1
|
Kitagawa T, Nagoshi N, Okano H, Nakamura M. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury. Neurospine 2022; 19:935-945. [PMID: 36597632 PMCID: PMC9816589 DOI: 10.14245/ns.2244628.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
A spinal cord injury (SCI) is a destructive event that causes a permanent deficit in neurological function because of poor regenerative potential. Transplantation therapies have attracted attention for restoration of the injured spinal cord, and transplantation of neural precursor cells (NPCs) has been studied worldwide. Several groups have demonstrated functional recovery via this therapeutic intervention due to the multiple beneficial effects of NPC transplantation, such as reconstruction of neuronal circuits, remyelination of axons, and neuroprotection by trophic factors. Our group developed a method to induce NPCs from human induced pluripotent stem cells (hiPSCs) and established a transplantation strategy for SCI. Functional improvement in SCI animals treated with hiPSC-NPCs was observed, and the safety of transplanting these cells was evaluated from multiple perspectives. With selection of a safe cell line and pretreatment of the cells to encourage maturation and differentiation, hiPSC-NPC transplantation therapy is now in the clinical phase of testing for subacute SCI. In addition, a research challenge will be to expand the efficacy of transplantation therapy for chronic SCI. More comprehensive strategies involving combination treatments are required to treat this problematic situation.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan,Corresponding Author Narihito Nagoshi Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. MATERIALS 2021; 14:ma14226899. [PMID: 34832300 PMCID: PMC8624846 DOI: 10.3390/ma14226899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Injuries of the bone/cartilage and central nervous system are still a serious socio-economic problem. They are an effect of diversified, difficult-to-access tissue structures as well as complex regeneration mechanisms. Currently, commercially available materials partially solve this problem, but they do not fulfill all of the bone/cartilage and neural tissue engineering requirements such as mechanical properties, biochemical cues or adequate biodegradation. There are still many things to do to provide complete restoration of injured tissues. Recent reports in bone/cartilage and neural tissue engineering give high hopes in designing scaffolds for complete tissue regeneration. This review thoroughly discusses the advantages and disadvantages of currently available commercial scaffolds and sheds new light on the designing of novel polymeric scaffolds composed of hydrogels, electrospun nanofibers, or hydrogels loaded with nano-additives.
Collapse
|
3
|
Enhancing the regenerative potential of stem cell-laden, clinical-grade implants through laminin engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111931. [PMID: 33812572 DOI: 10.1016/j.msec.2021.111931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
Protected delivery of neural stem cells (NSCs; a major transplant population) within bioscaffolds has the potential to improve regenerative outcomes in sites of spinal cord injury. Emergent research has indicated clinical grade bioscaffolds (e.g. those used as surgical sealants) may be repurposed for this strategy, bypassing the long approval processes and difficulties in scale-up faced by laboratory grade materials. While promising, clinical scaffolds are often not inherently regenerative. Extracellular molecule biofunctionalisation of scaffolds can enhance regenerative features such as encapsulated cell survival/distribution, cell differentiation into desired cell types and nerve fibre growth. However, this strategy is yet to be tested for clinical grade scaffolds. Here, we show for the first time that Hemopatch™, a widely used, clinically approved surgical matrix, supports NSC growth. Further, functionalisation of Hemopatch™ with laminin promoted homogenous distribution of NSCs and their daughter cells within the matrix, a key regenerative criterion for transplant cells.
Collapse
|
4
|
Ma D, Zhao Y, Huang L, Xiao Z, Chen B, Shi Y, Shen H, Dai J. A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation. Biomaterials 2020; 237:119830. [PMID: 32036301 DOI: 10.1016/j.biomaterials.2020.119830] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/28/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022]
Abstract
Microglia/macrophage mediated-inflammation, a main contributor to the microenvironment after spinal cord injury (SCI), persists for a long period of time and affects SCI repair. However, the effects of microglia/macrophage mediated-inflammation on neurogenic differentiation of endogenous neural stem/progenitor cells (NSPCs) are not well understood. In this study, to attenuate activated microglia/macrophage mediated-inflammation in the spinal cord of complete transection SCI mice, a combination of photo-crosslinked hydrogel transplantation and CSF1R inhibitor (PLX3397) treatment was used to replace the prolonged, activated microglia/macrophages via cell depletion and repopulation. This combined treatment in SCI mice produced a significant reduction in CD68-positive reactive microglia/macrophages and mRNA levels of pro-inflammatory factors, and a substantial increase in the number of Tuj1-positive neurons in the lesion area compared with single treatment methods. Moreover, most of the newborn Tuj1-positive neurons were confirmed to be generated from endogenous NSPCs using a genetic fate mapping mouse line (Nestin-CreERT2; LSL-tdTomato) that can label and trace NSPC marker-nestin expressing cells and their progenies. Collectively, our findings show that the combined treatment method for inhibiting microglia/macrophage mediated-inflammation promotes endogenous NSPC neurogenesis and improves functional recovery, which provides a promising therapeutic strategy for complete transection SCI.
