Baila-Rueda L, Mateo-Gallego R, Pérez-Calahorra S, Lamiquiz-Moneo I, de Castro-Orós I, Cenarro A, Civeira F. Effect of different fat-enriched meats on non-cholesterol sterols and oxysterols as markers of cholesterol metabolism: Results of a randomized and cross-over clinical trial. Nutr Metab Cardiovasc Dis 2015; 25:853-859. [PMID: 26232911 DOI: 10.1016/j.numecd.2015.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/03/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIM Different kinds of fatty acids can affect the synthesis, absorption, and elimination of cholesterol. This study was carried out to assess the associations of cholesterol metabolism with the intake of two meats with different fatty acid composition in healthy volunteers. METHODS AND RESULTS The study group was composed of 20 subjects (12 males and eight females; age, 34.4 ± 11.6 years; body mass index (BMI), 23.5 ± 2.3 kg/m(2); low-density lipoprotein (LDL) cholesterol, 2.97 ± 0.55 mmol/l; high-density lipoprotein (HDL) cholesterol, 1.61 ± 0.31 mmol/l; triglycerides (TG), 1.06 ± 0.41 mmol/l) who completed a 30-day randomized and cross-over study to compare the cholesterol metabolism effect of 250 g of low-fat lamb versus 250 g of high-fat lamb per day in their usual diet. Cholesterol absorption, synthesis, and elimination were estimated from the serum non-cholesterol sterol and oxysterol concentrations analyzed by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No changes in weight, plasma lipids, or physical activity were observed across the study. Cholesterol intestinal absorption was decreased with both diets. Cholesterol synthesis and elimination decreased during the low-fat lamb dietary intervention (ρ = 0.048 and ρ = 0.005, respectively). CONCLUSION Acute changes in the diet fat content modify the synthesis, absorption, and biliary elimination of cholesterol. These changes were observed even in the absence of total and LDL cholesterol changes in plasma. REGISTRATION NUMBER FOR CLINICAL TRIALS ClinicalTrials.gov PRS, NCT02259153.
Collapse
Affiliation(s)
- L Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain.
| | - R Mateo-Gallego
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - S Pérez-Calahorra
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - I Lamiquiz-Moneo
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - I de Castro-Orós
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - A Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - F Civeira
- Unidad Clínica y de Investigación en Lípidos y Arterosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
40
|
The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1095-105. [DOI: 10.1016/j.bbalip.2014.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023]
|
41
|
Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 2014; 9:179. [PMID: 25424010 PMCID: PMC4264335 DOI: 10.1186/s13023-014-0179-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) OMIM#213700 is a rare autosomal-recessive lipid storage disease caused by mutations in the CYP27A1 gene; this gene codes for the mitochondrial enzyme sterol 27-hydroxylase, which is involved in bile acid synthesis. The CYP27A1 gene is located on chromosome 2q33-qter and contains nine exons. A CYP27A1 mutation leads to decreased synthesis of bile acid, excess production of cholestanol, and consequent accumulation of cholestanol in tissues. Currently there is no consensus on the prevalence of CTX, one estimate being <5/100,000 worldwide. The prevalence of CTX due to the CYP27A1 mutation R362C alone is approximately 1/50,000 in Caucasians. Patients with CTX have an average age of 35 years at the time of diagnosis and a diagnostic delay of 16 years. Clinical signs and symptoms include adult-onset progressive neurological dysfunction (i.e., ataxia, dystonia, dementia, epilepsy, psychiatric disorders,peripheral neuropathy, and myopathy) and premature non-neurologic manifestations (i.e., tendon xanthomas, childhood-onset cataracts, infantile-onset diarrhea, premature atherosclerosis, osteoporosis, and respiratory insufficiency). Juvenile cataracts, progressive neurologic dysfunction, and mild pulmonary insufficiency are unique symptoms that distinguish CTX from other lipid storage disorders including familial dysbetalipoproteinemia, homozygous familial hypercholesterolemia, and sitosterolemia, all of which might also present with xanthomas and cardiovascular diseases. Brain magnetic resonance imaging (MRI) shows bilateral lesions in the dentate nucleus of the cerebellum and mild white matter lesions. The classical symptoms and signs, namely elevated levels of cholestanol and bile alcohols in serum and urine, brain MRI, and the mutation in the CYP27A1 gene confirm the diagnosis of CTX. Early diagnosis and long-term treatment with chenodeoxycholic acid (750 mg/d) improve neurological symptoms and contribute to a better prognosis.
