1
|
Stanciu SM, Jurcut R, Dragoi Galrinho R, Stefani C, Miricescu D, Rusu IR, Prisacariu GS, Mititelu R. From Molecular to Radionuclide and Pharmacological Aspects in Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2024; 26:146. [PMID: 39796004 PMCID: PMC11719977 DOI: 10.3390/ijms26010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Amyloidosis is a rare pathology characterized by protein deposits in various organs and tissues. Cardiac amyloidosis (CA) can be caused by various protein deposits, but transthyretin amyloidosis (ATTR) and immunoglobulin light chain (AL) are the most frequent pathologies. Protein misfolding can be induced by several factors such as oxidative stress, genetic mutations, aging, chronic inflammation, and neoplastic disorders. In ATTR cardiomyopathy (ATTR-CM), the amyloid fibrils can be found in the myocardium interstitial space and are associated with arrhythmias and heart failure. In pathological situations, the transthyretin (TTR) configuration is destroyed by proteolytic action, leading to monomers that further misfold and aggregate to form the amyloid fibrils. 99mTc-Pyrophosphate (99m-Tc-PYP), 99mTc 3,3-diphosphono-1,2-propanodicarboxylic acid (99m-Tc-DPD) and 99m-Tc hydroxy-methylene-Dyphosphonate (99m-Tc-HMDP) are used to detect myocardium amyloid deposits due to their ability to detect calcium ions that are present in the amyloid fibrils through dystrophic calcification. ATTR-CM therapy acts on different stages of the amyloidogenic process, including liver TTR synthesis, TTR tetramer destabilization, and misfolding of the monomers. The main aim of this narrative review is to present ATTR-CM, starting with molecular changes regarding the protein misfolding process and radionuclide aspects and finishing with pharmacological approaches.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Ruxandra Jurcut
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Institute of Cardiovascular Diseases “Prof CC Iliescu”, 022322 Bucharest, Romania;
| | - Ruxandra Dragoi Galrinho
- Department of Cardiology and Cardiovascular Surgery, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Ruxandra Rusu
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Georgiana Sabina Prisacariu
- Clinic of Nuclear Medicine Central University Emergency Military Hospital “Dr Carol Davila”, 10825 Bucharest, Romania; (G.S.P.); (R.M.)
| | - Raluca Mititelu
- Clinic of Nuclear Medicine Central University Emergency Military Hospital “Dr Carol Davila”, 10825 Bucharest, Romania; (G.S.P.); (R.M.)
- Department of Nuclear Medicine, University of Medicine and Pharmacy Carol Davila, 030147 Bucharest, Romania
| |
Collapse
|
2
|
Schwind AM, Walsh DJ, Burke CM, Supattapone S. Phospholipid cofactor solubilization inhibits formation of native prions. J Neurochem 2023; 166:875-884. [PMID: 37551010 PMCID: PMC10528465 DOI: 10.1111/jnc.15930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Cofactor molecules are required to generate infectious mammalian prions in vitro. Mouse and hamster prions appear to have different cofactor preferences: Whereas both mouse and hamster prions can use phosphatidylethanolamine (PE) as a prion cofactor, only hamster prions can also use single-stranded RNA as an alternative cofactor. Here, we investigated the effect of detergent solubilization on rodent prion formation in vitro. We discovered that detergents that can solubilize PE (n-octylglucoside, n-octylgalactoside, and CHAPS) inhibit mouse prion formation in serial protein misfolding cyclic amplification (sPMCA) reactions using bank vole brain homogenate substrate, whereas detergents that are unable to solubilize PE (Triton X-100 and IPEGAL) have no effect. For all three PE-solubilizing detergents, inhibition of RML mouse prion formation was only observed above the critical micellar concentration (CMC). Two other mouse prion strains, Me7 and 301C, were also inhibited by the three PE-solubilizing detergents but not by Triton X-100 or IPEGAL. In contrast, none of the detergents inhibited hamster prion formation in parallel sPMCA reactions using the same bank vole brain homogenate substrate. In reconstituted sPMCA reactions using purified substrates, n-octylglucoside inhibited hamster prion formation when immunopurified bank vole PrPC substrate was supplemented with brain phospholipid but not with RNA. Interestingly, phospholipid cofactor solubilization had no effect in sPMCA reactions using bacterially expressed recombinant PrP substrate, indicating that the inhibitory effect of solubilization requires PrPC post-translational modifications. Overall, these in vitro results show that the ability of PE to facilitate the formation of native but not recombinant prions requires phospholipid bilayer integrity, suggesting that membrane structure may play an important role in prion formation in vivo.
Collapse
Affiliation(s)
- Abigail M. Schwind
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Daniel J. Walsh
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Cassandra M. Burke
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Surachai Supattapone
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| |
Collapse
|
3
|
Olech M. Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE). Int J Mol Sci 2023; 24:ijms24087135. [PMID: 37108297 PMCID: PMC10139118 DOI: 10.3390/ijms24087135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
4
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Walsh DJ, Schwind AM, Noble GP, Supattapone S. Conformational diversity in purified prions produced in vitro. PLoS Pathog 2023; 19:e1011083. [PMID: 36626391 PMCID: PMC9870145 DOI: 10.1371/journal.ppat.1011083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Prion diseases are caused by misfolding of either wild-type or mutant forms of the prion protein (PrP) into self-propagating, pathogenic conformers, collectively termed PrPSc. Both wild-type and mutant PrPSc molecules exhibit conformational diversity in vivo, but purified prions generated by the serial protein misfolding cyclic amplification (sPMCA) technique do not display this same diversity in vitro. This discrepancy has left a gap in our understanding of how conformational diversity arises at the molecular level in both types of prions. Here, we use continuous shaking instead of sPMCA to generate conformationally diverse purified prions in vitro. Using this approach, we show for the first time that wild type prions initially seeded by different native strains can propagate as metastable PrPSc conformers with distinguishable strain properties in purified reactions containing a single active cofactor. Propagation of these metastable PrPSc conformers requires appropriate shaking conditions, and changes in these conditions cause all the different PrPSc conformers to converge irreversibly into the same single conformer as that produced in sPMCA reactions. We also use continuous shaking to show that two mutant PrP molecules with different pathogenic point mutations (D177N and E199K) adopt distinguishable PrPSc conformations in reactions containing pure protein substrate without cofactors. Unlike wild-type prions, the conformations of mutant prions appear to be dictated by substrate sequence rather than seed conformation. Overall, our studies using purified substrates in shaking reactions show that wild-type and mutant prions use fundamentally different mechanisms to generate conformational diversity at the molecular level.
Collapse
Affiliation(s)
- Daniel J. Walsh
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Abigail M. Schwind
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Geoffrey P. Noble
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Surachai Supattapone
- Department of Biochemistry Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
6
|
Chronic wasting disease prions in mule deer interdigital glands. PLoS One 2022; 17:e0275375. [PMID: 36190981 PMCID: PMC9529147 DOI: 10.1371/journal.pone.0275375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a geographically expanding, fatal neurodegenerative disease in cervids. The disease can be transmitted directly (animal-animal) or indirectly via infectious prions shed into the environment. The precise mechanisms of indirect CWD transmission are unclear but known sources of the infectious prions that contaminate the environment include saliva, urine and feces. We have previously identified PrPC expression in deer interdigital glands, sac-like exocrine structures located between the digits of the hooves. In this study, we assayed for CWD prions within the interdigital glands of CWD infected deer to determine if they could serve as a source of prion shedding and potentially contribute to CWD transmission. Immunohistochemical analysis of interdigital glands from a CWD-infected female mule deer identified disease-associated PrPCWD within clusters of infiltrating leukocytes adjacent to sudoriferous and sebaceous glands, and within the acrosyringeal epidermis of a sudoriferous gland tubule. Proteinase K-resistant PrPCWD material was amplified by serial protein misfolding cyclic amplification (sPMCA) from soil retrieved from between the hoof digits of a clinically affected mule deer. Blinded testing of interdigital glands from 11 mule deer by real-time quake-induced conversion (RT-QuIC) accurately identified CWD-infected animals. The data described suggests that interdigital glands may play a role in the dissemination of CWD prions into the environment, warranting future investigation.
