1
|
Moazamiyanfar R, Halabian R, Ghollasi M, Poormoghadam D, Entezari M, Endorami SE. Neural Differentiation of Human-Induced Pluripotent Stem Cells (hiPSc) on Surface-Modified Nanofibrous Scaffolds Coated with Platelet-Rich Plasma. Neurochem Res 2022; 47:1991-2001. [PMID: 35359243 DOI: 10.1007/s11064-022-03584-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/19/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-L-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.
Collapse
Affiliation(s)
- Reza Moazamiyanfar
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Delaram Poormoghadam
- Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Ehsan Endorami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Sordini L, Garrudo FFF, Rodrigues CAV, Linhardt RJ, Cabral JMS, Ferreira FC, Morgado J. Effect of Electrical Stimulation Conditions on Neural Stem Cells Differentiation on Cross-Linked PEDOT:PSS Films. Front Bioeng Biotechnol 2021; 9:591838. [PMID: 33681153 PMCID: PMC7928331 DOI: 10.3389/fbioe.2021.591838] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to culture and differentiate neural stem cells (NSCs) to generate functional neural populations is attracting increasing attention due to its potential to enable cell-therapies to treat neurodegenerative diseases. Recent studies have shown that electrical stimulation improves neuronal differentiation of stem cells populations, highlighting the importance of the development of electroconductive biocompatible materials for NSC culture and differentiation for tissue engineering and regenerative medicine. Here, we report the use of the conjugated polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS CLEVIOS P AI 4083) for the manufacture of conductive substrates. Two different protocols, using different cross-linkers (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS) were tested to enhance their stability in aqueous environments. Both cross-linking treatments influence PEDOT:PSS properties, namely conductivity and contact angle. However, only GOPS-cross-linked films demonstrated to maintain conductivity and thickness during their incubation in water for 15 days. GOPS-cross-linked films were used to culture ReNcell-VM under different electrical stimulation conditions (AC, DC, and pulsed DC electrical fields). The polymeric substrate exhibits adequate physicochemical properties to promote cell adhesion and growth, as assessed by Alamar Blue® assay, both with and without the application of electric fields. NSCs differentiation was studied by immunofluorescence and quantitative real-time polymerase chain reaction. This study demonstrates that the pulsed DC stimulation (1 V/cm for 12 days), is the most efficient at enhancing the differentiation of NSCs into neurons.
Collapse
Affiliation(s)
- Laura Sordini
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Fábio F F Garrudo
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Zhang Y, Venkateswaran S, Higuera GA, Nath S, Shpak G, Matray J, Fratila-Apachitei LE, Zadpoor AA, Kushner SA, Bradley M, De Zeeuw CI. Synthetic Polymers Provide a Robust Substrate for Functional Neuron Culture. Adv Healthc Mater 2020; 9:e1901347. [PMID: 31943855 DOI: 10.1002/adhm.201901347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/28/2019] [Indexed: 12/11/2022]
Abstract
Substrates for neuron culture and implantation are required to be both biocompatible and display surface compositions that support cell attachment, growth, differentiation, and neural activity. Laminin, a naturally occurring extracellular matrix protein is the most widely used substrate for neuron culture and fulfills some of these requirements, however, it is expensive, unstable (compared to synthetic materials), and prone to batch-to-batch variation. This study uses a high-throughput polymer screening approach to identify synthetic polymers that supports the in vitro culture of primary mouse cerebellar neurons. This allows the identification of materials that enable primary cell attachment with high viability even under "serum-free" conditions, with materials that support both primary cells and neural progenitor cell attachment with high levels of neuronal biomarker expression, while promoting progenitor cell maturation to neurons.
