1
|
Gómez‐Gálvez Y, Fuller HR, Synowsky S, Shirran SL, Gates MA. Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging: Implications for idiopathic Parkinson's disease. J Neurosci Res 2020; 98:1417-1432. [DOI: 10.1002/jnr.24622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/22/2020] [Accepted: 03/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yolanda Gómez‐Gálvez
- School of Pharmacy and Bioengineering Keele University Keele UK
- School of Medicine Keele University Keele UK
| | - Heidi R. Fuller
- School of Pharmacy and Bioengineering Keele University Keele UK
- Wolfson Centre for Inherited Neuromuscular Disease RJAH Orthopaedic Hospital Oswestry UK
| | - Silvia Synowsky
- BSRC Mass Spectrometry and Proteomics Facility University of St Andrews Fife UK
| | - Sally L. Shirran
- BSRC Mass Spectrometry and Proteomics Facility University of St Andrews Fife UK
| | - Monte A. Gates
- School of Pharmacy and Bioengineering Keele University Keele UK
- School of Medicine Keele University Keele UK
| |
Collapse
|
2
|
Abstract
Aging brain becomes susceptible to neurodegenerative diseases due to the shifting of microglia and astrocyte phenotypes to an active “pro-inflammatory” state, causing chronic low-grade neuroinflammation. Despite the fact that the role of neuroinflammation during aging has been extensively studied in recent years, the underlying causes remain unclear. The identification of relevant proteins and understanding their potential roles in neuroinflammation can help explain their potential of becoming biomarkers in the aging brain and as drug targets for prevention and treatment. This will eventually reduce the chances of developing neurodegenerative diseases and promote healthier lives in the elderly. In this review, we have summarized the morphological and cellular changes in the aging brain, the effects of age-related neuroinflammation, and the potential role of cofilin-1 during neuroinflammation. We also discuss other factors contributing to brain aging and neuroinflammation.
Collapse
Affiliation(s)
- Amsha S Alsegiani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
3
|
Kim JW, Jeong JH. Molecular Characterization of Primary Human Astrocytes Using Digital Gene Expression Analysis. Korean J Neurotrauma 2019; 15:2-10. [PMID: 31098343 PMCID: PMC6495576 DOI: 10.13004/kjnt.2019.15.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/26/2018] [Indexed: 11/15/2022] Open
Abstract
Objective Astrocyte dysfunctions are related to several central nervous system (CNS) pathologies. Transcriptomic profiling of human mRNAs to investigate astrocyte functions may provide the basic molecular-biological data pertaining to the cellular activities of astrocytes. Methods Human Primary astrocytes (HPAs) and human neural stem cell line (HB1.F3) were used for differential digital gene analysis. In this study, a massively parallel sequencing platform, next-generation sequencing (NGS), was used to obtain the digital gene expression (DGE) data from HPAs. A comparative analysis of the DGE from HPA and HB1.F3 cells was performed. Sequencing was performed using NGS platform, and subsequently, bioinformatic analyses were implemented to reveal the identity of the pathways, relatively up- or down-regulated in HPA cells. Results The top, novel canonical pathways up-regulated in HPA cells than in the HB1.F3 cells were "Cyclins and cell cycle regulation," "Integrin signaling," "Regulation of eIF4 and p70S6K signaling," "Wnt/β-catenin signaling," "mTOR signaling," "Aryl hydrocarbon receptor signaling," "Hippo signaling," "RhoA signaling," "Signaling by Rho family GTPases," and "Glioma signaling" pathways. The down-regulated pathways were "Cell cycle: G1/S checkpoint regulation," "eIF2 signaling," "Cell cycle: G2/M DNA damage checkpoint regulation," "Telomerase signaling," "RhoGDI signaling," "NRF2-mediated oxidative stress response," "ERK/MAPK signaling," "ATM signaling," "Pancreatic adenocarcinoma signaling," "VEGF signaling," and "Role of CHK proteins in cell cycle checkpoint control" pathways. Conclusion This study would be a good reference to understand astrocyte functions at the molecular level, and to develop a diagnostic test, based on the DGE pattern of astrocytes, as a powerful, new clinical tool in many CNS diseases.
Collapse
Affiliation(s)
- Jin Wook Kim
- Department of Neurosurgery, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Korea
| | - Ju Ho Jeong
- Department of Neurosurgery, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju, Korea
| |
Collapse
|
4
|
Cheng FY, Fleming JT, Chiang C. Bergmann glial Sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture. Dev Biol 2018; 440:152-166. [PMID: 29792854 DOI: 10.1016/j.ydbio.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023]
Abstract
Neuronal-glial relationships play a critical role in the maintenance of central nervous system architecture and neuronal specification. A deeper understanding of these relationships can elucidate cellular cross-talk capable of sustaining proper development of neural tissues. In the cerebellum, cerebellar granule neuron precursors (CGNPs) proliferate in response to Purkinje neuron-derived Sonic hedgehog (Shh) before ultimately exiting the cell cycle and migrating radially along Bergmann glial fibers. However, the function of Bergmann glia in CGNP proliferation remains not well defined. Interestingly, the Hh pathway is also activated in Bergmann glia, but the role of Shh signaling in these cells is unknown. In this study, we show that specific ablation of Shh signaling using the tamoxifen-inducible TNCYFP-CreER line to eliminate Shh pathway activator Smoothened in Bergmann glia is sufficient to cause severe cerebellar hypoplasia and a significant reduction in CGNP proliferation. TNCYFP-CreER; SmoF/- (SmoCKO) mice demonstrate an obvious reduction in cerebellar size within two days of ablation of Shh signaling. Mutant cerebella have severely reduced proliferation and increased differentiation of CGNPs due to a significant decrease in Shh activity and concomitant activation of Wnt signaling in SmoCKO CGNPs, suggesting that this pathway is involved in cross-talk with the Shh pathway in regulating CGNP proliferation. In addition, Purkinje cells are ectopically located, their dendrites stunted, and the Bergmann glial network disorganized. Collectively, these data demonstrate a previously unappreciated role for Bergmann glial Shh signaling activity in the proliferation of CGNPs and proper maintenance of cerebellar architecture.
Collapse
Affiliation(s)
- Frances Y Cheng
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA
| | - Jonathan T Fleming
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University, 4114 MRB III, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Wootla B, Denic A, Watzlawik JO, Warrington AE, Rodriguez M. Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease. Mol Neurobiol 2016; 53:5217-28. [PMID: 26409478 PMCID: PMC5012151 DOI: 10.1007/s12035-015-9436-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Demyelination underlies early neurological symptoms in multiple sclerosis (MS); however, axonal damage is considered critical for permanent chronic deficits. The precise mechanisms by which axonal injury occurs in MS are unclear; one hypothesis is the absence or failure of remyelination, suggesting that promoting remyelination may protect axons from death. This report provides direct evidence that promoting oligodendrocyte remyelination protects axons and maintains transport function. Persistent Theiler's virus infection of Swiss Jim Lambert (SJL)/J mice was used as a model of MS to assess the effects of remyelination on axonal injury following demyelination in the spinal cord. Remyelination was induced using an oligodendrocyte/myelin-specific recombinant human monoclonal IgM, rHIgM22. The antibody is endowed with strong anti-apoptotic and pro-proliferative effects on oligodendrocyte progenitor cells. We used (1)H-magnetic resonance spectroscopy (MRS) at the brainstem to measure N-acetyl-aspartate (NAA) as a surrogate of neuronal health and spinal cord integrity. We found increased brainstem NAA concentrations at 5 weeks post-treatment with rHIgM22, which remained stable out to 10 weeks. Detailed spinal cord morphology studies revealed enhanced remyelination in the rHIgM22-treated group but not in the isotype control antibody- or saline-treated groups. Importantly, we found rHIgM22-mediated remyelination protected small- and medium-caliber mid-thoracic spinal cord axons from damage despite similar demyelination and inflammation across all experimental groups. The most direct confirmation of remyelination-mediated protection of descending neurons was an improvement in retrograde transport. Treatment with rHIgM22 significantly increased the number of retrograde-labeled neurons in the brainstem, indicating that preserved axons are functionally competent. This is direct validation that remyelination preserves spinal cord axons and protects functional axon integrity.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aleksandar Denic
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jens O Watzlawik
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arthur E Warrington
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Moses Rodriguez
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Departments of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Zhu W, Mao Z, Zhu C, Li M, Cao C, Guan Y, Yuan J, Xie G, Guan X. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats. Neuroscience 2015; 313:174-83. [PMID: 26621120 DOI: 10.1016/j.neuroscience.2015.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/24/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults.