Collapse
Affiliation(s)
- Shuke Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Guiqin Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
42
|
Nunes VS, Panzoldo NB, Leança CC, Parra ES, Zago VS, da Silva EJ, Cazita PM, Nakandakare ER, de Faria EC, Quintão EC. Increased 27-hydroxycholesterol plasma level in men with low high density lipoprotein-cholesterol may circumvent their reduced cell cholesterol efflux rate. Clin Chim Acta 2014; 433:169-73. [DOI: 10.1016/j.cca.2014.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
43
|
Leoni V, Caccia C. Potential diagnostic applications of side chain oxysterols analysis in plasma and cerebrospinal fluid. Biochem Pharmacol 2013; 86:26-36. [DOI: 10.1016/j.bcp.2013.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/20/2022]
|
44
|
Benetti A, Del Puppo M, Crosignani A, Veronelli A, Masci E, Frigè F, Micheletto G, Panizzo V, Pontiroli AE. Cholesterol metabolism after bariatric surgery in grade 3 obesity: differences between malabsorptive and restrictive procedures. Diabetes Care 2013; 36:1443-7. [PMID: 23275360 PMCID: PMC3661782 DOI: 10.2337/dc12-1737] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Malabsorptive bariatric surgery (biliopancreatic diversion and biliointestinal bypass [BIBP]) reduces serum cholesterol levels more than restrictive surgery (adjustable gastric banding [AGB]), and this is thought to be due to greater weight loss. Our aim was to evaluate the changes of cholesterol metabolism induced by malabsorptive and restrictive surgery independent of weight loss. RESEARCH DESIGN AND METHODS In a nonrandomized, self-selected, unblinded, active-comparator, bicenter, 6-month study, glucose metabolism (blood glucose and serum insulin levels and homeostasis model assessment of insulin resistance [HOMA-IR] index) and cholesterol metabolism (absorption: serum campesterol and sitosterol levels; synthesis: serum lathosterol levels; catabolism: rate of appearance and serum concentrations of serum 7-α- and serum 27-OH-cholesterol after infusions of deuterated 7-α- and 27-OH-cholesterol in sequence) were assessed in grade 3 obesity subjects undergoing BIBP (n = 10) and AGB (n = 10). Evaluations were performed before and 6 months after surgery. RESULTS Subjects had similar values at baseline. Weight loss was similar in the two groups of subjects, and blood glucose, insulin levels, HOMA-IR, and triglycerides decreased in a similar way. In contrast, serum cholesterol, LDL cholesterol, non-HDL cholesterol, serum sitosterol, and campesterol levels decreased and lathosterol levels increased only in BIBP subjects, not in AGB subjects. A significant increase in 7-α-OH-cholesterol occurred only with BIBP; serum 27-OH-cholesterol decreased in both groups. CONCLUSIONS Malabsorptive surgery specifically affects cholesterol levels, independent of weight loss and independent of glucose metabolism and insulin resistance. Decreased sterol absorption leads to decreased cholesterol and LDL cholesterol levels, accompanied by enhanced cholesterol synthesis and enhanced cholesterol catabolism. Compared with AGB, BIBP provides greater cholesterol lowering.
Collapse
Affiliation(s)
- Alberto Benetti
- Dipartimento di Scienze della Salute, Universita degli Studi diMilano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues, leading to changes not only in bile acid metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration, and hepatocarcinogenesis. This review covers the roles of specific bile acids, synthetic agonists, and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases.