Collapse
Affiliation(s)
- Yichuan Zhang
- School of Chemistry, Kings Buildings, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | | | - Gustavo A Higuera
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, NL-3015 GE, The Netherlands
| | - Suvra Nath
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Guy Shpak
- Department of Psychiatry, Erasmus MC Rotterdam, Rotterdam, NL-3015 GE, The Netherlands
- Department of Life Sciences, Erasmus University College, Rotterdam, 3011 HP, The Netherlands
| | - Jeffrey Matray
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Steven A Kushner
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - Mark Bradley
- School of Chemistry, Kings Buildings, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, NL-3015 GE, The Netherlands
- Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
4
|
Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA. Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:1102-1124. [DOI: 10.1016/j.msec.2018.10.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
5
|
Sedghi R, Sayyari N, Shaabani A, Niknejad H, Tayebi T. Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Ebrahimi M, Ai J, Biazar E, Ebrahimi-Barough S, Khojasteh A, Yazdankhah M, Sharifi S, Ai A, Heidari-Keshel S. In vivo assessment of a nanofibrous silk tube as nerve guide for sciatic nerve regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:394-401. [DOI: 10.1080/21691401.2018.1426593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maryam Ebrahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Yazdankhah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siavash Sharifi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Sharekord University, Sharekord, Iran
| | - Arman Ai
- Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari-Keshel
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rajabi M, Firouzi M, Hassannejad Z, Haririan I, Zahedi P. Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration. J Biomed Mater Res B Appl Biomater 2017; 106:1595-1604. [PMID: 28805042 DOI: 10.1002/jbm.b.33968] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/05/2017] [Accepted: 07/25/2017] [Indexed: 01/20/2023]
Abstract
The peripheral nerve regeneration is still one of the major clinical problems, which has received a great deal of attention. In this study, the electrospun silk fibroin (SF)/poly(ethylene oxide) (PEO) nanofibrous scaffolds were fabricated and functionalized their surfaces with laminin (LN) without chemical linkers for potential use in the peripheral nerve tissue engineering. The morphology, surface chemistry, thermal behavior and wettability of the scaffolds were examined to evaluate their performance by means of scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and water contact angle (WCA) measurements, respectively. The proliferation and viability of Schwann cells onto the surfaces of SF/PEO nanofibrous scaffolds were investigated using SEM and thiazolyl blue (MTT) assay. The results showed an improvement of SF conformation and surface hydrophilicity of SF/PEO nanofibers after methanol and O2 plasma treatments. The immunostaining observation indicated a continuous coating of LN on the scaffolds. Improving the surface hydrophilicity and LN functionalization significantly increased the cell proliferation and this was more prominent after 5 days of culture time. In conclusion, the obtained results revealed that the electrospun LN-functionalized SF/PEO nanofibrous scaffold could be a promising candidate for peripheral nerve tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1595-1604, 2018.
Collapse
Affiliation(s)
- Mina Rajabi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Masoumeh Firouzi
- Tissue Repair Laboratory, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, P. O. Box: 14155-6451, Tehran, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Venault A, Subarja A, Chang Y. Zwitterionic Polyhydroxybutyrate Electrospun Fibrous Membranes with a Compromise of Bioinert Control and Tissue-Cell Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2460-2471. [PMID: 28177247 DOI: 10.1021/acs.langmuir.6b04683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a method for surface modification by thermal-evaporation self-assembling of poly(3-hydroxybutyrate) (PHB) fibrous membranes with a copolymer of hydrophobic octadecyl acrylate repeat units and hydrophilic zwitterionic 4-vinylpyridine blocks, zP(4VP-r-ODA), in view of controlling biofoulant-fiber interactions. PHB is of interest as a material for bioscaffolding, but its disadvantage is its hydrophobicity, which leads to unwanted interactions with proteins, blood cells, or bacteria. Surface modification of electrospun PHB fibers addresses this issue because the hydrophilicity of the membranes is improved, leading to a significant reduction in bovine serum albumin (92%), lysozyme (73%), and fibrinogen (50%) adsorption. From a coating density of 0.78 mg/cm2, no bacteria interacted with the fibers, and from 1.13 mg/cm2, excellent hemocompatibility of membranes was measured from thrombocytes, erythrocytes, leukocytes, and whole blood attachment tests. Additionally, HT-1080 fibroblasts were observed to develop in contact with the fibers after 3-7 days of incubation (cell density up to 329 ± 16 cells/mm2), suggesting that zP(4VP-r-ODA) provides an adequate humid environment for their growth. Providing an effective control of the surface chemistry and of the coating density, the association of PHB and zP(4VP-r-ODA) can promote the growth of fibroblasts, still maintaining resistance to unwanted biofoulants, and appears to be a promising composite material for tissue engineering.