Collapse
Affiliation(s)
- Dezun Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lei Huang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
5
|
Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater 2019; 88:57-77. [PMID: 30710714 DOI: 10.1016/j.actbio.2019.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Abstract
During the past decades, improving patient neurological recovery following spinal cord injury (SCI) has remained a challenge. An effective treatment for SCI would not only reduce fractured elements and isolate developing local glial scars to promote axonal regeneration but also ameliorate secondary effects, including inflammation, apoptosis, and necrosis. Three-dimensional (3D) scaffolds provide a platform in which these mechanisms can be addressed in a controlled manner. Polymer scaffolds with favorable biocompatibility and appropriate mechanical properties have been engineered to minimize cicatrization, customize drug release, and ensure an unobstructed space to promote cell growth and differentiation. These properties make polymer scaffolds an important potential therapeutic platform. This review highlights the recent developments in polymer scaffolds for SCI engineering. STATEMENT OF SIGNIFICANCE: How to improve the efficacy of neurological recovery after spinal cord injury (SCI) is always a challenge. Tissue engineering provides a promising strategy for SCI repair, and scaffolds are one of the most important elements in addition to cells and inducing factors. The review highlights recent development and future prospects in polymer scaffolds for SCI therapy. The review will guide future studies by outlining the requirements and characteristics of polymer scaffold technologies employed against SCI. Additionally, the peculiar properties of polymer materials used in the therapeutic process of SCI also have guiding significance to other tissue engineering approaches.
Collapse
|
6
|
Slotkin JR, Pritchard CD, Luque B, Ye J, Layer RT, Lawrence MS, O'Shea TM, Roy RR, Zhong H, Vollenweider I, Edgerton VR, Courtine G, Woodard EJ, Langer R. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 2017; 123:63-76. [PMID: 28167393 DOI: 10.1016/j.biomaterials.2017.01.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/08/2016] [Accepted: 01/22/2017] [Indexed: 12/30/2022]
Abstract
Tissue loss significantly reduces the potential for functional recovery after spinal cord injury. We previously showed that implantation of porous scaffolds composed of a biodegradable and biocompatible block copolymer of Poly-lactic-co-glycolic acid and Poly-l-lysine improves functional recovery and reduces spinal cord tissue injury after spinal cord hemisection injury in rats. Here, we evaluated the safety and efficacy of porous scaffolds in non-human Old-World primates (Chlorocebus sabaeus) after a partial and complete lateral hemisection of the thoracic spinal cord. Detailed analyses of kinematics and muscle activity revealed that by twelve weeks after injury fully hemisected monkeys implanted with scaffolds exhibited significantly improved recovery of locomotion compared to non-implanted control animals. Twelve weeks after injury, histological analysis demonstrated that the spinal cords of monkeys with a hemisection injury implanted with scaffolds underwent appositional healing characterized by a significant increase in remodeled tissue in the region of the hemisection compared to non-implanted controls. The number of glial fibrillary acidic protein immunopositive astrocytes was diminished within the inner regions of the remodeled tissue layer in treated animals. Activated macrophage and microglia were present diffusely throughout the remodeled tissue and concentrated at the interface between the preserved spinal cord tissue and the remodeled tissue layer. Numerous unphosphorylated neurofilament H and neuronal growth associated protein positive fibers and myelin basic protein positive cells may indicate neural sprouting inside the remodeled tissue layer of treated monkeys. These results support the safety and efficacy of polymer scaffolds in a primate model of acute spinal cord injury. A device substantially similar to the device described here is the subject of an ongoing human clinical trial.
Collapse
Affiliation(s)
| | - Christopher D Pritchard
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Luque
- InVivo Therapeutics Corporation, Cambridge, MA, USA
| | - Janice Ye
- InVivo Therapeutics Corporation, Cambridge, MA, USA
| | | | | | - Timothy M O'Shea
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roland R Roy
- Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Isabel Vollenweider
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - V Reggie Edgerton
- Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA; Departments of Neurobiology and Neurology, University of California, Los Angeles, CA, USA
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Eric J Woodard
- Department of Neurosurgery, New England Baptist Hospital, Boston, MA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Yan Y, Wang X, Xiong Z, Liu H, Liu F, Lin F, Wu R, Zhang R, Lu Q. Direct Construction of a Three-dimensional Structure with Cells and Hydrogel. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911505053658] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An organ manufacturing technique was developed that enables the formation of cell/extracellular matrix (ECM) complexes for in vitro or in vivo growth. In this study, a three-dimensional (3D) structure composed of hepatocytes and gelatin/alginate hydrogel was made using a cell assembler-I apparatus to thoroughly control cell assembling. Hepatocytes and ECM were constructed into 10 X 10 X 3mm3 structures according to a designed pattern. The embedded hepatocytes remained viable and performed biological functions in the construct for more than 12 days. This 3D structure has the potential to be used as a precursor for tissue or organ regeneration. This technology offers the potential for high-throughput production of artificial human tissues and organs.
Collapse
Affiliation(s)
- Yongnian Yan
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaohong Wang
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China,
| | - Zhuo Xiong
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Haixia Liu
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Feng Liu
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Feng Lin
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Rendong Wu
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Renji Zhang
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| | - Qingping Lu
- Center of Organism Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China, Institute of Life Science and Medicine, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
8
|
Sethi R, Sethi R, Redmond A, Lavik E. Olfactory ensheathing cells promote differentiation of neural stem cells and robust neurite extension. Stem Cell Rev Rep 2015; 10:772-85. [PMID: 24996386 DOI: 10.1007/s12015-014-9539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions. MATERIALS AND METHODS We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior. RESULTS We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior. CONCLUSIONS Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies.