Collapse
Affiliation(s)
- W Zhu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Z Mao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - M Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Cao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Y Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Yuan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - G Xie
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - X Guan
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Signaling mechanism of protease activated receptor 1-induced proliferation of astrocytes: Stabilization of hypoxia inducible factor-1α triggers glucose metabolism and accumulation of cyclin D1. Neurochem Int 2014; 79:20-32. [DOI: 10.1016/j.neuint.2014.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
|
8
|
Caravagna C, Soliz J, Seaborn T. Brain-derived neurotrophic factor interacts with astrocytes and neurons to control respiration. Eur J Neurosci 2013; 38:3261-9. [PMID: 23930598 DOI: 10.1111/ejn.12320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023]
Abstract
Respiratory rhythm is generated and modulated in the brainstem. Neuronal involvement in respiratory control and rhythmogenesis is now clearly established. However, glial cells have also been shown to modulate the activity of brainstem respiratory groups. Although the potential involvement of other glial cell type(s) cannot be excluded, astrocytes are clearly involved in this modulation. In parallel, brain-derived neurotrophic factor (BDNF) also modulates respiratory rhythm. The currently available data on the respective roles of astrocytes and BDNF in respiratory control and rhythmogenesis lead us to hypothesize that there is BDNF-mediated control of the communication between neurons and astrocytes in the maintenance of a proper neuronal network capable of generating a stable respiratory rhythm. According to this hypothesis, progression of Rett syndrome, an autism spectrum disease with disordered breathing, can be stabilized in mouse models by re-expressing the normal gene pattern in astrocytes or microglia, as well as by stimulating the BDNF signaling pathway. These results illustrate how the signaling mechanisms by which glia exerts its effects in brainstem respiratory groups is of great interest for pathologies associated with neurological respiratory disorders.
Collapse
Affiliation(s)
- Céline Caravagna
- Department of Pediatrics, Laval University, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Hôpital St-François d'Assise, 10 Rue de l'Espinay, Room D0-742, Québec, QC, Canada
| | | | | |
Collapse
|
9
|
Pignataro L, Varodayan FP, Tannenholz LE, Protiva P, Harrison NL. Brief alcohol exposure alters transcription in astrocytes via the heat shock pathway. Brain Behav 2013; 3:114-33. [PMID: 23533150 PMCID: PMC3607153 DOI: 10.1002/brb3.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 12/23/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are critical for maintaining homeostasis in the central nervous system (CNS), and also participate in the genomic response of the brain to drugs of abuse, including alcohol. In this study, we investigated ethanol regulation of gene expression in astrocytes. A microarray screen revealed that a brief exposure of cortical astrocytes to ethanol increased the expression of a large number of genes. Among the alcohol-responsive genes (ARGs) are glial-specific immune response genes, as well as genes involved in the regulation of transcription, cell proliferation, and differentiation, and genes of the cytoskeleton and extracellular matrix. Genes involved in metabolism were also upregulated by alcohol exposure, including genes associated with oxidoreductase activity, insulin-like growth factor signaling, acetyl-CoA, and lipid metabolism. Previous microarray studies performed on ethanol-treated hepatocyte cultures and mouse liver tissue revealed the induction of almost identical classes of genes to those identified in our microarray experiments, suggesting that alcohol induces similar signaling mechanisms in the brain and liver. We found that acute ethanol exposure activated heat shock factor 1 (HSF1) in astrocytes, as demonstrated by the translocation of this transcription factor to the nucleus and the induction of a family of known HSF1-dependent genes, the heat shock proteins (Hsps). Transfection of a constitutively transcriptionally active Hsf1 construct into astrocytes induced many of the ARGs identified in our microarray study supporting the hypothesis that HSF1 transcriptional activity, as part of the heat shock cascade, may mediate the ethanol induction of these genes. These data indicate that acute ethanol exposure alters gene expression in astrocytes, in part via the activation of HSF1 and the heat shock cascade.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Department of Anesthesiology The College of Physicians and Surgeons, Columbia University 630 West 168th St., New York, NY, 10032
| | | | | | | | | |
Collapse
|
10
|
Terashvili M, Sarkar P, Nostrand MV, Falck JR, Harder DR. The protective effect of astrocyte-derived 14,15-epoxyeicosatrienoic acid on hydrogen peroxide-induced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. Neuroscience 2012; 223:68-76. [PMID: 22863680 DOI: 10.1016/j.neuroscience.2012.07.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/09/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022]
Abstract
Astrocytes perform several functions that are essential for normal neuronal activity. They play a critical role in neuronal survival during ischemia and other degenerative injuries and also modulate neuronal recovery by influencing neurite outgrowth. In this study, we investigated the neuroprotective effects of astrocyte-derived 14,15-epoxyeicosatrienoic acid (14,15-EET), metabolite of arachidonic acid by cytochrome P450 epoxygenases (CYP), against oxidative stress induced by hydrogen peroxide (H(2)O(2)). We found that dopaminergic neuronal cells (N27 cell line) stimulated with two different doses of H(2)O(2) (0.1 and 1mM) for 1h showed decreased cell viability compared to the control group, while astrocytes showed less cell death after stimulation with the same doses of H(2)O(2) for 1h. Dopaminergic neuronal cells (N27 cell line) pretreated with different doses of 14,15-EET (0.1-30 μM, 30 min) before H(2)O(2) stimulation also showed increased cell viability. Furthermore, pre-treatment of the co-cultured cells with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid, an inhibitor of the EET metabolizing enzyme, soluble epoxide hydrolase (sEH), before H(2)O(2) stimulation (1mM, for 1h) increased cell viability. It also increased the endogenous level of 14,15-EET in the media compared to control group. However, pretreatment with the CYP epoxygenase inhibitor miconazole (1-20 μM, 1h) before H(2)O(2) (1mM, 1h) stimulation showed decreased cell viability. Our data suggest that 14,15-EET which is released from astrocytes, enhances cell viability against oxidant-induced injury. Further understanding of the mechanism of 14,15-EET-mediated protection in dopaminergic neurons is imperative, as it could lead to novel therapeutic approaches for treating CNS neuropathologies, such as Parkinson's disease.
Collapse
Affiliation(s)
- M Terashvili
- Department of Physiology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | | | | | | | | |
Collapse
|
11
|
Malchiodi-Albedi F, Paradisi S, Di Nottia M, Simone D, Travaglione S, Falzano L, Guidotti M, Frank C, Cutarelli A, Fabbri A, Fiorentini C. CNF1 improves astrocytic ability to support neuronal growth and differentiation in vitro. PLoS One 2012; 7:e34115. [PMID: 22523545 PMCID: PMC3327681 DOI: 10.1371/journal.pone.0034115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 02/22/2012] [Indexed: 01/02/2023] Open
Abstract
Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes.
Collapse
Affiliation(s)
- Fiorella Malchiodi-Albedi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (CF); (FMA)
| | - Silvia Paradisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Di Nottia
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daiana Simone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Loredana Falzano
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Guidotti
- Departmrent of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Frank
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (CF); (FMA)
| |
Collapse
|
12
|
Ni M, Li X, Yin Z, Sidoryk-Węgrzynowicz M, Jiang H, Farina M, Rocha JBT, Syversen T, Aschner M. Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 2011; 59:810-20. [PMID: 21351162 DOI: 10.1002/glia.21153] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
As the two major glial cell types in the brain, astrocytes and microglia play pivotal but different roles in maintaining optimal brain function. Although both cell types have been implicated as major targets of methylmercury (MeHg), their sensitivities and adaptive responses to this metal can vary given their distinctive properties and physiological functions. This study was carried out to compare the responses of astrocytes and microglia following MeHg treatment, specifically addressing the effects of MeHg on cell viability, reactive oxygen species (ROS) generation and glutathione (GSH) levels, as well as mercury (Hg) uptake and the expression of NF-E2-related factor 2 (Nrf2). Results showed that microglia are more sensitive to MeHg than astrocytes, a finding that is consistent with their higher Hg uptake and lower basal GSH levels. Microglia also demonstrated higher ROS generation compared with astrocytes. Nrf2 and its downstream genes were upregulated in both cell types, but with different kinetics (much faster in microglia). In summary, microglia and astrocytes each exhibit a distinct sensitivity to MeHg, resulting in their differential temporal adaptive responses. These unique sensitivities appear to be dependent on the cellular thiol status of the particular cell type.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ni M, Aschner M. Neonatal rat primary microglia: isolation, culturing, and selected applications. ACTA ACUST UNITED AC 2011; Chapter 12:Unit 12.17. [PMID: 20960423 DOI: 10.1002/0471140856.tx1217s43] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microglial cells elaborate trophic factors and cytokines and remove toxins and debris from the extracellular space in the central nervous system, acting analogously to peripheral macrophages. Over the past two decades, increased attention has been directed at the role of microglia, not only in normal physiology, but also in mediating neurotoxicity. Activation of microglia is inherent to multiple neurodegenerative disorders and exposure to toxic compounds. In large measure, these revelations have come about as a result of technologies that enable researchers to obtain high yield and purity primary cultures of rodent microglia. The mechanical isolation protocol discussed in this unit offers an economical method to isolate large amounts of microglia in a short and not too labor-intensive manner. Most importantly, it ensures a high yield of cells with great reproducibility. Given the ever-increasing importance of microglia to the field of neurotoxicology research, the ability to isolate large quantities of primary microglia makes it possible to investigate the role and mechanisms associated with microglial modulation of neurotoxicity. We provide a detailed description on the methods that are routinely used in our laboratory for the isolation and culture of microglia, with emphasis on the steps that are deemed most critical for obtaining pure and healthy cultures.