Collapse
Affiliation(s)
- Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Jhong-Li, Taoyuan 320, Taiwan
| | - Andre Subarja
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Jhong-Li, Taoyuan 320, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University , Jhong-Li, Taoyuan 320, Taiwan
| |
Collapse
|
9
|
Ameri Bafghi R, Biazar E. Development of oriented nanofibrous silk guide for repair of nerve defects. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1074907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Hardy JG, Cornelison RC, Sukhavasi RC, Saballos RJ, Vu P, Kaplan DL, Schmidt CE. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering (Basel) 2015; 2:15-34. [PMID: 28955011 PMCID: PMC5597125 DOI: 10.3390/bioengineering2010015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).
Collapse
Affiliation(s)
- John G Hardy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - R Chase Cornelison
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Rushi C Sukhavasi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Richard J Saballos
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Philip Vu
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater 2015; 2:31-45. [PMID: 26813399 PMCID: PMC4669026 DOI: 10.1093/rb/rbu017] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/29/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022] Open
Abstract
Nerve diseases including acute injury such as peripheral nerve injury (PNI), spinal cord injury (SCI) and traumatic brain injury (TBI), and chronic disease like neurodegeneration disease can cause various function disorders of nervous system, such as those relating to memory and voluntary movement. These nerve diseases produce great burden for individual families and the society, for which a lot of efforts have been made. Axonal pathways represent a unidirectional and aligned architecture allowing systematic axonal development within the tissue. Following a traumatic injury, the intricate architecture suffers disruption leading to inhibition of growth and loss of guidance. Due to limited capacity of the body to regenerate axonal pathways, it is desirable to have biomimetic approach that has the capacity to graft a bridge across the lesion while providing optimal mechanical and biochemical cues for tissue regeneration. And for central nervous system injury, one more extra precondition is compulsory: creating a less inhibitory surrounding for axonal growth. Electrospinning is a cost-effective and straightforward technique to fabricate extracellular matrix (ECM)-like nanofibrous structures, with various fibrous forms such as random fibers, aligned fibers, 3D fibrous scaffold and core-shell fibers from a variety of polymers. The diversity and versatility of electrospinning technique, together with functionalizing cues such as neurotrophins, ECM-based proteins and conductive polymers, have gained considerable success for the nerve tissue applications. We are convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases.
Collapse
Affiliation(s)
- Lingling Tian
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 and Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| | - Molamma P Prabhakaran
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 and Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 and Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
12
|
Rat sciatic nerve reconstruction across a 30 mm defect bridged by an oriented porous PHBV tube with Schwann cell as artificial nerve graft. ASAIO J 2014; 60:224-33. [PMID: 24399063 PMCID: PMC3942346 DOI: 10.1097/mat.0000000000000044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit has been used to evaluate its efficiency based on the promotion of peripheral nerve regeneration in rats. The oriented porous micropatterned artificial nerve conduit was designed onto the micropatterned silicon wafers, and then their surfaces were modified with oxygen plasma to increase cell adhesion. The designed conduits were investigated by cell culture analyses with Schwann cells (SCs). The conduits were implanted into a 30 mm gap in sciatic nerves of rats. Four months after surgery, the regenerated nerves were monitored and evaluated by macroscopic assessments and histology and behavioral analyses. Results of cellular analyses showed suitable properties of designed conduit for nerve regeneration. The results demonstrated that in the polymeric graft with SCs, the rat sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. Histological results demonstrated the presence of Schwann and glial cells in regenerated nerves. Functional recovery such as walking, swimming, and recovery of nociceptive function was illustrated for all the grafts especially conduits with SCs. This study proves the feasibility of the artificial nerve graft filled with SCs for peripheral nerve regeneration by bridging a longer defect in an animal model.