Collapse
Affiliation(s)
- Rosh Sethi
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA,
| | | | | | | |
Collapse
|
9
|
Xue S, Wu G, Zhang HT, Guo YW, Zou YX, Zhou ZJ, Jiang XD, Ke YQ, Xu RX. Transplantation of Adipocyte-Derived Stem Cells in a Hydrogel Scaffold for the Repair of Cortical Contusion Injury in Rats. J Neurotrauma 2015; 32:506-15. [PMID: 25225747 DOI: 10.1089/neu.2014.3480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sha Xue
- Department of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Gang Wu
- Cancer Prevention and Treatment Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Hong-tian Zhang
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing, China
| | - Yan-wu Guo
- Department of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yu-xi Zou
- Department of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhen-jun Zhou
- Department of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiao-dan Jiang
- Department of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi-quan Ke
- Department of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of Guangdong Province, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ru-xiang Xu
- The Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA, Beijing, China
| |
Collapse
|
10
|
Abstract
This chapter reviews the role of composite nonwovens in medical applications. It covers surgical gowns, clinical wearable products, wipes, wound dressings, pads, swabs, scaffolds for tissue engineering, hernia meshes, filtration materials, and incontinence products. Commercially available, innovatively designed composite nonwovens for various medical applications are improving the quality of life of many people. Specific research needs have been highlighted to further improve the effectiveness of these products. The chapter ends with some perspectives for the use of composite nonwovens in medical applications in the future.
Collapse
|
11
|
Lee TH. Functional effect of mouse embryonic stem cell implantation after spinal cord injury. J Exerc Rehabil 2013; 9:230-3. [PMID: 24278865 PMCID: PMC3836514 DOI: 10.12965/jer.130004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/21/2013] [Accepted: 04/02/2013] [Indexed: 11/22/2022] Open
Abstract
We transplanted mouse embryonic stem cells (mESCs) to improve functional loss in a rat model of clip-compression spinal cord injury (SCI). The mouse embryonic stem cells were transplanted to injured cord 7 days after injury. We include minimizing the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, replacing lost tissue with transplanted cells and substantial improvement of motor. A number of potential approaches optimize functional recovery after spinal cord injury. We review the application of stem cell transplantation to the spinal cord, emphasizing the use of embryonic stem cells for reconstruction of spinal cord injury. Thus, this study provides strong evidence to support that transplantation of mESC could improve functional recovery after SCI.
Collapse
Affiliation(s)
- Tae-Hoon Lee
- Department of Emergency Medical Technology, Namseoul University, Cheonan, Korea
| |
Collapse
|
12
|
Cholas R, Hsu HP, Spector M. Collagen Scaffolds Incorporating Select Therapeutic Agents to Facilitate a Reparative Response in a Standardized Hemiresection Defect in the Rat Spinal Cord. Tissue Eng Part A 2012; 18:2158-72. [DOI: 10.1089/ten.tea.2011.0577] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rahmatullah Cholas
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Tissue Engineering Laboratories, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Hu-Ping Hsu
- Tissue Engineering Laboratories, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Myron Spector
- Tissue Engineering Laboratories, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Hou T, Wu Y, Wang L, Liu Y, Zeng L, Li M, Long Z, Chen H, Li Y, Wang Z. Cellular Prostheses Fabricated with Motor Neurons Seeded in Self-Assembling Peptide Promotes Partial Functional Recovery After Spinal Cord Injury in Rats. Tissue Eng Part A 2012; 18:974-85. [PMID: 22115283 DOI: 10.1089/ten.tea.2011.0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Tianyong Hou
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yamin Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Lin Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Min Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Zaiyun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Hongsheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yingyu Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Zhengguo Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Neurotrauma, Regeneration and Rehabilitation, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
14
|
Morelli S, Piscioneri A, Salerno S, Tasselli F, Di Vito A, Giusi G, Canonaco M, Drioli E, De Bartolo L. PAN hollow fiber membranes elicit functional hippocampal neuronal network. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:149-156. [PMID: 22076529 DOI: 10.1007/s10856-011-4484-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 05/31/2023]
Abstract
This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Rende, CS, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cholas RH, Hsu HP, Spector M. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Biomaterials 2011; 33:2050-9. [PMID: 22182744 DOI: 10.1016/j.biomaterials.2011.11.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/13/2011] [Indexed: 12/16/2022]
Abstract
Prior work demonstrated the improvement of peripheral nerve regeneration in gaps implanted with collagen scaffold-filled collagen tubes, compared with nerve autografts, and the promise of such implants for treating gaps in spinal cord injury (SCI) in rats. The objective of this study was to investigate collagen implants alone and incorporating select therapeutic agents in a 5-mm full-resection gap model in the rat spinal cord. Two studies were performed, one with a 6-week time point and one with a 2-week time point. For the 6-week study the groups included: (1) untreated control, (2) dehydrothermally (DHT)-cross-linked collagen scaffold, (3) DHT-cross-linked collagen scaffold seeded with adult rat neural stem cells (NSCs), and (4) DHT-cross-linked collagen scaffold incorporating plasmid encoding glial cell line-derived neurotropic factor (pGDNF). The 2-week study groups were: (1) nontreated control, (2) DHT-cross-linked collagen scaffold; (3) DHT-cross-linked collagen scaffold containing laminin; and (4) carbodiimide-cross-linked collagen scaffold containing laminin. The tissue filling the defect of all groups at 6 weeks was largely composed of fibrous scar; however, the tissue was generally more favorably aligned with the long axis of the spinal cord in all of the treatment groups, but not in the control group. Quantification of the percentage of animals per group containing cystic cavities in the defect showed a trend toward fewer rats with cysts in the groups in which the scaffolds were implanted compared to control. All of the collagen implants were clearly visible and mostly intact after 2 weeks. A band of fibrous tissue filling the control gaps was not seen in the collagen implant groups. In all of the groups there was a narrowing of the spinal canal within the gap as a result of surrounding soft tissue collapse into the defect. The narrowing of the spinal canal occurred to a greater extent in the control and DHT scaffold alone groups compared to the DHT scaffold/laminin and EDAC scaffold/laminin groups. Collagen biomaterials can be useful in the treatment of SCI to: favorably align the reparative tissue with the long axis of the spinal cord; potentially reduce the formation of fluid-filled cysts; serve as a delivery vehicle for NSCs and the gene for GDNF; and impede the collapse of musculature and connective tissue into the defect.