Collapse
|
7
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
8
|
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of disorders without effective disease-modifying therapies. Pathologically, these disorders are characterised by disease-specific protein aggregates in neurons and/or glia and referred to as proteinopathies. Many neurodegenerative diseases show pathological overlap with the same abnormally deposited protein occurring in anatomically distinct regions, which give rise to specific patterns of cognitive and motor clinical phenotypes. Sequential distribution patterns of protein inclusions throughout the brain have been described. Rather than occurring in isolation, it is increasingly recognised that combinations of one or more proteinopathies with or without cerebrovascular disease frequently occur in individuals with neurodegenerative diseases. In addition, complex constellations of ageing-related and incidental pathologies associated with tau, TDP-43, Aβ, α-synuclein deposition have been commonly reported in longitudinal ageing studies. This review provides an overview of current classification of neurodegenerative and age-related pathologies and presents the spectrum and complexity of mixed pathologies in community-based, longitudinal ageing studies, in major proteinopathies, and genetic conditions. Mixed pathologies are commonly reported in individuals >65 years with and without cognitive impairment; however, they are increasingly recognised in younger individuals (<65 years). Mixed pathologies are thought to lower the threshold for developing cognitive impairment and dementia. Hereditary neurodegenerative diseases also show a diverse range of mixed pathologies beyond the proteinopathy primarily linked to the genetic abnormality. Cases with mixed pathologies might show a different clinical course, which has prognostic relevance and obvious implications for biomarker and therapy development, and stratifying patients for clinical trials.
Collapse
|
9
|
Nakagaki T, Nishida N, Satoh K. Development of α-Synuclein Real-Time Quaking-Induced Conversion as a Diagnostic Method for α-Synucleinopathies. Front Aging Neurosci 2021; 13:703984. [PMID: 34650422 PMCID: PMC8510559 DOI: 10.3389/fnagi.2021.703984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy are characterized by aggregation of abnormal α-synuclein (α-syn) and collectively referred to as α-synucleinopathy. Because these diseases have different prognoses and treatments, it is desirable to diagnose them early and accurately. However, it is difficult to accurately diagnose these diseases by clinical symptoms because symptoms such as muscle rigidity, postural dysreflexia, and dementia sometimes overlap among these diseases. The process of conformational conversion and aggregation of α-syn has been thought similar to that of abnormal prion proteins that cause prion diseases. In recent years, in vitro conversion methods, such as real-time quaking-induced conversion (RT-QuIC), have been developed. This method has succeeded in amplifying and detecting trace amounts of abnormal prion proteins in tissues and central spinal fluid of patients by inducing conversion of recombinant prion proteins via shaking. Additionally, it has been used for antemortem diagnosis of prion diseases. Recently, aggregated α-syn has also been amplified and detected in patients by applying this method and many clinical studies have examined diagnosis using tissues or cerebral spinal fluid from patients. In this review, we discuss the utility and problems of α-syn RT-QuIC for antemortem diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Inactivation of Prions by Low-Temperature Sterilization Technology Using Vaporized Gas Derived from a Hydrogen Peroxide-Peracetic Acid Mixture. Pathogens 2020; 10:pathogens10010024. [PMID: 33396428 PMCID: PMC7824636 DOI: 10.3390/pathogens10010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/03/2023] Open
Abstract
Prion diseases are proteopathies that cause neurodegenerative disorders in humans and animals. Prion is highly resistant to both chemical and physical inactivation. Here, vaporized gas derived from a hydrogen peroxide–peracetic acid mixture (VHPPA) was evaluated for its ability to inactivate prion using a STERIACE 100 instrument (Saraya Co., Ltd.). Brain homogenates of scrapie (Chandler strain) prion-infected mice were placed on a cover glass, air-dried, sealed in a Tyvek package, and subjected to VHPPA treatment at 50–55 °C using 8% hydrogen peroxide and <10% peracetic acid for 47 min (standard mode, SD) or 30 min (quick mode, QC). Untreated control samples were prepared in the same way but without VHPPA. The resulting samples were treated with proteinase K (PK) to separate PK-resistant prion protein (PrPres), as a marker of the abnormal isoform (PrPSc). Immunoblotting showed that PrPres was reduced by both SD and QC VHPPA treatments. PrPres bands were detected after protein misfolding cyclic amplification of control but not VHPPA-treated samples. In mice injected with prion samples, VHPPA treatment of prion significantly prolonged survival relative to untreated samples, suggesting that it decreases prion infectivity. Taken together, the results show that VHPPA inactivates prions and might be applied to the sterilization of contaminated heat-sensitive medical devices.
Collapse
|
12
|
Sakudo A, Yamashiro R, Harata C. Effect of Non-Concentrated and Concentrated Vaporized Hydrogen Peroxide on Scrapie Prions. Pathogens 2020; 9:pathogens9110947. [PMID: 33202870 PMCID: PMC7696461 DOI: 10.3390/pathogens9110947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
To date, there have been no studies on the sterilization of prions by non-concentrated and concentrated vaporized hydrogen peroxide (VHP) applied by the same instrument. Here, the effect of the two types of VHP applied using an ES-700 sterilizer on prions was investigated. Brain homogenate from scrapie (Chandler) prion-infected mice was spotted on a cover glass and subjected to ES-700 treatment in soft (non-concentrated VHP from 59% hydrogen peroxide) or standard (concentrated VHP from 80% hydrogen peroxide) mode. Proteinase K-resistant prion protein (PrPres), an indicator of the abnormal isoform of prion protein (PrPSc), was reduced by ES-700 treatment under several conditions: SFT1/4 (soft mode, quarter cycle), SFT1/2 (soft mode, half cycle), SFT1 (soft mode, full cycle), and STD1/2 (standard mode, half cycle). PrPres was detected after the first and second rounds of protein misfolding cyclic amplification (PMCA) of untreated samples, but was undetectable in SFT1/4, SFT1/2, SFT1, and STD1/2 treated samples. In a mouse bioassay, SFT1/2 and STD1/2 treatment of prions significantly prolonged survival time, suggesting that prion infectivity is reduced after ES-700 treatment. In summary, both non-concentrated and concentrated VHP inactivate prions and may be useful for the low-temperature sterilization of prion-contaminated medical devices.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan;
- Correspondence:
| | - Risa Yamashiro
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan;
| | - Chihiro Harata
- Canon Lifecare Solutions Inc., Minato-ku, Tokyo 108-0075, Japan;
| |
Collapse
|
13
|
Sakudo A, Imanishi Y, Hirata A, Koga Y, Shintani H. Effect of Nitrogen Gas Plasma Generated by a Fast-Pulsed Power Supply Using a Static Induction Thyristor on Scrapie Prion. Pathogens 2020; 9:pathogens9100819. [PMID: 33036274 PMCID: PMC7599630 DOI: 10.3390/pathogens9100819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Previous studies show that nitrogen gas plasma generated by a fast-pulsed power supply using a static induction thyristor has both virucidal and bactericidal effects. In this study, nitrogen gas plasma was further evaluated for its potential effects on prions, which are well known to be the most resistant pathogen to both chemical and physical inactivation. Aliquots (10 μL) of mouse brain homogenate infected with Chandler scrapie prion were spotted onto cover glasses and subjected to nitrogen gas plasma. Treated samples were recovered and subjected to further analyses. Control prion samples were prepared in exactly the same way but without plasma treatment. Protein misfolding cyclic amplification (PMCA) showed that nitrogen gas plasma treatment at 1.5 kilo pulse per second for 15 or 30 min caused a reduction in the in vitro propagation level of PrPres (proteinase K-resistant prion protein), which was used as an index of abnormal prion protein (PrPSc). Moreover, mice injected with prion treated with plasma for 30 min showed longer survival than mice injected with control prion, indicating that nitrogen gas plasma treatment decreased prion infectivity. Altogether, these results suggest that nitrogen gas plasma treatment can inactivate scrapie prions by decreasing the propagation activity and infectivity of PrPSc.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Correspondence:
| | - Yuichiro Imanishi
- NGK Insulators Ltd., Nagoya, Aichi 467-8530, Japan;
- Energy Support Corporation, Inuyama, Aichi 484-8505, Japan
| | - Azumi Hirata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan;
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan;
| | - Hideharu Shintani
- Department of Science and Engineering, Chuo University, Tokyo 112-8551, Japan;
| |
Collapse
|
14
|
Identification of a homology-independent linchpin domain controlling mouse and bank vole prion protein conversion. PLoS Pathog 2020; 16:e1008875. [PMID: 32898162 PMCID: PMC7508373 DOI: 10.1371/journal.ppat.1008875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/22/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
Prions are unorthodox pathogens that cause fatal neurodegenerative diseases in humans and other mammals. Prion propagation occurs through the self-templating of the pathogenic conformer PrPSc, onto the cell-expressed conformer, PrPC. Here we study the conversion of PrPC to PrPSc using a recombinant mouse PrPSc conformer (mouse protein-only recPrPSc) as a unique tool that can convert bank vole but not mouse PrPC substrates in vitro. Thus, its templating ability is not dependent on sequence homology with the substrate. In the present study, we used chimeric bank vole/mouse PrPC substrates to systematically determine the domain that allows for conversion by Mo protein-only recPrPSc. Our results show that that either the presence of the bank vole amino acid residues E227 and S230 or the absence of the second N-linked glycan are sufficient to allow PrPC substrates to be converted by Mo protein-only recPrPSc and several native infectious prion strains. We propose that residues 227 and 230 and the second glycan are part of a C-terminal domain that acts as a linchpin for bank vole and mouse prion conversion. Prions are unconventional infectious agents that lack nucleic acids such as DNA and RNA, and the mechanism by which prions replicate is not fully understood. It has been established that a central feature of the replication mechanism involves the misfolding of a host protein (PrPC) into an infectious shape termed PrPSc, but it is unclear how this misfolding occurs. Interestingly, it has been observed that a particular animal species, the European bank vole, is unusually susceptible to prion infection and that this near-universal susceptibility is caused by the specific PrPC sequence of this protein. Here we use a powerful and unique biochemical system to determine the specific region of bank vole PrPC that is primarily responsible for its propensity to misfold into PrPSc. This critical region, which is located at the extreme C-terminal end of the protein, appears to act as a linchpin domain that normally stabilizes the shape of PrPC and thereby regulates its misfolding into PrPSc.