Collapse
|
13
|
Biazar E, Keshel SH, Sahebalzamani A, Heidari M. Design of Oriented Porous PHBV Scaffold as a Neural Guide. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.879446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Biazar E, Keshel SH. Gelatin-Modified Nanofibrous PHBV Tube as Artificial Nerve Graft for Rat Sciatic Nerve Regeneration. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.845187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Chitosan–Cross-Linked Nanofibrous PHBV Nerve Guide for Rat Sciatic Nerve Regeneration Across a Defect Bridge. ASAIO J 2013; 59:651-9. [DOI: 10.1097/mat.0b013e3182a79151] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Biazar E, Keshel SH, Pouya M. Efficacy of nanofibrous conduits in repair of long-segment sciatic nerve defects. Neural Regen Res 2013; 8:2501-9. [PMID: 25206560 PMCID: PMC4145933 DOI: 10.3969/j.issn.1673-5374.2013.27.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/16/2013] [Indexed: 01/03/2023] Open
Abstract
Our previous studies have histomorphologically confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit can be used to repair 30-mm-long sciatic nerve defects. However, the repair effects on rat behaviors remain poorly understood. In this study, we used nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous sciatic nerve to bridge 30-mm-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional recovery was evaluated per month by behavioral analyses, including toe out angle, toe spread analysis, walking track analysis, extensor postural thrust, swimming test, open-field analysis and nociceptive function. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit and autologous nerve grafting. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) conduit is suitable in use for repair of long-segment sciatic nerve defects.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterial Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Student Research Committee, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Pouya
- Faculty of Medical Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
17
|
Biazar E, Heidari Keshel S. Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:385-91. [DOI: 10.3109/21691401.2013.832686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Biazar E, Heidari Keshel S. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to Rat sciatic nerve regeneration across a 30-mm defect bridge. ACTA ACUST UNITED AC 2013; 20:41-9. [DOI: 10.3109/15419061.2013.774378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Tamasi G, Casolaro M, Cini R. X-ray structure and computational study for N-acryloyl-l-valine, a versatile monomer for preparing smart drug delivery carriers. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Genchi GG, Ciofani G, Polini A, Liakos I, Iandolo D, Athanassiou A, Pisignano D, Mattoli V, Menciassi A. PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates. J Tissue Eng Regen Med 2012; 9:151-61. [DOI: 10.1002/term.1623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/09/2012] [Accepted: 08/25/2012] [Indexed: 01/02/2023]
Affiliation(s)
- Giada Graziana Genchi
- Scuola Superiore Sant'Anna, The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Alessandro Polini
- NNL, National Nanotechnology Laboratory of CNR-Nanoscienze; Via Arnesano 16 73100 Lecce Italy
| | - Ioannis Liakos
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies; Via Barsanti 73010 Lecce Italy
| | - Donata Iandolo
- NNL, National Nanotechnology Laboratory of CNR-Nanoscienze; Via Arnesano 16 73100 Lecce Italy
| | - Athanassia Athanassiou
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies; Via Barsanti 73010 Lecce Italy
| | - Dario Pisignano
- NNL, National Nanotechnology Laboratory of CNR-Nanoscienze; Via Arnesano 16 73100 Lecce Italy
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies; Via Barsanti 73010 Lecce Italy
- Università del Salento; Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Via Arnesano 73100 Lecce Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Arianna Menciassi
- Scuola Superiore Sant'Anna, The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| |
Collapse
|
21
|
Wang TY, Forsythe JS, Parish CL, Nisbet DR. Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl 2012; 27:369-90. [DOI: 10.1177/0885328212443297] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients who experience injury to the central or peripheral nervous systems invariably suffer from a range of dysfunctions due to the limited ability for repair and reconstruction of damaged neural tissue. Whilst some treatment strategies can provide symptomatic improvement of motor and cognitive function, they fail to repair the injured circuits and rarely offer long-term disease modification. To this end, the biological molecules, used in combination with neural tissue engineering scaffolds, may provide feasible means to repair damaged neural pathways. This review will focus on three promising classes of neural tissue engineering scaffolds, namely hydrogels, electrospun nanofibres and self-assembling peptides. Additionally, the importance and methods for presenting biologically relevant molecules such as, neurotrophins, extracellular matrix proteins and protein-derived sequences that promote neuronal survival, proliferation and neurite outgrowth into the lesion will be discussed.
