1
|
Kane JF, Johnson RW. Re-Evaluating the Role of PTHrP in Breast Cancer. Cancers (Basel) 2023; 15:2670. [PMID: 37345007 PMCID: PMC10216606 DOI: 10.3390/cancers15102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Parathyroid-hormone-related protein (PTHrP) is a protein with a long history of association with bone metastatic cancers. The paracrine signaling of PTHrP through the parathyroid hormone receptor (PTHR1) facilitates tumor-induced bone destruction, and PTHrP is known as the primary driver of humoral hypercalcemia of malignancy. In addition to paracrine signaling, PTHrP is capable of intracrine signaling independent of PTHR1 binding, which is essential for cytokine-like functions in normal physiological conditions in a variety of tissue types. Pre-clinical and clinical studies evaluating the role of PTHrP in breast cancer have yielded contradictory conclusions, in some cases indicating the protein is tumor suppressive, and in other studies, pro-growth. This review discusses the possible molecular basis for the disharmonious prognostic indications of these studies and highlights the implications of the paracrine, intracrine, and nuclear functions of the protein. This review also examines the current understanding of the functional domains of PTHrP and re-evaluates their role in the unique context of the breast cancer environment. This review will expand on the current understanding of PTHrP by attempting to reconcile the functional domains of the protein with its intracrine signaling in cancer.
Collapse
Affiliation(s)
- Jeremy F. Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Abstract
OBJECTIVES Bone metastases are of high clinical relevance because they are a frequent complication of most types of common cancers, such as breast and prostate. The metastatic process is complex, requiring the completion of several different steps to allow successful dissemination and homing. In addition, preparation of the metastatic niche changes the constant cycle of bone matrix formation and degradation, leading to the clinical phenotypes of lytic and sclerotic lesions. We review our current knowledge on this topic and briefly explain the current treatment landscape of bone metastasis. DATA SOURCES These include PubMed, international guidelines, and clinician experience. CONCLUSION Bone metastases remain a clinical challenge that negatively impacts patients prognosis and quality of life. A comprehensive understanding of the complex molecular mechanisms that results in bone metastasis is the basis for successful treatment of affected patients. The disruption of bone matrix metabolism is already recognized as the prerequisite for metastasis formation, but many open questions remain that need to be addressed in future research to establish individually tailored treatment approaches. IMPLICATIONS FOR NURSING PRACTICE Patient-centered therapy of bone metastases requires suitable pharmacological options, and importantly a holistic approach in care delivery across the multidisciplinary team. Nurses provide the cornerstone of the multidisciplinary team and provide the closest and the most frequent contact to the patient and their families to provide timely intervention. Nurses require a basic understanding of the complex physiology of metastasis to inform practice.
Collapse
Affiliation(s)
- Romy M Riffel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Srinivasan S, Kryza T, Batra J, Clements J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat Rev Cancer 2022; 22:223-238. [PMID: 35102281 DOI: 10.1038/s41568-021-00436-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Kallikrein-related peptidases (KLKs) are critical regulators of the tumour microenvironment. KLKs are proteolytic enzymes regulating multiple functions of bioactive molecules including hormones and growth factors, membrane receptors and the extracellular matrix architecture involved in cancer progression and metastasis. Perturbations of the proteolytic cascade generated by these peptidases, and their downstream signalling actions, underlie tumour emergence or blockade of tumour growth. Recent studies have also revealed their role in tumour immune suppression and resistance to cancer therapy. Here, we present an overview of the complex biology of the KLK family and its context-dependent nature in cancer, and discuss the different therapeutic strategies available to potentially target these proteases.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Research Institute, The University of Queensland, Woolloongabba, Brisbane, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Centre for Genomics and Personalised Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| |
Collapse
|
4
|
Abstract
In this review, Shen and Kang provide an overview of the tumor-intrinsic and microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. Metastasis is the ultimate “survival of the fittest” test for cancer cells, as only a small fraction of disseminated tumor cells can overcome the numerous hurdles they encounter during the transition from the site of origin to a distinctly different distant organ in the face of immune and therapeutic attacks and various other stresses. During cancer progression, tumor cells develop a variety of mechanisms to cope with the stresses they encounter, and acquire the ability to form metastases. Restraining these stress-releasing pathways could serve as potentially effective strategies to prevent or reduce metastasis and improve the survival of cancer patients. Here, we provide an overview of the tumor-intrinsic, microenvironment- and treatment-induced stresses that tumor cells encounter in the metastatic cascade and the molecular pathways they develop to relieve these stresses. We also summarize the preclinical and clinical studies that evaluate the potential therapeutic benefit of targeting these stress-relieving pathways.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Lovell S, Zhang L, Kryza T, Neodo A, Bock N, De Vita E, Williams ED, Engelsberger E, Xu C, Bakker AT, Maneiro M, Tanaka RJ, Bevan CL, Clements JA, Tate EW. A Suite of Activity-Based Probes To Dissect the KLK Activome in Drug-Resistant Prostate Cancer. J Am Chem Soc 2021; 143:8911-8924. [PMID: 34085829 PMCID: PMC9282638 DOI: 10.1021/jacs.1c03950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Kallikrein-related
peptidases (KLKs) are a family of secreted serine
proteases, which form a network (the KLK activome) with an important
role in proteolysis and signaling. In prostate cancer (PCa), increased
KLK activity promotes tumor growth and metastasis through multiple
biochemical pathways, and specific quantification and tracking of
changes in the KLK activome could contribute to validation of KLKs
as potential drug targets. Herein we report a technology platform
based on novel activity-based probes (ABPs) and inhibitors enabling
simultaneous orthogonal analysis of KLK2, KLK3, and KLK14 activity
in hormone-responsive PCa cell lines and tumor homogenates. Importantly,
we identifed a significant decoupling of KLK activity and abundance
and suggest that KLK proteolysis should be considered as an additional
parameter, along with the PSA blood test, for accurate PCa diagnosis
and monitoring. Using selective inhibitors and multiplexed fluorescent
activity-based protein profiling (ABPP), we dissect the KLK activome
in PCa cells and show that increased KLK14 activity leads to a migratory
phenotype. Furthermore, using biotinylated ABPs, we show that active
KLK molecules are secreted into the bone microenvironment by PCa cells
following stimulation by osteoblasts suggesting KLK-mediated signaling
mechanisms could contribute to PCa metastasis to bone. Together our
findings show that ABPP is a powerful approach to dissect dysregulation
of the KLK activome as a promising and previously underappreciated
therapeutic target in advanced PCa.