Collapse
Affiliation(s)
- Mingwei Ni
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
14
|
Gomes P, Chevalier J, Boesmans W, Roosen L, van den Abbeel V, Neunlist M, Tack J, Vanden Berghe P. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. Neurogastroenterol Motil 2009; 21:870-e62. [PMID: 19368656 DOI: 10.1111/j.1365-2982.2009.01302.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro-glia interaction. The aim was to investigate neuro-glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca(2+)-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia-neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca(2+)-response to either depolarization (high K(+)) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPbetas. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPbetas. Activation of neuronal cells (DMPP, K(+)) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.
Collapse
Affiliation(s)
- P Gomes
- Center for Gastroenterological Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Giuditta A, Tai Chun J, Eyman M, Cefaliello C, Bruno AP, Crispino M. Local Gene Expression in Axons and Nerve Endings: The Glia-Neuron Unit. Physiol Rev 2008; 88:515-55. [DOI: 10.1152/physrev.00051.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurons have complex and often extensively elongated processes. This unique cell morphology raises the problem of how remote neuronal territories are replenished with proteins. For a long time, axonal and presynaptic proteins were thought to be exclusively synthesized in the cell body, which delivered them to peripheral sites by axoplasmic transport. Despite this early belief, protein has been shown to be synthesized in axons and nerve terminals, substantially alleviating the trophic burden of the perikaryon. This observation raised the question of the cellular origin of the peripheral RNAs involved in protein synthesis. The synthesis of these RNAs was initially attributed to the neuron soma almost by default. However, experimental data and theoretical considerations support the alternative view that axonal and presynaptic RNAs are also transcribed in the flanking glial cells and transferred to the axon domain of mature neurons. Altogether, these data suggest that axons and nerve terminals are served by a distinct gene expression system largely independent of the neuron cell body. Such a local system would allow the neuron periphery to respond promptly to environmental stimuli. This view has the theoretical merit of extending to axons and nerve terminals the marginalized concept of a glial supply of RNA (and protein) to the neuron cell body. Most long-term plastic changes requiring de novo gene expression occur in these domains, notably in presynaptic endings, despite their intrinsic lack of transcriptional capacity. This review enlightens novel perspectives on the biology and pathobiology of the neuron by critically reviewing these issues.
Collapse
|
16
|
Ndubaku U, de Bellard ME. Glial cells: old cells with new twists. Acta Histochem 2007; 110:182-95. [PMID: 18068219 PMCID: PMC2365468 DOI: 10.1016/j.acthis.2007.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 12/11/2022]
Abstract
Based on their characteristics and function--migration, neural protection, proliferation, axonal guidance and trophic effects--glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed--as true stem cells in the nervous system--and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells.
Collapse
Affiliation(s)
- Ugo Ndubaku
- Biology Department, California State University Northridge, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | | |
Collapse
|
17
|
Dani JW, Smith SJ. The triggering of astrocytic calcium waves by NMDA-induced neuronal activation. CIBA FOUNDATION SYMPOSIUM 2007; 188:195-205; discussion 205-9. [PMID: 7587618 DOI: 10.1002/9780470514696.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been well established that astrocytes possess functional receptors for the excitatory neurotransmitter glutamate and respond to physiological concentrations of this substance with oscillations in cytoplasmic Ca2+ concentrations and spatially propagating Ca2+ waves. These findings strongly suggest that glutamate released during synaptic transmission triggers such phenomena within the perisynaptic astrocyte in situ. We test this hypothesis in two preparations, the organotypic hippocampal slice and hippocampal neuron-astrocyte co-cultures, using the Ca2+ indicator fluo-3 and confocal laser microscopy. An agonist for the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor is employed to stimulate neuronal populations specifically, leaving the astrocytic population unaffected as these cells appear to lack this glutamate receptor subtype. Such pharmacological stimulation initially elicits large Ca2+ transients within the neuronal populations, followed by Ca2+ spikes in surrounding astrocytes, presumably as the result of neuronal glutamate release. During continuous neuronal stimulation, the astrocyte's Ca2+ response becomes oscillatory, with a period averaging 33 s and ranging from 15 to 50 s at 21 degrees C. These findings establish another form of communication within the brain, that between neurons and astrocytes, which perhaps acts to couple astrocytic regulatory responses to neuronal activity.
Collapse
Affiliation(s)
- J W Dani
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
18
|
Taylor AR, Robinson MB, Milligan CE. In vitro methods to prepare astrocyte and motoneuron cultures for the investigation of potential in vivo interactions. Nat Protoc 2007; 2:1499-507. [PMID: 17545986 DOI: 10.1038/nprot.2007.208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol details methods to isolate and purify astrocytes and motoneurons (MNs) from the chick lumbar spinal cord. In addition, an approach to study the influences of astrocyte secreted factors on MNs is provided. Astrocytes are isolated between embryonic days 10 and 12 (E10-12), propagated in serum (2-3 h) and differentiated in chemically defined medium (3-4 h). When prepared according to this protocol, astrocyte cultures are more than 98% pure when assessed using the astrocyte-specific markers glial fibrillary acidic protein (GFAP) and S100beta. MNs are isolated between E5.5 and 6.0 (3-4 h) using a procedure that takes selective advantage of the large size of these cells. These cultures can be maintained using individual trophic factors, target-derived factors or astrocyte-derived factors, the preparation of which is also described (5-6 h). All or part of these techniques can be used to investigate a variety of processes that occur during nervous system development and disease or after injury.
Collapse
Affiliation(s)
- Anna R Taylor
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
19
|
Kruse C, Bodó E, Petschnik AE, Danner S, Tiede S, Paus R. Towards the development of a pragmatic technique for isolating and differentiating nestin-positive cells from human scalp skin into neuronal and glial cell populations: generating neurons from human skin? Exp Dermatol 2006; 15:794-800. [PMID: 16984261 DOI: 10.1111/j.1600-0625.2006.00471.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nestin+ hair follicle-associated cells of murine skin can be isolated and differentiated in vitro into neuronal and glial cells. Therefore, we have asked whether human skin also contains nestin+ cells, and whether these can be differentiated in vitro into neuronal and/or glial cell populations. In this methodological pilot study, we show that both are indeed the case - employing purposely only very simple techniques for isolating, propagating, and differentiating nestin+ cells from normal human scalp skin and its appendages that do not require selective microdissection and tissue compartment isolation prior to cell culture. We show that, it is in principle, possible to maintain and propagate human skin nestin+ cells for extended passage numbers and to differentiate them into both neuronal (i.e. neurofilament+ and/or PGP9.5+) and glial (i.e. GFAP+, MBP+ and/or O4+) cell populations. Therefore, human scalp skin can serve as a highly accessible, abundant, and convenient source for autologous adult stem cell-like cells that offer themselves to be exploited for neuroregenerative medicine purposes.
