1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Liu X, Zhao Z, Shi X, Zong Y, Sun Y. The Effects of Viral Infections on the Molecular and Signaling Pathways Involved in the Development of the PAOs. Viruses 2024; 16:1342. [PMID: 39205316 PMCID: PMC11359136 DOI: 10.3390/v16081342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cytomegalovirus infection contributes to 10-30% of congenital hearing loss in children. Vertebrate peripheral auditory organs include the outer, middle, and inner ear. Their development is regulated by multiple signaling pathways. However, most ear diseases due to viral infections are due to congenital infections and reactivation and affect healthy adults to a lesser extent. This may be due to the fact that viral infections affect signaling pathways that are important for the development of peripheral hearing organs. Therefore, an in-depth understanding of the relationship between viral infections and the signaling pathways involved in the development of peripheral hearing organs is important for the prevention and treatment of ear diseases. In this review, we summarize the effects of viruses on signaling pathways and signaling molecules in the development of peripheral auditory organs.
Collapse
Affiliation(s)
- Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Niu X, Zhang F, Ping L, Wang Y, Zhang B, Wang J, Chen X. vwa1 Knockout in Zebrafish Causes Abnormal Craniofacial Chondrogenesis by Regulating FGF Pathway. Genes (Basel) 2023; 14:genes14040838. [PMID: 37107596 PMCID: PMC10137681 DOI: 10.3390/genes14040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Hemifacial microsomia (HFM), a rare disorder of first- and second-pharyngeal arch development, has been linked to a point mutation in VWA1 (von Willebrand factor A domain containing 1), encoding the protein WARP in a five-generation pedigree. However, how the VWA1 mutation relates to the pathogenesis of HFM is largely unknown. Here, we sought to elucidate the effects of the VWA1 mutation at the molecular level by generating a vwa1-knockout zebrafish line using CRISPR/Cas9. Mutants and crispants showed cartilage dysmorphologies, including hypoplastic Meckel’s cartilage and palatoquadrate cartilage, malformed ceratohyal with widened angle, and deformed or absent ceratobranchial cartilages. Chondrocytes exhibited a smaller size and aspect ratio and were aligned irregularly. In situ hybridization and RT-qPCR showed a decrease in barx1 and col2a1a expression, indicating abnormal cranial neural crest cell (CNCC) condensation and differentiation. CNCC proliferation and survival were also impaired in the mutants. Expression of FGF pathway components, including fgf8a, fgfr1, fgfr2, fgfr3, fgfr4, and runx2a, was decreased, implying a role for VWA1 in regulating FGF signaling. Our results demonstrate that VWA1 is essential for zebrafish chondrogenesis through effects on condensation, differentiation, proliferation, and apoptosis of CNCCs, and likely impacts chondrogenesis through regulation of the FGF pathway.
Collapse
Affiliation(s)
- Xiaomin Niu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fuyu Zhang
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Ping
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yibei Wang
- Department of Otolaryngology-Head & Neck Surgery, China-Japan Friendship Hospital, Beijing 100730, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100730, China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence:
| |
Collapse
|
4
|
Tang Q, Xie MY, Zhang YL, Xue RY, Zhu XH, Yang H. Targeted deletion of Atoh8 results in severe hearing loss in mice. Genesis 2021; 59:e23442. [PMID: 34402594 PMCID: PMC9286369 DOI: 10.1002/dvg.23442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Atoh8, also named Math6, is a bHLH gene reported to have important functions in the developing nervous system, pancreas and kidney. However, the expression pattern and function of Atoh8 in the inner ear are still unclear. To study the function of Atoh8 in the developing mouse inner ear, we performed targeted deletion of Atoh8 by intercrossing Atoh8lacZ/+ mice. We studied the expression pattern of Atoh8 in the inner ear and found interesting results that Atoh8‐null (Atoh8lacZ/lacZ) mice were viable but smaller than their littermates and they were severely hearing impaired, which was confirmed by hearing tests (ABR, DPOAE). We collected 129 viable newborns from 18 litters by crossing Atoh8lacZ/+ mice and found that the distributions of Atoh8lacZ/+, Atoh8lacZ/lacZ and wild type were very close to their expected Mendelian ratio by χ2 testing. However, no remarkable morphological changes in cochleae in mutant mice were detected under plastic sectioning and electron microscopy. No remarkable differences in the expression of Myosin6, Prestin, TrkC, GAD65, Tuj1, or Calretinin were detected between the mutant mice and the control mice. These findings indicate that Atoh8 plays an important role in the development of normal hearing, while further studies are required to elucidate its exact function in hearing.
Collapse
Affiliation(s)
- Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Yao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Li Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruo-Yan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Hui Zhu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Ankamreddy H, Bok J, Groves AK. Uncovering the secreted signals and transcription factors regulating the development of mammalian middle ear ossicles. Dev Dyn 2020; 249:1410-1424. [PMID: 33058336 DOI: 10.1002/dvdy.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022] Open
Abstract
The mammalian middle ear comprises a chain of ossicles, the malleus, incus, and stapes that act as an impedance matching device during the transmission of sound from the tympanic membrane to the inner ear. These ossicles are derived from cranial neural crest cells that undergo endochondral ossification and subsequently differentiate into their final functional forms. Defects that occur during middle ear development can result in conductive hearing loss. In this review, we summarize studies describing the crucial roles played by signaling molecules such as sonic hedgehog, bone morphogenetic proteins, fibroblast growth factors, notch ligands, and chemokines during the differentiation of neural crest into the middle ear ossicles. In addition to these cell-extrinsic signals, we also discuss studies on the function of transcription factor genes such as Foxi3, Tbx1, Bapx1, Pou3f4, and Gsc in regulating the development and morphology of the middle ear ossicles.
Collapse
Affiliation(s)
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Dickinson PJ, Bannasch DL. Current Understanding of the Genetics of Intervertebral Disc Degeneration. Front Vet Sci 2020; 7:431. [PMID: 32793650 PMCID: PMC7393939 DOI: 10.3389/fvets.2020.00431] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Premature degeneration of the intervertebral disc and its association with specific chondrodystrophic dog breeds has been recognized for over a century. Several lines of evidence including disease breed predisposition, studies suggesting heritability of premature intervertebral disc degeneration (IVDD) and association of a dog chromosome 12 (CFA 12) locus with intervertebral disc calcification have strongly supported a genetic component in IVDD in dogs. Recent studies documenting association of IVDD with an overexpressing FGF4 retrogene on CFA 12 have opened up new areas of investigation to further define the pathophysiology of premature IVDD. While preliminary data from studies investigating FGF4 retrogenes in IVDD implicate FGF4 overexpression as a major disease factor, they have also highlighted knowledge gaps in our understanding of intervertebral disc herniation which is a complex and multifactorial disease process.
Collapse
Affiliation(s)
- Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Brown R, Groves AK. Hear, Hear for Notch: Control of Cell Fates in the Inner Ear by Notch Signaling. Biomolecules 2020; 10:biom10030370. [PMID: 32121147 PMCID: PMC7175228 DOI: 10.3390/biom10030370] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
The vertebrate inner ear is responsible for detecting sound, gravity, and head motion. These mechanical forces are detected by mechanosensitive hair cells, arranged in a series of sensory patches in the vestibular and cochlear regions of the ear. Hair cells form synapses with neurons of the VIIIth cranial ganglion, which convey sound and balance information to the brain. They are surrounded by supporting cells, which nourish and protect the hair cells, and which can serve as a source of stem cells to regenerate hair cells after damage in non-mammalian vertebrates. The Notch signaling pathway plays many roles in the development of the inner ear, from the earliest formation of future inner ear ectoderm on the side of the embryonic head, to regulating the production of supporting cells, hair cells, and the neurons that innervate them. Notch signaling is re-deployed in non-mammalian vertebrates during hair cell regeneration, and attempts have been made to manipulate the Notch pathway to promote hair cell regeneration in mammals. In this review, we summarize the different modes of Notch signaling in inner ear development and regeneration, and describe how they interact with other signaling pathways to orchestrate the fine-grained cellular patterns of the ear.