Collapse
Affiliation(s)
- Rahmatullah H Cholas
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
16
|
Kang KN, Lee JY, Kim DY, Lee BN, Ahn HH, Lee B, Khang G, Park SR, Min BH, Kim JH, Lee HB, Kim MS. Regeneration of completely transected spinal cord using scaffold of poly(D,L-lactide-co-glycolide)/small intestinal submucosa seeded with rat bone marrow stem cells. Tissue Eng Part A 2011; 17:2143-52. [PMID: 21529281 DOI: 10.1089/ten.tea.2011.0122] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Using a complete spinal cord transection model, the present study employed a combinatorial strategy comprising rat bone marrow stem cells (rBMSCs) and polymer scaffolds to regenerate neurological function after spinal cord injury (SCI) of different lengths. SCI models with completely transected lesions were prepared by surgical removal of 1 mm (SC1) or 3 mm (SC3) lengths of spinal cord in the eighth-to-ninth spinal vertebrae, a procedure that resulted in bilateral hindlimb paralysis. A cylindrical poly(D,L-lactide-co-glycolide)/small intestinal submucosa scaffold 1 or 3 mm in length with or without rBMSCs was fitted into the completely transected lesion. Rats in SC1 and SC3 groups implanted with rBMSC-containing scaffolds received Basso-Beattie-Bresnahan scores for hindlimb locomotion of 15 and 8, respectively, compared with ∼3 for control rats in SC1-C and SC3-C groups implanted with scaffolds lacking rBMSCs. The amplitude of motor-evoked potentials recorded in the hindlimb area of the sensorimotor cortex after stimulation of the injured spinal cord averaged ∼100 μV in SC1-C and 10-50 μV in SC3-C groups at 4 weeks, and then declined to nearly zero at 8 weeks. In contrast, the amplitude of motor-evoked potentials increased from ∼300 to 350 μV between 4 and 8 weeks in SC1 rats and from ∼200 to ∼250 μV in SC3 rats. These results demonstrate functional recovery in rBMSC-transplanted rats, especially those with smaller defects. Immunohistochemically stained sections of the injury site showed clear evidence for axonal regeneration only in rBMSC-transplanted SC1 and SC3 models. In addition, rBMSCs were detected at the implanted site 4 and 8 weeks after transplantation, indicating cell survival in SCI. Collectively, our results indicate that therapeutic rBMSCs in a poly(D,L-lactide-co-glycolide)/small intestinal submucosa scaffold induced nerve regeneration in a complete spinal cord transection model and showed that functional recovery further depended on defect length.
Collapse
Affiliation(s)
- Kkot Nim Kang
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Blong CC, Jeon CJ, Yeo JY, Ye EA, Oh J, Callahan JM, Law WD, Mallapragada SK, Sakaguchi DS. Differentiation and behavior of human neural progenitors on micropatterned substrates and in the developing retina. J Neurosci Res 2010; 88:1445-56. [PMID: 20029967 DOI: 10.1002/jnr.22324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study we investigated the differentiation of human neural progenitor cells (hNPCs) in vitro to evaluate their differentiation potential and in vivo to explore their viability and behavior following transplantation. Progenitors were maintained as neurospheres in media containing basic fibroblast growth factor and epidermal growth factor. Micropatterned polystyrene substrates were fabricated and coated with ECL (entactin, collagen, and laminin) to provide physical and chemical guidance during the differentiation of the hNPCs. The hNPCs growing on the micropatterned substrates showed no differences in proliferation or differentiation potential compared with those hNPCs growing on the nonpatterned substrates. However, hNPCs cultured on the micropatterned substrates were aligned in the direction of the micropattern compared with those cells growing on the nonpatterned substrates. Furthermore, hNPC migration was directed in alignment with the micropatterned substrates. Transplantation of the hNPCs into the developing retina was used to evaluate their behavior in vivo. Cells displayed extensive survival, differentiation, and morphological integration following xenotransplant into the retina, even in the absence of immunosuppression. Taken together, our results show that these multipotent hNPCs are a neurogenic progenitor population that can be maintained in culture for extended periods. Although the micropatterned substrates have no major effect on the proliferation or differentiation of the hNPCs, they clearly promoted alignment and directed neurite outgrowth along the pattern as well as directing migration of the cells. These approaches may provide important strategies to guide the growth and differentiation of NPCs in vitro and in vivo.
