1
|
Götz C, Montenarh M. Protein kinase CK2 contributes to glucose homeostasis. Biol Chem 2025:hsz-2024-0158. [PMID: 39910713 DOI: 10.1515/hsz-2024-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
In the early days of CK2 research, it was already published that the affinity of CK2 for its substrate casein was affected by insulin. Subsequent to the discovery of inhibitors of CK2 kinase activity, it was shown that CK2 has an influence on hormones that regulate glucose homeostasis and on enzymes that influence glucose metabolism in pancreatic islet cells as well as in hormone-sensitive target cells. This regulation includes the influence on transcription factors and thereby, gene expression, as well as direct modulation of the catalytic activity. The used CK2 inhibitors, especially the older ones, show a broad range of specificity, selectivity and off-target effects. Recently applied methods to down-regulate the expression of individual CK2 subunits using siRNA or CRISPR/Cas9 technology have contributed to the improvement of specificity. It was shown that inhibition of CK2 kinase activity or knock-down or knock-out of CK2α leads to an elevated synthesis and secretion of insulin in pancreatic β-cells and a down-regulation of the synthesis and secretion of glucagon from pancreatic α-cells. In the present review CK2-dependent molecular mechanisms will be addressed which contribute to the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66421 Homburg, Germany
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, D-66421 Homburg, Germany
| |
Collapse
|
2
|
Luo Y, Li J, Li X, Lin H, Mao Z, Xu Z, Li S, Nie C, Zhou XA, Liao J, Xiong Y, Xu X, Wang J. The ARK2N-CK2 complex initiates transcription-coupled repair through enhancing the interaction of CSB with lesion-stalled RNAPII. Proc Natl Acad Sci U S A 2024; 121:e2404383121. [PMID: 38843184 PMCID: PMC11181095 DOI: 10.1073/pnas.2404383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/08/2024] [Indexed: 06/19/2024] Open
Abstract
Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.
Collapse
Affiliation(s)
- Yefei Luo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Jia Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Haodong Lin
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Zuchao Mao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Zhanzhan Xu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Chen Nie
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Junwei Liao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen518055, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing100191, China
- Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, Beijing100142, China
| |
Collapse
|
3
|
Montenarh M, Götz C. Protein Kinase CK2α', More than a Backup of CK2α. Cells 2023; 12:2834. [PMID: 38132153 PMCID: PMC10741536 DOI: 10.3390/cells12242834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/β2, CK2αα'/β2, or CK2α'2/β2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany;
| | | |
Collapse
|
4
|
Unni P, Friend J, Weinberg J, Okur V, Hochscherf J, Dominguez I. Predictive functional, statistical and structural analysis of CSNK2A1 and CSNK2B variants linked to neurodevelopmental diseases. Front Mol Biosci 2022; 9:851547. [PMID: 36310603 PMCID: PMC9608649 DOI: 10.3389/fmolb.2022.851547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) and Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) were recently identified as rare neurodevelopmental disorders. OCNDS and POBINDS are associated with heterozygous mutations in the CSNK2A1 and CSNK2B genes which encode CK2α, a serine/threonine protein kinase, and CK2β, a regulatory protein, respectively, which together can form a tetrameric enzyme called protein kinase CK2. A challenge in OCNDS and POBINDS is to understand the genetic basis of these diseases and the effect of the various CK2⍺ and CK2β mutations. In this study we have collected all variants available to date in CSNK2A1 and CSNK2B, and identified hotspots. We have investigated CK2⍺ and CK2β missense mutations through prediction programs which consider the evolutionary conservation, functionality and structure or these two proteins, compared these results with published experimental data on CK2α and CK2β mutants, and suggested prediction programs that could help predict changes in functionality of CK2α mutants. We also investigated the potential effect of CK2α and CK2β mutations on the 3D structure of the proteins and in their binding to each other. These results indicate that there are functional and structural consequences of mutation of CK2α and CK2β, and provide a rationale for further study of OCNDS and POBINDS-associated mutations. These data contribute to understanding the genetic and functional basis of these diseases, which is needed to identify their underlying mechanisms.