Collapse
Affiliation(s)
- Scott Lovell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Leran Zhang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Thomas Kryza
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.,Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Anna Neodo
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Elena De Vita
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Elisabeth Engelsberger
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Congyi Xu
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Alexander T Bakker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Maria Maneiro
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.,The Francis Crick Institute, London NW1 1AT, U.K
| |
Collapse
|
6
|
Muscarella AM, Aguirre S, Hao X, Waldvogel SM, Zhang XHF. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131:143764. [PMID: 33720051 PMCID: PMC7954594 DOI: 10.1172/jci143764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many solid cancers metastasize to the bone and bone marrow (BM). This process may occur even before the diagnosis of primary tumors, as evidenced by the discovery of disseminated tumor cells (DTCs) in patients without occult malignancies. The cellular fates and metastatic progression of DTCs are determined by complicated interactions between cancer cells and BM niches. Not surprisingly, these niches also play important roles in normal biology, including homeostasis and turnover of skeletal and hematopoiesis systems. In this Review, we summarize recent findings on functions of BM niches in bone metastasis (BoMet), particularly during the early stage of colonization. In light of the rich knowledge of hematopoiesis and osteogenesis, we highlight how DTCs may progress into overt BoMet by taking advantage of niche cells and their activities in tissue turnover, especially those related to immunomodulation and bone repair.
Collapse
Affiliation(s)
- Aaron M. Muscarella
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Sergio Aguirre
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah M. Waldvogel
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Cho HW, Ouh YT, Hong JH, Lee JK. Exploring the prognostic significance of preoperative high normocalcemia in epithelial ovarian carcinoma. Arch Gynecol Obstet 2020; 303:803-810. [PMID: 33078229 DOI: 10.1007/s00404-020-05834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE We investigated the association between serum ionized calcium and prognosis of EOC and determined the optimal cutoff value of ionized calcium level to predict the prognosis of EOC. METHODS The medical records of patients who were newly diagnosed with EOC from 2001 to 2016 were retrieved. Preoperative ionized calcium test was performed within 2 weeks before surgery, and the cutoff of high normocalcemia was defined based on the receiver operating characteristic (ROC) curve for recurrence. Cox proportional hazards regression models were used to identify independent prognostic factors for progression-free survival (PFS). RESULTS From 2001 to 2016, 83 patients diagnosed with EOC were identified at a single institution. The optimal cutoff value was set to 4.7 mg/dL (high normocalcemia vs. control group) by plotting the ROC curve for recurrence. Stages III/IV were more frequent in high normocalcemia, with borderline significance (72.9% vs. 52.2%, p = 0.053). Recurrence (67.6% vs. 43.5%, p = 0.029) and death (46.0% vs. 15.2%, p < 0.01) were significantly more frequent in the high normocalcemia group. In multivariate analysis, high normocalcemia (HR 1.9, 95% CI 1.03-3.61, p = 0.04), age (HR 1.04, 95% CI 1.01-1.08, p = 0.02), stage (HR 3.67, 95% CI 1.13-11.92, p = 0.03), residual tumor > 1 cm (HR 3.79, 95% CI 1.61-8.95, p < 0.01), and lymph node metastasis (HR 2.46, 95% CI 1.27-4.78, p < 0.01) were independent risk factors for recurrence. CONCLUSION This study showed positive association between relatively high level of ionized calcium level and recurrence risk of EOC. High normocalcemia showed the potential as a biomarker for prognosis of EOC.
Collapse
Affiliation(s)
- Hyun-Woong Cho
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.,Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jin Hwa Hong
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Kwan Lee
- Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Wang H, Zhang W, Bado I, Zhang XHF. Bone Tropism in Cancer Metastases. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036848. [PMID: 31615871 DOI: 10.1101/cshperspect.a036848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone is a frequent site of metastases in many cancers. Both bone properties and the tumor-intrinsic traits are associated with the metastatic propensity to bone (i.e., the bone tropism). Whereas an increasing body of mechanistic studies expanded our understanding on bone tropism, they also revealed complexity across the bone lesions originated from different cancer types. In this review, we will discuss the physical, chemical, and biological properties of bone microenvironment, identify potential players in every stage of bone metastases, and introduce some of the known mechanisms regulating the bone colonization. Our objectives are to integrate the knowledge established in different biological contexts and highlight the determinants of bone tropism.
Collapse
Affiliation(s)
- Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,McNair Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Wu L, Xiang S, Hu X, Mo M, Zhao C, Cai Y, Tong S, Jiang H, Chen L, Wang Z, Xiong W, Ou Z. Prostate-specific antigen modulates the osteogenic differentiation of MSCs via the cadherin 11-Akt axis. Clin Transl Med 2020; 10:363-373. [PMID: 32508049 PMCID: PMC7240859 DOI: 10.1002/ctm2.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A high prevalence of osteoblastic bone metastases is characteristic of prostate cancer. Prostate-specific antigen (PSA) is a serine protease uniquely produced by prostate cancer cells and is an important serological marker for prostate cancer. However, whether PSA modulates the osteogenic process remains largely unknown. In this study, we explored the effect of PSA on modulating the osteoblastic differentiation of mesenchymal stem cells (MSCs). In this study, we used flow cytometry, CCK-8 assay, Alizarin red S (ARS) staining and quantification, alkaline phosphatase (ALP) activity and staining, Western blotting, and quantitative real-time PCR (qRT-PCR) to explore the effect of PSA on osteogenic differentiation of MSCs. RESULTS We first demonstrated that although PSA did not affect the proliferation, morphology, or phenotype of MSCs, it significantly promoted the osteogenic differentiation of MSCs in a concentration-dependent manner. Furthermore, we demonstrated that PSA promoted the osteogenic differentiation of MSCs by elevating the expression of Cadherin 11 in MSCs and, thus, activating the Akt signaling pathway. CONCLUSIONS In conclusion, we demonstrated that PSA could promote the osteogenesis of MSCs through Akt signaling pathway activation by elevating the expression of cadherin-11 in MSCs. These findings imply a possible role of PSA in osteoblastic bone metastases in prostate cancer.