Collapse
Affiliation(s)
- Rogers Brown
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andrew K. Groves
- Program in Developmental Biology; Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Neuroscience; Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-8743
| |
Collapse
|
8
|
Wang L, Xie J, Zhang H, Tsang LH, Tsang SL, Braune EB, Lendahl U, Sham MH. Notch signalling regulates epibranchial placode patterning and segregation. Development 2020; 147:dev.183665. [PMID: 31988190 PMCID: PMC7044445 DOI: 10.1242/dev.183665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/14/2020] [Indexed: 11/20/2022]
Abstract
Epibranchial placodes are the geniculate, petrosal and nodose placodes that generate parts of cranial nerves VII, IX and X, respectively. How the three spatially separated placodes are derived from the common posterior placodal area is poorly understood. Here, we reveal that the broad posterior placode area is first patterned into a Vgll2+/Irx5+ rostral domain and a Sox2+/Fgf3+/Etv5+ caudal domain relative to the first pharyngeal cleft. This initial rostral and caudal patterning is then sequentially repeated along each pharyngeal cleft for each epibranchial placode. The caudal domains give rise to the neuronal and non-neuronal cells in the placode, whereas the rostral domains are previously unrecognized structures, serving as spacers between the final placodes. Notch signalling regulates the balance between the rostral and caudal domains: high levels of Notch signalling expand the caudal domain at the expense of the rostral domain, whereas loss of Notch signalling produces the converse phenotype. Collectively, these data unravel a new patterning principle for the early phases of epibranchial placode development and a role for Notch signalling in orchestrating epibranchial placode segregation and differentiation.
Collapse
Affiliation(s)
- Li Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Junjie Xie
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haoran Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Long Hin Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Lan Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Mai Har Sham
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
9
|
Urness LD, Wang X, Doan H, Shumway N, Noyes CA, Gutierrez-Magana E, Lu R, Mansour SL. Spatial and temporal inhibition of FGFR2b ligands reveals continuous requirements and novel targets in mouse inner ear morphogenesis. Development 2018; 145:dev.170142. [PMID: 30504125 DOI: 10.1242/dev.170142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022]
Abstract
Morphogenesis of the inner ear epithelium requires coordinated deployment of several signaling pathways, and disruptions cause abnormalities of hearing and/or balance. The FGFR2b ligands FGF3 and FGF10 are expressed throughout otic development and are required individually for normal morphogenesis, but their prior and redundant roles in otic placode induction complicates investigation of subsequent combinatorial functions in morphogenesis. To interrogate these roles and identify new effectors of FGF3 and FGF10 signaling at the earliest stages of otic morphogenesis, we used conditional gene ablation after otic placode induction, and temporal inhibition of signaling with a secreted, dominant-negative FGFR2b ectodomain. We show that both ligands are required continuously after otocyst formation for maintenance of otic neuroblasts and for patterning and proliferation of the epithelium, leading to normal morphogenesis of both the cochlear and vestibular domains. Furthermore, the first genome-wide identification of proximal targets of FGFR2b signaling in the early otocyst reveals novel candidate genes for inner ear development and function.
Collapse
Affiliation(s)
- Lisa D Urness
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Xiaofen Wang
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Huy Doan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Nathan Shumway
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - C Albert Noyes
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | | - Ree Lu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA .,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
10
|
Lee KKL, Peskett E, Quinn CM, Aiello R, Adeeva L, Moulding DA, Stanier P, Pauws E. Overexpression of Fgfr2c causes craniofacial bone hypoplasia and ameliorates craniosynostosis in the Crouzon mouse. Dis Model Mech 2018; 11:dmm035311. [PMID: 30266836 PMCID: PMC6262810 DOI: 10.1242/dmm.035311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023] Open
Abstract
FGFR2c regulates many aspects of craniofacial and skeletal development. Mutations in the FGFR2 gene are causative of multiple forms of syndromic craniosynostosis, including Crouzon syndrome. Paradoxically, mouse studies have shown that the activation (Fgfr2cC342Y; a mouse model for human Crouzon syndrome), as well as the removal (Fgfr2cnull), of the FGFR2c isoform can drive suture abolishment. This study aims to address the downstream effects of pathogenic FGFR2c signalling by studying the effects of Fgfr2c overexpression. Conditional overexpression of Fgfr2c (R26RFgfr2c;βact) results in craniofacial hypoplasia as well as microtia and cleft palate. Contrary to Fgfr2cnull and Fgfr2cC342Y, Fgfr2c overexpression is insufficient to drive onset of craniosynostosis. Examination of the MAPK/ERK pathway in the embryonic sutures of Fgfr2cC342Y and R26RFgfr2c;βact mice reveals that both mutants have increased pERK expression. The contrasting phenotypes between Fgfr2cC342Y and R26RFgfr2c;βact mice prompted us to assess the impact of the Fgfr2c overexpression allele on the Crouzon mouse (Fgfr2cC342Y), in particular its effects on the coronal suture. Our results demonstrate that Fgfr2c overexpression is sufficient to partially rescue craniosynostosis through increased proliferation and reduced osteogenic activity in E18.5 Fgfr2cC342Y embryos. This study demonstrates the intricate balance of FGF signalling required for correct calvarial bone and suture morphogenesis, and that increasing the expression of the wild-type FGFR2c isoform could be a way to prevent or delay craniosynostosis progression.
Collapse
Affiliation(s)
- Kevin K L Lee
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Emma Peskett
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Charlotte M Quinn
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Rosanna Aiello
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Liliya Adeeva
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dale A Moulding
- ICH GOSH Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip Stanier
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Erwin Pauws
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
11
|
Rigueur D, Roberts RR, Bobzin L, Merrill AE. A requirement for Fgfr2 in middle ear development. Genesis 2018; 57:e23252. [PMID: 30253032 DOI: 10.1002/dvg.23252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
The skeletal structure of the mammalian middle ear, which is composed of three endochondral ossicles suspended within a membranous air-filled capsule, plays a critical role in conducting sound. Gene mutations that alter skeletal development in the middle ear result in auditory impairment. Mutations in fibroblast growth factor receptor 2 (FGFR2), an important regulator of endochondral and intramembranous bone formation, cause a spectrum of congenital skeletal disorders featuring conductive hearing loss. Although the middle ear malformations in multiple FGFR2 gain-of-function disorders are clinically characterized, those in the FGFR2 loss-of-function disorder lacrimo-auriculo-dento-digital (LADD) syndrome are relatively undescribed. To better understand conductive hearing loss in LADD, we examined the middle ear skeleton of mice with conditional loss of Fgfr2. We find that decreased auditory function in Fgfr2 mutant mice correlates with hypoplasia of the auditory bulla and ectopic bone growth at sites of tendon/ligament attachment. We show that ectopic bone associated with the intra-articular ligaments of the incudomalleal joint is derived from Scx-expressing cells and preceded by decreased expression of the joint progenitor marker Gdf5. Together, these results identify a role for Fgfr2 in development of the middle ear skeletal tissues and suggest potential causes for conductive hearing loss in LADD syndrome.
Collapse
Affiliation(s)
- Diana Rigueur
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan R Roberts
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lauren Bobzin
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Teshima THN, Lourenco SV, Tucker AS. Multiple Cranial Organ Defects after Conditionally Knocking Out Fgf10 in the Neural Crest. Front Physiol 2016; 7:488. [PMID: 27826253 PMCID: PMC5078472 DOI: 10.3389/fphys.2016.00488] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands, and ocular glands, highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10 is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources of FGF can compensate in development of this structure. The tracheal cartilage rings showed normal patterning in the conditional knockout, indicating that the source of Fgf10 for this tissue is mesodermal, which was confirmed using Wnt1cre-dtTom to lineage trace the boundary of the neural crest in this region. The thyroid, thymus, and parathyroid glands surrounding the trachea were present but hypoplastic in the conditional mutant, indicating that a neighboring source of mesodermal Fgf10 might be able to partially compensate for loss of neural crest derived Fgf10.