Collapse
Affiliation(s)
- Prasida Unni
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Jack Friend
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Volkan Okur
- New York Genome Center, New York, NY, United States
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
- *Correspondence: Isabel Dominguez,
| |
Collapse
|
5
|
Ligand-based pharmacophore filtering, atom based 3D-QSAR, virtual screening and ADME studies for the discovery of potential ck2 inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
7
|
Borgo C, Franchin C, Scalco S, Bosello-Travain V, Donella-Deana A, Arrigoni G, Salvi M, Pinna LA. Generation and quantitative proteomics analysis of CK2α/α' (-/-) cells. Sci Rep 2017; 7:42409. [PMID: 28209983 PMCID: PMC5314375 DOI: 10.1038/srep42409] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/10/2017] [Indexed: 01/23/2023] Open
Abstract
CK2 is a ubiquitous, constitutively active, highly pleiotropic, acidophilic Ser/Thr protein kinase whose holoenzyme is composed of two catalytic (α and/or α’) subunits and a dimer of a non-catalytic β subunit. Abnormally high CK2 level/activity is often associated with malignancy and a variety of cancer cells have been shown to rely on it to escape apoptosis. To gain information about the actual “druggability” of CK2 and to dissect CK2 dependent cellular processes that are instrumental to the establishment and progression of neoplasia we have exploited the CRISPR/Cas9 genome editing technology to generate viable clones of C2C12 myoblasts devoid of either both the CK2 catalytic subunits or its regulatory β-subunit. Suppression of both CK2 catalytic subunits promotes the disappearance of the β-subunit as well, through its accelerated proteasomal degradation. A quantitative proteomics analysis of CK2α/α’(−/−) versus wild type cells shows that knocking out both CK2 catalytic subunits causes a rearrangement of the proteomics profile, with substantially altered level ( > 50%) of 240 proteins, 126 of which are up-regulated, while the other are down-regulated. A functional analysis reveals that up- and down-regulated proteins tend to be segregated into distinct sub-cellular compartments and play different biological roles, consistent with a global rewiring underwent by the cell to cope with the lack of CK2.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | - Stefano Scalco
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | | | - Arianna Donella-Deana
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,CNR Institute of Neurosciences, Via U. Bassi 58/B, Padova, Italy
| |
Collapse
|
8
|
Briguglio I, Piras S, Corona P, Gavini E, Nieddu M, Boatto G, Carta A. Benzotriazole: An overview on its versatile biological behavior. Eur J Med Chem 2015; 97:612-48. [PMID: 25293580 PMCID: PMC7115563 DOI: 10.1016/j.ejmech.2014.09.089] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/13/2022]
Abstract
Discovered in late 1960, azoles are heterocyclic compounds class which constitute the largest group of available antifungal drugs. Particularly, the imidazole ring is the chemical component that confers activity to azoles. Triazoles are obtained by a slight modification of this ring and similar or improved activities as well as less adverse effects are reported for triazole derivatives. Consequently, it is not surprising that benzimidazole/benzotriazole derivatives have been found to be biologically active. Since benzimidazole has been widely investigated, this review is focused on defining the place of benzotriazole derivatives in biomedical research, highlighting their versatile biological properties, the mode of action and Structure Activity Relationship (SAR) studies for a variety of antimicrobial, antiparasitic, and even antitumor, choleretic, cholesterol-lowering agents.
Collapse
Affiliation(s)
- I Briguglio
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - S Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - P Corona
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - E Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - M Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - G Boatto
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - A Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy.
| |
Collapse
|
9
|
Abstract
The term 'casein kinase' has been widely used for decades to denote protein kinases sharing the ability to readily phosphorylate casein in vitro. These fall into three main classes: two of them, later renamed as protein kinases CK1 (casein kinase 1, also known as CKI) and CK2 (also known as CKII), are pleiotropic members of the kinome functionally unrelated to casein, whereas G-CK, or genuine casein kinase, responsible for the phosphorylation of casein in the Golgi apparatus of the lactating mammary gland, has only been identified recently with Fam20C [family with sequence similarity 20C; also known as DMP-4 (dentin matrix protein-4)], a member of the four-jointed family of atypical protein kinases, being responsible for the phosphorylation of many secreted proteins. In hindsight, therefore, the term 'casein kinase' is misleading in every instance; in the case of CK1 and CK2, it is because casein is not a physiological substrate, and in the case of G-CK/Fam20C/DMP-4, it is because casein is just one out of a plethora of its targets, and a rather marginal one at that. Strikingly, casein kinases altogether, albeit representing a minimal proportion of the whole kinome, appear to be responsible for the generation of up to 40-50% of non-redundant phosphosites currently retrieved in human phosphopeptides database. In the present review, a short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of our current knowledge of these pleiotropic enzymes, sharing the same misnomer while playing very distinct biological roles.
Collapse
|
10
|
Riera M, Irar S, Vélez-Bermúdez IC, Carretero-Paulet L, Lumbreras V, Pagès M. Role of plant-specific N-terminal domain of maize CK2β1 subunit in CK2β functions and holoenzyme regulation. PLoS One 2011; 6:e21909. [PMID: 21789193 PMCID: PMC3137599 DOI: 10.1371/journal.pone.0021909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes.