Collapse
|
18
|
Chao TI, Xiang S, Chen CS, Chin WC, Nelson AJ, Wang C, Lu J. Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 2009; 384:426-30. [PMID: 19426708 DOI: 10.1016/j.bbrc.2009.04.157] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Human embryonic stem cells (hESCs) hold great promise for regenerative medicine and transplantation therapy due to their self-renewal and pluripotent properties. We report that 2D thin film scaffolds composed of biocompatible polymer grafted carbon nanotubes (CNTs), can selectively differentiate human embryonic stem cells into neuron cells while maintaining excellent cell viability. According to fluorescence image analysis, neuron differentiation efficiency of poly(acrylic acid) grafted CNT thin films is significant greater than that on poly(acrylic acid) thin films. When compared with the conventional poly-L-ornithine surfaces, a standard substratum commonly used for neuron culture, this new type thin film scaffold shows enhanced neuron differentiation. No noticeable cytotoxic effect difference has been detected between these two surfaces. The surface analysis and cell adhesion study have suggested that CNT-based surfaces can enhance protein adsorption and cell attachment. This finding indicates that CNT-based materials are excellent candidates for hESCs' neuron differentiation.
Collapse
Affiliation(s)
- Tzu-I Chao
- School of Engineering, University of California, 5200 North Lake Road, UC Merced, Merced, CA 95343, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Composite tissue formation derived solely from a blood biological matrix: a preliminary study. Transplant Proc 2008; 40:1696-9. [PMID: 18589175 DOI: 10.1016/j.transproceed.2008.03.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/30/2007] [Accepted: 03/11/2008] [Indexed: 11/22/2022]
Abstract
We describe the formation of a new composite tissue containing all of the cellular components of adjacent normal spinal tissue. Four millimeter gaps, surgically created at the level of T8-T9 in the spinal cord of 2 adult female Lewis rats, resulted in complete paralysis of the lower extremities. A biological matrix derived from previously frozen peripheral syngeneic blood was implanted into the created spinal cord defects in 2 experimental animals. Two control animals received fibrin implants not containing matrix material. The 2 experimental animals regained significant motor function of their lower extremities as compared with the control animals, over a period of 2 months. Histological analysis of the experimental implants showed a composite tissue formation consisting of neural tissue, bone, and cartilage similar in cellular content to the adjacent native tissue. Only organized blood clot was seen at the implant site of the control animals. Further studies are needed to determine if autologous blood can be used to regenerate tissues lost to disease or injury.
Collapse
|
20
|
|
21
|
Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 2008; 213:176-90. [DOI: 10.1016/j.expneurol.2008.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/12/2008] [Accepted: 05/23/2008] [Indexed: 02/03/2023]
|
22
|
Little L, Healy KE, Schaffer D. Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev 2008; 108:1787-96. [PMID: 18476674 DOI: 10.1021/cr078228t] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren Little
- Department of Chemical Engineering, University of California, Berkeley, California 94720-1760, USA
| | | | | |
Collapse
|
23
|
Parr A, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator C. Transplanted adult spinal cord–derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 2008; 155:760-70. [DOI: 10.1016/j.neuroscience.2008.05.042] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/04/2008] [Accepted: 05/05/2008] [Indexed: 01/21/2023]
|
24
|
Vacanti CA. Tissue engineering: where are we headed? J Am Coll Surg 2008; 206:1095-6. [PMID: 18501805 DOI: 10.1016/j.jamcollsurg.2007.12.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 12/17/2007] [Indexed: 11/27/2022]
Affiliation(s)
- Charles A Vacanti
- Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA 02115, USA. cvacanti@par tners.org
| |
Collapse
|
25
|
Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P. Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 2007; 1187:42-51. [PMID: 18021754 DOI: 10.1016/j.brainres.2007.10.046] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/28/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
Stroke and spinal cord or brain injury often result in cavity formation. Stem cell transplantation in combination with tissue engineering has the potential to fill such a cavity and replace lost neurons. Several hydrogels containing unique features particularly suitable for the delicate nervous system were tested by determining whether these materials were compatible with fetal human neural stem cells (hNSCs) in terms of toxicity and ability to support stem cell differentiation in vitro. The hydrogels examined were pluronic F127 (PF127), Matrigel and PuraMatrix. We found that PF127, in a gelated (30%) form, was toxic to hNSCs, and Matrigel, in a gelated (1-50%) form, prevented hNSCs' normal capacity for neuronal differentiation. In contrast, PuraMatrix was the most optimal hydrogel for hNSCs, since it showed low toxicity when gelated (0.25%) and retained several crucial properties of hNSCs, including migration and neuronal differentiation. Further optimization and characterization of PuraMatrix is warranted to explore its full potential in assisting neural regeneration in vivo.