Collapse
Affiliation(s)
- Tathyane H N Teshima
- Department of Stomatology, School of Dentistry, University of Sao Paulo São Paulo, Brazil
| | - Silvia V Lourenco
- Department of Stomatology, School of Dentistry, University of Sao Paulo São Paulo, Brazil
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London London, UK
| |
Collapse
|
13
|
Lee SG, Huang M, Obholzer ND, Sun S, Li W, Petrillo M, Dai P, Zhou Y, Cotanche DA, Megason SG, Li H, Chen ZY. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration. PLoS One 2016; 11:e0157768. [PMID: 27351484 PMCID: PMC4924856 DOI: 10.1371/journal.pone.0157768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023] Open
Abstract
Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.
Collapse
Affiliation(s)
- Sang Goo Lee
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Mingqian Huang
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Nikolaus D. Obholzer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shan Sun
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Department of Otorhinolaryngology, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenyan Li
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Department of Otorhinolaryngology, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Marco Petrillo
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Pu Dai
- Department of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Yi Zhou
- Stem Cell Program and Division of Pediatric Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Douglas A. Cotanche
- Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Huawei Li
- Department of Otorhinolaryngology, Shanghai Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (ZYC); (HL)
| | - Zheng-Yi Chen
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- * E-mail: (ZYC); (HL)
| |
Collapse
|
14
|
Tang D, Lin Q, He Y, Chai R, Li H. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways. Front Mol Neurosci 2016; 9:39. [PMID: 27303264 PMCID: PMC4880589 DOI: 10.3389/fnmol.2016.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.
Collapse
Affiliation(s)
- Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Qin Lin
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Fujian Medical University Fuzhou, China
| | - Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China; Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China; Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan UniversityShanghai, China; Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
15
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
He Y, Tang D, Cai C, Chai R, Li H. LSD1 is Required for Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2015; 53:2421-34. [PMID: 26008620 DOI: 10.1007/s12035-015-9206-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China. .,Institute of Stem Cell and Regeneration Medicine, Institute of Biomedical Science, Fudan University, Shanghai, People's Republic of China. .,Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
17
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
18
|
Agochukwu NB, Solomon BD, Muenke M. Hearing loss in syndromic craniosynostoses: introduction and consideration of mechanisms. Am J Audiol 2014; 23:135-41. [PMID: 24686979 DOI: 10.1044/2014_aja-13-0036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE There are a number of craniosynostosis syndromes with hearing loss-including Muenke, Apert, Pfeiffer, Crouzon, Beare-Stevenson, Crouzon with acanthosis nigricans, and Jackson-Weiss syndromes-that result from mutations in the fibroblast growth factor receptor (FGFR) genes. Studies of FGFRs and their ligands, fibroblast growth factors (FGFs), have revealed clues to the precise contribution of aberrant FGFR signaling to inner ear morphogenesis and the hearing loss encountered in craniosynostoses. The purpose of this article is to review basic studies of FGFRs with emphasis on their function and expression in the inner ear and surrounding structures. METHOD A Medline search was performed to find basic science articles regarding FGFR, their ligands, and their expression and relevant mouse models. Additional items searched included clinical descriptions and studies of individuals with FGFR-related craniosynostosis syndromes. RESULTS The FGF signaling pathway is essential for the morphogensis and proper function of the inner ear and auditory sensory epithelium. CONCLUSION The variable auditory phenotypes seen in individuals with Muenke syndrome may have a genetic basis, likely due to multiple interacting factors in the genetic environment or modifying factors. Further analysis and studies of mouse models of Muenke syndrome, in particular, may provide clues to the specific effects of the defining mutation in FGFR3 in the inner ear not only at birth but also into adulthood. In particular, investigations into these models may give insight into the variable expression and incomplete penetrance of this phenotype.
Collapse
Affiliation(s)
- Nneamaka B. Agochukwu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Clinical Research Training Program, National Institutes of Health, Bethesda, MD
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Aravidis C, Konialis CP, Pangalos CG, Kosmaidou Z. A familial case of Muenke syndrome. Diverse expressivity of the FGFR3 Pro252Arg mutation--case report and review of the literature. J Matern Fetal Neonatal Med 2013; 27:1502-6. [PMID: 24168007 DOI: 10.3109/14767058.2013.860520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Muenke is a fibroblast growth factor receptor 3 (FGFR-3)-associated syndrome, which was first described in late 1990 s. Muenke syndrome is an autosomal dominant disorder characterized mainly by coronal suture craniosynostosis, hearing impairment and intellectual disability. The syndrome is defined molecularly by a unique point mutation c.749C > G in exon 7 of the FGFR3 gene which results to an amino acid substitution p.Pro250Arg of the protein product. Despite the fact that the mutation rate at this nucleotide is one of the most frequently described in human genome, few Muenke familial case reports are published in current literature. We describe individuals among three generations of a Greek family who are carriers of the same mutation. Medical record and physical examination of family members present a wide spectrum of clinical manifestations. In particular, a 38-year-old woman and her father appear milder clinical findings regarding craniofacial characteristics compared to her uncle and newborn female child. This familial case illustrates the variable expressivity of Muenke syndrome in association with an identical gene mutation.
Collapse
Affiliation(s)
- Christos Aravidis
- Critical Care Department, Cytogenetics Unit, Evangelismos Hospital, Medical School of Athens University , Athens , Greece
| | | | | | | |
Collapse
|
20
|
Vemaraju S, Kantarci H, Padanad MS, Riley BB. A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear. PLoS Genet 2012; 8:e1003068. [PMID: 23166517 PMCID: PMC3499369 DOI: 10.1371/journal.pgen.1003068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/21/2012] [Indexed: 01/13/2023] Open
Abstract
Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows. Neurons of the statoacoustic ganglion (SAG), which innervate the inner ear, are derived from neuroblasts originating from the floor of the otic vesicle. Neuroblasts quickly delaminate from the otic vesicle to form dividing progenitors, which eventually differentiate into mature neurons of the SAG. Fgf has been implicated in initial neuroblast specification in multiple vertebrate species. However, the role of Fgf at later stages remains uncertain, because previous studies have not been able to evaluate the effects of changing levels of Fgf, nor have they been able to clearly distinguish the effects of Fgf at different stages of SAG development. We have combined conditional loss of function, misexpression, and laser-ablation studies in zebrafish to elucidate how graded Fgf coordinates distinct steps in SAG development. Initially moderate Fgf in a spatial gradient specifies neuroblasts within the otic vesicle. Later, mature SAG neurons express Fgf5 and, as additional neurons accumulate outside the otic vesicle, rising levels of Fgf terminate further specification. Elevated Fgf also slows maturation of progenitors, maintaining a stable progenitor pool in which growth and differentiation are evenly balanced. This feedback facilitates steady production of new neurons as the animal grows through larval and adults stages.
Collapse
Affiliation(s)
- Shruti Vemaraju
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | | | | | | |
Collapse
|
21
|
Magariños M, Contreras J, Aburto MR, Varela-Nieto I. Early development of the vertebrate inner ear. Anat Rec (Hoboken) 2012; 295:1775-90. [PMID: 23044927 DOI: 10.1002/ar.22575] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
This is a review of the biological processes and the main signaling pathways required to generate the different otic cell types, with particular emphasis on the actions of insulin-like growth factor I. The sensory organs responsible of hearing and balance have a common embryonic origin in the otic placode. Lineages of neural, sensory, and support cells are generated from common otic neuroepithelial progenitors. The sequential generation of the cell types that will form the adult inner ear requires the coordination of cell proliferation with cell differentiation programs, the strict regulation of cell survival, and the metabolic homeostasis of otic precursors. A network of intracellular signals operates to coordinate the transcriptional response to the extracellular input. Understanding the molecular clues that direct otic development is fundamental for the design of novel treatments for the protection and repair of hearing loss and balance disorders.