Collapse
Affiliation(s)
- TY Wang
- Department of Materials Engineering, Monash University, Victoria, Australia
| | - JS Forsythe
- Department of Materials Engineering, Monash University, Victoria, Australia
| | - CL Parish
- Florey Neuroscience Institute and Centre for Neuroscience, The University of Melbourne, Victoria, Australia
| | - DR Nisbet
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| |
Collapse
|
22
|
Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S. Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 15:1483-97. [PMID: 15696794 DOI: 10.1163/1568562042459733] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanofibrous poly(L-lactic acid) (PLLA) scaffolds were fabricated by an electrospinning technique and characterized by scanning electron microscopy, mercury porosimeter, atomic force microscopy and contact-angle test. The produced PLLA fibers with diameters ranging from 150 to 350 nm were randomly orientated with interconnected pores varying from several microm to about 140 microm in-between to form a three-dimensional architecture, which resembles the natural extracellular matrix structure in human body. The in vitro cell culture study was performed and the results indicate that the nanofibrous scaffold not only supports neural stem cell (NSC) differentiation and neurites out-growth, but also promotes NSC adhesion. The favorable interaction between the NSCs and the nanofibrous scaffold may be due to the greatly improved surface roughness of the electrospun nanofibrous scaffold. As evidenced by this study, the electrospun nanofibrous scaffold is expected to play a significant role in neural tissue engineering.
Collapse
Affiliation(s)
- F Yang
- Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | | | | | | | | |
Collapse
|
23
|
The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 2010; 31:3967-75. [PMID: 20153524 DOI: 10.1016/j.biomaterials.2010.01.132] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 01/22/2010] [Indexed: 12/25/2022]
Abstract
Polyhydroxyalkanoates (PHA) have demonstrated their potentials as medical implant biomaterials. Neural stem cells (NSCs) grown on/in PHA scaffolds may be useful for repairing central nervous system (CNS) injury. To investigate this possibility, nanofiber matrices (scaffolds) prepared from several PHA via a novel phase separation process were studied to mimic natural extracellular matrix (ECM), and rat-derived NSCs grown in the PHA matrices were characterized regarding their in vitro differentiation behaviors. All three PHA materials including poly(3-hydroxybutyrate) (PHB), copolymer of 3-hydroxybutyrate and 4-hydroxybutyrate (P3HB4HB), and copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) supported NSC growth and differentiation both on their 2D films and 3D matrices. Among three PHA nanofiber matrices, PHBHHx one showed the strongest potentials to promote NSC differentiation into neurons which is beneficial for CNS repair. Compared to the 2D films, 3D nanofiber matrices appeared to be more suitable for NSC attachment, synaptic outgrowth and synaptogenesis. It was suggested that PHBHHx nanofiber scaffolds (matrices) that promote NSC growth and differentiation, can be developed for treating central nervous system injury.
Collapse
|
24
|
He L, Zhang Y, Zeng C, Ngiam M, Liao S, Quan D, Zeng Y, Lu J, Ramakrishna S. Manufacture of PLGA Multiple-Channel Conduits with Precise Hierarchical Pore Architectures and In Vitro/Vivo Evaluation for Spinal Cord Injury. Tissue Eng Part C Methods 2009; 15:243-55. [DOI: 10.1089/ten.tec.2008.0255] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Liumin He
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Yanqing Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chenguang Zeng
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Michelle Ngiam
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Susan Liao
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Daping Quan
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Yuanshan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiang Lu
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China
| | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Bolliet C, Bohn MC, Spector M. Non-viral delivery of the gene for glial cell line-derived neurotrophic factor to mesenchymal stem cells in vitro via a collagen scaffold. Tissue Eng Part C Methods 2009; 14:207-19. [PMID: 18721070 DOI: 10.1089/ten.tec.2008.0168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in tissue engineering that combine an extracellular matrix-like scaffold with therapeutic molecules, cells, DNA encoding therapeutic proteins, or a combination of the three hold promise for treating defects in the brain resulting from a penetrating injury or tumor resection. The purpose of this study was to investigate a porous sponge-like collagen scaffold for non-viral delivery of a plasmid encoding for glial cell line-derived neurotrophic factor (pGDNF) to rat marrow stromal stem cells (also referred to as mesenchymal stem cells, MSCs). The effects of the following parameters on GDNF synthesis in the three-dimensional (3D) constructs were evaluated and compared with results in monolayer culture: initial plasmid load (2-50 microg pGDNF), ratio of a lipid transfection reagent to plasmid (5:10), culture environment during the transfection (static and dynamic), and cell density. The level of gene expression in the collagen scaffolds achieved therapeutic levels that had previously been found to support survival of dopaminergic and trigeminal neurons in vitro. For the highest loading of plasmid (50 microg), the level of GDNF protein remained six to seven times above the control level after 2 weeks, a significant difference. Cell density in the scaffold was of importance for an early increase in GDNF production, with accumulated GDNF being approximately 60% greater after 9 days of culture when scaffolds were initially seeded with 2 million rat MSCs compared to 500,000 cells. Application of orbital shaking during the 4 h of transfection had a positive effect on the production of GDNF on 3D constructs but not of the same magnitude as reported in monolayer studies. Overall, these results demonstrate that the combination of tissue engineering and non-viral transfection of MSCs for the over-expression of GDNF is a promising approach for the long-term production of GDNF and probably for neurotrophic factors in general.