Collapse
Affiliation(s)
- Jason R Thonhoff
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0620, USA
| | | | | | | | | |
Collapse
|
26
|
Kamei N, Tanaka N, Oishi Y, Ishikawa M, Hamasaki T, Nishida K, Nakanishi K, Sakai N, Ochi M. Bone marrow stromal cells promoting corticospinal axon growth through the release of humoral factors in organotypic cocultures in neonatal rats. J Neurosurg Spine 2007; 6:412-9. [PMID: 17542506 DOI: 10.3171/spi.2007.6.5.412] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECT The transplantation of bone marrow stromal cells (BMSCs) is considered to be an alternative treatment to promote central nervous system regeneration, but the precise mechanisms of this regeneration after transplantation of BMSCs have not been clarified. In the present study, the authors assessed the effects of BMSC transplantation on corticospinal axon growth quantitatively, and they analyzed the mechanism of central nervous system regeneration in the injured and BMSC-treated spinal cord using the organotypic coculture system. METHODS Bone marrow stromal cells derived from green fluorescent protein-expressing transgenic Sprague-Dawley rats were transplanted to the organotypic coculture system in which brain cortex and spinal cord specimens obtained in neonatal Sprague-Dawley rats were used. The axon growth from the cortex to the spinal cord was assessed quantitatively, using anterograde tracing with 1,1 '-ioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate. To identify the differentiation of transplanted BMSCs, immunohistochemical examinations were performed. In addition, BMSCs were analyzed using reverse transcriptase polymerase chain reaction (RT-PCR) for mRNA expression of the growth factors. The transplantation of BMSCs beneath the membrane, where the transplanted cells did not come into direct contact with the cultured tissue, promoted corticospinal axon growth to the same extent as transplantation of BMSCs on the tissues. The RT-PCR showed that the transplanted BMSCs expressed the mRNA of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). Con CONCLUSIONS ese findings strongly suggest that humoral factors expressed by BMSCs, including BDNF and VEGF, participate in regeneration of the central nervous system after transplantation of these cells.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kamei N, Tanaka N, Oishi Y, Hamasaki T, Nakanishi K, Sakai N, Ochi M. BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine (Phila Pa 1976) 2007; 32:1272-8. [PMID: 17515814 DOI: 10.1097/brs.0b013e318059afab] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study of spinal cord injury using an organotypic slice culture. OBJECTIVE To clarify the mechanism of corticospinal axon regeneration following transplantation of neural progenitor cells (NPCs) in the injured spinal cord. SUMMARY OF BACKGROUND DATA Several mechanisms underlying central nervous system regeneration after transplantation of NPCs have been proposed; however, the precise mechanism has not been clarified. Previously, we demonstrated that transplanted NPCs secreted humoral factors that in turn promoted corticospinal axon growth using the unique organotypic coculture system involving brain cortex and spinal cord from neonatal rats. METHODS Cultured NPCs were immunostained with antibodies against neurotrophic factors including brain-derived neurotrophic factor (BDNF), neurotrophin (NT)-3, nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF) both before and after differentiation. To evaluate corticospinal axon growth quantitatively, we used the organotypic coculture system. The dissected brain cortex and spinal cord obtained from neonatal rats were aligned next to each other and cultured on a membrane. NPCs were transplanted onto the cocultures. Furthermore, neutralizing antibodies against BDNF, NT-3, NGF, or CNTF were added to the cocultures. Axon growth from the brain cortex into the spinal cord was assessed quantitatively using anterograde axon tracing with DiI. RESULTS The cultured NPCs were positively immunostained by antibodies against BDNF, NT3, NGF, and CTNF both before and after differentiation. Transplantation of NPCs promoted axon growth from the brain cortex into the spinal cord. The axon growth promoted by NPCs was significantly suppressed by the addition of neutralizing antibodies against BDNF, NT-3, and NGF but not CNTF. CONCLUSION The neurotrophic factors, BDNF, NT-3, and NGF, secreted by transplanted NPCs, were involved in the promotion of corticospinal axon growth after transplantation of NPCs.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Silvio E Duailibi
- Department of Otorhinolaringology and Head and Neck Surgery, Centro Interdisciplinar de Terapia Gênica, University Federal of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
29
|
Recknor JB, Sakaguchi DS, Mallapragada SK. Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 2006; 27:4098-108. [PMID: 16616776 DOI: 10.1016/j.biomaterials.2006.03.029] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 03/20/2006] [Indexed: 11/30/2022]
Abstract
Directional growth and differentiation of adult rat hippocampal progenitor cells (AHPCs) were investigated on micropatterned polymer substrates in vitro. Astrocytes or AHPCs cultured on micropatterned polystyrene substrates chemically modified with laminin exhibited over 75% alignment in the groove direction. AHPCs co-cultured with astrocytes preferentially acquired neuronal morphology, with nearly double the percentage of cells expressing class III beta-tubulin on the micropatterned half of the substrate, as opposed to the planar half of the substrate, or compared to those growing in the absence of astrocytes. This indicates that substrate three-dimensional topography, in synergy with chemical (laminin) and biological (astrocytes) guidance cues, facilitates neuronal differentiation of the AHPCs. Through multi-dimensional cell-cell interactions, this environment provides spatial control selectively enhancing neuronal differentiation and neurite alignment on topographically different regions of the same substrate. Integrating these cues is important in understanding and controlling neural stem cell differentiation and designing scaffolds for guided nerve regeneration.