Collapse
Affiliation(s)
- Marta Magariños
- Instituto de Investigaciones Biomédicas, Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Fantetti KN, Fekete DM. Members of the BMP, Shh, and FGF morphogen families promote chicken statoacoustic ganglion neurite outgrowth and neuron survival in vitro. Dev Neurobiol 2012; 72:1213-28. [PMID: 22006861 DOI: 10.1002/dneu.20988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 01/20/2023]
Abstract
Mechanosensory hair cells of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Members of several morphogen families are expressed within and surrounding the chick inner ear during stages of SAG axon outgrowth and pathfinding. On the basis of their localized expression patterns, we hypothesized that bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), and sonic hedgehog (Shh) may function as guidance cues for growing axons and/or may function as trophic factors once axons have reached their targets. To test this hypothesis, three-dimensional collagen cultures were used to grow Embryonic Day 4 (E4) chick SAG explants for 24 h in the presence of purified proteins or beads soaked in proteins. The density of neurite outgrowth was quantified to determine effects on neurite outgrowth. Explants displayed enhanced neurite outgrowth when cultured in the presence of purified BMP4, BMP7, a low concentration of Shh, FGF8, FGF10, or FGF19. In contrast, SAG neurons appeared unresponsive to FGF2. Collagen gel cultures were labeled with terminal dUTP nick-end labeling and immunostained with anti-phosphohistone H3 to determine effects on neuron survival and proliferation, respectively. Treatments that increased neurite outgrowth also yielded significantly fewer apoptotic cells, with no effect on cell proliferation. When presented as focal sources, BMP4, Shh, and FGFs -8, -10, and -19 promoted asymmetric outgrowth from the ganglion in the direction of the beads. BMP7-soaked beads did not induce this response. These results suggest that a subset of morphogens enhance both survival and axon outgrowth of otic neurons.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
23
|
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 2012; 7:e34123. [PMID: 22448289 PMCID: PMC3309011 DOI: 10.1371/journal.pone.0034123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Background During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling. Methodology/Principal Findings We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative). Conclusions/Significance Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Cell Communication
- Cochlea/metabolism
- Cochlea/pathology
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Female
- Fluorescent Antibody Technique
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proteins/physiology
- RNA, Untranslated
- Receptors, Notch/physiology
- Regeneration/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Owen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- University of Bath, Bath, United Kingdom
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
24
|
Liu Z, Owen T, Fang J, Srinivasan RS, Zuo J. In vivo Notch reactivation in differentiating cochlear hair cells induces Sox2 and Prox1 expression but does not disrupt hair cell maturation. Dev Dyn 2012; 241:684-96. [PMID: 22354878 DOI: 10.1002/dvdy.23754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Notch signaling is active in mouse cochlear prosensory progenitors but declines in differentiating sensory hair cells (HCs). Overactivation of the Notch1 intracellular domain (NICD) in progenitors blocks HC fate commitment and/or differentiation. However, it is not known whether reactivation of NICD in differentiating HCs also interrupts their developmental program and reactivates its downstream targets. RESULTS By analyzing Atoh1(CreER+) ; Rosa26-NICD(loxp/+) or Atoh1(CreER+) ; Rosa26-NICD(loxp/+) ; RBP-J(loxp/loxp) mice, we demonstrated that ectopic NICD in differentiating HCs caused reactivation of Sox2 and Prox1 in an RBP-J-dependent manner. Interestingly, Prox1 reactivation was exclusive to outer HCs (OHCs). In addition, lineage tracing analysis of Prox1(CreER/+) ; Rosa26-EYFP(loxp/+) and Prox1(CreEGFP/+) ; Rosa26-EYFP(loxp/+) mice showed that nearly all HCs experiencing Prox1 expression were OHCs. Surprisingly, these HCs still matured normally with expression of prestin, wild-type-like morphology, and uptake of FM4-64FX dye at adult ages. CONCLUSIONS Our results suggest that the developmental program of cochlear differentiating HCs is refractory to Notch reactivation and that Notch is an upstream regulator of Sox2 and Prox1 in cochlear development. In addition, our results support that Sox2 and Prox1 should not be the main blockers for terminal differentiation of HCs newly regenerated from postnatal cochlear SCs that still maintain Sox2 and Prox1 expression.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
25
|
Agochukwu NB, Solomon BD, Zajaczkowska-Kielska A, Lyons CJ, Pollock T, Singhal A, Van Allen MI, Muenke M. Genetic-environmental interaction in a unique case of Muenke syndrome with intracranial hypertension. Childs Nerv Syst 2011; 27:2183-6. [PMID: 21971908 PMCID: PMC4101181 DOI: 10.1007/s00381-011-1595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Nneamaka B Agochukwu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, MSC 3717, Building 35, Room 1B-207, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sánchez-Guardado LÓ, Ferran JL, Rodríguez-Gallardo L, Puelles L, Hidalgo-Sánchez M. Meis gene expression patterns in the developing chicken inner ear. J Comp Neurol 2011; 519:125-47. [PMID: 21120931 DOI: 10.1002/cne.22508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are interested in stable gene network activities operating sequentially during inner ear specification. The implementation of this patterning process is a key event in the generation of functional subdivisions of the otic vesicle during early embryonic development. The vertebrate inner ear is a complex sensory structure that is a good model system for characterization of developmental mechanisms controlling patterning and specification. Meis genes, belonging to the TALE family, encode homodomain-containing transcription factors remarkably conserved during evolution, which play a role in normal and neoplastic development. To gain understanding of the possible role of homeobox Meis genes in the developing chick inner ear, we comprehensively analyzed their spatiotemporal expression patterns from early otic specification stages onwards. In the invaginating otic placode, Meis1/2 transcripts were observed in the borders of the otic cup, being absent in the portion of otic epithelium closest to the hindbrain. As development proceeds, Meis1 and Meis2 expressions became restricted to the dorsomedial otic epithelium. Both genes were strongly expressed in the entire presumptive domain of the semicircular canals, and more weakly in all associated cristae. The endolymphatic apparatus was labeled in part by Meis1/2. Meis1 was also expressed in the lateral wall of the growing cochlear duct, while Meis2 expression was detected in a few cells of the developing acoustic-vestibular ganglion. Our results suggest a possible role of Meis assigning regional identity in the morphogenesis, patterning, and specification of the developing inner ear.
Collapse
|
27
|
Stöver T, Lenarz T. Biomaterials in cochlear implants. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc10. [PMID: 22073103 PMCID: PMC3199815 DOI: 10.3205/cto000062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development.
Collapse
Affiliation(s)
- Timo Stöver
- Department of Otolaryngology, Goethe University Frankfurt, Frankfurt a.M., Germany
| | | |
Collapse
|
28
|
Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling. Dev Biol 2011; 353:94-104. [PMID: 21362415 DOI: 10.1016/j.ydbio.2011.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 11/21/2022]
Abstract
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1⁻/⁻; Spry2⁻/⁻ embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1⁻/⁻; Spry2⁻/⁻ embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1⁻/⁻; Spry2⁻/⁻ embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.
Collapse
|
29
|
Appler JM, Goodrich LV. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog Neurobiol 2011; 93:488-508. [PMID: 21232575 DOI: 10.1016/j.pneurobio.2011.01.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.