Collapse
Affiliation(s)
- Longxiang Wu
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Shiqi Xiang
- Department of OrthopedicsThe Second Xiangya Hospital of Central South UniversityChangshaP.R. China
| | - Xiheng Hu
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Miao Mo
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Cheng Zhao
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Yi Cai
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Shiyu Tong
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Huichuan Jiang
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Linxiao Chen
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Zhi Wang
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Wei Xiong
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| | - Zhenyu Ou
- Department of UrologyXiangya Hospital of Central South UniversityChangshaP.R. China
| |
Collapse
|
10
|
Frieling JS, Lynch CC. Proteolytic Regulation of Parathyroid Hormone-Related Protein: Functional Implications for Skeletal Malignancy. Int J Mol Sci 2019; 20:ijms20112814. [PMID: 31181800 PMCID: PMC6600663 DOI: 10.3390/ijms20112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP), with isoforms ranging from 139 to 173 amino acids, has long been implicated in the development and regulation of multiple tissues, including that of the skeleton, via paracrine and autocrine signaling. PTHrP is also known as a potent mediator of cancer-induced bone disease, contributing to a vicious cycle between tumor cells and the bone microenvironment that drives the formation and progression of metastatic lesions. The abundance of roles ascribed to PTHrP have largely been attributed to the N-terminal 1-36 amino acid region, however, activities for mid-region and C-terminal products as well as additional shorter N-terminal species have also been described. Studies of the protein sequence have indicated that PTHrP is susceptible to post-translational proteolytic cleavage by multiple classes of proteases with emerging evidence pointing to novel functional roles for these PTHrP products in regulating cell behavior in homeostatic and pathological contexts. As a consequence, PTHrP products are also being explored as potential biomarkers of disease. Taken together, our enhanced understanding of the post-translational regulation of PTHrP bioactivity could assist in developing new therapeutic approaches that can effectively treat skeletal malignancies.
Collapse
Affiliation(s)
- Jeremy S Frieling
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
11
|
DiNatale A, Fatatis A. The Bone Microenvironment in Prostate Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:171-184. [PMID: 31900910 DOI: 10.1007/978-3-030-32656-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The propensity of prostate cancer cells to seed the skeleton and then progress into clinically relevant metastatic tumors is widely recognized and a major cause of morbidity and mortality for patients. The natural history of prostate adenocarcinoma most frequently begins with a tumor diagnosed at a localized stage, which is successfully treated by surgical and/or radiation therapy modalities. A relevant percentage of patients are clinically cured but approximately 20-30% will develop biochemical signs of recurrence, which respond to the inhibition of androgen receptor (AR) signaling by hormone-deprivation and receptor antagonists, before the inevitable transition into castration-resistant prostate cancer (CRPC). This stage simultaneously presents with or is rapidly followed by secondary tumors, which involve the skeleton in more than 90% of cases (mCRPC). While generalization in clinical practice is always unwise, it is indisputable that bone-metastatic prostate cancer is virtually incurable. Decades of research have revealed that the tissue microenvironment provided by the bone marrow is as important as the cell-autonomous features of tumor cells in fostering the right conditions that lead to establishment and progression of metastatic tumors in the skeleton.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.,Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA. .,Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Kostova MB, Nathaniel Brennen W, Lopez D, Anthony L, Wang H, Platz E, Denmeade SR. PSA-alpha-2-macroglobulin complex is enzymatically active in the serum of patients with advanced prostate cancer and can degrade circulating peptide hormones. Prostate 2018; 78:819-829. [PMID: 29659051 PMCID: PMC8147660 DOI: 10.1002/pros.23539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer cells produce high levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the tumor microenvironment but is presumed to be enzymatically inactive in the blood due to complex formation with serum protease inhibitors α-1-antichymotrypsin and α-2-macroglobulin (A2M). PSA-A2M complexes cannot be measured by standard ELISA assays and are also rapidly cleared from the circulation. Thus the exact magnitude of PSA production by prostate cancer cells is not easily measured. The PSA complexed to A2M is unable to cleave proteins but maintains the ability to cleave small peptide substrates. Thus, in advanced prostate cancer, sufficient PSA-A2M may be in circulation to effect total A2M levels, levels of cytokines bound to A2M and hydrolyze small circulating peptide hormones. METHODS Total A2M levels in men with advanced prostate cancer and PSA levels above 1000 ng/mL were measured by ELISA and compared to controls. Additional ELISA assays were used to measure levels of IL-6 and TGF-beta which can bind to A2M. The ability of PSA-A2M complexes to hydrolyze protein and peptide substrates was analyzed ± PSA inhibitor. Enzymatic activity of PSA-A2M in serum of men with high PSA levels was also assayed. RESULTS Serum A2M levels are inversely correlated with PSA levels in men with advanced prostate cancer. Il-6 Levels are significantly elevated in men with PSA >1000 ng/mL compared to controls with PSA <0.1 ng/mL. PSA-A2M complex in serum of men with PSA levels >1000 ng/mL can hydrolyze small fluorescently labeled peptide substrates but not large proteins that are PSA substrates. PSA can hydrolyze small peptide hormones like PTHrP and osteocalcin. PSA complexed to A2M retains the ability to degrade PTHrP. CONCLUSIONS In advanced prostate cancer with PSA levels >1000 ng/mL, sufficient PSA-A2M is present in circulation to produce enzymatic activity against circulating small peptide hormones. Sufficient PSA is produced in advanced prostate cancer to alter total A2M levels, which can potentially alter levels of a variety of growth factors such as IL-6, TGF-beta, basic FGF, and PDGF. Alterations in levels of these cytokines and proteolytic degradation of small peptide hormones may have profound effect on host-cancer interaction.
Collapse
Affiliation(s)
- Maya B. Kostova
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Lopez
- Department of Epidemiology, The University of Texas School of Public Health, Houston, Texas
| | - Lizamma Anthony
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Platz
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Samuel R. Denmeade
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Garla VV, Salim S, Kovvuru KR, Subauste A. Hungry bone syndrome secondary to prostate cancer successfully treated with radium therapy. BMJ Case Rep 2018; 2018:bcr-2018-225039. [PMID: 29982185 DOI: 10.1136/bcr-2018-225039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A 50-year-old man with a history of prostate cancer with extensive bone metastasis and hypocalcaemia presented with muscle aches and cramps. Physical exam was significant for Chvostek's and Trousseau's sign. Laboratory assessment was consistent with profound hypocalcaemia. This was believed to be due to hungry bone syndrome secondary to advanced prostate cancer. He was treated with intravenous calcium, vitamin D and calcitriol. He also received three doses of radium223 therapy. After therapy, hypocalcaemic episodes resolved. Follow-up after 2.5 years showed continued resolution of hypocalcaemia.