Collapse
Affiliation(s)
- Marta Riera
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Sami Irar
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Isabel C. Vélez-Bermúdez
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Lorenzo Carretero-Paulet
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
- Department of Applied Biology (Area of Genetics). University of Almería, Spain
| | - Victoria Lumbreras
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Montserrat Pagès
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| |
Collapse
|
11
|
Bischoff N, Raaf J, Olsen B, Bretner M, Issinger OG, Niefind K. Enzymatic activity with an incomplete catalytic spine: insights from a comparative structural analysis of human CK2α and its paralogous isoform CK2α'. Mol Cell Biochem 2011; 356:57-65. [PMID: 21739153 DOI: 10.1007/s11010-011-0948-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/25/2022]
Abstract
Eukaryotic protein kinases are fundamental factors for cellular regulation and therefore subject of strict control mechanisms. For full activity a kinase molecule must be penetrated by two stacks of hydrophobic residues, the regulatory and the catalytic spine that are normally well conserved among active protein kinases. We apply this novel spine concept here on CK2α, the catalytic subunit of protein kinase CK2. Homo sapiens disposes of two paralog isoforms of CK2α (hsCK2α and hsCK2α'). We describe two new structures of hsCK2α constructs one of which in complex with the ATP-analog adenylyl imidodiphosphate and the other with the ATP-competitive inhibitor 3-(4,5,6,7-tetrabromo-1H-benzotriazol-1-yl)propan-1-ol. The former is the first hsCK2α structure with a well defined cosubstrate/magnesium complex and the second with an open β4/β5-loop. Comparisons of these structures with existing CK2α/CK2α' and cAMP-dependent protein kinase (PKA) structures reveal: in hsCK2α' an open conformation of the interdomain hinge/helix αD region that is critical for ATP-binding is found corresponding to an incomplete catalytic spine. In contrast hsCK2α often adopts the canonical, PKA-like version of the catalytic spine which correlates with a closed conformation of the hinge region. HsCK2α can switch to the incomplete, non-canonical, hsCK2α'-like state of the catalytic spine, but this transition apparently depends on binding of either ATP or of the regulatory subunit CK2β. Thus, ATP looks like an activator of hsCK2α rather than a pure cosubstrate.
Collapse
Affiliation(s)
- Nils Bischoff
- Universität zu Köln, Institut für Biochemie, Zülpicher Straße 47, 50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Bischoff N, Olsen B, Raaf J, Bretner M, Issinger OG, Niefind K. Structure of the human protein kinase CK2 catalytic subunit CK2α' and interaction thermodynamics with the regulatory subunit CK2β. J Mol Biol 2011; 407:1-12. [PMID: 21241709 DOI: 10.1016/j.jmb.2011.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/04/2011] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Protein kinase CK2 (formerly "casein kinase 2") is composed of a central dimer of noncatalytic subunits (CK2β) binding two catalytic subunits. In humans, there are two isoforms of the catalytic subunit (and an additional splicing variant), one of which (CK2α) is well characterized. To supplement the limited biochemical knowledge about the second paralog (CK2α'), we developed a well-soluble catalytically active full-length mutant of human CK2α', characterized it by Michaelis-Menten kinetics and isothermal titration calorimetry, and determined its crystal structure to a resolution of 2 Å. The affinity of CK2α' for CK2β is about 12 times lower than that of CK2α and is less driven by enthalpy. This result fits the observation that the β4/β5 loop, a key element of the CK2α/CK2β interface, adopts an open conformation in CK2α', while in CK2α, it opens only after assembly with CK2β. The open β4/β5 loop in CK2α' is stabilized by two elements that are absent in CK2α: (1) the extension of the N-terminal β-sheet by an additional β-strand, and (2) the filling of a conserved hydrophobic cavity between the β4/β5 loop and helix αC by a tryptophan residue. Moreover, the interdomain hinge region of CK2α' adopts a fully functional conformation, while unbound CK2α is often found with a nonproductive hinge conformation that is overcome only by CK2β binding. Taken together, CK2α' exhibits a significantly lower affinity for CK2β than CK2α; moreover, in functionally critical regions, it is less dependent on CK2β to obtain a fully functional conformation.