Collapse
Affiliation(s)
- Jessica M Appler
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Chatterjee S, Kraus P, Lufkin T. A symphony of inner ear developmental control genes. BMC Genet 2010; 11:68. [PMID: 20637105 PMCID: PMC2915946 DOI: 10.1186/1471-2156-11-68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/16/2010] [Indexed: 01/21/2023] Open
Abstract
The inner ear is one of the most complex and detailed organs in the vertebrate body and provides us with the priceless ability to hear and perceive linear and angular acceleration (hence maintain balance). The development and morphogenesis of the inner ear from an ectodermal thickening into distinct auditory and vestibular components depends upon precise temporally and spatially coordinated gene expression patterns and well orchestrated signaling cascades within the otic vesicle and upon cellular movements and interactions with surrounding tissues. Gene loss of function analysis in mice has identified homeobox genes along with other transcription and secreted factors as crucial regulators of inner ear morphogenesis and development. While otic induction seems dependent upon fibroblast growth factors, morphogenesis of the otic vesicle into the distinct vestibular and auditory components appears to be clearly dependent upon the activities of a number of homeobox transcription factors. The Pax2 paired-homeobox gene is crucial for the specification of the ventral otic vesicle derived auditory structures and the Dlx5 and Dlx6 homeobox genes play a major role in specification of the dorsally derived vestibular structures. Some Micro RNAs have also been recently identified which play a crucial role in the inner ear formation.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | | | | |
Collapse
|
31
|
Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL. FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 2010; 340:595-604. [PMID: 20171206 PMCID: PMC2854211 DOI: 10.1016/j.ydbio.2010.02.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 12/25/2022]
Abstract
The inner ear epithelium, with its complex array of sensory, non-sensory, and neuronal cell types necessary for hearing and balance, is derived from a thickened patch of head ectoderm called the otic placode. Mouse embryos lacking both Fgf3 and Fgf10 fail to initiate inner ear development because appropriate patterns of gene expression fail to be specified within the pre-otic field. To understand the transcriptional "blueprint" initiating inner ear development, we used microarray analysis to identify prospective placode genes that were differentially expressed in control and Fgf3(-)(/)(-);Fgf10(-)(/)(-) embryos. Several genes in the down-regulated class, including Hmx3, Hmx2, Foxg1, Sox9, Has2, and Slc26a9 were validated by in situ hybridization. We also assayed candidate target genes suggested by other studies of otic induction. Two placode markers, Fgf4 and Foxi3, were down-regulated in Fgf3(-)(/)(-);Fgf10(-)(/)(-) embryos, whereas Foxi2, a cranial epidermis marker, was expanded in double mutants, similar to its behavior when WNT responses are blocked in the otic placode. Assays of hindbrain Wnt genes revealed that only Wnt8a was reduced or absent in FGF-deficient embryos, and that even some Fgf3(-)(/)(-);Fgf10(-)(/+) and Fgf3(-)(/)(-) embryos failed to express Wnt8a, suggesting a key role for Fgf3, and a secondary role for Fgf10, in Wnt8a expression. Chick explant assays showed that FGF3 or FGF4, but not FGF10, were sufficient to induce Wnt8a. Collectively, our results suggest that Wnt8a provides the link between FGF-induced formation of the pre-otic field and restriction of the otic placode to ectoderm adjacent to the hindbrain.
Collapse
Affiliation(s)
- Lisa D. Urness
- Department of Human Genetics, University of Utah, 15 N 2030 E, RM 2100, Salt Lake City, UT 84112-5330, USA
| | - Christian N. Paxton
- Department of Neurobiology and Anatomy, University of Utah, 30 N 1900 E, RM 2R066 SOM, Salt Lake City, UT 84132-3401, USA
| | - Xiaofen Wang
- Department of Human Genetics, University of Utah, 15 N 2030 E, RM 2100, Salt Lake City, UT 84112-5330, USA
| | - Gary C. Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah, 30 N 1900 E, RM 2R066 SOM, Salt Lake City, UT 84132-3401, USA
| | - Suzanne L. Mansour
- Department of Human Genetics, University of Utah, 15 N 2030 E, RM 2100, Salt Lake City, UT 84112-5330, USA
- Department of Neurobiology and Anatomy, University of Utah, 30 N 1900 E, RM 2R066 SOM, Salt Lake City, UT 84132-3401, USA
| |
Collapse
|
32
|
Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR. Molecular pathology of the fibroblast growth factor family. Hum Mutat 2009; 30:1245-55. [PMID: 19621416 DOI: 10.1002/humu.21067] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human fibroblast growth factor (FGF) family contains 22 proteins that regulate a plethora of physiological processes in both developing and adult organism. The mutations in the FGF genes were not known to play role in human disease until the year 2000, when mutations in FGF23 were found to cause hypophosphatemic rickets. Nine years later, seven FGFs have been associated with human disorders. These include FGF3 in Michel aplasia; FGF8 in cleft lip/palate and in hypogonadotropic hypogonadism; FGF9 in carcinoma; FGF10 in the lacrimal/salivary glands aplasia, and lacrimo-auriculo-dento-digital syndrome; FGF14 in spinocerebellar ataxia; FGF20 in Parkinson disease; and FGF23 in tumoral calcinosis and hypophosphatemic rickets. The heterogeneity in the functional consequences of FGF mutations, the modes of inheritance, pattern of involved tissues/organs, and effects in different developmental stages provide fascinating insights into the physiology of the FGF signaling system. We review the current knowledge about the molecular pathology of the FGF family.
Collapse
Affiliation(s)
- Pavel Krejci
- Department of Immunology and Animal Physiology, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
33
|
Deng M, Pan L, Xie X, Gan L. Requirement for Lmo4 in the vestibular morphogenesis of mouse inner ear. Dev Biol 2009; 338:38-49. [PMID: 19913004 DOI: 10.1016/j.ydbio.2009.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
During development, compartmentalization of an early embryonic structure produces blocks of cells with distinct properties and developmental potentials. The auditory and vestibular components of vertebrate inner ears are derived from defined compartments within the otocyst during embryogenesis. The vestibular apparatus, including three semicircular canals, saccule, utricle, and their associated sensory organs, detects angular and linear acceleration of the head and relays the information through vestibular neurons to vestibular nuclei in the brainstem. How the early developmental events manifest vestibular structures at the molecular level is largely unknown. Here, we show that LMO4, a LIM-domain-only transcriptional regulator, is required for the formation of semicircular canals and their associated sensory cristae. Targeted disruption of Lmo4 resulted in the dysmorphogenesis of the vestibule and in the absence of three semicircular canals, anterior and posterior cristae. In Lmo4-null otocysts, canal outpouches failed to form and cell proliferation was reduced in the dorsolateral region. Expression analysis of the known otic markers showed that Lmo4 is essential for the normal expression of Bmp4, Fgf10, Msx1, Isl1, Gata3, and Dlx5 in the dorsolateral domain of the otocyst, whereas the initial compartmentalization of the otocyst remains unaffected. Our results demonstrate that Lmo4 controls the development of the dorsolateral otocyst into semicircular canals and cristae through two distinct mechanisms: regulating the expression of otic specific genes and stimulating the proliferation of the dorsolateral part of the otocyst.