Collapse
|
15
|
Inactivation of Scrapie Prions by the Electrically Charged Disinfectant CAC-717. Pathogens 2020; 9:pathogens9070536. [PMID: 32635278 PMCID: PMC7400677 DOI: 10.3390/pathogens9070536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022] Open
Abstract
Previous studies have revealed that the electrically charged disinfectant CAC-717 has strong virucidal and bactericidal effects but is safe for humans and animals. In this study, CAC-717 was further evaluated for its potential effects as a disinfectant against scrapie prions. Western blotting showed that CAC-717 reduced the amount of the abnormal isoform of prion protein (PrPSc) in prion-infected cell (ScN2a) lysates. Furthermore, the reduction of prion transmissibility was confirmed by a mouse bioassay, in which mice injected with scrapie prions pre-treated with CAC-717 survived longer than those injected with untreated scrapie prions. Lastly, to evaluate the seeding activity of ScN2a cell lysates treated with CAC-717, quantitative protein misfolding cyclic amplification (PMCA) was performed directly on ScN2a cell lysates treated with CAC-717, which showed that the median dose of PMCA (PMCA50) dropped from log9.95 to log5.20 after CAC-717 treatment, indicating more than a 4 log reduction. This suggests that the seeding activity of PrPSc is decreased by CAC-717. Collectively, these results suggest that CAC-717 has anti-prion activity, reducing both PrPSc conversion activity and prion transmissibility; thus, CAC-717 will be useful as a novel disinfectant in prion diseases.
Collapse
|
16
|
Burke CM, Walsh DJ, Mark KMK, Deleault NR, Nishina KA, Agrimi U, Di Bari MA, Supattapone S. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation. PLoS Pathog 2020; 16:e1008495. [PMID: 32294141 PMCID: PMC7185723 DOI: 10.1371/journal.ppat.1008495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kenneth M. K. Mark
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nathan R. Deleault
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Koren A. Nishina
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele A. Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
17
|
Peduzzo A, Linse S, Buell AK. The Properties of α-Synuclein Secondary Nuclei Are Dominated by the Solution Conditions Rather than the Seed Fibril Strain. ACS Chem Neurosci 2020; 11:909-918. [PMID: 32069013 DOI: 10.1021/acschemneuro.9b00594] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyloid fibrils of α-synuclein (α-syn) are a component of Lewy bodies, the characteristic hallmark of Parkinson's disease. Amyloid fibrils arise through primary nucleation from monomers, which in the case of α-syn is often heterogeneous, followed by the growth of the nuclei by monomer addition. Secondary nucleation corresponds to the formation of new fibrils facilitated by pre-existing fibrils. While it is well-established that the newly added monomer in fibril elongation adopts the conformation of the monomers in the seed ("templating"), it is unclear whether fibrils formed through secondary nucleation of monomers on the surface of seed fibrils copy the structure of the "parent" fibril. Here we show by biochemical and microscopical methods that the secondary nucleation of α-syn, enabled at mildly acidic pH, leads to fibrils that structurally resemble more closely those formed de novo under the same conditions, rather than the seeds if these are formed under different solution conditions. This result has important implications for the mechanistic understanding of the secondary nucleation of amyloid fibrils and its role in the propagation of aggregate pathology in protein misfolding diseases.
Collapse
Affiliation(s)
- Alessia Peduzzo
- Institute of Physical Biology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Alexander K. Buell
- Institute of Physical Biology, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Technical University of Denmark, Department of Biotechnology and Biomedicine, 2800 Lyngby, Denmark
| |
Collapse
|
18
|
Peden AH, Kanguru L, Ritchie DL, Smith C, Molesworth AM. Study protocol for enhanced CJD surveillance in the 65+ years population group in Scotland: an observational neuropathological screening study of banked brain tissue donations for evidence of prion disease. BMJ Open 2019; 9:e033744. [PMID: 31662408 PMCID: PMC6830687 DOI: 10.1136/bmjopen-2019-033744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Creutzfeldt-Jakob disease (CJD) is a human prion disease that occurs in sporadic, genetic and acquired forms. Variant CJD (vCJD) is an acquired form first identified in 1996 in the UK. To date, 178 cases of vCJD have been reported in the UK, most of which have been associated with dietary exposure to the bovine spongiform encephalopathy agent. Most vCJD cases have a young age of onset, with a median age at death of 28 years. In the UK, suspected cases of vCJD are reported to the UK National Creutzfeldt-Jakob Disease Research & Surveillance Unit (NCJDRSU). There is, however, a concern that the national surveillance system might be missing some cases of vCJD or other forms of human prion disease, particularly in the older population, perhaps because of atypical clinical presentation. This study aims to establish whether there is unrecognised prion disease in people aged 65 years and above in the Scottish population by screening banked brain tissue donated to the Edinburgh Brain Bank (EBB). METHODS Neuropathological screening of prospective and retrospective brain tissue samples is performed. This involves histopathological and immunohistochemical analysis and prion protein biochemical analysis. During the study, descriptive statistics are used to describe the study population, including the demographics and clinical, pathological and referral characteristics. Controlling for confounders, univariate and multivariate analyses will be used to compare select characteristics of newly identified suspect cases with previously confirmed cases referred to the NCJDRSU. ETHICS AND DISSEMINATION Brain tissue donations to EBB are made voluntarily by the relatives of patients, with consent for use in research. The EBB has ethical approval to provide tissue samples to research projects (REC reference 16/ES/0084). The findings of this study will be disseminated in meetings, conferences, workshops and as peer-reviewed publications. TRIAL REGISTRATION NUMBERS 10/S1402/69 and 10/S1402/70.