Collapse
Affiliation(s)
- Charli Kruse
- Fraunhofer-Institute of Biomedical Engineering, Group of Cell Differentiation and Cell Technology at the University of Lübeck, MFC Innovationscampus, Maria-Goeppert-Strasse 1, D-23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Damjanac M, Rioux Bilan A, Barrier L, Pontcharraud R, Anne C, Hugon J, Page G. Fluoro-Jade B staining as useful tool to identify activated microglia and astrocytes in a mouse transgenic model of Alzheimer's disease. Brain Res 2006; 1128:40-9. [PMID: 17125750 DOI: 10.1016/j.brainres.2006.05.050] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/04/2006] [Accepted: 05/11/2006] [Indexed: 10/23/2022]
Abstract
Fluoro-Jade B is known as a high affinity fluorescent marker for the localization of neuronal degeneration during acute neuronal distress. However, one study suggested that fluoro-Jade B stains reactive astroglia in the primate cerebral cortex. In this study, we analyzed the staining of fluoro-Jade B alone or combined with specific markers for detection of glial fibrillary acidic protein (GFAP) or activated CD68 microglia in the double APP(SL)/PS1 KI transgenic mice of Alzheimer's disease (AD), which display a massive neuronal loss in the CA1 region of the hippocampus. Our results showed that fluoro-Jade B did not stain normal and degenerating neurons in this double mouse transgenic model. Fluoro-Jade B was co-localized with Abeta in the core of amyloid deposits and in glia-like cells expressing Abeta. Furthermore, fluoro-Jade B was co-localized with CD68/macrosialin, a specific marker of activated microglia, and with GFAP for astrocytes in APP(SL)/PS1 KI transgenic mice of AD. Taken together, these findings showed that fluoro-Jade B can be used to label activated microglia and astrocytes which are abundant in the brain of these AD transgenic mice. It could stain degenerating neurons as a result of acute insult while it could label activated microglia and astrocytes during a chronic neuronal degenerative process such as AD for example.
Collapse
Affiliation(s)
- Milena Damjanac
- Research Group on Brain Aging (EA 3808) University of Poitiers, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In this article, a preliminary conceptual framework is presented for exploring nursing interventions and research aimed at improving care of the unconscious brain-injured patient during the early subacute phase of brain injury. The cue-response framework presented is derived from multidisciplinary sources and has specific clinical relevance to critical care nurses caring for unconscious brain-injured patients. A key aspect of this framework is the attention focused on the timing of nursing interventions in response to how nurses interpret the physical, physiological, and secondary cues they observe when caring for comatose patients. A case exemplar is used to present one example of how this framework may be used in the clinical setting.
Collapse
Affiliation(s)
- DaiWai M Olson
- School of Nursing, The University of North Carolina at Chapel Hill, North Carolina 27712, USA.
| | | |
Collapse
|
22
|
Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005; 76:77-98. [PMID: 16081203 DOI: 10.1016/j.pneurobio.2005.06.004] [Citation(s) in RCA: 1161] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/21/2005] [Accepted: 06/28/2005] [Indexed: 12/21/2022]
Abstract
Inflammation, a common denominator among the diverse list of neurodegenerative diseases, has recently been implicated as a critical mechanism responsible for the progressive nature of neurodegeneration. Microglia are the resident innate immune cells in the central nervous system and produce a barrage of factors (IL-1, TNFalpha, NO, PGE2, superoxide) that are toxic to neurons. Evidence supports that the unregulated activation of microglia in response to environmental toxins, endogenous proteins, and neuronal death results in the production of toxic factors that propagate neuronal injury. In the following review, we discuss the common thread of microglial activation across numerous neurodegenerative diseases, define current perceptions of how microglia are damaging neurons, and explain how the microglial response to neuronal damage results in a self-propelling cycle of neuron death.
Collapse
Affiliation(s)
- Michelle L Block
- Neuropharmacology Section, MD F1-01, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
23
|
Neuron-glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int J Dev Neurosci 2005. [DOI: 10.1016/0736-5748(96)00021-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Rouach N, Koulakoff A, Giaume C. Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 2004; 45:265-72. [PMID: 15145542 DOI: 10.1016/j.neuint.2003.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/31/2003] [Indexed: 11/20/2022]
Abstract
A number of studies have contributed to demonstrate that neurons and astrocytes tightly and actively interact. Indeed, the presence of astrocytes in neuronal cultures increases the number of synapses and their efficiency, and thanks to enzymatic and uptake processes, astrocytes play a role in neuroprotection. A typical feature of astrocytes is that they establish cell-cell communication in vitro, as well as in situ, through intercellular channels forming specialized membrane areas defined as gap junctions. These channels are composed of junctional proteins termed connexins (Cxs): in astrocytes connexin 43 (Cx43) and 30 (Cx30) have been shown to prevail. Several recent works indicate that gap junctional communication (GJC) and/or connexin expression in astrocytes are controlled by neurons. Altogether, these observations lead to the concept that neuronal and astrocytic networks interact through mutual setting of their respective mode of communication and that astrocyte gap junctions represent a target in neuroglial interaction.
Collapse
Affiliation(s)
- Nathalie Rouach
- INSERM U114, Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | | | |
Collapse
|
25
|
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72:111-27. [PMID: 15063528 DOI: 10.1016/j.pneurobio.2004.02.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 02/04/2004] [Indexed: 12/21/2022]
Abstract
Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease and Parkinson's disease. We found that incubation of cultured rat astrocytes in a Ca(2+)-containing medium after exposure to a Ca(2+)-free medium causes an increase in intracellular Ca(2+) concentration followed by apoptosis, and that NF-kappa B, reactive oxygen species, and enzymes such as calpain, xanthine oxidase, calcineurin and caspase-3 are involved in reperfusion-induced apoptosis. Furthermore, we demonstrated that heat shock protein, mitogen-activated protein/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase and cyclic GMP phosphodiesterase are target molecules for anti-apoptotic drugs. This review summarizes (1) astrocytic functions in neuroprotection, (2) current evidence of astrocyte apoptosis in both in vitro and in vivo studies including its molecular pathways such as Ca(2+) overload, oxidative stress, NF-kappa B activation, mitochondrial dysfunction, endoplasmic reticulum stress, and protease activation, and (3) several drugs preventing astrocyte apoptosis. As a whole, this article provides new insights into the potential role of astrocytes as targets for neuroprotection. In addition, the advance in the knowledge of molecular mechanisms of astrocyte apoptosis may lead to the development of novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | |
Collapse
|
26
|
Suzuki R, Watanabe J, Arata S, Funahashi H, Kikuyama S, Shioda S. A transgenic mouse model for the detailed morphological study of astrocytes. Neurosci Res 2003; 47:451-4. [PMID: 14630350 DOI: 10.1016/j.neures.2003.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have generated a transgenic mouse model in which astrocytes express an enhanced green fluorescent protein (EGFP) under the control of the mouse glial fibrillary acidic protein (GFAP) promoter. EGFP, which is characteristically found throughout the cell, was expressed in these animals even in astrocytic fine processes, and EGFP expressing cells demonstrated morphological characters of protoplasmic, fibrous, or reactive astrocytes. In contrast, GFAP immunoreactivity was found only in the perinuclear region and in the main processes. The transgenic mouse model therefore provides a valuable tool for the detailed morphological investigation of astrocytes.
Collapse
Affiliation(s)
- Ryusuke Suzuki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Yung HW, Tolkovsky AM. Erasure of kinase phosphorylation in astrocytes during oxygen-glucose deprivation is controlled by ATP levels and activation of phosphatases. J Neurochem 2003; 86:1281-8. [PMID: 12911635 DOI: 10.1046/j.1471-4159.2003.01946.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the relationship between adenosine triphosphate (ATP) concentration and loss of maintenance of kinase-signalling cascades in primary cortical astrocytes during oxygen-glucose deprivation (OGD) as this may constitute an irreversible step that commits astrocytes to cell death. We report that the phosphorylation of Akt, ERK, JNK and p38 kinases, whose activities depend on serine, threonine and tyrosine phosphorylation, were all increased during OGD. All these phosphorylations were reduced to below detection limits when ATP levels were less than 10% of normal levels. Using ERK and Akt as representative examples, we show that this erasure is not irreversible as both ERK and Akt phosphorylations can be partially restored by addition of glucose under anoxic conditions. We further investigated whether OGD caused any change in phosphatase activity. The PP1/PP2A phosphatase inhibitors okadaic acid and caliculyn A, but not cyclosporine A, delayed the removal of ERK and Akt phosphorylation under OGD. By comparing the extent of phosphorylation increase under OGD and normoxic conditions, we calculate that phosphatase activity was increased by approximately 3.6-fold during OGD. These data show that ATP levels control an important checkpoint in kinase function, and that ATP levels may need to be considered when studies of kinase function in relation to OGD are conducted.