Collapse
Affiliation(s)
- Nils Bischoff
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 2010; 36:187-95. [PMID: 20533398 PMCID: PMC2916697 DOI: 10.1002/biof.96] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein kinase CK2, a protein serine/threonine kinase, plays a global role in activities related to cell growth, cell death, and cell survival. CK2 has a large number of potential substrates localized in diverse locations in the cell including, for example, NF-kappaB as an important downstream target of the kinase. In addition to its involvement in cell growth and proliferation it is also a potent suppressor of apoptosis, raising its key importance in cancer cell phenotype. CK2 interacts with diverse pathways which illustrates the breadth of its impact on the cellular machinery of both cell growth and cell death giving it the status of a "master regulator" in the cell. With respect to cancer, CK2 has been found to be dysregulated in all cancers examined demonstrating increased protein expression levels and nuclear localization in cancer cells compared with their normal counterparts. We originally proposed CK2 as a potentially important target for cancer therapy. Given the ubiquitous and essential for cell survival nature of the kinase, an important consideration would be to target it specifically in cancer cells while sparing normal cells. Towards that end, our design of a tenascin based sub-50 nm (i.e., less than 50 nm size) nanocapsule in which an anti-CK2 therapeutic agent can be packaged is highly promising because this formulation can specifically deliver the cargo intracellularly to the cancer cells in vivo. Thus, appropriate strategies to target CK2 especially by molecular approaches may lead to a highly feasible and effective approach to eradication of a given cancer.
Collapse
Affiliation(s)
- Janeen H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | | | - Joel Slaton
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Urology, University of Minnesota, Minneapolis, MN
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Betsy T. Kren
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Khalil Ahmed
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Urology, University of Minnesota, Minneapolis, MN
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN
- Address for correspondence: Khalil Ahmed, Ph.D., Research Service (151), V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota, One Veterans Drive, Minneapolis, MN 55417; Phone: 612-467-2594; Fax: 612-725-2093;
| |
Collapse
|
14
|
Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG. Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry 2010; 67:208-16. [PMID: 19748077 DOI: 10.1016/j.biopsych.2009.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Schizophrenia has been described as a disease of the synapse. On the basis of previous studies reporting reductions in the levels and activity of CK2 (also know as casein kinase 2 or II) in the brain of subjects with schizophrenia, we hypothesized that CK2-mediated phosphorylation of the presynaptic protein syntaxin 1 (Stx 1) is deficient in schizophrenia. This in turn could affect the binding of Stx 1 to its protein partners and result in abnormal neurotransmitter release and synaptic transmission. METHODS We analyzed post mortem prefrontal cortex samples from 15 schizophrenia cases and matched controls by quantitative immunoblotting. RESULTS In addition to replicating previous findings of reduced CK2 levels, we show that as predicted, the deficit in CK2 correlates with a deficit in phospho-Stx 1. In contrast, we find that these deficits are not present in depression cases. Further, we show that the reduced levels of CK2 and phospho-Stx 1 are not due to treatment with antipsychotic drugs (APDs). In fact, APDs seem to increase both CK2 and phospho-Stx 1, suggesting that their therapeutic action may be associated with the reversal of these deficits. Finally, we show that lower phospho-Stx 1 levels are associated with reduced binding of Stx 1 to SNAP-25 and MUNC18 and decreased SNARE complex formation. CONCLUSIONS Our findings constitute the first report of altered phosphorylation of a key component for neurotransmitter release in humans and suggest that regulation of Stx 1 by CK2-mediated phosphorylation could play a role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Max A Castillo
- Department of Neurology, The University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
15
|
Trembley JH, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 2009; 66:1858-67. [PMID: 19387548 PMCID: PMC4385580 DOI: 10.1007/s00018-009-9154-y] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Elevated levels of protein kinase CK2 (formerly casein kinase 2 or II) have long been associated with increased cell growth and proliferation both in normal and cancer cells. The ability of CK2 to also act as a potent suppressor of apoptosis offers an important link to its involvement in cancer since deregulation of both cell proliferation and apoptosis are among the key features of cancer cell biology. Dysregulated CK2 may impact both of these processes in cancer cells. All cancers that have been examined show increased CK2 expression, which may also relate to prognosis. The extensive involvement of CK2 in cancer derives from its impact on diverse molecular pathways controlling cell proliferation and cell death. Downregulation of CK2 by various approaches results in induction of apoptosis in cultured cell and xenograft cancer models suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- J. H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - G. Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | | | - J. Slaton