Collapse
Affiliation(s)
- Alexander Howard Peden
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Lovney Kanguru
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Diane L Ritchie
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Anna M Molesworth
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| |
Collapse
|
19
|
Kraus A, Saijo E, Metrick MA, Newell K, Sigurdson CJ, Zanusso G, Ghetti B, Caughey B. Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol 2019; 137:585-598. [PMID: 30570675 PMCID: PMC6426988 DOI: 10.1007/s00401-018-1947-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 10/28/2022]
Abstract
Alzheimer disease (AD) and chronic traumatic encephalopathy (CTE) involve the abnormal accumulation in the brain of filaments composed of both three-repeat (3R) and four-repeat (4R) (3R/4R) tau isoforms. To probe the molecular basis for AD's tau filament propagation and to improve detection of tau aggregates as potential biomarkers, we have exploited the seeded polymerization growth mechanism of tau filaments to develop a highly selective and ultrasensitive cell-free tau seed amplification assay optimized for AD (AD real-time quaking-induced conversion or AD RT-QuIC). The reaction is based on the ability of AD tau aggregates to seed the formation of amyloid fibrils made of certain recombinant tau fragments. AD RT-QuIC detected seeding activity in AD (n = 16) brains at dilutions as extreme as 107-1010-fold, but was 102-106-fold less responsive when seeded with brain from most cases of other types of tauopathy with comparable loads of predominant 3R or 4R tau aggregates. For example, AD brains had average seeding activities that were orders of magnitude higher than Pick disease brains with predominant 3R tau deposits, but the opposite was true using our previously described Pick-optimized tau RT-QuIC assay. CTE brains (n = 2) had seed concentrations comparable to the weakest of the AD specimens, and higher than 3 of 4 specimens with 3R/4R primary age-related tauopathy. AD seeds shared properties with the tau filaments found in AD brains, as AD seeds were sarkosyl-insoluble, protease resistant, and reactive with tau antibodies. Moreover, AD RT-QuIC detected as little as 16 fg of pure synthetic tau fibrils. The distinctive seeding activity exhibited by AD and CTE tau filaments compared to other types of tauopathies in these seeded polymerization reactions provides a mechanistic basis for their consistent propagation as specific conformers in patients with 3R/4R tau diseases. Importantly, AD RT-QuIC also provides rapid ultrasensitive quantitation of 3R/4R tau-seeding activity as a biomarker.
Collapse
Affiliation(s)
- Allison Kraus
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
| | - Eri Saijo
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
| | - Michael A Metrick
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA
| | - Kathy Newell
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | | | | | | | - Byron Caughey
- LPVD, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, 59840, USA.
| |
Collapse
|
20
|
In vitro Modeling of Prion Strain Tropism. Viruses 2019; 11:v11030236. [PMID: 30857283 PMCID: PMC6466166 DOI: 10.3390/v11030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Prions are atypical infectious agents lacking genetic material. Yet, various strains have been isolated from animals and humans using experimental models. They are distinguished by the resulting pattern of disease, including the localization of PrPsc deposits and the spongiform changes they induce in the brain of affected individuals. In this paper, we discuss the emerging use of cellular and acellular models to decipher the mechanisms involved in the strain-specific targeting of distinct brain regions. Recent studies suggest that neuronal cultures, protein misfolding cyclic amplification, and combination of both approaches may be useful to explore this under-investigated but central domain of the prion field.
Collapse
|
21
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
22
|
Harrathi C, Fernández-Borges N, Eraña H, Elezgarai SR, Venegas V, Charco JM, Castilla J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol Neurobiol 2018; 56:5287-5303. [PMID: 30592012 PMCID: PMC6614146 DOI: 10.1007/s12035-018-1443-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
The large chronic wasting disease (CWD)-affected cervid population in the USA and Canada, and the risk of the disease being transmitted to humans through intermediate species, is a highly worrying issue that is still poorly understood. In this case, recombinant protein misfolding cyclic amplification was used to determine, in vitro, the relevance of each individual amino acid on cross-species prion transmission. Others and we have found that the β2-α2 loop is a key modulator of transmission barriers between species and markedly influences infection by sheep scrapie, bovine spongiform encephalopathy (BSE), or elk CWD. Amino acids that differentiate ovine and deer normal host prion protein (PrPC) and associated with structural rigidity of the loop β2-α2 (S173N, N177T) appear to confer resistance to some prion diseases. However, addition of methionine at codon 208 together with the previously described rigid loop substitutions seems to hide a key in this species barrier, as it makes sheep recombinant prion protein highly susceptible to CWD-induced misfolding. These studies indicate that interspecies prion transmission is not only governed just by the β2-α2 loop amino acid sequence but also by its interactions with the α3-helix as shown by substitution I208M. Transmissible spongiform encephalopathies, characterized by long incubation periods and spongiform changes associated with neuronal loss in the brain, have been described in several mammalian species appearing either naturally (scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids, Creutzfeldt-Jakob disease in humans) or by experimental transmission studies (scrapie in mice and hamsters). Much of the pathogenesis of the prion diseases has been determined in the last 40 years, such as the etiological agent or the fact that prions occur as different strains that show distinct biological and physicochemical properties. However, there are many unanswered questions regarding the strain phenomenon and interspecies transmissibility. To assess the risk of interspecies transmission between scrapie and chronic wasting disease, an in vitro prion propagation method has been used. This technique allows to predict the amino acids preventing the transmission between sheep and deer prion diseases.
Collapse
Affiliation(s)
- Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | | | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Vanessa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Jorge M Charco
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain.
| |
Collapse
|
23
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
24
|
Modified Protein Misfolding Cyclic Amplification Overcomes Real-Time Quaking-Induced Conversion Assay Inhibitors in Deer Saliva To Detect Chronic Wasting Disease Prions. J Clin Microbiol 2018; 56:JCM.00947-18. [PMID: 29950332 DOI: 10.1128/jcm.00947-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
Chronic wasting disease (CWD), a fatal neurodegenerative prion disease of cervids, has spread across North America and has been detected in The Republic of Korea, Finland, and Norway. CWD appears to spread by horizontal transmission, and prions shed in saliva, feces, and urine are thought to contribute. However, studies investigating the rapid spread of CWD have been hampered by assay inhibitors and a lack of consistent and sensitive means to detect the relatively low levels of prions in these samples. Here we show that saliva frequently contains an inhibitor of the real-time quaking-induced conversion assay (RT-QuIC) and that the inhibitor is a member of the mucin family. To circumvent the inhibitor, we developed a modified protein misfolding cyclic amplification (PMCA) method to amplify CWD prions in saliva that were undetectable or ambiguous by RT-QuIC. Our results reinforce the impact of saliva in horizontal CWD transmission and highlight the importance of detection optimization.
Collapse
|
25
|
Cali I, Mikhail F, Qin K, Gregory C, Solanki A, Martinez MC, Zhao L, Appleby B, Gambetti P, Norstrom E, Mastrianni JA. Impaired transmissibility of atypical prions from genetic CJD G114V. Neurol Genet 2018; 4:e253. [PMID: 30109268 PMCID: PMC6089695 DOI: 10.1212/nxg.0000000000000253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To describe the clinicopathologic, molecular, and transmissible characteristics of genetic prion disease in a young man carrying the PRNP-G114V variant. METHODS We performed genetic, histologic, and molecular studies, combined with in vivo transmission studies and in vitro replication studies, to characterize this genetic prion disease. RESULTS A 24-year-old American man of Polish descent developed progressive dementia, aphasia, and ataxia, leading to his death 5 years later. Histologic features included widespread spongiform degeneration, gliosis, and infrequent PrP plaque-like deposits within the cerebellum and putamen, best classifying this as a Creutzfeldt-Jakob disease (CJD) subtype. Molecular typing of proteinase K-resistant PrP (resPrPSc) revealed a mixture of type 1 (∼21 kDa) and type 2 (∼19 kDa) conformations with only 2, rather than the usual 3, PrPSc glycoforms. Brain homogenates from the proband failed to transmit prion disease to transgenic Tg(HuPrP) mice that overexpress human PrP and are typically susceptible to sporadic and genetic forms of CJD. When subjected to protein misfolding cyclic amplification, the PrPSc type 2 (∼19 kDa) was selectively amplified. CONCLUSIONS The features of genetic CJDG114V suggest that residue 114 within the highly conserved palindromic region (113-AGAAAAGA-120) plays an important role in prion conformation and propagation.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Fadi Mikhail
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Kefeng Qin
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Crystal Gregory
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Ani Solanki
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Manuel Camacho Martinez
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Lili Zhao
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Brian Appleby
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Pierluigi Gambetti
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Eric Norstrom
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - James A Mastrianni
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| |
Collapse
|
26
|
Fernández-Borges N, Eraña H, Elezgarai SR, Harrathi C, Venegas V, Castilla J. A Quick Method to Evaluate the Effect of the Amino Acid Sequence in the Misfolding Proneness of the Prion Protein. Methods Mol Biol 2018; 1658:205-216. [PMID: 28861792 DOI: 10.1007/978-1-4939-7244-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases where the misfolding of the prion protein (PrP) is a crucial event. Based on studies in TSE-affected humans and the generation of transgenic mouse models overexpressing different mutated versions of the PrP, we conclude that both wild-type and mutated PrPs exhibit differential propensity to misfold in vivo. Here, we describe a new method in vitro to assess and quantify the PrP misfolding phenomenon in order to better understand the molecular mechanisms involved in this process.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Chafik Harrathi
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160, Bizkaia, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Bizkaia, Spain.