Collapse
Affiliation(s)
- Vishnu Vardhan Garla
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sohail Salim
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Karthik Reddy Kovvuru
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Angela Subauste
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Rossi M, Battafarano G, D'Agostini M, Del Fattore A. The Role of Extracellular Vesicles in Bone Metastasis. Int J Mol Sci 2018; 19:ijms19041136. [PMID: 29642618 PMCID: PMC5979436 DOI: 10.3390/ijms19041136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple types of cancer have the specific ability to home to the bone microenvironment and cause metastatic lesions. Despite being the focus of intense investigation, the molecular and cellular mechanisms that regulate the metastasis of disseminated tumor cells still remain largely unknown. Bone metastases severely impact quality of life since they are associated with pain, fractures, and bone marrow aplasia. In this review, we will summarize the recent discoveries on the role of extracellular vesicles (EV) in the regulation of bone remodeling activity and bone metastasis occurrence. Indeed, it was shown that extracellular vesicles, including exosomes and microvesicles, released from tumor cells can modify the bone microenvironment, allowing the formation of osteolytic, osteosclerotic, and mixed mestastases. In turn, bone-derived EV can stimulate the proliferation of tumor cells. The inhibition of EV-mediated crosstalk between cancer and bone cells could represent a new therapeutic target for bone metastasis.
Collapse
Affiliation(s)
- Michela Rossi
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, 00165 Rome, Italy.
| | - Giulia Battafarano
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, 00165 Rome, Italy.
| | - Matteo D'Agostini
- Clinical Laboratory, Bambino Gesù Children's Hospital, 00165 Rome, Italy.
| | - Andrea Del Fattore
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, 00165 Rome, Italy.
| |
Collapse
|
15
|
Abstract
Neuroendocrine differentiation in prostatic malignancy is receiving considerable attention; this occurs commonly as a “focal” histological variant and, most rarely, in the form of small cell carcinoma (“oat cell carcinoma”) and carcinoid tumor. In prostate cancer, neuroendocrine differentiation may be the response to androgen deprivation and neuroendocrine products, either biogenic amines or peptides, have been shown to stimulate proliferation of androgen-ablation refractory cancer cells. Serum chromogranins, neuron-specific enolase and other neuroendocrine products as well as 111-In-chromogranin A “three step” immunoscintigraphy and somatostatin-receptor scintigraphy may be useful for predicting tumor behaviour and patient prognosis. Several of the neuroendocrine products, particularly somatostatin analogues, are candidates for new therapeutic approaches. The paper aims to outline the advances in this field on the basis of the review of the literature.
Collapse
Affiliation(s)
- C. Alberti
- I Clinica Urologica, Università degli Studi di Torino, Torino
| | - A. Tizzani
- I Clinica Urologica, Università degli Studi di Torino, Torino
| | - A. Greco
- I Clinica Urologica, Università degli Studi di Torino, Torino
| | - M. Piovano
- I Clinica Urologica, Università degli Studi di Torino, Torino
| |
Collapse
|
16
|
Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F. Bone Metastases: An Overview. Oncol Rev 2017; 11:321. [PMID: 28584570 PMCID: PMC5444408 DOI: 10.4081/oncol.2017.321] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Bone is a frequent site of metastases and typically indicates a short-term prognosis in cancer patients. Once cancer has spread to the bones it can rarely be cured, but often it can still be treated to slow its growth. The majority of skeletal metastases are due to breast and prostate cancer. Bone metastasis is actually much more common than primary bone cancers, especially in adults. The diagnosis is based on signs, symptoms and imaging. New classes of drugs and new interventions are given a better quality of life to these patients and improved the expectancy of life. It is necessary a multidisciplinary approach to treat patients with bone metastasis. In this paper we review the types, clinical approach and treatment of bone metastases.
Collapse
Affiliation(s)
- Filipa Macedo
- Medical Oncology Department, Portuguese Oncology Institute, Coimbra, Portugal
| | - Katia Ladeira
- Internal Medicine Department, Braga Hospital, Braga, Portugal
| | - Filipa Pinho
- Internal Medicine Department, Braga Hospital, Braga, Portugal
| | - Nadine Saraiva
- Medical Oncology Department, Portuguese Oncology Institute, Coimbra, Portugal
| | - Nuno Bonito
- Medical Oncology Department, Portuguese Oncology Institute, Coimbra, Portugal
| | - Luisa Pinto
- Internal Medicine Department, Braga Hospital, Braga, Portugal
| | | |
Collapse
|
17
|
Sangster-Guity N, Tu-Sekine B, Raben DM, Denmeade SR, Williams SA. Mutational Analysis of Prostate-Specific Antigen Defines the Intrinsic Proteolytic Activity of the proPSA Zymogen. Prostate 2016; 76:1203-17. [PMID: 27273171 DOI: 10.1002/pros.23216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate-specific antigen (PSA) is an important prostate cancer biomarker. It is also a protease expressed at high concentrations by the normal and malignant prostate. PSA is secreted as a zymogen (proPSA) with an inhibitory prodomain that must be removed for full activity. ProPSA variants, assumed to be inactive, are found in the blood of prostate cancer patients, and are indicative of poor clinical outcome. Despite the abundance of clinical reports, our understanding of PSA's enzymology is limited, in part due to a lack of appropriate experimental systems. We sought to develop a series of PSA-derived mutants that would help to enhance our understanding of the gene. METHODS Sixteen rPSA variants were generated and characterized by a variety of biochemical methods. RESULTS The wildtype cDNA (WT) provided the template for generating a panel of recombinants. These included variants that abolished removal of the prodomain (R24A), disabled its enzymatic activity (S213A), and/or facilitated a cell-based conversion to the active conformation (FR). The purified variants' proteolytic activity was examined using a fluorogenic substrate, known PSA-cleavable proteins, and physiologically relevant inhibitors. Upon demonstrating our successful generation and purification of the PSA variants, we characterized proPSA activity, describing cleavage of synthetic and biologic substrates, but not serum protease inhibitors. This finding was exploited in the development of a self-activating mutant (PSA_QY) that exhibited the greatest enzymatic activity of all the variants. CONCLUSIONS The system described herein will prove useful for varied applications. ProPSA is partially functional with relatively high activity compared to the mature enzyme. In demonstrating the zymogen's intrinsic activity, we suggest that the proPSA in prostate cancer patient serum is not inert. This may have implications for our understanding of the disease. Prostate 76:1203-1217, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niquiche Sangster-Guity
- Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Becky Tu-Sekine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel M Raben
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel R Denmeade
- Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Simon A Williams
- Brady Urological Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Effect of taurine on prostate-specific antigen level and migration in human prostate cancer cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:203-14. [PMID: 25833500 DOI: 10.1007/978-3-319-15126-7_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Abstract
Due to the propensity of relapse and resistance with prolonged androgen deprivation therapy (ADT), there is a growing interest in developing non-hormonal therapeutic approaches as alternative treatment modalities for hormone refractory prostate cancer (HRPC). Although the standard treatment for HRPC consists of a combination of ADT with taxanes and anthracyclines, the clinical use of chemotherapeutics is limited by systemic toxicity stemming from nondiscriminatory drug exposure to normal tissues. In order to improve the tumor selectivity of chemotherapeutics, various targeted prodrug approaches have been explored. Antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) strategies leverage tumor-specific antigens and transcription factors for the specific delivery of cytotoxic anticancer agents using various prodrug-activating enzymes. In prostate cancer, overexpression of tumor-specific proteases such as prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) is being exploited for selective activation of anticancer prodrugs designed to be activated through proteolysis by these prostate cancer-specific enzymes. PSMA- and PSA-activated prodrugs typically comprise an engineered high-specificity protease peptide substrate coupled to a potent cytotoxic agent via a linker for rapid release of cytotoxic species in the vicinity of prostate cancer cells following proteolytic cleavage. Over the past two decades, various such prodrugs have been developed and they were effective at inhibiting prostate tumor growth in rodent models; several of these prodrug approaches have been advanced to clinical trials and may be developed into effective therapies for HRPC.
Collapse
Affiliation(s)
- Herve Aloysius
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | | |
Collapse
|
20
|
Tomao L, Sbardella D, Gioia M, Di Masi A, Marini S, Ascenzi P, Coletta M. Characterization of the prostate-specific antigen (PSA) catalytic mechanism: a pre-steady-state and steady-state study. PLoS One 2014; 9:e102470. [PMID: 25068395 PMCID: PMC4113483 DOI: 10.1371/journal.pone.0102470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
Prostate-specific antigen (PSA), an enzyme of 30 kDa grouped in the kallikrein family is synthesized to high levels by normal and malignant prostate epithelial cells. Therefore, it is the main biomarker currently used for early diagnosis of prostate cancer. Here, presteady-state and steady-state kinetics of the PSA-catalyzed hydrolysis of the fluorogenic substrate Mu-His-Ser-Ser-Lys-Leu-Gln-AMC (spanning from pH 6.5 to pH 9.0, at 37.0°C) are reported. Steady-state kinetics display at every pH value a peculiar feature, represented by an initial "burst" phase of the fluorescence signal before steady-state conditions are taking place. This behavior, which has been already observed in other members of the kallikrein family, suggests the occurrence of a proteolytic mechanism wherefore the acylation step is faster than the deacylation process. This feature allows to detect the acyl intermediate, where the newly formed C-terminal carboxylic acid of the cleaved substrate forms an ester bond with the -OH group of the Ser195 catalytic residue, whereas the AMC product has been already released. Therefore, the pH-dependence of the two enzymatic steps (i.e., acylation and deacylation) has been separately characterized, allowing the determination of pKa values. On this basis, possible residues are tentatively identified in PSA, which might regulate these two steps by interacting with the two portions of the substrate.
Collapse
Affiliation(s)
- Luigi Tomao
- Department of Sciences, University of Roma Tre, Roma, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, Bari, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, Bari, Italy
| | - Alessandra Di Masi
- Department of Sciences, University of Roma Tre, Roma, Italy
- Interdepartmental Laboratory of Electron Microscopy, University of Roma Tre, Roma, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, Bari, Italy
| | - Paolo Ascenzi
- Department of Sciences, University of Roma Tre, Roma, Italy
- Interdepartmental Laboratory of Electron Microscopy, University of Roma Tre, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
21
|
Dash P. Reconnoitring the status of prostate specific antigen and its role in women. Indian J Clin Biochem 2014; 30:124-33. [PMID: 25883418 DOI: 10.1007/s12291-014-0451-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Prostate specific antigen is considered to be a tumour marker having maximum utility and specificity for prostate cancer since decades. After the discovery of methods to quantify different molecular fractions of prostate specific antigen (PSA), its usefulness in diagnosing early prostate cancer cases has increased tremendously. The "specificity" of PSA, is now challenged by many studies which proved that PSA, once believed to be secreted exclusively by prostatic epithelium, is also present in females. The exact biological role of extraprostatic PSA is still debatable though many theories substantiated by in vitro evidence has been put forward. With the advent of ultrasensitive analytical techniques, PSA is now quantifiable in female serum in its various molecular forms and this has led to many assumptions of it being useful as a marker in female breast cancers. In a similar scenario to prostate cancer, the ratio of free to total PSA is shown to be useful in detecting early breast cancer cases. It is also shown to be a good prognostic indicator and a predictor of response to therapy and recurrence. Apart from its role in breast cancer, it has been advocated to be a marker of hyper androgenic states in women like hirsutism and polycystic ovarian syndrome. Conflicting reports regarding the role of extra prostatic PSA is accumulating but it has been proven beyond doubt that PSA is no longer specific and confined to prostate gland. Various studies have registered that PSA is an ubiquitous molecule, secreted by hormone responsive organs and its synthesis is stimulated by androgens and progesterone but not oestrogens. In this article, a review of various literatures is done about the presence of extra prostatic PSA, its probable role in those sites as well as its utility as a tumour marker in breast cancer.