Collapse
Affiliation(s)
- Catherine Bolliet
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Zhang N, Zhang C, Wen X. Fabrication of semipermeable hollow fiber membranes with highly aligned texture for nerve guidance. J Biomed Mater Res A 2006; 75:941-9. [PMID: 16123975 DOI: 10.1002/jbm.a.30495] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to improve the guidance potential of a nerve entubulation bridging device, highly aligned textures were formed on the inner surface of semipermeable hollow fiber membranes (HFMs) during the wet phase inversion process. By precisely controlling the fabrication parameters, such as polymer solution flow rate, coagulant solution flow rate, and the air-gap distance, also called drop height, different-sized aligned grooves can be fabricated on the inner surface of HFMs. Preliminary studies using in vitro dorsal root ganglion (DRG) regeneration assay showed that both the alignment and outgrowth rate of regenerating axons increased significantly on HFMs with aligned textures compared to those on HFMs with a smooth inner surface. Studies in progress are evaluating axonal outgrowth and regeneration using in vivo sciatic-nerve and spinal-cord-injury models.
Collapse
Affiliation(s)
- Ning Zhang
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
27
|
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26:2603-10. [PMID: 15585263 DOI: 10.1016/j.biomaterials.2004.06.051] [Citation(s) in RCA: 1085] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/17/2004] [Indexed: 01/19/2023]
Abstract
Efficacy of aligned poly(l-lactic acid) (PLLA) nano/micro fibrous scaffolds for neural tissue engineering is described and their performance with random PLLA scaffolds is compared as well in this study. Perfectly aligned PLLA fibrous scaffolds were fabricated by an electrospinning technique under optimum condition and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of polymer solution. As the structure of PLLA scaffold was intended for neural tissue engineering, its suitability was evaluated in vitro using neural stem cells (NSCs) as a model cell line. Cell morphology, differentiation and neurite outgrowth were studied by various microscopic techniques. The results show that the direction of NSC elongation and its neurite outgrowth is parallel to the direction of PLLA fibers for aligned scaffolds. No significant changes were observed on the cell orientation with respect to the fiber diameters. However, the rate of NSC differentiation was higher for PLLA nanofibers than that of micro fibers and it was independent of the fiber alignment. Based on the experimental results, the aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering.
Collapse
Affiliation(s)
- F Yang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
| | | | | | | |
Collapse
|
28
|
Zhang N, Yan H, Wen X. Tissue-engineering approaches for axonal guidance. ACTA ACUST UNITED AC 2005; 49:48-64. [PMID: 15960986 DOI: 10.1016/j.brainresrev.2004.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 09/29/2004] [Accepted: 11/29/2004] [Indexed: 02/04/2023]
Abstract
Owing to the profound impact of nervous system damage, extensive studies have been carried out aimed at facilitating axonal regeneration following injury. Tissue engineering, as an emerging and rapidly growing field, has received extensive attention for nervous system axonal guidance. Numerous engineered substrates containing oriented extracellular matrix molecules, cells or channels have displayed potential of supporting axonal regeneration and functional recovery. Most attempts are focused on seeking new biomaterials, new cell sources, as well as novel designs of tissue-engineered neuronal bridging devices, to generate safer and more efficacious neuronal tissue repairs.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Bioengineering, Clemson University, BSB# 303, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
29
|
Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004; 25:1891-900. [PMID: 14738853 DOI: 10.1016/j.biomaterials.2003.08.062] [Citation(s) in RCA: 360] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nerve tissue engineering (NTE) is one of the most promising methods to restore central nerve systems in human health care. Three-dimensional distribution and growth of cells within the porous scaffold are of clinical significance for NTE. In this study, an attempt was made to develop porous polymeric nano-fibrous scaffold using a biodegradable poly(L-lactic acid) (PLLA) for in vitro culture of nerve stem cells (NSCs). The processing of PLLA scaffold has been carried out by liquid-liquid phase separation method. The physico-chemical properties of the scaffold were fully characterized by using differential scanning calorimetry and scanning electron microscopy. These results confirmed that the prepared scaffold is highly porous and fibrous with diameters down to nanometer scale. As our nano-structured PLLA scaffold mimics natural extracellular matrix, we have intended this biodegradable scaffold as cell carrier in NTE. The in vitro performance of NSCs seeded on nano-fibrous scaffold is addressed in this study. The cell cultural tests showed that the NSCs could differentiate on the nano-structured scaffold and the scaffold acted as a positive cue to support neurite outgrowth. These results suggested that the nano-structured porous PLLA scaffold is a potential cell carrier in NTE.