| |
Collapse
|
27
|
Villar-Piqué A, Schmitz M, Candelise N, Ventura S, Llorens F, Zerr I. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases. Mol Neurobiol 2018; 55:7588-7605. [DOI: 10.1007/s12035-018-0926-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
28
|
Fernández-Borges N, Parra B, Vidal E, Eraña H, Sánchez-Martín MA, de Castro J, Elezgarai SR, Pumarola M, Mayoral T, Castilla J. Unraveling the key to the resistance of canids to prion diseases. PLoS Pathog 2017; 13:e1006716. [PMID: 29131852 PMCID: PMC5703577 DOI: 10.1371/journal.ppat.1006716] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/27/2017] [Accepted: 10/28/2017] [Indexed: 01/08/2023] Open
Abstract
One of the characteristics of prions is their ability to infect some species but not others and prion resistant species have been of special interest because of their potential in deciphering the determinants for susceptibility. Previously, we developed different in vitro and in vivo models to assess the susceptibility of species that were erroneously considered resistant to prion infection, such as members of the Leporidae and Equidae families. Here we undertake in vitro and in vivo approaches to understand the unresolved low prion susceptibility of canids. Studies based on the amino acid sequence of the canine prion protein (PrP), together with a structural analysis in silico, identified unique key amino acids whose characteristics could orchestrate its high resistance to prion disease. Cell- and brain-based PMCA studies were performed highlighting the relevance of the D163 amino acid in proneness to protein misfolding. This was also investigated by the generation of a novel transgenic mouse model carrying this substitution and these mice showed complete resistance to disease despite intracerebral challenge with three different mouse prion strains (RML, 22L and 301C) known to cause disease in wild-type mice. These findings suggest that dog D163 amino acid is primarily, if not totally, responsible for the prion resistance of canids. Detection of individuals or whole species resistant to any infectious disease is vital to understand the determinants of susceptibility and to develop appropriate therapeutic and preventative strategies. Canids have long been considered resistant to prion infection given the absence of clinical disease despite exposure to the causal agent. Through extensive analysis of the canine prion protein we have detected a key amino acid that might be responsible for their universal resistance to prion disease. Using in vitro and in vivo models we demonstrated that the presence of this residue confers resistance to prion infection when introduced to susceptible animals, opening the way to develop a new therapeutic approach against these, at present, untreatable disorders.
Collapse
Affiliation(s)
| | - Beatriz Parra
- Laboratorio Central de Veterinaria (LCV), Madrid, Spain
| | - Enric Vidal
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain
| | - Manuel A. Sánchez-Martín
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Jorge de Castro
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | | | - Martí Pumarola
- Department of Animal Medicine and Surgery, Veterinary faculty, Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Tomás Mayoral
- Laboratorio Central de Veterinaria (LCV), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- * E-mail:
| |
Collapse
|
29
|
Haley NJ, Richt JA. Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids. Pathogens 2017; 6:pathogens6030035. [PMID: 28783058 PMCID: PMC5617992 DOI: 10.3390/pathogens6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Since chronic wasting disease (CWD) was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses. As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests—especially those which take advantage of samples collected antemortem. Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples. In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples. With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host. Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies. Chronic wasting disease—once a rare disease of Colorado mule deer—now represents one of the most prevalent prion diseases, and should serve as a model for the continued development and implementation of novel diagnostic strategies for protein misfolding disorders in the natural host.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS 66506, USA.
| |
Collapse
|
30
|
Caughey B, Orru CD, Groveman BR, Hughson AG, Manca M, Raymond LD, Raymond GJ, Race B, Saijo E, Kraus A. Amplified Detection of Prions and Other Amyloids by RT-QuIC in Diagnostics and the Evaluation of Therapeutics and Disinfectants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:375-388. [PMID: 28838670 DOI: 10.1016/bs.pmbts.2017.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the most sensitive, specific and practical of methods for detecting prions are the real-time quaking-induced conversion (RT-QuIC) assays. These assays exploit the fundamental self-propagating activity of prions to amplify the presence of prion seeds by as much as a trillion-fold. The reactions can detect most of the known mammalian prion diseases, often with sensitivities greater than those of animal bioassays. RT-QuIC assays are performed in multiwell plates with fluorescence detection and have now reached the sensitivity and practicality required for routine prion disease diagnostics. Some key strains of prions within particular host species, e.g., humans, cattle, and sheep, can be discriminated by comparison of RT-QuIC responses with different recombinant prion protein substrates. The most thoroughly validated diagnostic application of RT-QuIC is in the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) using cerebrospinal fluid. Diagnostic sensitivities as high as 96% can be achieved in less than 24h with specificities of 98%-100%. The ability, if needed, to also test nasal swab samples can increase the RT-QuIC sensitivity for sCJD to virtually 100%. In addition to diagnostic applications, RT-QuIC has also been used in the testing of prion disinfectants and potential therapeutics. Mechanistically related assays are also now being developed for other protein misfolding diseases.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| | - Christina D Orru
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Matteo Manca
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Eri Saijo
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
31
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
32
|
Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol 2017; 133:751-765. [PMID: 28293793 DOI: 10.1007/s00401-017-1692-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
Abstract
The diagnosis and treatment of diseases involving tau-based pathology such as Alzheimer disease and certain frontotemporal dementias is hampered by the inability to detect pathological forms of tau with sufficient sensitivity, specificity and practicality. In these neurodegenerative diseases, tau accumulates in self-seeding filaments. For example, Pick disease (PiD) is associated with frontotemporal degeneration and accumulation of 3-repeat (3R) tau isoforms in filaments constituting Pick bodies. Exploiting the self-seeding activity of tau deposits, and using a 3R tau fragment as a substrate, we have developed an assay (tau RT-QuIC) that can detect tau seeds in 2 µl aliquots of PiD brain dilutions down to 10-7-10-9. PiD seeding activities were 100-fold higher in frontal and temporal lobes compared to cerebellar cortex. Strikingly, this test was 103- to 105-fold less responsive when seeded with brain containing predominant 4-repeat (4R) tau aggregates from cases of corticobasal degeneration, argyrophilic grain disease, and progressive supranuclear palsy. Alzheimer disease brain, with 3R + 4R tau deposits, also gave much weaker responses than PiD brain. When applied to cerebrospinal fluid samples (5 µl), tau RT-QuIC analyses discriminated PiD from non-PiD cases. These findings demonstrate that abnormal tau aggregates can be detected with high sensitivity and disease-specificity in crude tissue and fluid samples. Accordingly, this tau RT-QuIC assay exemplifies a new approach to diagnosing tauopathies and monitoring therapeutic trials using aggregated tau itself as a biomarker.