Collapse
Affiliation(s)
- Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
46
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|
47
|
Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie 2012; 95:595-612. [PMID: 23041502 DOI: 10.1016/j.biochi.2012.09.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023]
Abstract
Brain cholesterol is mainly involved in the cell membrane structure, in signal transduction, neurotransmitter release, synaptogenesis and membrane trafficking. Impairment of brain cholesterol metabolism was described in neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer and Huntington Diseases. Since the blood-brain barrier efficiently prevents cholesterol uptake from the circulation into the brain, de novo synthesis is responsible for almost all cholesterol present there. Cholesterol is converted into 24S-hydroxycholesterol (24OHC) by cholesterol 24-hydroxylase (CYP46A1) expressed in neural cells. Plasma concentration of 24OHC depends upon the balance between cerebral production and hepatic elimination and is related to the number of metabolically active neurons in the brain. Factors affecting brain cholesterol turnover and liver elimination of oxysterols, together with the metabolism of plasma lipoproteins, genetic background, nutrition and lifestyle habits were found to significantly affect its plasma levels. Either increased or decreased plasma 24OHC concentrations were described in patients with neurodegenerative diseases. A group of evidence suggests that reduced levels of 24OHC are related to the loss of metabolically active cells and the degree of brain atrophy. Inflammation, dysfunction of BBB, increased cholesterol turnover might counteract this tendency resulting in increased levels or, in some cases, in unsignificant changes. The study of plasma 24OHC is likely to offer an insight about brain cholesterol turnover with a limited diagnostic power.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Institute of Neurology Carlo Besta, Milan, Italy.
| | | |
Collapse
|
48
|
Bertolotti M, Del Puppo M, Corna F, Anzivino C, Gabbi C, Baldelli E, Carulli L, Loria P, Galli Kienle M, Carulli N. Increased appearance rate of 27-hydroxycholesterol in vivo in hypercholesterolemia: a possible compensatory mechanism. Nutr Metab Cardiovasc Dis 2012; 22:823-830. [PMID: 21546230 DOI: 10.1016/j.numecd.2011.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/19/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS The first step in the alternative pathway of bile acid biosynthesis is the 27-hydroxylation of cholesterol, which takes place both in liver and extrahepatic tissues. This pathway is believed to play a role in peripheral cholesterol degradation. Aim of this study was to investigate the impact of hyperlipidemia on 27-hydroxycholesterol appearance rate, and to assess the effects induced by treatment with statins. METHODS AND RESULTS Seven patients with familial hypercholesterolemia and eight patients with familial combined hyperlipidemia underwent determination of 27-hydroxylation rates in vivo by i.v. infusion of deuterated 27-hydroxycholesterol. Isotope enrichment was assayed by gas chromatography-mass spectrometry, allowing to calculate 27-hydroxycholesterol appearance rates. Six normocholesterolemic subjects were regarded as controls. In some hypercholesterolemic patients the infusions were repeated during treatment with atorvastatin or rosuvastatin. Hydroxylation rates were higher in hypercholesterolemic patients (8.7 ± 2.5 mg/h; controls, 3.4 ± 2.0 mg/h; combined hyperlipidemia, 4.4 ± 1.6 mg/h; mean ± SD, P < 0.01 vs both). After statin treatment, both plasma cholesterol levels and hydroxylation rates dropped by nearly 50%. No difference was detectable between the two statins. A linear correlation was shown between plasma cholesterol and 27-hydroxylation rates. CONCLUSION Hypercholesterolemia associates with increased 27-hydroxycholesterol appearance rates, which decrease during hypocholesterolemic treatment. The correlation with cholesterol levels supports the view that 27-hydroxylation may act as a compensatory mechanism in a condition of larger plasma cholesterol pool. A regulatory role for hepatic and extrahepatic nuclear receptors seems reasonable. These data prompt novel pharmacological approaches for the management of hypercholesterolemia and the prevention of atherosclerosis.