Collapse
Affiliation(s)
- Min Deng
- University of Rochester Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
34
|
Sánchez-Guardado LÓ, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M. Raldh3gene expression pattern in the developing chicken inner ear. J Comp Neurol 2009; 514:49-65. [DOI: 10.1002/cne.21984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Lin WF, Chen CJ, Chang YJ, Chen SL, Chiu IM, Chen L. SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal 2009; 21:1060-72. [PMID: 19249349 DOI: 10.1016/j.cellsig.2009.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 02/05/2009] [Accepted: 02/17/2009] [Indexed: 11/27/2022]
Abstract
Genetic studies have established the crucial roles of FGF signaling, FGF-induced gene expression and morphogenesis during embryogenesis. In this study, we showed that overexpressing a signaling adaptor protein, SH2B1beta, enhanced FGF1-induced neurite outgrowth in PC12 cells. SH2B1beta has previously been shown to promote nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF)-induced neurite outgrowth, in part, through prolonging NGF and GDNF-induced signaling. To delineate how SH2B1beta promotes FGF1-induced neurite outgrowth, we examined its role in FGF1-dependent signaling. Our data suggest that SH2B1beta enhances and prolongs FGF1-induced MEK-ERK1/2 and PI3K-AKT pathways. We also provided the first evidence that FGF1 induces the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at serine 727 [pSTAT3(S727)] in PC12 cells. SH2B1beta enhances this phosphorylation and the expression of the immediate early gene, Egr1. Through inhibitor assays, we have further shown that MEK-ERK1/2 is required for FGF1-induced neurite outgrowth, pSTAT3(S727) and Egr1 expression. Moreover, inhibiting Rho kinase, ROCK, enhances FGF1-induced neurite outgrowth through pSTAT3(S727)-independent manner. Taken together, our results demonstrate, for the first time, that SH2B1beta enhances FGF1-induced neurite outgrowth in PC12 cells mainly through MEK-ERK1/2-STAT3-Egr1 pathway.
Collapse
Affiliation(s)
- Wei-Fan Lin
- Institute of Molecular Medicine, Department of Life Science and Brain Research Center, National Tsing Hua University, 101 Section 2 Kuang-Fu Road, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Mansour SL, Twigg SRF, Freeland RM, Wall SA, Li C, Wilkie AOM. Hearing loss in a mouse model of Muenke syndrome. Hum Mol Genet 2008; 18:43-50. [PMID: 18818193 PMCID: PMC2644644 DOI: 10.1093/hmg/ddn311] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterozygous Pro250Arg substitution mutation in fibroblast growth factor receptor 3 (FGFR3), which increases ligand-dependent signalling, is the most common genetic cause of craniosynostosis in humans and defines Muenke syndrome. Since FGF signalling plays dosage-sensitive roles in the differentiation of the auditory sensory epithelium, we evaluated hearing in a large group of Muenke syndrome subjects, as well as in the corresponding mouse model (Fgfr3P244R). The Muenke syndrome cohort showed significant, but incompletely penetrant, predominantly low-frequency sensorineural hearing loss, and the Fgfr3P244R mice showed dominant, fully penetrant hearing loss that was more severe than that in Muenke syndrome individuals, but had the same pattern of relative high-frequency sparing. The mouse hearing loss correlated with an alteration in the fate of supporting cells (Deiters'-to-pillar cells) along the entire length of the cochlear duct, with the most extreme abnormalities found at the apical or low-frequency end. In addition, there was excess outer hair cell development in the apical region. We conclude that low-frequency sensorineural hearing loss is a characteristic feature of Muenke syndrome and that the genetically equivalent mouse provides an excellent model that could be useful in testing hearing loss therapies aimed at manipulating the levels of FGF signalling in the inner ear.
Collapse
Affiliation(s)
- Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Urness LD, Li C, Wang X, Mansour SL. Expression of ERK signaling inhibitors Dusp6, Dusp7, and Dusp9 during mouse ear development. Dev Dyn 2008; 237:163-9. [PMID: 18058922 DOI: 10.1002/dvdy.21380] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The levels of fibroblast growth factor (FGF) signaling play important roles in coordinating development of the mouse inner, middle, and outer ears. Extracellular signal-regulated kinases (ERKs) are among the effectors that transduce the FGF signal to the nucleus and other cellular compartments. Attenuation of ERK activity by dephosphorylation is necessary to modulate the magnitude and duration of the FGF signal. Recently, we showed that inactivation of the ERK phosphatase, dual specificity phosphatase 6 (DUSP6), causes partially penetrant postnatal lethality, hearing loss and skeletal malformations. To determine whether other Dusps may function redundantly with Dusp6 during otic development, we surveyed the expression domains of the three ERK-specific DUSP transcripts, Dusp6, Dusp7, and Dusp9, in the embryonic mouse ear. We show that each is expressed in partially overlapping patterns that correspond to regions of active FGF signaling, suggesting combinatorial roles in negative regulation of this pathway during ear development.
Collapse
Affiliation(s)
- Lisa D Urness
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|
38
|
Sox9 is required for invagination of the otic placode in mice. Dev Biol 2008; 317:213-24. [DOI: 10.1016/j.ydbio.2008.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 12/31/2022]
|
39
|
Liu JJ, Shin JH, Hyrc KL, Liu S, Lei D, Holley MC, Bao J. Stem cell therapy for hearing loss: Math1 overexpression in VOT-E36 cells. Otol Neurotol 2007; 27:414-21. [PMID: 16639283 DOI: 10.1097/00129492-200604000-00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS VOT-E36 cells acquire mechanosensitivity after mammalian atonal homolog 1 (Math1) overexpression. BACKGROUND VOT-E36 cells are derived from a population of epithelial cells in the ventral region of the otocyst at embryonic Day 10.5, before hair cell differentiation. These cells express a number of specific molecular markers for hair cells under both proliferation and differentiation states. Overexpression of Math1 can convert nonsensory epithelial cells into hair cells in the cochlea. Based on this information, we tested whether VOT-E36 cells can be converted into hair cells by Math1 overexpression. METHODS Using reverse transcriptase-polymerase chain reaction-based analysis, we first compared the expression patterns of various molecular markers for hair cell development in VOT-E36 cells between proliferation and differentiation states, and also before and after overexpression of Math1. Subsequently, with a standard calcium imaging method, we examined whether VOT-E36 cells overexpressing Math1 could detect mechanical vibrations and activate spiral ganglion neurons in a coculture model. In addition, using confocal and scanning electron microscopes, we examined morphologic changes of VOT-E36 cells after Math1 overexpression. RESULTS Consistent with previous reports, this study has shown that VOT-E36 cells express a number of specific molecular markers for hair cells in both proliferation and differentiation states. Under appropriate culture conditions, Math1 is transiently expressed in this cell line during conditional differentiation. In VOT-E36 cells overexpressing Math1, the normal expression pattern of certain molecular markers for mature hair cells is partially restored. Interestingly, after coculture with spiral ganglion neurons, VOT-E36 cells overexpressing Math1 are able to respond to mechanical vibrations and activate spiral ganglion neurons. Possible molecular mechanisms underlying this novel finding have been explored. CONCLUSION Math1 overexpression can partially restore presumably downstream signaling cascades for normal hair cell differentiation in VOT-E36 cells, which are able to detect mechanical vibrations after being cocultured with spiral ganglion neurons.
Collapse
Affiliation(s)
- Jan-Jan Liu
- Department of Otolaryngology, Center for Aging, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 2007; 134:647-58. [PMID: 17259302 DOI: 10.1242/dev.02772] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the tissue/planar cell polarity (PCP) pathway and its role in generating spatial patterns in vertebrates. Current evidence suggests that PCP integrates both global and local signals to orient diverse structures with respect to the body axes. Interestingly, the system acts on both subcellular structures, such as hair bundles in auditory and vestibular sensory neurons, and multicellular structures, such as hair follicles. Recent work has shown that intriguing connections exist between the PCP-based orienting system and left-right asymmetry, as well as between the oriented cell movements required for neural tube closure and tubulogenesis. Studies in mice, frogs and zebrafish have revealed that similarities, as well as differences, exist between PCP in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
41
|
Chapman SC, Cai Q, Bleyl SB, Schoenwolf GC. Restricted expression of Fgf16 within the developing chick inner ear. Dev Dyn 2006; 235:2276-81. [PMID: 16786592 PMCID: PMC2396527 DOI: 10.1002/dvdy.20872] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling is required for otic placode induction and patterning of the developing inner ear. We have cloned the chick ortholog of Fgf16 and analyzed its expression pattern in the early chick embryo. Expression is restricted to the otic placode and developing inner ear through all the stages examined. By the closed otocyst stage, expression has resolved to anterior and posterior domains that partially overlap with those of bone morphogenetic protein 4 (Bmp4), a marker of the developing sensory patches, the cristae of the anterior and posterior semicircular canals. Platelet-derived growth factor alpha (PDGFA), another growth factor with restricted otic expression, also overlaps with Fgf16 expression. The restricted expression pattern of Fgf16 suggests a role for FGF signaling in the patterning of the sensory cristae, together with BMP signaling.