Collapse
|
33
|
Park JH, Choi YG, Park SJ, Choi HS, Choi EK, Kim YS. Ultra-efficient Amplification of Abnormal Prion Protein by Modified Protein Misfolding Cyclic Amplification with Electric Current. Mol Neurobiol 2017; 55:1630-1638. [PMID: 28194643 PMCID: PMC5820375 DOI: 10.1007/s12035-017-0431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/27/2017] [Indexed: 12/05/2022]
Abstract
Prion diseases are clinically diagnosed and confirmed upon post-mortem histopathological examination of brain tissue. The only reliable molecular marker for prion diseases is abnormal prion protein (PrPSc), a pathologically conformed prion protein that primarily accumulates in the central nervous system and to a lesser extent in lymphoreticular tissues. However, the use of PrPSc as a marker for preclinical diagnoses is limited because the concentration of PrPSc in easily accessible body fluids is extremely low. Hence, one of the most promising approaches would be the development of an efficient in vitro amplification method for PrPSc. Indeed, protein misfolding cyclic amplification (PMCA) has become an important diagnostic tool for prion diseases. Here, we first describe a new superior PMCA device that employs electricity (referred to as ePMCA) to amplify PrPSc. The ePMCA device markedly improved the detection limit for PrPSc by amplifying trace amounts of pathogenic prion protein by applying electricity to improve PMCA. To increase the cavitation of sonication, a glass sample tube was used, and the upper side of the horn was shaped such that it had a curved cross-section. The ePMCA device enabled PrPSc to be amplified even from a sample seeded with 10–28-fold diluted 263K scrapie-infected brain homogenates with recombinant hamster prion protein (rHaPrP). In addition, the efficiency of prion amplification was best when 50 mM HEPES and 1% Triton X-100 were used as a PMCA conversion buffer in the various conditions that we applied. These results indicate that ePMCA would be very valuable for the rapid and specific diagnosis of human prion diseases and, thus, may provide a practically improved method for antemortem diagnoses using the body fluids of patients and animals with prion disease.
Collapse
Affiliation(s)
- Jeong-Ho Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.,Laboratory of Transmissible Spongiform Encephalopathies, Ilsong Institute of Life Science, Hallym University, 15 Gwanpyeong-ro, 170beon-gil, Dongan-gu, Anyang, Gyeonggi-do, 14066, Republic of Korea
| | - Yeong-Gon Choi
- Laboratory of Transmissible Spongiform Encephalopathies, Ilsong Institute of Life Science, Hallym University, 15 Gwanpyeong-ro, 170beon-gil, Dongan-gu, Anyang, Gyeonggi-do, 14066, Republic of Korea
| | - Seok-Joo Park
- Laboratory of Transmissible Spongiform Encephalopathies, Ilsong Institute of Life Science, Hallym University, 15 Gwanpyeong-ro, 170beon-gil, Dongan-gu, Anyang, Gyeonggi-do, 14066, Republic of Korea
| | - Hong-Seok Choi
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.,Laboratory of Transmissible Spongiform Encephalopathies, Ilsong Institute of Life Science, Hallym University, 15 Gwanpyeong-ro, 170beon-gil, Dongan-gu, Anyang, Gyeonggi-do, 14066, Republic of Korea
| | - Eun-Kyoung Choi
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea.,Laboratory of Cellular Aging and Neurodegeneration, Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - Yong-Sun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea. .,Laboratory of Transmissible Spongiform Encephalopathies, Ilsong Institute of Life Science, Hallym University, 15 Gwanpyeong-ro, 170beon-gil, Dongan-gu, Anyang, Gyeonggi-do, 14066, Republic of Korea. .,Korea CJD Diagnostic Center, Hallym University, Anyang, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
35
|
Oshita M, Yokoyama T, Takei Y, Takeuchi A, Ironside JW, Kitamoto T, Morita M. Efficient propagation of variant Creutzfeldt-Jakob disease prion protein using the cell-protein misfolding cyclic amplification technique with samples containing plasma and heparin. Transfusion 2015; 56:223-30. [PMID: 26347231 DOI: 10.1111/trf.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/02/2015] [Accepted: 07/12/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND To prevent the iatrogenic spread of variant Creutzfeldt-Jakob disease (vCJD) between humans via blood products or transfusion, highly sensitive in vitro screening tests are necessary. Protein misfolding cyclic amplification (PMCA) is one such candidate test. However, plasma has been reported to inhibit the PMCA reaction. Therefore, we investigated the cell-PMCA conditions that permit vCJD prion amplification in the presence of plasma. STUDY DESIGN AND METHODS Cell-PMCA of vCJD samples was performed by adding various final concentrations of pooled plasma, citrate-phosphate-dextrose (CPD), albumin, globulin, or pooled plasma treated with ion exchangers. After heparin and plasma concentrations were optimized, multiround cell-PMCA was performed. RESULTS When 1% to 50% of pooled plasma was added to heparinized cell-PMCA, amplification efficiency showed a double-peaked profile at less than 1% and 40% final plasma concentrations, indicating that plasma contains not only PMCA inhibitors but also promoters. Intravenous globulin did not inhibit cell-PMCA, but the protein G-bound fraction did. CPD, albumin-depleted plasma, and the unbound fraction of anion-exchange chromatography inhibited cell-PMCA, but albumin and the unbound fraction of the cation-exchange chromatography did not. The detection limit of abnormal prion protein in multiround cell-PMCA, when maintaining the final plasma concentration at 40% at each round, was 10(-10) dilutions of a vCJD brain specimen. CONCLUSION We have established a novel cell-PMCA format in the presence of plasma without any pretreatment, where vCJD prion protein was amplified at comparable levels to that found without plasma. Our data suggest the feasibility of cell-PMCA as a practical blood test for vCJD prions.
Collapse
Affiliation(s)
- Masatoshi Oshita
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Takashi Yokoyama
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Yumiko Takei
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan
| | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan
| | - Masanori Morita
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| |
Collapse
|
36
|
Gilroyed BH, Braithwaite SL, Price LM, Reuter T, Czub S, Graham C, Balachandran A, McAllister TA, Belosevic M, Neumann NF. Application of protein misfolding cyclic amplification to detection of prions in anaerobic digestate. J Microbiol Methods 2015; 118:1-6. [PMID: 26272376 DOI: 10.1016/j.mimet.2015.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ≤1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays.
Collapse
Affiliation(s)
- Brandon H Gilroyed
- School of Environmental Sciences, University of Guelph, Ridgetown N0P 2C0, Canada.
| | | | - Luke M Price
- School of Public Health, University of Alberta, Edmonton T6G 2T4, Canada
| | - Tim Reuter
- Alberta Agriculture and Rural Development, Lethbridge T1J 4V6, Canada
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge T1H 6P7, Canada
| | | | | | | | - Miodrag Belosevic
- School of Public Health, University of Alberta, Edmonton T6G 2T4, Canada; Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Edmonton T6G 2T4, Canada; Alberta Provincial Laboratory for Public Health, Edmonton T6G 2J2, Canada
| |
Collapse
|
37
|
Vidal E, Fernández-Borges N, Pintado B, Eraña H, Ordóñez M, Márquez M, Chianini F, Fondevila D, Sánchez-Martín MA, Andreoletti O, Dagleish MP, Pumarola M, Castilla J. Transgenic Mouse Bioassay: Evidence That Rabbits Are Susceptible to a Variety of Prion Isolates. PLoS Pathog 2015; 11:e1004977. [PMID: 26247589 PMCID: PMC4527758 DOI: 10.1371/journal.ppat.1004977] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022] Open
Abstract
Interspecies transmission of prions is a well-established phenomenon, both experimentally and under field conditions. Upon passage through new hosts, prion strains have proven their capacity to change their properties and this is a source of strain diversity which needs to be considered when assessing the potential risks associated with consumption of prion contaminated protein sources. Rabbits were considered for decades to be a prion resistant species until proven otherwise recently. To determine the extent of rabbit susceptibility to prions and to assess the effects of passage of different prion strains through this species a transgenic mouse model overexpressing rabbit PrPC was developed (TgRab). Intracerebral challenges with prion strains originating from a variety of species including field isolates (ovine SSBP/1 scrapie, Nor98- scrapie; cattle BSE, BSE-L and cervid CWD), experimental murine strains (ME7 and RML) and experimentally obtained ruminant (sheepBSE) and rabbit (de novo NZW) strains were performed. On first passage TgRab were susceptible to the majority of prions (Cattle BSE, SheepBSE, BSE-L, de novo NZW, ME7 and RML) tested with the exception of SSBP/1 scrapie, CWD and Nor98 scrapie. Furthermore, TgRab were capable of propagating strain-specific features such as differences in incubation periods, histological brain lesions, abnormal prion (PrPd) deposition profiles and proteinase-K (PK) resistant western blotting band patterns. Our results confirm previous studies proving that rabbits are not resistant to prion infection and show for the first time that rabbits are susceptible to PrPd originating in a number of other species. This should be taken into account when choosing protein sources to feed rabbits.