Collapse
Affiliation(s)
- Hong Wa Yung
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | |
Collapse
|
28
|
Liu B, Gao HM, Hong JS. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:1065-73. [PMID: 12826478 PMCID: PMC1241555 DOI: 10.1289/ehp.6361] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Idiopathic Parkinson's disease (PD) is a devastating movement disorder characterized by selective degeneration of the nigrostriatal dopaminergic pathway. Neurodegeneration usually starts in the fifth decade of life and progresses over 5-10 years before reaching the fully symptomatic disease state. Despite decades of intense research, the etiology of sporadic PD and the mechanism underlying the selective neuronal loss remain unknown. However, the late onset and slow-progressing nature of the disease has prompted the consideration of environmental exposure to agrochemicals, including pesticides, as a risk factor. Moreover, increasing evidence suggests that early-life occurrence of inflammation in the brain, as a consequence of either brain injury or exposure to infectious agents, may play a role in the pathogenesis of PD. Most important, there may be a self-propelling cycle of inflammatory process involving brain immune cells (microglia and astrocytes) that drives the slow yet progressive neurodegenerative process. Deciphering the molecular and cellular mechanisms governing those intricate interactions would significantly advance our understanding of the etiology and pathogenesis of PD and aid the development of therapeutic strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bin Liu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | | | | |
Collapse
|
29
|
Vouyiouklis DA, Anderson TJ, King HE, Kirkham D, Karim SA, Johnson KJ, Griffiths IR. Mapping of the dysmyelinating murine Hindshaker mutation to a 1.2-cM interval on chromosome 3. Genomics 2002; 80:126-8. [PMID: 12160722 DOI: 10.1006/geno.2002.6811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hindshaker (hsh) is a novel, spontaneous, autosomal recessive mouse mutation displaying a myelin deficit, predominantly in the spinal cord. It is characterized by developmentally dependent hypomyelination, first evident at postnatal day (P) 10, followed by progressive but incomplete recovery by P42. Hypomyelination is associated with a decreased number of mature oligodendrocytes, which fail to form complete myelin sheaths. Heterozygotes are phenotypically normal, and the hsh mutation shows considerable variation in penetrance and expression depending on genetic background, indicating the influence of modifying loci. Here, we followed an outcross/backcross breeding strategy in conjunction with genotyping for microsatellites and a novel marker for the gene S100a4. We describe the genomic mapping of the hsh mutation to within a 1.2-cM region near the centromere of mouse chromosome 3. We found that hsh is flanked between D3Mit187 proximally and S100a4 distally. The area containing hsh is gene-rich, with a high proportion of the genes specific to nervous tissue. Identification of the hsh mutation will aid our understanding of processes important in regional control of oligodendrocyte development and myelination.
Collapse
Affiliation(s)
- Demetrius A Vouyiouklis
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
MacDonald SC, Simcoff R, Jordan LM, Dodd JG, Cheng KW, Hochman S. A population of oligodendrocytes derived from multipotent neural precursor cells expresses a cholinergic phenotype in culture and responds to ciliary neurotrophic factor. J Neurosci Res 2002; 68:255-64. [PMID: 12111855 DOI: 10.1002/jnr.10200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Because oligodendrocytes and their precursors possess receptors for classical transmitters, and neurotransmitters such as glutamate and noradrenaline can mediate oligodendroglial proliferation and differentiation, it is possible that other neurotransmitters can also exert regulatory roles in oligodendrocyte function. We used mitogen-proliferated multipotent neuroepithelial precursors (neurospheres) and identified oligodendroglia that expressed markers traditionally found in cholinergic neurons. Regardless of culture conditions, there existed a large population of cells that resembled oligodendrocytes morphologically and coexpressed the oligodendrocyte-specific marker galactocerebroside (GalC) and the acetylcholine (ACh)-synthesizing enzyme choline acetyltransferase (ChAT). These cells did not express neuronal markers, and whole-cell recordings from cells with similar morphology displayed only outward currents in response to depolarizing voltage steps, further supporting their oligodendroglial identity. Another cholinergic marker, the vesicular ACh transporter, was also detected in GalC(+) oligodendrocytes. Furthermore, neurospheres cultured in the presence of the cholinergic receptor antagonist atropine showed a decrease in the number of GalC(+) spheres, implicating the muscarinic ACh receptor in oligodendrocyte development. The actions of neurotrophins and ciliary neurotrophic factor (CNTF) on these ChAT(+) oligodendrocytes were examined. Among these, CNTF treatment significantly increased oligodendrocytic process outgrowth. These results demonstrate classical cholinergic neuronal markers in oligodendrocytes as well as an effect of muscarinic receptor blockade on oligodendrocyte differentiation.
Collapse
Affiliation(s)
- S C MacDonald
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Proliferation of astrocytes is a common response of the CNS to injury and disease. The mechanisms controlling the proliferation of astrocytes are of great interest. In this paper, the signaling pathways underlying glutamate-induced astrocyte proliferation are investigated. Glutamate stimulates the proliferation of non-synchronized, subconfluent cultures of rat cortical astrocytes. Glutamate-induced cell proliferation is not prevented by inhibitors of G protein, protein kinase A, protein kinase C, phosphatidylinositol 3 kinase, extracellular signal-regulated kinase, or phospholipase A2. However, the tyrosine kinase inhibitors Genistein and Herbimycin A inhibit the glutamate-induced proliferation. Moreover, this proliferation is mediated by the activation of glutamate metabotropic receptors. These results suggest that glutamate induces astrocyte proliferation through a tyrosine kinase pathway.
Collapse
Affiliation(s)
- S L Liao
- Department of Education and Research, Taichung Veterans General Hospital, No. 160, Sec. 3, Taichung-Gang Rd., Taichung 40705, Taiwan, Republic of China
| | | |
Collapse
|
32
|
Berry RW, Quinn B, Johnson N, Cochran EJ, Ghoshal N, Binder LI. Pathological glial tau accumulations in neurodegenerative disease: review and case report. Neurochem Int 2001; 39:469-79. [PMID: 11578782 DOI: 10.1016/s0197-0186(01)00054-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abnormal deposits of tau protein accumulate in glia in many neurodegenerative diseases. This suggests that in some instances the disease process may target glial tau, with neuronal degeneration a secondary consequence of this process. In this report, we summarize the pattern of glial tau pathology in various neurodegenerative disorders and add original findings from a case of sporadic frontotemporal dementia that exhibits astrocytic tau pathology. The neurodegenerative diseases span the spectrum of relative neuronal and glial tau involvement, from disorders affecting only neuronal tau to those in which abnormal tau deposits are found only in glia. From this, we conclude that glial tau can be a primary target of the disease process, and that this can lead to neuronal degeneration.
Collapse
Affiliation(s)
- R W Berry
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Rouach N, Giaume C. Connexins and gap junctional communication in astrocytes are targets for neuroglial interaction. PROGRESS IN BRAIN RESEARCH 2001; 132:203-14. [PMID: 11544989 DOI: 10.1016/s0079-6123(01)32077-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- N Rouach
- INSERM U114, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France
| | | |
Collapse
|
34
|
Alonso G. Proliferation of progenitor cells in the adult rat brain correlates with the presence of vimentin-expressing astrocytes. Glia 2001; 34:253-66. [PMID: 11360298 DOI: 10.1002/glia.1059] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is well established that proliferation of progenitor cells persists within the hippocampal dentate gyrus (DG) and the subventricular zone of the lateral ventricle (SVZ) in the adult brain. The aim of the present study was to determine whether the rate of cell proliferation within these germinative zones could be correlated to the occurrence of a particular glial environment. The cell proliferation marker bromodeoxyuridine (BrdU) was administrated to rats under different physiological and experimental conditions known to modify the rate of progenitor cell proliferation. Within both germinative zones, BrdU-labeled nuclei were associated with cell bodies immunostained for the neuronal marker polysialylated neural cell adhesion molecule, but not for the glial markers glial fibrillary acidic protein (GFAP) or vimentin (VIM). In all the rats examined, however, proliferating (BrdU-labeled) cells always exhibited close relationships with immature-like astrocytes that expressed both GFAP and VIM. There was a dramatic decrease of cell proliferation in the DG from both the aged rats and the corticosterone-treated adult rats that was correlated with a decreased expression of vimentin by the astrocytes present in this region. In contrast, both cell proliferation and vimentin expression were only slightly affected in the SVZ from these two treatment groups. Conversely, after either adrenalectomy or a surgical lesion through the lateral hippocampus, the increase in cell proliferation observed in the DG was correlated to the occurrence of an increased number of GFAP and VIM double immunostained structures in these regions. All together, these data suggest that immature-like astrocytes present in the germinative zones may provide a microenvironment involved in sustaining the proliferation of progenitor cells.