Collapse
Affiliation(s)
- Prakruti Dash
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar-19, Odisha India
| |
Collapse
|
22
|
Esposito M, Kang Y. Targeting tumor-stromal interactions in bone metastasis. Pharmacol Ther 2013; 141:222-33. [PMID: 24140083 DOI: 10.1016/j.pharmthera.2013.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022]
Abstract
Bone metastasis is a frequent occurrence in late stage solid tumors, including breast cancers, prostate or lung. However, the causes for this proclivity have only recently been elucidated. Significant progress has been made in the past decade toward understanding the molecular underpinnings of bone metastasis, and much of this research reveals a crucial role of the host stroma in each step of the metastatic cascade. Tumor-stromal interactions are crucial in engineering a pre-metastatic niche, accommodating metastatic seeding, and establishing the vicious cycle of bone metastasis. Current treatments in bone metastasis focus on latter steps of the metastatic cascade, with most treatments targeting the process of bone remodeling; however, emerging research identifies many other candidates as promising targets. Host stromal cells including platelets and endothelial cells are important in the early steps of metastatic homing, attachment and extravasation while a variety of immune cells, parenchymal cells and mesenchymal cells of the bone marrow are important in the establishment of overt, immune-suppressed metastatic lesions. Many participants during these steps have been identified and functionally validated. Significant contributors include integrins, (αvβ3, α2β1, α4β1), TGFβ family members, bone resident proteins (BSP, OPG, SPARC, OPN), RANKL, and PTHrP. In this review, we will discuss the contribution of host stromal cells to pre-metastatic niche conditioning, seeding, dormancy, bone-remodeling, immune regulation, and chemotherapeutic shielding in bone metastasis. Research exploring these interactions between bone metastases and stromal cells has yielded many therapeutic targets, and we will discuss both the current and future therapeutic avenues in treating bone metastasis.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
23
|
Thorek DLJ, Evans MJ, Carlsson SV, Ulmert D, Lilja H. Prostate-specific kallikrein-related peptidases and their relation to prostate cancer biology and detection. Established relevance and emerging roles. Thromb Haemost 2013; 110:484-92. [PMID: 23903407 PMCID: PMC4029064 DOI: 10.1160/th13-04-0275] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Kallikreins are a family of serine proteases with a range of tissue-specific and essential proteolytic functions. Among the best studied are the prostate tissue-specific KLK2 and KLK3 genes and their secreted protease products, human kallikrein 2, hk2, and prostate-specific antigen (PSA). Members of the so-called classic kallikreins, these highly active trypsin-like serine proteases play established roles in human reproduction. Both hK2 and PSA expression is regulated by the androgen receptor which has a fundamental role in prostate tissue development and progression of disease. This feature, combined with the ability to sensitively detect different forms of these proteins in blood and biopsies, result in a crucially important biomarker for the presence and recurrence of cancer. Emerging evidence has begun to suggest a role for these kallikreins in critical vascular events. This review discusses the established and developing biological roles of hK2 and PSA, as well as the historical and advanced use of their detection to accurately and non-invasively detect and guide treatment of prostatic disease.
Collapse
Affiliation(s)
- Daniel L J Thorek
- Hans Lilja, MD, PhD, Memorial Sloan-Kettering Cancer Center, 1275 York Ave Box 213, New York, NY 10065, USA, Tel.: +1 212 639 6982, Fax: +1 646 422 2379, E-mail:
| | | | | | | | | |
Collapse
|
24
|
Kostova MB, Rosen DM, Chen Y, Mease RC, Denmeade SR. Structural optimization, biological evaluation, and application of peptidomimetic prostate specific antigen inhibitors. J Med Chem 2013; 56:4224-35. [PMID: 23692593 DOI: 10.1021/jm301718c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate-specific antigen (PSA) is a serine protease produced at high levels by normal and malignant prostate epithelial cells that is used extensively as a biomarker in the clinical management of prostate cancer. To better understand PSA's role in prostate cancer progression, we prepared a library of peptidyl boronic acid-based inhibitors. To enhance selectivity for PSA vs other serine proteases, we modified the P1 site of the inhibitors to incorporate a bromopropylglycine group. This allowed the inhibitors to participate in halogen bond formation with the serine found at the bottom of the specificity pocket. The best of these Ahx-FSQn(boro)Bpg had PSA Ki of 72 nM and chymotrypsin Ki of 580 nM. In vivo studies using PSA-producing xenografts demonstrated that candidate inhibitors had minimal effect on growth but significantly altered serum levels of PSA. Biodistribution of (125)I labeled peptides showed low levels of uptake into tumors compared to other normal tissues.
Collapse
Affiliation(s)
- Maya B Kostova
- Department of Oncology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
25
|
Manning ML, Kostova M, Williams SA, Denmeade SR. Trypsin-like proteolytic contamination of commercially available psa purified from human seminal fluid. Prostate 2012; 72:1233-8. [PMID: 22213008 PMCID: PMC3419387 DOI: 10.1002/pros.22474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/28/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate-Specific Antigen (PSA) is a serine protease whose expression is maintained in all stages of prostate cancer. A role for PSA in the pathobiology for prostate cancer has not been firmly established. Experimental studies to date support a role for PSA through mechanisms such as release or processing of growth factors and degradation of the extracellular matrix. Exposure of prostate cancer cells to exogenous PSA also results in gene expression changes. These in vitro and biochemical assays rely on the use of commercially available PSA. Contamination of these commercial preparations can significantly impact the results of these in vitro studies. METHODS We characterized PSA and trypsin-like activity of PSA preparations obtained from three commercial sources: Calbiochem, Fitzgerald, and AbD Serotec. Silver stained gels were used to compare the purity of each preparation and mass spectrometry was performed to characterize contaminating proteases. RESULTS PSA activity varied between PSA preparations with AbD Serotec PSA having highest degree of activity. Significant trypsin-like activity, which was inhibited by aprotinin, was observed in PSA preparations from Calbiochem and Fitzgerald, but not AbD Serotec. These former two PSA preparations also contained the greatest degree of non-PSA contaminants by silver stain and mass spectrometry. CONCLUSIONS Commercially available preparations of PSA contain contaminating proteins, including trypsin-like protease activity, that could potentially complicate the interpretation of results obtained from in vitro studies assessing PSA proteolysis of potential protein substrates and effects of PSA on gene expression.