- Urology Service, Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - K. Ahmed
- Cellular and Molecular Biochemistry Research Laboratory (151), Veterans Affairs Medical Center, Minneapolis, MN USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
- Department of Urology, University of Minnesota, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
16
|
Moreno-Romero J, Martínez MC. Is there a link between protein kinase CK2 and auxin signaling? PLANT SIGNALING & BEHAVIOR 2008; 3:695-7. [PMID: 19704831 PMCID: PMC2634562 DOI: 10.4161/psb.3.9.6343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 05/24/2023]
Abstract
Protein kinase CK2 is a pleitropic Ser/Thr kinase present in all eukaryotes. In order to study the effects of CK2 depletion on plant development, we have recently generated Arabidopsis transgenic plants expressing a CK2alpha-inactive mutant under the control of an inducible promoter. Our results showed that continuous expression of the transgene had a dominant negative effect and was lethal for Arabidopsis plants. Overexpression of the CK2alpha-inactive subunit provoked cell cycle arrest, by perturbation of both G(1)/S and G(2) cell cycle phases. The effects on cell division were particularly strong in root meristems, causing inhibition of lateral root formation even when the mutant protein was transiently induced. Processes that rely on cell expansion, such as hypocotyl elongation in dark-grown seedlings, were also strongly affected. We propose that CK2 regulates auxin-signaling pathways.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; Bellaterra, Barcelona Spain
| | | |
Collapse
|
17
|
Moreno-Romero J, Espunya MC, Platara M, Ariño J, Martínez MC. A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:118-30. [PMID: 18363781 DOI: 10.1111/j.1365-313x.2008.03494.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein kinase CK2 is an evolutionary conserved Ser/Thr phosphotransferase composed of two distinct subunits, alpha (catalytic) and beta (regulatory), that combine to form a tetrameric complex. Plant genomes contain multiple genes for each subunit, the expression of which gives rise to different active holoenzymes. In order to study the effects of loss of function of CK2 on plant development, we have undertaken a dominant-negative mutant approach. We generated an inactive catalytic subunit by site-directed mutagenesis of an essential lysine residue. The mutated open reading frame was cloned downstream of an inducible promoter, and stably transformed Arabidopsis thaliana plants and tobacco BY2 cells were isolated. Continuous expression of the CK2 kinase-inactive subunit did not prevent seed germination, but seedlings exhibited a strong phenotype, affecting chloroplast development, cotyledon expansion, and root and shoot growth. Prolonged induction of the transgene was lethal. Moreover, dark-germinated seedlings exhibited an apparent de-etiolated phenotype that was not caused by disruption of the light-signalling pathways. Short-term induction of the CK2 kinase-inactive subunit allowed plant survival, but root growth and lateral root formation were significantly affected. The expression pattern of CYCB1;1::GFP in the root meristems of mutant plants demonstrated an important decrease of mitotic activity, and expression of the CK2 kinase-inactive subunit in stably transformed BY2 cells provoked perturbation of the G1/S and G2 phases of the cell cycle. Our results are consistent with a model in which CK2 plays a key role in cell division and cell expansion, with compelling effects on Arabidopsis development.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2--a key suppressor of apoptosis. ACTA ACUST UNITED AC 2008; 48:179-87. [PMID: 18492491 DOI: 10.1016/j.advenzreg.2008.04.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kashif A Ahmad
- Cellular and Molecular Biochemistry Research Laboratory (151), V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55417, USA.
| | | | | | | | | |
Collapse
|
19
|
Wang G, Ahmad KA, Unger G, Slaton JW, Ahmed K. CK2 signaling in androgen-dependent and -independent prostate cancer. J Cell Biochem 2006; 99:382-91. [PMID: 16598768 DOI: 10.1002/jcb.20847] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein serine/threonine kinase casein kinase 2 (CK2) is a key player in cell growth and proliferation but is also a potent suppressor of apoptosis. CK2 has been found to be dysregulated in all the cancers that have been examined, including prostate cancer. Investigations of CK2 signaling in the prostate were originally initiated in this laboratory, and these studies have identified significant functional activities of CK2 in relation to normal prostate growth and to the pathobiology of androgen-dependent and -independent prostate cancer. We present a brief overview of these developments in the context of prostate biology. An important outcome of these studies is the emerging concept that CK2 can be effectively targeted for cancer therapy.