Collapse
Affiliation(s)
- M Bertolotti
- Dipartimento di Medicina, Endocrinologia, Metabolismo e Geriatria, Università degli Studi di Modena e Reggio Emilia, Nuovo Ospedale Civile, via Giardini 1355, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bertolotti M, Crosignani A, Del Puppo M. The use of stable and radioactive sterol tracers as a tool to investigate cholesterol degradation to bile acids in humans in vivo. Molecules 2012; 17:1939-68. [PMID: 22343367 PMCID: PMC6268360 DOI: 10.3390/molecules17021939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 12/17/2022] Open
Abstract
Alterations of cholesterol homeostasis represent important risk factors for atherosclerosis and cardiovascular disease. Different clinical-experimental approaches have been devised to study the metabolism of cholesterol and particularly the synthesis of bile acids, its main catabolic products. Most evidence in humans has derived from studies utilizing the administration of labeled sterols; these have several advantages over in vitro assay of enzyme activity and expression, requiring an invasive procedure such as a liver biopsy, or the determination of fecal sterols, which is cumbersome and not commonly available. Pioneering evidence with administration of radioactive sterol derivatives has allowed to characterize the alterations of cholesterol metabolism and degradation in different situations, including spontaneous disease conditions, aging, and drug treatment. Along with the classical isotope dilution methodology, other approaches were proposed, among which isotope release following radioactive substrate administration. More recently, stable isotope studies have allowed to overcome radioactivity exposure. Isotope enrichment studies during tracer infusion has allowed to characterize changes in the degradation of cholesterol via the "classical" and the "alternative" pathways of bile acid synthesis. Evidence brought by tracer studies in vivo, summarized here, provides an exceptional tool for the investigation of sterol metabolism, and integrate the studies in vitro on human tissue.
Collapse
Affiliation(s)
- Marco Bertolotti
- Divisone di Geriatria, Dipartimento di Medicina, Endocrinologia, Metabolismo e Geriatria, Università degli Studi di Modena e Reggio Emilia, Nuovo Ospedale Civile, Via Giardini 1355, Modena 41126, Italy.
| | | | | |
Collapse
|
50
|
Heo GY, Liao WL, Turko IV, Pikuleva IA. Features of the retinal environment which affect the activities and product profile of cholesterol-metabolizing cytochromes P450 CYP27A1 and CYP11A1. Arch Biochem Biophys 2011; 518:119-26. [PMID: 22227097 DOI: 10.1016/j.abb.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/28/2022]
Abstract
The retina is the sensory organ in the back of the eye which absorbs and converts light to electrochemical impulses transferred to the brain. Herein, we studied how retinal environment affects enzyme-mediated cholesterol removal. We focused on two mitochondrial cytochrome P450 enzymes, CYPs 27A1 and 11A1, which catalyze the first steps in metabolism of cholesterol in the retina and other tissues. Phospholipids (PL) from mitochondria of bovine neural retina, retinal pigment epithelium, liver and adrenal cortex were isolated and compared for the effect on kinetic properties of purified recombinant CYPs in the reconstituted system in vitro. The four studied tissues were also evaluated for the mitochondrial PL and cholesterol content and levels of CYPs 27A1, 11A1 and their redox partners. The data obtained were used for modeling the retinal environment in the in vitro enzyme assays in which we detected the P450 metabolites, 22R-hydroxycholesterol and 5-cholestenoic acid, unexpectedly found by us in the retina in our previous studies. The effect of the by-product of the visual cycle pyridinium bis-retinoid A2E on kinetics of CYP27A1-mediated cholesterol metabolism was also investigated. The results provide insight into the retina's regulation of the enzyme-mediated cholesterol removal.
Collapse
Affiliation(s)
- Gun-Young Heo
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | |
Collapse
|