Collapse
Affiliation(s)
- Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Belén Pintado
- Centro Nacional de Biotecnología (CNB), Campus de Cantoblanco, Cantoblanco, Madrid, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain
| | - Montserrat Ordóñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercedes Márquez
- Department of Animal Medicine and Surgery, Veterinary faculty, Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, Scotland, United Kingdom
| | - Dolors Fondevila
- Department of Animal Medicine and Surgery, Veterinary faculty, Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
| | - Manuel A. Sánchez-Martín
- Unidad de Generación de OMGs, S.E.A. Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Olivier Andreoletti
- Ecole Nationale du Veterinaire, Service de Pathologie du Bétail, Toulouse, France
| | - Mark P. Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, Scotland, United Kingdom
| | - Martí Pumarola
- Department of Animal Medicine and Surgery, Veterinary faculty, Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Catalonia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| |
Collapse
|
38
|
Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog 2015; 11:e1004958. [PMID: 26136122 PMCID: PMC4489884 DOI: 10.1371/journal.ppat.1004958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. The transmissible spongiform encephalopathies (TSEs) are a group of infectious neurodegenerative diseases affecting both humans and animals. The prion hypothesis postulates that prions are protein conformation based infectious agents responsible for TSE infectivity. Prions have been synthetically generated in vitro, but it remains unclear whether the properties of synthetically generated prion are the same as those of TSE agents and whether the disease caused by synthetically generated prion is identical to naturally occurring TSEs. In this study, we demonstrated that similar to the classical TSE agents, the synthetically generated prion has a titratable infectivity and is able to cause prion disease in wild-type mice via routes other than direct intra-cerebral inoculation. More importantly, we showed that the synthetically generated prion induced pathological changes, including the dissemination of disease-specific prion protein accumulation and the route and mechanism of neuroinvasion, were all typical of classical TSEs. These results demonstrate the similarity of synthetically generated prion to the infectious agent in TSEs, providing strong evidence supporting the prion hypothesis.
Collapse
Affiliation(s)
- Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Gillian McGovern
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Yi Zhang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Liang Zha
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Martin Jeffrey
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Green AJE. Prion protein aggregation assays in the diagnosis of human prion diseases. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Sporadic Creutzfeldt–Jakob disease (sCJD) is the most common form of human prion disease and is associated with a progressive cognitive decline and death usually occurs within 6 months. Neuropathologically these diseases are characterized by the deposition of an abnormal form (PrPSc) of a normally expressed protein PrPC. At present there are no disease-specific diagnostic tests for prion diseases. Therefore, a test that will enable accurate and earlier diagnosis is needed. The ability of PrPSc to convert native PrPC into PrPSc has been exploited in a variety of protein aggregation assays such as protein misfolding cyclic amplification (PMCA), and real-time QuIC (RT-QuIC). Cerebrospinal fluid RT-QuIC is rapidly growing in acceptance as a reliable and accurate diagnostic test for sCJD.
Collapse
|
40
|
Noble GP, Walsh DJ, Miller MB, Jackson WS, Supattapone S. Requirements for mutant and wild-type prion protein misfolding in vitro. Biochemistry 2015; 54:1180-7. [PMID: 25584902 DOI: 10.1021/bi501495j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases.
Collapse
Affiliation(s)
- Geoffrey P Noble
- Department of Biochemistry, The Geisel School of Medicine at Dartmouth , Vail Building Room 311, Hanover, New Hampshire 03755, United States
| | | | | | | | | |
Collapse
|
41
|
The standard scrapie cell assay: development, utility and prospects. Viruses 2015; 7:180-98. [PMID: 25602372 PMCID: PMC4306833 DOI: 10.3390/v7010180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 11/23/2022] Open
Abstract
Prion diseases are a family of fatal neurodegenerative diseases that involve the misfolding of a host protein, PrPC. Measuring prion infectivity is necessary for determining efficacy of a treatment or infectivity of a prion purification procedure; animal bioassays are, however, very expensive and time consuming. The Standard Scrapie Cell Assay (SSCA) provides an alternative approach. The SSCA facilitates quantitative in vitro analysis of prion strains, titres and biological properties. Given its robust nature and potential for high throughput, the SSCA has substantial utility for in vitro characterization of prions and can be deployed in a number of settings. Here we provide an overview on establishing the SSCA, its use in studies of disease dissemination and pathogenesis, potential pitfalls and a number of remaining challenges.
Collapse
|
42
|
Zhang Y, Wang F, Wang X, Zhang Z, Xu Y, Yu G, Yuan C, Ma J. Comparison of 2 synthetically generated recombinant prions. Prion 2014; 8:28669. [PMID: 24721728 PMCID: PMC4189893 DOI: 10.4161/pri.28669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion is a protein-conformation-based infectious agent causing fatal neurodegenerative diseases in humans and animals. Our previous studies revealed that in the presence of cofactors, infectious prions can be synthetically generated in vitro with bacterially expressed recombinant prion protein (PrP). Once initiated, the recombinant prion is able to propagate indefinitely via serial protein misfolding cyclic amplification (sPMCA). In this study, we compared 2 separately initiated recombinant prions. Our results showed that these 2 recombinant prions had distinct biochemical properties and caused different patterns of spongiosis and PrP deposition in inoculated mice. Our findings indicate that various recombinant prions can be initiated in vitro and potential reasons for this variability are discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China; Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Fei Wang
- Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Xinhe Wang
- Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Zhihong Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Yuanyuan Xu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Guohua Yu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China; Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| |
Collapse
|
43
|
Chen B, Soto C, Morales R. Peripherally administrated prions reach the brain at sub-infectious quantities in experimental hamsters. FEBS Lett 2014; 588:795-800. [PMID: 24492001 DOI: 10.1016/j.febslet.2014.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/20/2013] [Accepted: 01/10/2014] [Indexed: 12/01/2022]
Abstract
The mechanisms implicated in prion infection and tissue distribution are not completely understood. In this study we investigated the levels of 263K prions in brain and spleen of Syrian hamsters few days after intra-peritoneal challenge. For this purpose we utilized the PMCA technology which permits to detect as little as few PrP(Sc) molecules. Our results show that peripherally administered prions directly reach the brain, although at levels below the minimum necessary to produce disease. PrP(Sc) remains in the brain several days after administration suggesting inefficient clearance or early replication. Understanding the fate of the infectious agent after administration and its uptake in different organs and fluids may provide useful information to develop strategies to minimize further spreading of prion diseases.
Collapse
Affiliation(s)
- Baian Chen
- Protein Misfolding Disorders Laboratory, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Claudio Soto
- Protein Misfolding Disorders Laboratory, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Rodrigo Morales
- Protein Misfolding Disorders Laboratory, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 2013; 5:e00829-13. [PMID: 24381300 PMCID: PMC3884057 DOI: 10.1128/mbio.00829-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. IMPORTANCE The method developed here allows large-scale, fast, and reliable cell-free amplification of subinfectious levels of prions from different species. The sensitivity and rapidity achieved approach or equal those of other recently developed prion-seeded conversion assays. Our simplified assay may be amenable to high-throughput, automated purposes and serve in a complementary manner with other recently developed assays for urgently needed antemortem diagnostic tests, by using bodily fluids containing small amounts of prion infectivity. Such a combination of assays is of paramount importance to reduce the transfusion risk in the human population and to identify asymptomatic carriers of variant Creutzfeldt-Jakob disease.