Collapse
Affiliation(s)
- Guixia Wang
- Cellular and Molecular Biochemistry Research Laboratory (151), Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota 55417, USA
| | | | | | | | | |
Collapse
|
20
|
Kramerov AA, Saghizadeh M, Pan H, Kabosova A, Montenarh M, Ahmed K, Penn JS, Chan CK, Hinton DR, Grant MB, Ljubimov AV. Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1722-36. [PMID: 16651637 PMCID: PMC1606582 DOI: 10.2353/ajpath.2006.050533] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously documented protein kinase CK2 involvement in retinal neovascularization. Here we describe retinal CK2 expression and combined effects of CK2 inhibitors with the somatostatin analog octreotide in a mouse model of oxygen-induced retinopathy (OIR). CK2 expression in human and rodent retinas with and without retinopathy and in astrocytic and endothelial cultures was examined by immunohistochemistry, Western blotting, and reverse transcriptase-polymerase chain reaction. A combination of CK2 inhibitors, emodin or 4,5,6,7-tetrabromobenzotriazole, with octreotide was injected intraperitoneally from postnatal (P) day P11 to P17 to block mouse OIR. All CK2 subunits (alpha, alpha', beta) were expressed in retina, and a novel CK2alpha splice variant was detected by reverse transcriptase-polymerase chain reaction. CK2 antibodies primarily reacted with retinal astrocytes, and staining was increased around new intraretinal vessels in mouse OIR and rat retinopathy of prematurity, whereas preretinal vessels were negative. Cultured astrocytes showed increased perinuclear CK2 staining compared to endothelial cells. In the OIR model, CK2 mRNA expression increased modestly on P13 but not on P17. Octreotide combined with emodin or 4,5,6,7-tetrabromobenzotriazole blocked mouse retinal neovascularization more efficiently than either compound alone. Based on its retinal localization, CK2 may be considered a new immunohistochemical astrocytic marker, and combination of CK2 inhibitors and octreotide may be a promising future treatment for proliferative retinopathies.
Collapse
Affiliation(s)
- Andrei A Kramerov
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, University of California at Los Angeles School of Medicine, 90048, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang G, Ahmad KA, Ahmed K. Role of protein kinase CK2 in the regulation of tumor necrosis factor-related apoptosis inducing ligand-induced apoptosis in prostate cancer cells. Cancer Res 2006; 66:2242-9. [PMID: 16489027 DOI: 10.1158/0008-5472.can-05-2772] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase CK2 (formerly casein kinase 2 or II) is a ubiquitous and highly conserved protein Ser/Thr kinase that plays diverse roles such as in cell proliferation and apoptosis. With respect to the latter, we originally showed that elevated CK2 could suppress various types of apoptosis in prostate cancer cells; however, the downstream pathways that respond to CK2 for mediating the suppression of apoptosis have not been fully elucidated. Here, we report studies on the role of CK2 in influencing activities associated with tumor necrosis factor-related ligand (TRAIL/Apo2-L)-mediated apoptosis in prostate carcinoma cells. To that end, we show that both androgen-insensitive (PC-3) and androgen-sensitive (ALVA-41) prostate cancer cells are sensitized to TRAIL by chemical inhibition of CK2 using its specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). Furthermore, we have shown that overexpression of CK2alpha using pcDNA6-CK2alpha protected prostatic cancer cells from TRAIL-mediated apoptosis by affecting various activities associated with this process. Thus, overexpression of CK2 resulted in the suppression of TRAIL-induced apoptosis via its effects on the activation of caspases, DNA fragmentation, and downstream cleavage of lamin A. In addition, the overexpression of CK2 blocked the mitochondrial apoptosis machinery engaged by TRAIL. These findings define the important role of CK2 in TRAIL signaling in androgen-sensitive and -insensitive prostatic carcinoma cells. Our data support the potential usefulness of anticancer strategies that may involve the combination of TRAIL and down-regulation of CK2.
Collapse
Affiliation(s)
- Guixia Wang
- Cellular and Molecular Biochemistry Research Laboratory, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota 55417, USA
| | | | | |
Collapse
|
22
|
Ackermann K, Neidhart T, Gerber J, Waxmann A, Pyerin W. The catalytic subunit alpha' gene of human protein kinase CK2 (CSNK2A2): genomic organization, promoter identification and determination of Ets1 as a key regulator. Mol Cell Biochem 2006; 274:91-101. [PMID: 16335532 DOI: 10.1007/s11010-005-3076-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The human genome contains four protein kinase CK2 loci, enclosing three active genes coding for the catalytic subunits alpha and alpha' and the regulatory subunit beta, and a processed alpha subunit pseudogene. Extensive structure and transcriptional control data of the genes are available, except for the CK2alpha' gene (CSNK2A2). Using in silico and experimental approaches, we find CSNK2A2 to be located on the long arm of chromosome 16 (in contrast to published data), to span 40kb and to consist of 12 exons, with the translational start in Exon 1 and the stop in Exon 11. Exon/intron boundaries conform to the gt/ag rule, and various potential polyadenylation signals determine transcript species with lengths of 1.7-5.7 kb. The upstream region of the gene displays housekeeping characteristics, lacking a TATA box and possessing several GC boxes as well as a CpG island around Exon 1. According to reporter gene assay results, the promoter activity ranges from -1308 to 197 with the highest activity in region -396 to -129. This region contains binding motifs for various transcription factors, including NFkappaB, Sp and Ets family members. Site-directed mutagenesis indicates that the Ets motifs play, in cooperation with Sp motif clusters, a central role in regulating CK2alpha' gene transcription. A similar control has been described for the transcription of the CK2alpha and CK2beta genes so that the presented data are compatible with the assumption of a coordinate transcriptional regulation of all three active human CK2 genes decisively determined by Ets family members.