Collapse
Affiliation(s)
- F Yang
- Biomaterials Laboratory, Division of Bioengineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, 117-576, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
30
|
Kim YT, Hitchcock RW, Bridge MJ, Tresco PA. Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials 2004; 25:2229-37. [PMID: 14741588 DOI: 10.1016/j.biomaterials.2003.09.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using quantitative immunohistological methods, we examined the brain tissue response to hollow fiber membranes (HFMs) that were either implanted intraparenchymally, as in a cell encapsulation application, or were attached to the skull as in a biosensor application (transcranially). We found that the reaction surrounding transcranially implanted HFMs was significantly greater than that observed with intraparenchymally implanted materials including increases in immunoreactivity against GFAP, vimentin, ED-1 labeled macrophages and microglia, and several extracellular matrix proteins including collagen, fibronectin, and laminin. In general, these markers were elevated along the entire length of transcranially implanted HFMs extending into the adjacent parenchyma up to 0.5 mm from the implant interface. Intraparenchymal implants did not appear to have significant involvement of a fibroblastic component as suggested by a decreased expression of vimentin, fibronectin and collagen-type I at the implant tissue interface. The increase in tissue reactivity observed with transcranially implanted HFMs may be influenced by several mechanisms including chronic contact with the meninges and possibly motion of the device within brain tissue. Broadly speaking, our results suggest that any biomaterial, biosensor or device that is anchored to the skull and in chronic contact with meningeal tissue will have a higher level of tissue reactivity than the same material completely implanted within brain tissue.
Collapse
Affiliation(s)
- Young-Tae Kim
- Department of Bioengineering, The Keck Center for Tissue Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
31
|
Talac R, Friedman JA, Moore MJ, Lu L, Jabbari E, Windebank AJ, Currier BL, Yaszemski MJ. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials 2004; 25:1505-10. [PMID: 14697853 DOI: 10.1016/s0142-9612(03)00497-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tissue engineering approaches to spinal cord injury (SCI) treatment are attractive because they allow for manipulation of native regeneration processes involved in restoration of the integrity and function of damaged tissue. A clinically relevant spinal cord regeneration animal model requires that the model mimics specific pathologic processes that occur in human SCI. This manuscript discusses issues related to preclinical testing of tissue engineering spinal cord regeneration strategies from a number of perspectives. This discussion includes diverse causes, pathology and functional consequences of human SCI, general and species related considerations, technical and animal care considerations, and data analysis methods.
Collapse
Affiliation(s)
- R Talac
- Departments of Orthopaedic Surgery and Biomedical Engineering, Mayo Clinic and Mayo Medical School, Medical Sciences Building Room 3-69, 200 1st Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.
Collapse
Affiliation(s)
- Christine E Schmidt
- Department of Biomedical Engineering The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
33
|
Abstract
In the present study, the influence of astrocyte alignment on the direction and length of regenerating neurites was examined in vitro. Astrocytes were experimentally manipulated by different approaches to create longitudinally aligned monolayers. When cultured on the aligned monolayers, dorsal root ganglion neurites grew parallel to the long axis of the aligned astrocytes and were significantly longer than controls. Engineered monolayers expressed linear arrays of fibronectin, laminin, neural cell adhesion molecule, and chondroitin sulfate proteoglycan that were organized parallel to one another, suggesting that a particular spatial arrangement of these molecules on the astrocyte surface may be necessary to direct nerve regeneration in vivo. In contrast, no bias in directional outgrowth was observed for neurites growing on unorganized monolayers. The results suggest that altering the organization of astrocytes and their scar-associated matrix at the lesion site may be used to influence the direction and the length of adjacent regenerating axons in the damaged brain and spinal cord.