Collapse
|
45
|
Red-backed vole brain promotes highly efficient in vitro amplification of abnormal prion protein from macaque and human brains infected with variant Creutzfeldt-Jakob disease agent. PLoS One 2013; 8:e78710. [PMID: 24205298 PMCID: PMC3813480 DOI: 10.1371/journal.pone.0078710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/16/2013] [Indexed: 12/01/2022] Open
Abstract
Rapid antemortem tests to detect individuals with transmissible spongiform encephalopathies (TSE) would contribute to public health. We investigated a technique known as protein misfolding cyclic amplification (PMCA) to amplify abnormal prion protein (PrPTSE) from highly diluted variant Creutzfeldt-Jakob disease (vCJD)-infected human and macaque brain homogenates, seeking to improve the rapid detection of PrPTSE in tissues and blood. Macaque vCJD PrPTSE did not amplify using normal macaque brain homogenate as substrate (intraspecies PMCA). Next, we tested interspecies PMCA with normal brain homogenate of the southern red-backed vole (RBV), a close relative of the bank vole, seeded with macaque vCJD PrPTSE. The RBV has a natural polymorphism at residue 170 of the PrP-encoding gene (N/N, S/S, and S/N). We investigated the effect of this polymorphism on amplification of human and macaque vCJD PrPTSE. Meadow vole brain (170N/N PrP genotype) was also included in the panel of substrates tested. Both humans and macaques have the same 170S/S PrP genotype. Macaque PrPTSE was best amplified with RBV 170S/S brain, although 170N/N and 170S/N were also competent substrates, while meadow vole brain was a poor substrate. In contrast, human PrPTSE demonstrated a striking narrow selectivity for PMCA substrate and was successfully amplified only with RBV 170S/S brain. These observations suggest that macaque PrPTSE was more permissive than human PrPTSE in selecting the competent RBV substrate. RBV 170S/S brain was used to assess the sensitivity of PMCA with PrPTSE from brains of humans and macaques with vCJD. PrPTSE signals were reproducibly detected by Western blot in dilutions through 10-12 of vCJD-infected 10% brain homogenates. This is the first report showing PrPTSE from vCJD-infected human and macaque brains efficiently amplified with RBV brain as the substrate. Based on our estimates, PMCA showed a sensitivity that might be sufficient to detect PrPTSE in vCJD-infected human and macaque blood.
Collapse
|
46
|
Segarra C, Bougard D, Moudjou M, Laude H, Béringue V, Coste J. Plasminogen-based capture combined with amplification technology for the detection of PrP(TSE) in the pre-clinical phase of infection. PLoS One 2013; 8:e69632. [PMID: 23894513 PMCID: PMC3722129 DOI: 10.1371/journal.pone.0069632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
Background Variant Creutzfeldt-Jakob disease (vCJD) is a neurodegenerative infectious disorder, characterized by a prominent accumulation of pathological isoforms of the prion protein (PrPTSE) in the brain and lymphoid tissues. Since the publication in the United Kingdom of four apparent vCJD cases following transfusion of red blood cells and one apparent case following treatment with factor VIII, the presence of vCJD infectivity in the blood seems highly probable. For effective blood testing of vCJD individuals in the preclinical or clinical phase of infection, it is considered necessary that assays detect PrPTSE concentrations in the femtomolar range. Methodology/Principal Findings We have developed a three-step assay that firstly captures PrPTSE from infected blood using a plasminogen-coated magnetic-nanobead method prior to its serial amplification via protein misfolding cyclic amplification (PMCA) and specific PrPTSE detection by western blot. We achieved a PrPTSE capture yield of 95% from scrapie-infected material. We demonstrated the possibility of detecting PrPTSE in white blood cells, in buffy coat and in plasma isolated from the blood of scrapie-infected sheep collected at the pre-clinical stage of the disease. The test also allowed the detection of PrPTSE in human plasma spiked with a 10−8 dilution of vCJD-infected brain homogenate corresponding to the level of sensitivity (femtogram) required for the detection of the PrPTSE in asymptomatic carriers. The 100% specificity of the test was revealed using a blinded panel comprising 96 human plasma samples. Conclusion/Significance We have developed a sensitive and specific amplification assay allowing the detection of PrPTSE in the plasma and buffy coat fractions of blood collected at the pre-clinical phase of the disease. This assay represents a good candidate as a confirmatory assay for the presence of PrPTSE in blood of patients displaying positivity in large scale screening tests.
Collapse
Affiliation(s)
- Christiane Segarra
- EFS-PyMed (Etablissement Français du Sang de Pyrénées Méditerranée), R&D TransDiag, Sécurité Transfusionnelle et Innovation Diagnostique, Montpellier, France
| | - Daisy Bougard
- EFS-PyMed (Etablissement Français du Sang de Pyrénées Méditerranée), R&D TransDiag, Sécurité Transfusionnelle et Innovation Diagnostique, Montpellier, France
| | - Mohammed Moudjou
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Joliette Coste
- EFS-PyMed (Etablissement Français du Sang de Pyrénées Méditerranée), R&D TransDiag, Sécurité Transfusionnelle et Innovation Diagnostique, Montpellier, France
- * E-mail:
| |
Collapse
|
47
|
Bovine spongiform encephalopathy induces misfolding of alleged prion-resistant species cellular prion protein without altering its pathobiological features. J Neurosci 2013; 33:7778-86. [PMID: 23637170 DOI: 10.1523/jneurosci.0244-13.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrP(c)) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrP(C). Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species.
Collapse
|
48
|
Abstract
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent. This article reviews the literature regarding the chemical nature of the infectious agent and the potential contribution from lipid molecules to prion infectivity, and discusses the important remaining questions in this research area.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
49
|
Yuan F, Yang L, Zhang Z, Wu W, Zhou X, Yin X, Zhao D. Cellular prion protein (PrPC) of the neuron cell transformed to a PK-resistant protein under oxidative stress, comprising main mitochondrial damage in prion diseases. J Mol Neurosci 2013; 51:219-24. [PMID: 23715697 PMCID: PMC3739867 DOI: 10.1007/s12031-013-0008-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
Prion diseases characterize a category of fatal neurodegenerative diseases. Although reports have increasingly shown that oxidative stress plays an important role in the progression of prion diseases, little is known about whether oxidative stress is a cause or a consequence of a prion disease. The mechanism of prion disease development also remains unclear. The purpose of this study was to investigate three things: the possible mechanisms of neuron cell damage, the conformation of anti-protease K (PK) PrPSc, and the role of oxidative stress in the progression of prion diseases. The study results demonstrated that normal PrPC transformed into a PK-resistant protein under oxidative stress in the presence of PrP106–126. Further, the protein misfolding cyclic amplification procedure may have accelerated this process. Mitochondrial damage and dysfunction in prion disease progression were also observed in this study. Our results suggested that neuron cell damage, and particularly mitochondrial damage, was induced by oxidative stress. This damage may be the initial cause of a given prion disease.
Collapse
Affiliation(s)
- Fangzhong Yuan
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lifeng Yang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhuming Zhang
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Wenyu Wu
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xiaomin Yin
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
50
|
Boerner S, Wagenführ K, Daus ML, Thomzig A, Beekes M. Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays. Lab Anim 2013; 47:106-15. [PMID: 23479773 DOI: 10.1177/0023677213476856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laboratory animals have long since been used extensively in bioassays for prions in order to quantify, usually in terms of median infective doses [ID50], how infectious these pathogens are in vivo. The identification of aberrant prion protein as the main component and self-replicating principle of prions has given rise to alternative approaches for prion titration. Such approaches often use protein misfolding cyclic amplification (PMCA) for the cell-free biochemical measurement of prion-associated seeding activity, or cell assays for the titration of in vitro infectivity. However, median seeding and cell culture infective doses (SD50 and CCID50, respectively) of prions are neither formally congruent nor definitely representative for ID50 titres in animals and can be therefore only tentatively translated into the latter. This may potentially impede the acceptance and use of alternative methods to animal bioassays in prion research. Thus, we suggest performing PMCA and cell assays jointly, and to check whether these profoundly different test principles deliver consistent results in order to strengthen the reliability and credibility of prion ID50 assessments by in vitro methods. With regard to this rationale, we describe three pairs of PMCA and glial cell assays for different hamster-adapted prion agents (the frequently used 263K scrapie strain, and 22A-H scrapie and BSE-H). In addition, we report on the adaptation of quantitative PMCA to human variant Creutzfeldt-Jakob disease (vCJD) prions on steel wires for prion disinfection studies. Our rationale and methodology can be systematically extended to other types of prions and used to further reduce or replace prion bioassays in rodents.
Collapse
Affiliation(s)
- Susann Boerner
- Work Group Unconventional Pathogens and Their Inactivation, Division of Applied Infection Control and Hospital Hygiene, Department of Infectious Diseases, Robert Koch-Institut, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|