Collapse
Affiliation(s)
- Karin Ackermann
- Biochemical Cell Physiology (A135), German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Protein kinase CK2 is a highly ubiquitous and conserved protein serine/threonine kinase that has been found to be involved not only in cell growth and proliferation, but also in suppression of apoptosis. CK2 is capable of dynamic intracellular shuttling in response to a variety of signals. It is localized in both the nucleus and cytoplasm in normal cells, but is particularly predominant in the nuclear compartment in cancer cells. CK2 has been found to be uniformly dysregulated in all the cancers that have been examined. Downregulation of CK2 by chemical or molecular methods promotes apoptosis in cells. We have shown that antisense CK2alpha is particularly potent in inducing apoptosis in cancer cells in culture as well as in xenograft models of cancer such as prostate cancer and squamous cell carcinoma of head and neck. The antisense CK2alpha oligodeoxynucleotide (ODN) mediates tumor cell death in a dose- and time-dependent manner such that at an appropriate concentration of the antisense, a complete resolution of the xenograft tumor is observed. Interestingly, normal and benign cells (in culture as well as in vivo) demonstrate a relative resistance to the antisense CK2alpha ODN treatment, which raises the possibility of a significant therapeutic window for this therapy. Further, novel approaches such as the delivery of antisense CK2alpha ODN encapsulated in sub-50-nm tenascin nanocapsules have become available for its targeting specifically in cancer cells. Our studies minimize generally held concerns regarding suitability of CK2 as a target for cancer therapy and provide the first encouraging results for potential future application of this approach for cancer therapy.
Collapse
Affiliation(s)
- Kashif A Ahmad
- Cellular and Molecular Biochemistry Research Laboratory, Minneapolis Veterans Affairs Medical Center, Chaska, Minnesota 55417, USA.
| | | | | | | | | |
Collapse
|
24
|
Zien P, Duncan JS, Skierski J, Bretner M, Litchfield DW, Shugar D. Tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) as selective inhibitors of protein kinase CK2: evaluation of their effects on cells and different molecular forms of human CK2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:271-80. [PMID: 16203192 DOI: 10.1016/j.bbapap.2005.07.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 01/19/2023]
Abstract
The development of selective cell-permeable inhibitors of protein kinase CK2 has represented an important advance in the field. However, it is important to not overlook the existence of discrete molecular forms of CK2 that arise from the presence of distinct isozymic forms, and the existence of the catalytic CK2 subunits as free subunits and in complexes with the regulatory CK2beta subunits and, possibly, other proteins. This review examines two recently developed, and presently widely applied, CK2 inhibitors, 4,5,6,7-tetrabromobenzotriazole (TBBt) and the related 4,5,6,7-tetrabromobenzimidazole (TBBz), the latter of which was previously shown to discriminate between different molecular forms of CK2 in yeast. We have shown, by spectrophotometric titration, that TBBt, with a pK(a) approximately 5, exists in solution at physiological pH almost exclusively (>99%) as the monoanion; whereas TBBz, with a pKa approximately 9, is predominantly (>95%) in the neutral form, both of obvious relevance to their modes of binding. In vitro, TBBt inhibits different forms of CK2 with Ki values ranging from 80 to 210 nM. TBBz better discriminates between CK2 forms, with Ki values ranging from 70 to 510 nM. Despite their general similar in vitro activities, TBBz is more effective than TBBt in inducing apoptosis and, to a lesser degree, necrosis, in transformed human cell lines. Finally, development of shRNA strategies for the selective knockdown of the CK2alpha and CK2alpha' isoforms reinforces the foregoing results, indicating that inhibition of CK2 leads to attenuation of proliferation.