Collapse
Affiliation(s)
- Roy Biran
- The Keck Center for Tissue Engineering, Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
34
|
Kim JA, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Mossy fiber pathfinding in multilayer organotypic cultures of rat hippocampal slices. Cell Mol Neurobiol 2003; 23:115-9. [PMID: 12701887 PMCID: PMC11530175 DOI: 10.1023/a:1022501302972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Using a novel technique of organotypic cultures, in which two hippocampal slices were cocultured in a bilayer style, we found that the mossy fibers arising from the dentate gyrus grafted onto another dentate tissue grew along the CA3 stratum lucidum of the host hippocampal slice. The same transplantation of a CA1 microslice failed to form a network with the host hippocampus. 2. Thus the type of grafted neurons is important to determine whether they can form an appropriate network after transplantation.
Collapse
Affiliation(s)
- Jeong-Ah Kim
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Chadi G, Andrade MS, Leme RJ, Gomide VC. Experimental models of partial lesion of rat spinal cord to investigate neurodegeneration, glial activation, and behavior impairments. Int J Neurosci 2002; 111:137-65. [PMID: 11912671 DOI: 10.3109/00207450108994227] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The article demonstrates two experimental models of spinal cord partial injury in rats: a contuse model promoted by the NYU impactor system and a partial hemitransection model achieved by a stereotaxic-positioned adjustable wire knife. By means of a defined impact weight (10 g) and a digital optical potentiometer linked to a computer, the impactor transferred and registered a moderate or a severe contusion to the rat spinal cord at a low thoracic level after dropping the weight from distances of 25 mm and 50 mm, respectively, to the dorsal surface of the exposed dura spinal cord. Impact curve was calculated and the parameters of the trauma, like impact velocity, cord compression distance and cord compression rates were obtained in order to demonstrate trauma severity. To promote partial hemitransection, rats were positioned in a spinal cord unit of a stereotaxic apparatus and lesion was made with the adjustable wire knife spatially oriented. By means of a computerized infrared motion sensor-home cage activity monitor and a noncomputerized evaluation of motor behavior using the inclined plane and the motor score of Tarlov tests, behavior was analyzed in an acute period postlesion. Rats were sacrificed and spinal cords were processed for routine staining to show neurons and for GFAP and OX42 immunohistochemistry to demonstrate glial cells. The tissue labelings were quantified using computer assisted stereology by means of an optical disector and microdensitometric image analysis by means of quantification of gray values of discriminated profiles. While partial hemitransection model favored a more accurate control of the lesion location, the contuse model allowed us to perform different degrees of lesion severity. A close correlation between behavioral impairment and severity of trauma was seen in the rats submitted to spinal cord contusion. The stereologic lesion index showed a correlation between severity of trauma and tissue damage by 7 days and demonstrated a time-dependent secondary degeneration after moderate but not after severe spinal cord contusion from 7 to 30 days after injury. Long-lasting activations of astrocytes and microglia seen by persisted increases in the specific mean gray values of immunoreactivities were also found in all levels of the white and gray matters of the partial hemitransected spinal cord until 3 months postinjury which can be related to wound/repair events and paracrine trophic support to spinal cord remaining neurons. The results showed that controlled partial lesions may provide an important toll to study trophism and plasticity in the spinal cord.
Collapse
Affiliation(s)
- G Chadi
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
36
|
Abstract
Injuries to the spinal cord that result in disruption of axonal continuity have devastating consequences for injured patients. Current therapies that use biologically active agents to promote neuronal survival and/or growth have had modest success in allowing injured neurons to regrow through the area of the lesion. Strategies for successful regeneration will require an engineering approach. We propose the design of cell-free grafts of biocompatible materials to build a bridge across the injured area through which axons can regenerate. There are three critical regions of this bridge: the on-ramp, the surface of the bridge itself, and the off-ramp. Each of these regions has specific design requirements, which, if met, can promote regeneration of axons in the injured spinal cord. These requirements, and proposed solutions, are discussed.
Collapse
Affiliation(s)
- Herbert M Geller
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|