Collapse
Affiliation(s)
- G Alonso
- CNRS-UMR 5101, CCIPE, Montpellier, France.
| |
Collapse
|
35
|
Avola R, Spina-Purrello V, Gallo F, Morale MC, Marletta N, Costa A, Tirolo C, Testa N, Reale S, Marchetti B. Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons induce a functional switch in the growth factor responsiveness of astroglia: involvement of basic fibroblast growth factor. Int J Dev Neurosci 2000; 18:743-63. [PMID: 11154844 DOI: 10.1016/s0736-5748(00)00052-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent evidence indicates that astroglial-derived growth factors (GFs) participate in the development of luteinizing hormone-releasing hormone (LHRH) neurons, but it is still unknown whether LHRH neurons may exert a reciprocal modulation of glial cell function. Using immortalized hypothalamic LHRH (GT1-1) neurons in co-culture with glial cells, we have recently shown that basic fibroblast growth factor (bFGF) plays a prominent role in the glial-induced acquisition of the mature LHRH phenotype by GT1-1 cells. We have resorted to this model and combined biochemical and morphological approaches to study whether the response of glial cells to a number of GFs (including bFGF, insulin-like growth factor I, IGF-I, epidermal growth factor, EGF and insulin) expressed during LHRH neuron differentiation, is modulated by co-culture with pure LHRH neurons. Pre-treatment of hypothalamic astrocytes with an inactive ('priming') dose of bFGF for 12 h powerfully increased astroglia proliferative response to IGF-I (10 ng/ml), EGF (10 g/ml) and insulin (10 microg/ml), inducing a 65-100% increase in the [3H]thymidine incorporation compared to untreated cultures. When astroglial cells and developing GT1-1 neurons were co-cultured for 5 days in vitro (DIV), the [3H]thymidine incorporation was significantly higher than in astroglial cells cultured without neurons. Application of the different GFs to the co-culture for either 12 or 24 h further stimulated DNA synthesis to various extent according to the GF applied and the time of application. Localization of the proliferating cells by dual immunohistochemical staining, followed by cell counting and bromodeoxiuridine (BrdU) labeling index calculation, revealed that the incorporation of BrdU was restricted to the nuclei of LHRH-immunopositive neurons. Such changes were accompanied by extensive morphological alterations of astroglial and LHRH fiber networks, whereas neutralization of bFGF activity in GT1-1 neuron-glial co-cultures by a bFGF-antibody, dramatically counteracted the observed effects. The functional switch of astroglia proliferative response to GFs coupled to the potent morphological and functional modifications of developing glia and pure LHRH neurons observed in vitro, support a bidirectional interaction between immortalized LHRH neurons and astroglial cells and identify bFGF as a key player in this crosstalk.
Collapse
Affiliation(s)
- R Avola
- Department of Chemical Sciences, Medical School, University of Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jacobs JR. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 2000; 62:475-508. [PMID: 10869780 DOI: 10.1016/s0301-0082(00)00016-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Midline Glia of Drosophila are required for nervous system morphogenesis and midline axon guidance during embryogenesis. In origin, gene expression and function, this lineage is analogous to the floorplate of the vertebrate neural tube. The expression or function of over 50 genes, summarised here, has been linked to the Midline Glia. Like the floorplate, the cells which generate the Midline Glia lineage, the mesectoderm, are determined by the interaction of ectoderm and mesoderm during gastrulation. Determination and differentiation of the Midline Glia involves the Drosophila EGF, Notch and segment polarity signaling pathways, as well as twelve identified transcription factors. The Midline Glia lineage has two phases of cell proliferation and of programmed cell death. During embryogenesis, the EGF receptor pathway signaling and Wrapper protein both function to suppress apoptosis only in those MG which are appropriately positioned to separate and ensheath midline axonal commissures. Apoptosis during metamorphosis is regulated by the insect steroid, Ecdysone. The Midline Glia participate in both the attraction of axonal growth cones towards the midline, as well as repulsion of growth cones from the midline. Midline axon guidance requires the Drosophila orthologs of vertebrate genes expressed in the floorplate, which perform the same function. Genetic and molecular evidence of the interaction of attractive (Netrin) and repellent (Slit) signaling is reviewed and summarised in a model. The Midline Glia participate also in the generation of extracellular matrix and in trophic interactions with axons. Genetic evidence for these functions is reviewed.
Collapse
Affiliation(s)
- J R Jacobs
- Department of Biology, McMaster University, 1280 Main Street W., L8S 4K1, Hamilton, Canada.
| |
Collapse
|
37
|
Thanos S, Fischer D, Pavlidis M, Heiduschka P, Bodeutsch N. Glioanatomy assessed by cell-cell interactions and phagocytotic labelling. J Neurosci Methods 2000; 103:39-50. [PMID: 11074094 DOI: 10.1016/s0165-0270(00)00294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last three decades of research in neuroscience, fluorescent probes have gone from technical tools in the studies of physicochemical reactions, to being versatile tools in developmental neurobiology, neuroanatomy, angiography, neuromorphology, connectivity, cell death and even photodynamic therapy. Fluorescent dyes belong to heterogeneous groups of substances, but the feature to emit light of a certain wavelength depends on the energy status of the corresponding chemical bond. Therefore, light emission can range from the blue to the infrared spectrum, thus allowing multiple stains of the same cell, or event. The heterogeneity in their structure allows application of some fluorescent dyes for anterograde long-tract labelling, whereas others can be used for retrograde tracing. Lipophilic dyes are suitable for intramembraneous diffusion along cell membranes post-mortem, whereas hydrophilic stains seem more suitable for genealogic cell studies over several cell divisions. In the same time, less attention has been paid by most researchers to the use of fluorescent dyes to monitor neuroglial interactions and glioanatomy in the healthy and diseased brain. Studies of cell-cell-interactions during apoptosis can now be carried out with sequestration and subsequent phagocytosis of intracellular dyes. The present review focuses on recent developments that include the use of fluorescent probes. These probes make it possible to transneuronally assess functions of glial cells during programmed cell death, or induced degeneration. The high variety of available dyes, and their particular accumulation within subcellular compartments, is promising to shed light on some glial cell geometry and functions. The lessons obtained from the vast number of studies in neurons are of increasing importance for cells too, as their functions are not directly accessible. In short, some glial-glial and neuroglial negotiations will be analysed in near future by developing new, or by modifying existing fluorescent probes.
Collapse
Affiliation(s)
- S Thanos
- Department of Experimental Ophthalmology, Medical School, University of Muenster, Domagkstrasse 15, D-48149, Muenster, Germany.
| | | | | | | | | |
Collapse
|
38
|
Bohn MC, Kozlowski DA, Connor B. Glial cell line-derived neurotrophic factor (GDNF) as a defensive molecule for neurodegenerative disease: a tribute to the studies of antonia vernadakis on neuronal-glial interactions. Int J Dev Neurosci 2000; 18:679-84. [PMID: 10978846 DOI: 10.1016/s0736-5748(00)00036-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Research stemming from interests in neuronal-glial interactions has led to the identification of a number of novel trophic factors, such as the dopaminergic neurotrophic factor glial cell line-derived neurotrophic factor (GDNF). Delivery of the GDNF gene to rat models of Parkinson's disease suggests a potential clinical use of GDNF gene therapy for humans with this disease. This review article briefly summarizes the history of GDNF and the effects of GDNF gene delivery prior to or after a lesion of the rat nigrostriatal system.
Collapse
Affiliation(s)
- M C Bohn
- Children's Memorial Institute for Education and Research, Department of Pediatrics, Children's Memorial Hospital, Northwestern University Medical School, Chicago, IL 60613, USA.
| | | | | |
Collapse
|
39
|
Bayol-Denizot C, Daval JL, Netter P, Minn A. Xenobiotic-mediated production of superoxide by primary cultures of rat cerebral endothelial cells, astrocytes, and neurones. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1497:115-26. [PMID: 10838165 DOI: 10.1016/s0167-4889(00)00047-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous works of our group demonstrated that xenobiotic metabolism by brain microsomes or cultured cerebral cells may promote the formation of reactive oxygen species. In order to characterise the risk of oxidative stress to both the central nervous system and the blood-brain barrier, we measured in the present work the release of superoxide in the culture medium of rat cerebrovascular endothelial cells during the metabolism of menadione, anthraquinone, diquat or nitrofurazone. Assays were run in the same experimental conditions on primary cultures of rat neurones and astrocytes. Quinone metabolism efficiently produced superoxide, but the production of radicals during the metabolism of diquat or nitrofurazone was very low, as a probable result of their reduced transport inside the cells. In all cell types assayed, superoxide production was time- and concentration-dependent, and cultured astrocytes always produced the highest amounts of radicals. Superoxide formation by microsomes prepared from the cultured cells was decreased by immunoinhibition of NADPH-cytochrome P450 reductase or by its irreversible inhibition by diphenyliodonium chloride, suggesting the involvement of this flavoprotein in radical production. Cerebrovascular endothelial cells cultured on collagen-coated filters produced equivalent amounts of superoxide both at their luminal side and through the artificial basement membrane, suggesting that in vivo, endothelial superoxide production may endanger adjacent astrocytes and neurones.