Collapse
Affiliation(s)
- Susan C Chapman
- University of Utah, School of Medicine, Department of Neurobiology and Anatomy, and Children's Health Research Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
42
|
Romand R, Kondo T, Fraulob V, Petkovich M, Dollé P, Hashino E. Dynamic expression of retinoic acid-synthesizing and -metabolizing enzymes in the developing mouse inner ear. J Comp Neurol 2006; 496:643-54. [PMID: 16615129 PMCID: PMC2845518 DOI: 10.1002/cne.20936] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinoic acid signaling plays essential roles in morphogenesis and neural development through transcriptional regulation of downstream target genes. It is believed that the balance between the activities of synthesizing and metabolizing enzymes determines the amount of active retinoic acid to which a developing tissue is exposed. In this study, we investigated spatiotemporal expression patterns of four synthesizing enzymes, the retinaldehyde dehydrogenases 1, 2, 3, and 4 (Raldh1, Raldh2, Raldh3, and Raldh4) and two metabolizing enzymes (Cyp26A1 and Cyp26B1) in the embryonic and postnatal mouse inner ear by using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), in situ hybridization, and Western blot analysis. Quantitative RT-PCR analysis and Western blot data revealed that the expression of CYP26s was much higher than that of Raldhs at early embryonic ages but that Cyp26 expression was downregulated during embryonic development. Conversely, the expression levels of Raldh2 and -3 increased during development and were significantly higher than the Cyp26 levels at postnatal day 20. At this age, Raldh3 was expressed predominantly in the cochlea, whereas Raldh2 was present in the vestibular end organ. At early embryonic stages, as observed by in situ hybridization, the synthesizing enzymes were expressed only in the dorsoventral epithelium of the otocyst, whereas the metabolizing enzymes were present mainly in mesenchymal cells surrounding the otic epithelium. At later stages, Raldh2, Raldh3, and Cyp26B1 were confined to the stria vascularis, spiral ganglion, and supporting cells in the cochlear and vestibular epithelia, respectively. The downregulation of Cyp26s and the upregulation of Raldhs after birth during inner ear maturation suggest tissue changes in the sensitivity to retinoic acid concentrations.
Collapse
|
43
|
Fritzsch B, Pauley S, Beisel KW. Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 2006; 1091:151-71. [PMID: 16643865 PMCID: PMC3904743 DOI: 10.1016/j.brainres.2006.02.078] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 01/19/2023]
Abstract
The development and evolution of mechanosensory cells and the vertebrate ear is reviewed with an emphasis on delineating the cellular, molecular and developmental basis of these changes. Outgroup comparisons suggests that mechanosensory cells are ancient features of multicellular organisms. Molecular evidence suggests that key genes involved in mechanosensory cell function and development are also conserved among metazoans. The divergent morphology of mechanosensory cells across phyla is interpreted here as 'deep molecular homology' that was in parallel shaped into different forms in each lineage. The vertebrate mechanosensory hair cell and its associated neuron are interpreted as uniquely derived features of vertebrates. It is proposed that the vertebrate otic placode presents a unique embryonic adaptation in which the diffusely distributed ancestral mechanosensory cells became concentrated to generate a large neurosensory precursor population. Morphogenesis of the inner ear is reviewed and shown to depend on genes expressed in and around the hindbrain that interact with the otic placode to define boundaries and polarities. These patterning genes affect downstream genes needed to maintain proliferation and to execute ear morphogenesis. We propose that fibroblast growth factors (FGFs) and their receptors (FGFRs) are a crucial central node to translate patterning into the complex morphology of the vertebrate ear. Unfortunately, the FGF and FGFR genes have not been fully analyzed in the many mutants with morphogenetic ear defects described thus far. Likewise, little information exists on the ear histogenesis and neurogenesis in many mutants. Nevertheless, a molecular mechanism is now emerging for the formation of the horizontal canal, an evolutionary novelty of the gnathostome ear. The existing general module mediating vertical canal growth and morphogenesis was modified by two sets of new genes: one set responsible for horizontal canal morphogenesis and another set for neurosensory formation of the horizontal crista and associated sensory neurons. The dramatic progress in deciphering the molecular basis of ear morphogenesis offers grounds for optimism for translational research toward intervention in human morphogenetic defects of the ear.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, NE 68178, USA.
| | | | | |
Collapse
|
44
|
Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M. Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 2006; 7:30-8. [PMID: 16798106 DOI: 10.1016/j.modgep.2006.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/05/2006] [Accepted: 05/16/2006] [Indexed: 01/30/2023]
Abstract
The inner ear is a complex sensorial structure with hearing and balance functions. A key aim of developmental biology is to understand the molecular and cellular mechanisms involved in the induction, patterning and innervation of the vertebrate inner ear. These developmental events could be mediated by the expression of regulating genes, such as the members of the family of Fibroblast Growth Factors (Fgfs). This work reports the detailed spatial and temporal patterns of Fgf19 expression in the developing inner ear from otic cup (stage 14) to 8 embryonic days (stage 34). In the earliest stages, Fgf19 and Fgf8 expressions determine two subdomains within the Fgf10-positive proneural-sensory territory. We show that, from the earliest stages, the Fgf19 expression was detected in the acoustic-vestibular ganglion and the macula utriculi. The Fgf19 gene was also strongly, but transiently, expressed in the macula lagena, whereas the macula neglecta never expressed this gene in the period analysed. The Fgf19 expression was also clearly observed in some borders of various sensory elements. These results could be useful from further investigations into the role of FGF19 in otic patterning.
Collapse
Affiliation(s)
- Hortensia Sánchez-Calderón
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
45
|
Hirate Y, Okamoto H. Canopy1, a Novel Regulator of FGF Signaling around the Midbrain-Hindbrain Boundary in Zebrafish. Curr Biol 2006; 16:421-7. [PMID: 16488878 DOI: 10.1016/j.cub.2006.01.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 01/06/2006] [Indexed: 11/30/2022]
Abstract
FGF signaling from the midbrain-hindbrain boundary (MHB, isthmus) plays a major role both in maintenance of the MHB and induction of the tectum and cerebellum. Since different levels of FGF signaling in the MHB result in a qualitative difference in inducing activity, FGF signaling in the MHB should be tightly regulated positively and negatively at multiple steps to ensure correct levels of FGF signaling. Factors that negatively regulate FGF signal around the MHB are reported. However, factors that ensure strong FGF signal in the MHB are largely unknown. Here we report the identification of Canopy1 (Cnpy1), a novel MHB-specific, Saposin-related protein that belongs to an evolutionarily conserved protein family. The cnpy1 gene was expressed specifically in the MHB of zebrafish embryos. Exogenous FGF8 induced expression of cnpy1 in the tectal primordial. Knockdown of cnpy1 resulted in MHB defects and impaired FGF signaling in a cell-autonomous manner. Cnpy1 is localized in the endoplasmic reticulum and interacts with FGFR1. This study highlights a positive-feedback loop between the FGFR pathway and Cnpy1 that may ensure the strength of FGF signaling in the MHB, leading to correct development of the tectum and cerebellum.