Collapse
Affiliation(s)
- Jennifer B Recknor
- Department of Chemical and Biological Engineering and The Neuroscience Program, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011, USA
| | | | | |
Collapse
|
30
|
Xu T, Jin J, Gregory C, Hickman JJJJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials 2005; 26:93-9. [PMID: 15193884 DOI: 10.1016/j.biomaterials.2004.04.011] [Citation(s) in RCA: 548] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 04/01/2004] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to explore the use of a commercial thermal printer to deposit Chinese Hamster Ovary (CHO) and embryonic motoneuron cells into pre-defined patterns. These experiments were undertaken to verify the biocompatibility of thermal inkjet printing of mammalian cells and the ability to assemble them into viable constructs. Using a modified Hewlett Packard (HP) 550C computer printer and an HP 51626a ink cartridge, CHO cells and rat embryonic motoneurons were suspended separately in a concentrated phosphate buffered saline solution (3 x). The cells were subsequently printed as a kind of "ink" onto several "bio-papers" made from soy agar and collagen gel. The appearance of the CHO cells and motoneurons on the bio-papers indicated an healthy cell morphology. Furthermore, the analyses of the CHO cell viability showed that less than 8% of the cells were lysed during printing. These data indicate that mammalian cells can be effectively delivered by a modified thermal inkjet printer onto biological substrates and that they retain their ability to function. The computer-aided inkjet printing of viable mammalian cells holds potential for creating living tissue analogs, and may eventually lead to the construction of engineered human organs.
Collapse
Affiliation(s)
- Tao Xu
- Department of Bioengineering, Clemson University, 502 Rhodes Hall, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
31
|
Itohara H, Sasaki S, Fu T, Nakagaki I, Hori S, Tateishi H, Maruo S. Changes in the axonal membrane potential and Ca2+ concentration associated with peripheral nerve grafting after spinal cord injury. ACTA ACUST UNITED AC 2005; 54:365-71. [PMID: 15631692 DOI: 10.2170/jjphysiol.54.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We performed peripheral nerve allografting in rats with spinal cord injury, and measured motor function and axonal membrane potential as well as Ca(2+) concentration of the nerve grafting spinal cord area by using a behavior observation system and a confocal laser-scanning microscope, respectively. In our experiments, we produced a model of peripheral nerve grafting after spinal cord injury by peripheral nerve allografting (sciatic nerve) in rats with spinal cord injury (thoracic cord hemisection). The group with spinal cord injury that underwent peripheral nerve grafting showed improvement in motor function, a significant increase in the axonal action potential, and a slight increase in the Ca(2+) concentration compared with the group that did not undergo nerve grafting.
Collapse
Affiliation(s)
- H Itohara
- Department of Orthopaedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kamei N, Oishi Y, Tanaka N, Ishida O, Fujiwara Y, Ochi M. Neural progenitor cells promote corticospinal axon growth in organotypic co-cultures. Neuroreport 2004; 15:2579-83. [PMID: 15570156 DOI: 10.1097/00001756-200412030-00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The CNS is limited in regeneration following injury in adult mammals. Recent studies show that the transplantation of the neuronal progenitor cells is useful in promoting regeneration. However, the mechanisms of action of the transplanted neural progenitor cells have not been clarified. In this study, we used organotypic co-cultures with neonatal brain cortex and spinal cord as an in vitro assay system for assessing the factors that regulate corticospinal axonal growth. Our results show that the transplantation of neural progenitor cells enhanced corticospinal axon growth in these co-cultures. In addition, neural progenitor cell conditioned medium also significantly promoted axonal growth. These findings strongly suggest that factors derived from neural progenitor cells participate in the effect on axonal growth.
Collapse
Affiliation(s)
- Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima734-8551, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Development of a multicellular organism is accomplished through a series of events that are preprogrammed in the genome. These events encompass cellular proliferation, lineage commitment, lineage progression, lineage expression, cellular inhibition, and regulated apoptosis. The sequential progression of cells through these events results in the formation of the differentiated cells, tissues, and organs that constitute an individual. Although most cells progress through this sequence during development, a few cells leave the developmental continuum to become reserve precursor cells. The reserve precursor cells are involved in the continual maintenance and repair of the tissues and organs throughout the life span of the individual. Until recently it was generally assumed that the precursor cells in postnatal individuals were limited to lineage-committed progenitor cells specific for various tissues. However, studies by Young, his colleagues, and others have demonstrated the presence of two categories of precursor cells that reside within the organs and tissues of postnatal animals. These two categories of precursor cells are lineage-committed (multipotent, tripotent, bipotent, and unipotent) progenitor cells and lineage-uncommitted pluripotent (epiblastic-like, ectodermal, mesodermal, and endodermal) stem cells. These reserve precursor cells provide for the continual maintenance and repair of the organism after birth.