Collapse
Affiliation(s)
- Michael L. Manning
- Department of Pharmacology and Molecular Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maya Kostova
- Departmentof Oncology, the Johns Hopkins University Schoolof Medicine, Baltimore, Maryland
| | - Simon A. Williams
- Departmentof Urology, the Johns Hopkins University Schoolof Medicine, Baltimore, Maryland
| | - Samuel R. Denmeade
- Department of Pharmacology and Molecular Sciences, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Departmentof Oncology, the Johns Hopkins University Schoolof Medicine, Baltimore, Maryland
- Departmentof Urology, the Johns Hopkins University Schoolof Medicine, Baltimore, Maryland
- Correspondence to: The Bunting Blaustein Cancer Research Building, Rm 1M43, 1650 Orleans Street, Baltimore, MD, 21231.
| |
Collapse
|
26
|
Williams SA, Jelinek CA, Litvinov I, Cotter RJ, Isaacs JT, Denmeade SR. Enzymatically active prostate-specific antigen promotes growth of human prostate cancers. Prostate 2011; 71:1595-607. [PMID: 21394741 PMCID: PMC3116061 DOI: 10.1002/pros.21375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/08/2011] [Indexed: 01/28/2023]
Abstract
BACKGROUND Prostate specific antigen (PSA) is the best-known member of the kallikrein-related peptidase family, with an established role as a prostatic disease biomarker. Although it is produced at high levels by all stages of prostate cancer, it is uncertain if PSA plays a role in prostate cancer initiation and progression. We decided to investigate the impact of PSA and its enzymatic activity on tumor cell growth rates. METHODS A gene-specific shRNA lentiviral construct reduced endogenous PSA expression in the LNCaP human prostate cancer cell line. Resulting changes in growth rates in vitro and in vivo were determined. Using a mass spectroscopy-based approach, alterations to the LNCaP proteome due to reduced PSA were measured. Finally, to evaluate the importance of PSA's proteolytic activity, the PSA-null Du145 human prostate cancer cell line was engineered to express either enzymatically inactive pro-PSA (WT) or a furin-activated variant (FR) with high enzymatic activity. The resulting clones were evaluated for PSA-induced changes in growth rates in vivo and in vitro. RESULTS Lowered PSA levels dramatically reduced LNCaP growth rates. Expressing active PSA (FR), but not the inactive WT variant, conferred a growth advantage on Du145 cells. Proteomics analysis revealed global changes to the LNCaP proteome as a result of reduced PSA expression. CONCLUSIONS These studies demonstrate the importance of PSA to prostate cancer cell growth. We also show that the enzymatic activity of PSA confers an enhanced growth rate to human prostate cancer cells, suggesting a causal role in prostate cancer progression.
Collapse
Affiliation(s)
- Simon A Williams
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Homing of cancer cells to the bone. CANCER MICROENVIRONMENT 2011; 4:221-35. [PMID: 21826451 DOI: 10.1007/s12307-011-0083-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/27/2011] [Indexed: 12/26/2022]
Abstract
A variety of tumor cells preferentially home to the bone. The homing of cancer cells to the bone represents a multi-step process that involves malignant progression of the tumor, invasion of the tumor through the extracellular matrix and the blood vessels and settling of the tumor cells in the bone. Gaining a greater understanding as to the mechanisms used by cancer cells in these processes will facilitate the design of drugs which could specifically target the homing process. In this review we will discuss the properties of tumor cells and the bone microenvironment which promote homing of a cancer cell to the bone. We will highlight the different steps and the molecular pathways involved when a cancer cell metastasize to the bone. Since bone is the major home for hematopoietic stem cells (HSCs), we will also highlight the similarities between the homing of cancer and HSC to the bone. Finally we will conclude with therapeutic and early detection strategies which can prevent homing of a cancer cell to the bone.
Collapse
|
28
|
Jin JK, Dayyani F, Gallick GE. Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer 2011; 128:2545-61. [PMID: 21365645 PMCID: PMC3082284 DOI: 10.1002/ijc.26024] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/28/2011] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a complex disease in which metastasis to the bone is the main cause of death. Initial stages of metastasis are generally similar to those for most solid tumors; however, the mechanisms that underlie the homing of prostate tumor cells to the bone are not completely understood. Prostate cancer bone metastasis is also a microenvironment-driven disease, involving bidirectional interactions between the tumor and the bone microenvironment. In this review, we discuss the current understanding of the biologic processes and regulatory factors involved in the metastasis of prostate cancer cells, and their specific properties that promote growth in bone. Although many of these processes still need to be fully elucidated, a better understanding of the complex tumor/microenvironment interplay is slowly leading to more effective therapies for patients with prostate cancer bone metastases.
Collapse
Affiliation(s)
- Jung-Kang Jin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| | - Farshid Dayyani
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX
| |
Collapse
|
29
|
LeBeau AM, Kostova M, Craik CS, Denmeade SR. Prostate-specific antigen: an overlooked candidate for the targeted treatment and selective imaging of prostate cancer. Biol Chem 2010; 391:333-43. [PMID: 20180648 DOI: 10.1515/bc.2010.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of prostate-specific antigen (PSA) or kallikrein-related peptidase 3 (KLK3) as a biomarker for prostate cancer is well known; however, the precise physiological role of it's serine protease activity in prostate cancer remains a mystery. PSA is produced at high levels by both androgen-dependent and -independent prostate cancers. Studies have documented high levels of active PSA in the milieu surrounding osseous and soft tissue metastases. This evidence, coupled with growing experimental evidence, suggests that PSA plays an important role in the pathobiology of prostate cancer. These observations support the development of PSA-selective inhibitors as useful tools for the targeted treatment and imaging of prostate cancer. Here, we review the research that has been conducted to date on developing selective inhibitors for PSA. The different approaches used to determine PSA substrate specificity and for creating inhibitors are discussed. In addition, the unique active site characteristics of PSA and how these motifs aided our research in developing PSA targeted agents are highlighted.