Collapse
Affiliation(s)
- Yoshikazu Hirate
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
46
|
Fritzsch B, Pauley S, Matei V, Katz DM, Xiang M, Tessarollo L. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain. Hear Res 2005; 206:52-63. [PMID: 16080998 PMCID: PMC3904737 DOI: 10.1016/j.heares.2004.11.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 11/14/2004] [Indexed: 11/28/2022]
Abstract
We review the in vivo evidence for afferent fiber guidance to the inner ear sensory epithelia and the central nuclei of termination. Specifically, we highlight our current molecular understanding for the role of hair cells and sensory epithelia in guiding afferents, how disruption of certain signals can alter fiber pathways, even in the presence of normal hair cells, and what role neurotrophins play in fiber guidance of sensory neurons to hair cells. The data suggest that the neurotrophin BDNF is the most important molecule known for inner ear afferent fiber guidance to hair cells in vivo. This suggestion is based on experiments on Ntf3 transgenic mice expressing BDNF under Ntf3 promoter that show deviations of fiber growth in the ear to areas that express BDNF but have no hair cells. However, fiber growth can occur in the absence of BDNF as demonstrated by double mutants for BDNF and Bax. We directly tested the significance of hair cells or sensory epithelia for fiber guidance in mutants that lose hair cells (Pou4f3) or do not form a posterior crista (Fgf10). While these data emphasize the role played by BDNF, normally released from hair cells, there is some limited capacity for directed growth even in the absence of hair cells, BDNF, or sensory epithelia. This directed growth may rely on semaphorins or other matrix proteins because targeted ablation of the sema3 docking site on the sema receptor Npn1 results in targeting errors of fibers even in the presence of hair cells and BDNF. Overall, our data support the notion that targeting of the afferent processes in the ear is molecularly distinct from targeting processes in the central nuclei. This conclusion is derived from data that show no recognizable central projection deviation, even if fibers are massively rerouted in the periphery, as in Ntf3(tgBDNF) mice in which vestibular fibers project to the cochlea.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, United States.
| | | | | | | | | | | |
Collapse
|
47
|
Tang LS, Alger HM, Lin F, Pereira FA. Dynamic expression of COUP-TFI and COUP-TFII during development and functional maturation of the mouse inner ear. Gene Expr Patterns 2005; 5:587-92. [PMID: 15907456 DOI: 10.1016/j.modgep.2005.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/09/2005] [Accepted: 03/22/2005] [Indexed: 11/29/2022]
Abstract
COUP-TFs (chicken ovalbumin upstream promoter-transcription factors) are orphan members of the nuclear receptor superfamily of ligand-activated receptors for which their ligands have not been identified. The two mammalian proteins, COUP-TFI and COUP-TFII, share 80% sequence identity and regulate many aspects of mammalian development and differentiation. In this report, we systemically examined the temporal and spatial expression of COUP-TFI and COUP-TFII transcripts and, for the first time, their protein during development and functional maturation of the cochlea. Both COUP-TFI and COUP-TFII were expressed early in the developing otic vesicle. COUP-TFI expression correlated with the differentiation of hair cells and support cells in the organ of Corti, whereas COUP-TFII expression was down-regulated with differentiation of the organ of Corti. Furthermore, we report for the first time, that the generally nuclear COUP-TFI receptor protein was localized in the cytoplasm of maturing hair cells and pillar cells. Collectively, although COUP-TFI and COUP-TFII are homologues, the expression of each orphan receptor has a restricted and dynamic expression during cochlea development particularly during patterning and differentiation of the cochlear structures.
Collapse
Affiliation(s)
- Louisa S Tang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
48
|
Nicholl AJ, Kneebone A, Davies D, Cacciabue-Rivolta DI, Rivolta MN, Coffey P, Holley MC. Differentiation of an auditory neuronal cell line suitable for cell transplantation. Eur J Neurosci 2005; 22:343-53. [PMID: 16045487 DOI: 10.1111/j.1460-9568.2005.04213.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The auditory neuroblast cell line US/VOT-N33 (N33), which is conditionally immortal, was studied as an in vitro model for the differentiation of spiral ganglion neurons (SGNs) and as a candidate for cell transplantation in rodents. It expresses numerous molecular markers characteristic of auditory neuroblasts, including the transcription factors GATA3, NeuroD, Brn3a and Islet1, as well as the neuronal cytoskeletal protein beta3-tubulin. It displays active migratory behaviour in vitro and in vivo. In the presence of the fibroblast growth factors FGF1 or FGF2 it differentiates bipolar morphologies similar to those of native SGNs. In coculture with neonatal cochlear tissue it is repelled from epithelial surfaces but not from native SGNs, alongside which it extends parallel neuronal processes. When injected into the retina in vivo, EGFP-labelled N33 cells were traced for 1-2 weeks and migrated rapidly within the subretinal space. Cells that found their way into the retinal ganglion cell layer extended multiple processes but did not express beta3-tubulin. The ability of N33 to migrate, to differentiate, to localize with native SGNs in vitro and to survive in vivo suggests that they provide an effective model for SGN differentiation and for cell transplantation into the ear.
Collapse
Affiliation(s)
- A J Nicholl
- Department of Biomedical Sciences, Addison Building, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Ladher RK, Wright TJ, Moon AM, Mansour SL, Schoenwolf GC. FGF8 initiates inner ear induction in chick and mouse. Genes Dev 2005; 19:603-13. [PMID: 15741321 PMCID: PMC551580 DOI: 10.1101/gad.1273605] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In both chick and mouse, the otic placode, the rudiment of the inner ear, is induced by at least two signals, one from the cephalic paraxial mesoderm and the other from the neural ectoderm. In chick, the mesodermal signal, FGF19, induces neural ectoderm to express additional signals, including WNT8c and FGF3, resulting in induction of the otic placode. In mouse, mesodermal Fgf10 acting redundantly with neural Fgf3 is required for induction of the placode. To determine how the mesodermal inducers of the otic placode are localized, we took advantage of the unique strengths of the two model organisms. We show that endoderm is necessary for otic induction in the chick and that Fgf8, expressed in the chick endoderm subjacent to Fgf19, is both sufficient and necessary for the expression of Fgf19 in the mesoderm. In the mouse, Fgf8 is also expressed in endoderm as well as in other germ layers in the periotic placode region. We show that otic induction fails in embryos null for Fgf3 and hypomorphic for Fgf8 and expression of mesodermal Fgf10 is reduced. Thus, Fgf8 plays a critical upstream role in an FGF signaling cascade required for otic induction in chick and mouse.
Collapse
Affiliation(s)
- Raj K Ladher
- Sensory Development, Riken Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | |
Collapse
|
50
|
Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M. Otx2, Gbx2, and Fgf8 expression patterns in the chick developing inner ear and their possible roles in otic specification and early innervation. Gene Expr Patterns 2005; 4:659-69. [PMID: 15465488 DOI: 10.1016/j.modgep.2004.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/13/2004] [Accepted: 04/15/2004] [Indexed: 11/30/2022]
Abstract
The chick inner ear is a complex structure containing auditory and vestibular sensory organs innervated by neurons of the acoustic-vestibular ganglion. The molecular signals involved in the specification and initial innervation of the otic epithelium are poorly understood. Here, we present a detailed description of the Otx2, Gbx2, and Fgf8 gene expression patterns in the chick developing inner ear, comparing them with the Bmp4 expression, a putative sensory-organ marker. The Otx2 expression was detected in the ventro-lateral wall of the otic anlage and could play a role in the segregation of the saccule and utricle maculae. The relationship between Gbx2 and Fgf8 expression changed during inner ear development but was always related to the macula sacculi innervation and endolymphatic duct formation. Our results also suggest that the maculae of the saccule and lagena, and the medial portion of the macula utriculi could arise within a broad Fgf8-positive domain previously observed at the otocyst stage. The spatial and temporal relationships between these gene expression domains and the initial innervation of the epithelium by some subpopulations of otic axons suggest that expression domain boundaries could be involved in the specification and early innervation of presumptive sensory patches.
Collapse
|