Collapse
Affiliation(s)
- Henry E Young
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207, USA.
| | | |
Collapse
|
34
|
Fujiwara Y, Tanaka N, Ishida O, Fujimoto Y, Murakami T, Kajihara H, Yasunaga Y, Ochi M. Intravenously injected neural progenitor cells of transgenic rats can migrate to the injured spinal cord and differentiate into neurons, astrocytes and oligodendrocytes. Neurosci Lett 2004; 366:287-91. [PMID: 15288436 DOI: 10.1016/j.neulet.2004.05.080] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 05/05/2004] [Accepted: 05/19/2004] [Indexed: 11/28/2022]
Abstract
Transplantation of neural progenitor cells (NPCs) has been reported recently to promote regeneration of the injured spinal cord. In the majority of these reports, cell transplantation was performed by local injection with a needle. However, direct injection might be too invasive for clinical use; therefore, the authors investigated a new method of delivering NPCs for the treatment of spinal cord injury. In this study, NPCs were obtained from E15 fetal hippocampus of transgenic rats expressing green fluorescent protein and 100,000 cells were transplanted intravenously into each animal 24h after contusion injury. It was found that the injected NPCs migrated to the lesion site widely and demonstrated nestin at an early phase after transplantation. These NPCs differentiated into neurons, astrocytes and oligodendrocytes, and survived at least for 56 days. These results indicated that intravenously injected neural stem cells migrated into the spinal cord lesion while preserving their potential as NPCs, and that this procedure is a potential method of delivering cells into the lesion for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Yasushi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Silva GA. Introduction to nanotechnology and its applications to medicine. ACTA ACUST UNITED AC 2004; 61:216-20. [PMID: 14984987 DOI: 10.1016/j.surneu.2003.09.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2003] [Accepted: 09/24/2003] [Indexed: 11/28/2022]
Abstract
Nanotechnology can be defined as the science and engineering involved in the design, synthesis, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale or one billionth of a meter. At these scales, consideration of individual molecules and interacting groups of molecules in relation to the bulk macroscopic properties of the material or device becomes important, since it is control over the fundamental molecular structure that allows control over the macroscopic chemical and physical properties. Applications to medicine and physiology imply materials and devices designed to interact with the body at subcellular (i.e., molecular) scales with a high degree of specificity. This can potentially translate into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic affects with minimal side effects. In this review the main scientific and technical aspects of nanotechnology are introduced and some of its potential clinical applications are discussed.
Collapse
Affiliation(s)
- Gabriel A Silva
- Department of Bioengineering, Whitaker Institute for Biomedical Engineering and Neurosciences Program, University of California, San Diego, LaJolla, California, USA
| |
Collapse
|
36
|
Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y. Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 2003; 14:191-8. [PMID: 12948354 DOI: 10.1016/s1084-9521(03)00011-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thanks to advances in the stem cell biology of the central nervous system (CNS), the previously inconceivable regeneration of the damaged CNS is approaching reality. The availability of signals to induce the appropriate differentiation of the transplanted and/or endogenous neural stem cells (NSCs) as well as the timing of the transplantation are important for successful functional recovery of the damaged CNS. Because the immediately post-traumatic microenvironment of the spinal cord is in an acute inflammatory stage, it is not favorable for the survival and differentiation of NSC transplants. On the other hand, in the chronic stage after injury, glial scars form in the injured site that inhibit the regeneration of neuronal axons. Thus, we believe that the optimal timing of transplantation is 1-2 weeks after injury.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002; 69:925-33. [PMID: 12205685 DOI: 10.1002/jnr.10341] [Citation(s) in RCA: 396] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neural progenitor cells, including neural stem cells, are a potential expandable source of graft material for transplantation aimed at repairing the damaged CNS. Here we present the first evidence that in vitro-expanded fetus-derived neurosphere cells were able to generate neurons in vivo and improve motor function upon transplantation into an adult rat spinal-cord-contusion injury model. As the source of graft material, we used a neural stem cell-enriched population that was derived from rat embryonic spinal cord (E14.5) and expanded in vitro by neurosphere formation. Nine days after contusion injury, these neurosphere cells were transplanted into adult rat spinal cord at the injury site. Histological analysis 5 weeks after the transplantation showed that mitotic neurogenesis occurred from the transplanted donor progenitor cells within the adult rat spinal cord, a nonneurogenic region; that these donor-derived neurons extended their processes into the host tissues; and that the neurites formed synaptic structures. Furthermore, analysis of motor behavior using a skilled reaching task indicated that the treated rats showed functional recovery. These results indicate that in vitro-expanded neurosphere cells derived from the fetal spinal cord are a potential source for transplantable material for treatment of spinal cord injury.
Collapse
Affiliation(s)
- Y Ogawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002; 99:3024-9. [PMID: 11867737 PMCID: PMC122466 DOI: 10.1073/pnas.052678899] [Citation(s) in RCA: 688] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2001] [Indexed: 11/18/2022] Open
Abstract
To better direct repair following spinal cord injury (SCI), we designed an implant modeled after the intact spinal cord consisting of a multicomponent polymer scaffold seeded with neural stem cells. Implantation of the scaffold-neural stem cells unit into an adult rat hemisection model of SCI promoted long-term improvement in function (persistent for 1 year in some animals) relative to a lesion-control group. At 70 days postinjury, animals implanted with scaffold-plus-cells exhibited coordinated, weight-bearing hindlimb stepping. Histology and immunocytochemical analysis suggested that this recovery might be attributable partly to a reduction in tissue loss from secondary injury processes as well as in diminished glial scarring. Tract tracing demonstrated corticospinal tract fibers passing through the injury epicenter to the caudal cord, a phenomenon not present in untreated groups. Together with evidence of enhanced local GAP-43 expression not seen in controls, these findings suggest a possible regeneration component. These results may suggest a new approach to SCI and, more broadly, may serve as a prototype for multidisciplinary strategies against complex neurological problems.
Collapse
Affiliation(s)
- Yang D Teng
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|