Collapse
Affiliation(s)
- C Bayol-Denizot
- UMR CNRS-Universit¿e Henri Poincar¿e-Nancy 1 No 7561, Laboratoire de Pharmacologie, Facult¿e de M¿edecine, Vandoeuvre-l¿es-Nancy, France
| | | | | | | |
Collapse
|
40
|
Reuss B, Hertel M, Werner S, Unsicker K. Fibroblast growth factors-5 and -9 distinctly regulate expression and function of the gap junction protein connexin43 in cultured astroglial cells from different brain regions. Glia 2000. [DOI: 10.1002/(sici)1098-1136(200005)30:3<231::aid-glia3>3.0.co;2-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Davies DL, Niesman IR, Boop FA, Phelan KD. Heterogeneity of astroglia cultured from adult human temporal lobe. Int J Dev Neurosci 2000; 18:151-60. [PMID: 10715569 DOI: 10.1016/s0736-5748(99)00083-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
This study characterized the morphological and electrophysiological diversity of astroglia cultured from adult human cerebral temporal lobe, and explored the influence of the cytokine interleukin-1beta on these cells. The cultures contained astroglia positive for glial fibrillary acidic protein which were flat, bipolar or multipolar in shape and variable in size. A subpopulation of the bipolar and multipolar cells was positive for S100 protein. The most striking feature of these cultures was the presence of glia with long (600 micrometer) processes with few branches or only terminal branches. Patch clamp recordings of the non-stellate process bearing cells revealed prominent inward Na(+) and transient and sustained outward K(+) conductances. Distinct differences in the relative proportion of these conductances were evident among cells but did not appear to be correlated with cell morphology. Treatment of cultures with interleukin-1beta for 96 h did not change total protein content, but increased the content of S100beta protein and decreased the content of glial fibrillary acidic protein. The findings indicate that cultures of adult human cerebrum contain subpopulations of morphologically and electrophysiologically pleomorphic glial fibrillary acidic protein positive astroglia, exhibit increased levels of the neurotrophic factor S100beta when exposed to interleukin-1beta, and may serve as a useful model for investigation of glial involvement in neuropathology.
Collapse
Affiliation(s)
- D L Davies
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
42
|
Moutsatsou P, Kazazoglou T, Fleischer-Lambropoulos H, Psarra AM, Tsiapara A, Sekeris CE, Stefanis C, Vernadakis A. Expression of the glucocorticoid receptor in early and late passage C-6 glioma cells and in normal astrocytes derived from aged mouse cerebral hemispheres. Int J Dev Neurosci 2000; 18:329-35. [PMID: 10715588 DOI: 10.1016/s0736-5748(99)00102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The presence of the glucocorticoid receptor in early and late passage C-6 glioma cells 2B clone and in astrocytes derived from aged mouse cerebral hemispheres has been documented by immunoblotting and/or immunofluorescence labelling. All cell types studied express the glucocorticoid receptor of molecular weight 97 KDa. In addition, in astrocytes derived from aged mouse cerebral hemispheres a smaller molecular weight polypeptide reacting with anti-glucocorticoid receptor antibody was also demonstrated. No difference in the amount of the 97 KDa glucocorticoid receptor between early and late C-6 2B cells was observed, whereas the astrocytes from aged cerebral hemispheres contained considerably reduced amounts of the glucocorticoid receptor compared to C-6 2B cells. Late passage C-6 2B cells were immunofluorescence labelled with the anti-glucocorticoid antibody, the receptor being almost exclusively present in the cytoplasm, with particular concentration in the perinuclear region. The presence of glucocorticoid receptor of molecular weight 97 KDa in glial cells corroborates and expands the existing data based on radioligand binding and immunocytochemical studies. These cell populations can be exploited as a model system for the study of the effects of glucocorticoids on senescence and brain aging.
Collapse
Affiliation(s)
- P Moutsatsou
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, GR-115 27 Goudi, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Cysteine is the rate-limiting precursor of glutathione synthesis. Evidence suggests that astrocytes can provide cysteine and/or glutathione to neurons. However, it is still unclear how cysteine is released and what the mechanisms of cysteine maintenance by astrocytes entail. In this report, we analyzed cysteine, glutathione, and related compounds in astrocyte conditioned medium using HPLC methods. In addition to cysteine and glutathione, cysteine-glutathione disulfide was found in the conditioned medium. In cystine-free conditioned medium, however, only glutathione was detected. These results suggest that glutathione is released by astrocytes directly and that cysteine is generated from the extracellular thiol/disulfide exchange reaction of cystine and glutathione: glutathione + cystine<-->cysteine + cysteine-glutathione disulfide. Conditioned medium from neuron-enriched cultures was also assayed in the same way as astrocyte conditioned medium, and no cysteine or glutathione was detected. This shows that neurons cannot themselves provide thiols but instead rely on astrocytes. We analyzed cysteine and related compounds in rat CSF and in plasma of the carotid artery and internal jugular vein. Our results indicate that cystine is transported from blood to the CNS and that the thiol/disulfide exchange reaction occurs in the brain in vivo. Cysteine and glutathione are unstable and oxidized to their disulfide forms under aerobic conditions. Therefore, constant release of glutathione by astrocytes is essential to maintain stable levels of thiols in the CNS.
Collapse
Affiliation(s)
- X F Wang
- Brain Research Centre, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
44
|
Bartha K, Dömötör E, Lanza F, Adam-Vizi V, Machovich R. Identification of thrombin receptors in rat brain capillary endothelial cells. J Cereb Blood Flow Metab 2000; 20:175-82. [PMID: 10616806 DOI: 10.1097/00004647-200001000-00022] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Both thrombin and plasmin induce contraction of brain endothelial cells, which may increase capillary permeability thereby leading to disruption of the blood-brain barrier. Identification of thrombin receptors, as well as the influence of plasmin on their activation, in capillary endothelial cells and astrocytes are therefore essential for understanding injury-related actions of thrombin in the brain. Using the reverse transcriptase-polymerase chain reaction method, the present study shows that primary cultures of rat brain capillary endothelial (RBCE) cells and astrocytes derived from rat brain express two different thrombin receptors. The first is proteolytically activated receptor (PAR)-1, the receptor responsible for the vast majority of the thrombin's cellular activation functions; the second is PAR-3, a receptor described to be essential for normal responsiveness to thrombin in mouse platelets. In addition to these thrombin receptors, the mRNA (messenger RNA) for PAR-2, a possible trypsin receptor, was also identified. Functional significance of thrombin receptors was indicated by changes in [Ca2+]i in response to thrombin, as measured by FURA-2 fluorescence in RBCE cells. Thrombin as low as 4 nmol/L induced an abrupt increase in [Ca2+]i whereas, upon addition of active site-blocked thrombin or plasmin, [Ca2+]i remained unchanged. The [Ca2+]i signal attributable to thrombin was smaller in a low Ca2+-containing medium, indicating that an influx of Ca2+ from the extracellular medium makes a contribution to the overall [Ca2+]i rise. The amplitude of the transient [Ca2+]i signal was dependent on the concentration of thrombin, and repeated application of the enzyme caused an essentially complete and long-term desensitization of the receptor. The PAR-1 agonist peptide SFLLRN also elicited a transient increase in [Ca2+]i. After activation by SFLLRN, cells showed a diminished response to thrombin, but the response was not absent, indicating that PAR-3 might contribute to the generation of the [Ca2+]i signal. Pretreatment of RBCE cells with 100 nmol/L plasmin completely prevented [Ca2+]i rise attributable to thrombin. These data show that RBCE cells and astrocytes express at least two receptors for thrombin, PAR-1 and PAR-3, and probably both receptors are involved in thrombin-induced [Ca2+]i signals. Plasmin itself does not elevate [Ca2+]i but prevents the activation of receptors by thrombin.
Collapse
Affiliation(s)
- K Bartha
- Department of Medical Biochemistry, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Wang XF, Cynader MS. Effects of astrocytes on neuronal attachment and survival shown in a serum-free co-culture system. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1999; 4:209-16. [PMID: 10446416 DOI: 10.1016/s1385-299x(99)00019-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to study the neurosupportive effects of glial cells, we optimized a glial-neuron non-contact co-culture method. Astrocyte conditioned medium (ACM) and an astrocyte feeder layer were used to promote neuronal attachment and neuronal survival respectively. Neuron-enriched cultures were prepared from cortices of E-18 day rat embryos. Instead of plating cells in serum-supplemented medium, as an indispensable first-step procedure for many serum-free culture protocols, we found that coating the coverslips briefly with ACM was sufficient for the healthy attachment and neurite outgrowth of the dissociated neurons in serum-free medium. A high survival rate of the low density (4x10(4) cells/cm(2)) neuronal cultures was achieved by co-culturing primary neurons with an astrocyte feeder layer. This non-contact co-culture method could be easily implemented with ordinary culture dishes. Our serum-free chemically defined medium was MEM supplemented with insulin, transferrin, selenium and pyruvate. In this serum-free medium, glial cells did not proliferate and a neuron-enriched population was obtained without the need for mitotic inhibitors. Our experimental results reveal a critical role for astrocytes in neuronal attachment and growth. This method can be used to study glial-neuron interactions as well as culturing low-density population of pure neurons.