Collapse
Affiliation(s)
- Piotr Zien
- Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Medical Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Protein kinase CK2 has diverse links to gene control and cell cycle. Comparative genome-wide expression profiling of CK2 mutants of the budding yeast Saccharomyces cerevisiae at cell cycle entry has revealed that a significant proportion of cell-cycle genes are affected by CK2. Here, we examine how CK2 realizes this effect. We show that the CK2 action may be directed to gene promoters causing genes with promoter homologies to respond comparably to CK2 perturbation. Examples are metabolic pathway and nutrition supply genes such as the PHO and MET regulon genes, responsible for phosphate maintenance and methionine biosynthesis, respectively. CK2 perturbation affects both regulons permanently and both via repression of a central transcription factor, but with different mechanisms: In the PHO regulon, the gene encoding the central transcription factor Pho4 is repressed and, in addition, Pho4 and/or the cyclin-dependent kinase of the regulon's control complex may be affected by CK2 phosphorylation. In the MET regulon, the repression of the central transcription factor Met4 occurs not by expression inhibition, but rather by availability tuning via a CK2-mediated phosphorylation of a degradation complex. On the other hand, the CK2 action may be directed to the chromatin regulon, thus affecting globally the expression of genes, i.e., the CK2 perturbation results either in comparable responses of genes which have no promoter homologies or in deviating responses despite promoter homologies. The effect is rather transient and concerns aside various cell cycle control genes a notable number of genes encoding chromatin remodeling and modification proteins with functions in chromatin assembly and (anti-)silencing as well as in histone (de-)acetylation, and frequently are also substrates of CK2, suggesting additional tuning at protein level. In line with these findings, we observe in human cells sequence-independent but cell-cycle-dependent CK2 associations with promoters of cell-cycle-regulated genes at periods of extensive gene expression alterations, including cell cycle entry. Our observations are compatible with the idea that the gene control by CK2 is achieved via different mechanisms and at different levels of organization and includes a global role in transcription-related chromatin remodelling and modification.
Collapse
Affiliation(s)
- Walter Pyerin
- Biochemische Zellphysiologie (A135), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
26
|
Malik P, Clements JB. Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K. Nucleic Acids Res 2004; 32:5553-69. [PMID: 15486205 PMCID: PMC524287 DOI: 10.1093/nar/gkh876] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ORF57 protein of Kaposi's sarcoma-associated herpesvirus has a counterpart in all herpesvirus of mammals and birds and regulates gene expression at transcriptional and post-transcriptional levels. ORF57 was capable of self-interaction and bound a rapidly migrating form of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional cellular protein involved in gene expression. In virus infected cell extracts, ORF57 was present in a complex with hnRNP K that had protein kinase CK2 activity, and was phosphorylated by CK2. Different regions of ORF57 bound both catalytic alpha/alpha' and regulatory beta subunits of CK2. CK2 modification enhanced the ORF57-hnRNP K interaction, and may regulate the presence and activities of components in the complex. We suggest that ORF57 and hnRNP K interaction may modulate ORF57-mediated regulation of viral gene expression. Herpesviral ORF57 (Rhadinovirus) and ICP27 (Simplexvirus) proteins both interact with hnRNP K and CK2 implying that adaptation of the ancestral hnRNP K and CK2 to associate with viral regulatory ancestor protein likely pre-dates divergence of these Herpesviridae genera that occurred 200 million years ago.
Collapse
Affiliation(s)
- Poonam Malik
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow, G11 5JR, Scotland, UK
| | | |
Collapse
|
27
|
Kulartz M, Hiller E, Kappes F, Pinna LA, Knippers R. Protein kinase CK2 phosphorylates the cell cycle regulatory protein Geminin. Biochem Biophys Res Commun 2004; 315:1011-7. [PMID: 14985113 DOI: 10.1016/j.bbrc.2004.01.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Geminin contributes to cell cycle regulation by a timely inhibition of Cdt1p, the loading factor required for the assembly of pre-replication complexes. Geminin is expressed during S and G2 phase of the HeLa cell cycle and phosphorylated soon after its synthesis. We show here that Geminin is an excellent substrate for protein kinase CK2 in vitro; and that the highly specific CK2 inhibitor tetrabromobenzotriazole (TBB) blocks the phosphorylation of Geminin in HeLa protein extracts and HeLa cells in vivo. The sites of CK2 phosphorylation are located in the carboxyterminal region of Geminin, which carries several consensus sequence motifs for CK2. We also show that a minor phosphorylating activity in protein extracts can be attributed to glycogen synthase kinase 3 (GSK3), which most likely targets a central peptide in Geminin. Treatment of HeLa cells with TBB does not interfere with the ability of Geminin to interact with the loading factor Cdt1.
Collapse
Affiliation(s)
- Monika Kulartz
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|