Collapse
Affiliation(s)
- X F Wang
- Brain Research Centre, University of British Columbia and Vancouver Hospital and Health Sciences Centre, 2550 Willow Street, Vancouver, BC, Canada.
| | | |
Collapse
|
47
|
Mytilineou C, Kokotos Leonardi ET, Kramer BC, Jamindar T, Olanow CW. Glial cells mediate toxicity in glutathione-depleted mesencephalic cultures. J Neurochem 1999; 73:112-9. [PMID: 10386961 DOI: 10.1046/j.1471-4159.1999.0730112.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the role of glial cells in the toxicity that results from inhibition of reduced glutathione (GSH) synthesis by L-buthionine sulfoximine (BSO) in mesencephalic cell cultures. We show that GSH depletion, to levels that cause total cell loss in cultures containing neurons and glial cells, has no effect on cell viability in enriched neuronal cultures. An increase in the plating cell density sensitizes glia-containing cultures to GSH depletion-induced toxicity. This suggests that cell death in this model is the consequence of events that are induced by GSH depletion and are mediated by glial cells. The antioxidant ascorbic acid and the lipoxygenase (LOX) inhibitor nordihydroguaiaretic acid (1-10 microM) provide full protection from BSO toxicity, indicating that arachidonic acid metabolism through the LOX pathway and the generation of reactive oxygen species play a role in the loss of cell viability. In contrast, inhibition of nitric oxide (NO) synthase affords only partial protection from BSO toxicity, suggesting that increased NO production cannot entirely account for cell death in this model. Our data provide evidence that GSH depletion in the presence of glial cells leads to neuronal degeneration that can be prevented by inhibition of LOX. This may have relevance to the pathogenesis of Parkinson's disease, where glial activation and depletion of GSH have been found in the substantia nigra pars compacta.
Collapse
Affiliation(s)
- C Mytilineou
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
48
|
Chin KW, Lopez I, Lee SC, Honrubia V. Glutamate-like immunoreactivity during hair cell recovery after gentamicin exposure in the chinchilla vestibular sensory periphery. Laryngoscope 1999; 109:1037-44. [PMID: 10401837 DOI: 10.1097/00005537-199907000-00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Determine the expression of glutamate by immunohistochemistry in normal and recovering vestibular hair cells in the chinchilla crista ampullaris after gentamicin ototoxicity. STUDY DESIGN In five groups of three animals each, ototoxicity was produced by placing gentamicin (50 microg)-impregnated Gelfoam pellets within the perilymphatic space of the superior semicircular canal. Animals were sacrificed at 1, 2, 4, 8, and 16 weeks after treatment. A group of normal (n=3) animals was also processed. METHODS For the detection of glutamate the inner ears of these animals were dissected, and the horizontal cristae ampullaris embedded in plastic. Two-micron-thick tissue sections were obtained and incubated with monoclonal antibodies against glutamate. The immunoreaction was detected using the avidinbiotinylated-complex technique and diaminobenzidine was the chromogen. RESULTS Normal sensory epithelia demonstrated type I and type II hair cells with moderate glutamate-like immunoreactivity. Supporting cells demonstrated no glutamate-like immunoreactivity. Afferent nerve fibers and calyxes surrounding type I hair cells demonstrated strong glutamate-like immunoreactivity. At 1 and 2 weeks after treatment the few type II hair cells surviving ototoxic treatment (15%-18%) contained moderate glutamate-like immunoreactivity, supporting cells showed no immunoreactivity, and nerve terminals and fibers displayed strong immunoreactivity. At 4 and 8 weeks after treatment, recovered hair cells (80%) had greater glutamate-like immunoreactivity when compared with normal hair cells, supporting cells displayed no glutamate-like immunoreactivity, and afferent fibers contained strong glutamate-like immunoreactivity. At 16 weeks, glutamate-like immunoreactivity in hair cells returned to normal level. CONCLUSION Glutamate may be used as an indicator of hair cell differentiation and as an index of the molecular recovery of hair cells after ototoxicity.
Collapse
Affiliation(s)
- K W Chin
- Department of Surgery, University of California at Los Angeles, School of Medicine, USA
| | | | | | | |
Collapse
|
49
|
Drukarch B, Schepens E, Stoof JC, Langeveld CH, Van Muiswinkel FL. Astrocyte-enhanced neuronal survival is mediated by scavenging of extracellular reactive oxygen species. Free Radic Biol Med 1998; 25:217-20. [PMID: 9667499 DOI: 10.1016/s0891-5849(98)00050-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The survival of cultured neurons is promoted by the presence of antioxidants or astrocytes. This indicates that extracellular reactive oxygen species (ROS) impair neuronal survival and suggests that astrocytes exert their survival-enhancing effect through inactivation of these toxicants. However, to our knowledge, data supporting this hypothesis are lacking. Previously, we showed that loss of the antioxidant glutathione abolishes the neuronal survival-stimulating action of astrocytes in cocultures, consisting of rat striatal astrocytes and mesencephalic, dopaminergic neurons. Using uptake of [3H]dopamine as marker of neuronal survival, we presently investigated whether this effect of glutathione depletion is mediated by extracellular ROS. For this purpose, we incubated glutathione-depleted cocultures with superoxide dismutase, catalase or both. Whereas superoxide dismutase had no effect and catalase only partially protected, addition of the enzymes together completely prevented the impairment of neuronal survival caused by glutathione loss. No change in neuronal survival occurred upon exposure of control cocultures to superoxide dismutase and/or catalase. These data strongly implicate scavenging of extracellular ROS in astrocyte-stimulated neuronal survival and moreover suggest a crucial role for glutathione in this process.
Collapse
Affiliation(s)
- B Drukarch
- Graduate School Neurosciences Amsterdam, Department of Neurology, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Mittmann T, Qü M, Zilles K, Luhmann HJ. Long-term cellular dysfunction after focal cerebral ischemia: in vitro analyses. Neuroscience 1998; 85:15-27. [PMID: 9607699 DOI: 10.1016/s0306-4522(97)00638-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The long-term (< or = six months) functional consequences of permanent middle cerebral artery occlusion were studied with in vitro extra- and intracellular recording techniques in adult mouse neocortical slices. After survival times of one to three days, 28 days and six months, intracellular recordings from layers II/III pyramidal cells in the vicinity of the infarct did not reveal any statistically significant changes in the intrinsic membrane properties when compared to age-matched control animals. However, a pronounced hyperexcitability could be observed upon orthodromic synaptic stimulation in neocortical slices obtained from mice 28 days after induction of ischemia. Low-intensity electrical stimulation of the afferents elicited particularly in this group epileptiform extracellular field potential responses and intracellular excitatory postsynaptic potentials, that were longer in duration as compared to the controls. When the N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potential was pharmacologically isolated in a bathing solution containing 0.1 mM Mg2+ and 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione, the synaptic responses were longer and larger in the ischemic cortex as compared to the controls. Higher stimulus intensities evoked in normal medium a biphasic inhibitory postsynaptic potential, that contained in the 28 days post-ischemia group a prominent amino-phosphonovaleric acid-sensitive component, indicating a strong concurrent activation of a N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potential. This pronounced co-activation could only be observed in the 28 days ischemic group, and neither after one to three days or six months post-ischemia nor in the controls. The quantitative analysis of the efficiency of stimulus- evoked inhibitory postsynaptic potentials recorded in amino-phosphono-valeric acid revealed a reduction of GABA-mediated inhibition in ischemic cortex. Although this reduction in intracortical inhibition may already contribute to an augmentation of N-methyl-D-aspartate receptor-mediated excitation, our results do also indicate that the function of N-methyl-D-aspartate receptors is transiently enhanced in the ischemic cortex. This transient hyperexcitability does not only cause cellular dysfunction in the vicinity of the infarct, but may also contribute to neuronal damage due to excitotoxicity.
Collapse
Affiliation(s)
- T Mittmann
- Institute of Neurophysiology, University of Düsseldorf, Germany
| | | | | | | |
Collapse
|