Collapse
Affiliation(s)
- Aaron M LeBeau
- Department of Pharmacology and Molecular Science, The Johns Hopkins University School of Medicine, Baltimore, MD 2131, USA.
| | | | | | | |
Collapse
|
30
|
Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer 2010; 116:1406-18. [DOI: 10.1002/cncr.24896] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
LeBeau AM, Singh P, Isaacs JT, Denmeade SR. Prostate-specific antigen is a "chymotrypsin-like" serine protease with unique P1 substrate specificity. Biochemistry 2009; 48:3490-6. [PMID: 19281249 PMCID: PMC3341666 DOI: 10.1021/bi9001858] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostate-specific antigen (PSA), a serine protease belonging to the human kallikrein family, is best known as a prostate cancer biomarker. Emerging evidence suggests that PSA may also play a salient role in prostate cancer development and progression. With large amounts of enzymatically active PSA continuously and selectively produced by all stages of prostate cancer, PSA is an attractive target. PSA inhibitors, therefore, may represent a promising class of therapeutics and/or imaging agents. PSA displays chymotrypsin-like specificity, cleaving after hydrophobic residues, in addition to possessing a unique ability to cleave after glutamine in the P1 position. In this study, we investigated the structural motifs of the PSA S1 pocket that give it a distinct architecture and specificity when compared to the S1 pocket of chymotrypsin. Using the previously described PSA substrate Ser-Ser-Lys-Leu-Gln (SSKLQ) as a template, peptide aldehyde based inhibitors containing novel P1 aldehydes were made and tested against both proteases. Glutamine derivative aldehydes were highly specific for PSA while inhibitors with hydrophobic P1 aldehydes were potent inhibitors of both proteases with K(i) values <500 nM. The crystal structure of PSA was used to generate a model that allowed GOLD docking studies to be performed to further understand the critical interactions required for inhibitor binding to the S1 pockets of PSA and chymotrypsin. In conclusion, these results provide experimental and structural evidence that the S1 specificity pocket of PSA is distinctly different from that of chymotrypsin and that the development of highly specific PSA inhibitors is feasible.
Collapse
Affiliation(s)
- Aaron M. LeBeau
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University Baltimore MD, 21231
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University Baltimore MD, 21231
| | - Pratap Singh
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University Baltimore MD, 21231
- The Department of Chemical and Biomolecular Engineering, The Johns Hopkins University Baltimore MD, 21231
| | - John T. Isaacs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University Baltimore MD, 21231
- The Department of Chemical and Biomolecular Engineering, The Johns Hopkins University Baltimore MD, 21231
| | - Samuel R. Denmeade
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University Baltimore MD, 21231
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University Baltimore MD, 21231
- The Department of Chemical and Biomolecular Engineering, The Johns Hopkins University Baltimore MD, 21231
| |
Collapse
|
32
|
Clarke NW, Hart CA, Brown MD. Molecular mechanisms of metastasis in prostate cancer. Asian J Androl 2008; 11:57-67. [PMID: 19050684 DOI: 10.1038/aja.2008.29] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Prostate cancer (PCa) preferentially metastasizes to the bone marrow stroma of the axial skeleton. This activity is the principal cause of PCa morbidity and mortality. The exact mechanism of PCa metastasis is currently unknown, although considerable progress has been made in determining the key players in this process. In this review, we present the current understanding of the molecular processes driving PCa metastasis to the bone.
Collapse
Affiliation(s)
- Noel W Clarke
- Genito-Urinary Cancer Research Group, School of Cancer and Imaging Sciences, Paterson Institute for Cancer Research, Christie Hospital, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
33
|
Clements JA, Willemsen NM, Myers SA, Dong Y. The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers. Crit Rev Clin Lab Sci 2008; 41:265-312. [PMID: 15307634 DOI: 10.1080/10408360490471931] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers. particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression.
Collapse
Affiliation(s)
- Judith A Clements
- Hormone Dependent Cancer Program, Cluster for Molecular Biotechnology, School of Life Sciences & Science Research Centre, Queensland University of Technology, Brisbane, Australia.
| | | | | | | |
Collapse
|
34
|
LeBeau AM, Singh P, Isaacs JT, Denmeade SR. Potent and selective peptidyl boronic acid inhibitors of the serine protease prostate-specific antigen. ACTA ACUST UNITED AC 2008; 15:665-74. [PMID: 18635003 DOI: 10.1016/j.chembiol.2008.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/09/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a K(i) for PSA of 65 nM. The inhibitor had a 60-fold higher K(i) for chymotrypsin. A validated model of PSA's catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme.
Collapse
Affiliation(s)
- Aaron M LeBeau
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
35
|
Koistinen H, Närvänen A, Pakkala M, Hekim C, Mattsson JM, Zhu L, Laakkonen P, Stenman UH. Development of peptides specifically modulating the activity of KLK2 and KLK3. Biol Chem 2008; 389:633-42. [PMID: 18627344 DOI: 10.1515/bc.2008.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prostate produces several proteases, the most abundant ones being kallikrein-related peptidase 3 (KLK3, PSA) and KLK2 (hK2), which are potential targets for tumor imaging and treatment. KLK3 expression is lower in malignant than in normal prostatic epithelium and it is further reduced in poorly differentiated tumors, in which the expression of KLK2 is increased. KLK3 has been shown to inhibit angiogenesis, whereas KLK2 may mediate tumor growth and invasion by participating in proteolytic cascades. Thus, it may be possible to control prostate cancer growth by modulating the proteolytic activity of KLK3 and KLK2. We have developed peptides that very specifically stimulate the activity of KLK3 or inhibit that of KLK2. Using these peptides we have established peptide-based methods for the determination of enzymatically active KLK3. The first-generation peptides are unstable in vivo and are rapidly cleared from the circulation. Currently we are modifying the peptides to make them suitable for in vivo applications. We have been able to considerably improve the stability of KLK2-binding peptides by cyclization. In this review we summarize the possible roles of KLK3 and KLK2 in prostate cancer and then concentrate on the development of peptides that modulate the activity of these proteases.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lamoureux F, Ory B, Battaglia S, Pilet P, Heymann MF, Gouin F, Duteille F, Heymann D, Redini F. Relevance of a new rat model of osteoblastic metastases from prostate carcinoma for preclinical studies using zoledronic acid. Int J Cancer 2008; 122:751-60. [PMID: 17960623 DOI: 10.1002/ijc.23187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Animal models that mimic osteoblastic metastases associated with prostate carcinoma are required to improve the therapeutic options in humans. A new model was then developed and characterized in immunocompetent rats. The bisphosphonate zoledronic acid (ZOL) was tested to validate this model as a therapeutic application. Rat AT6-1 prostate tumor cells were characterized in vitro at the transcriptional (bone and epithelial markers) and functional (induction of mineralized nodules) levels. The bone lesions induced after their direct injection into the femur bone marrow were characterized by radiography, microscanner and histology analyses. ZOL effects were studied in vivo on bone lesion development and in vitro on AT6-1 cell proliferation, apoptosis and cell cycle analysis. Apart from epithelial markers, AT6-1 cells express an osteoblast phenotype as they express osteoblastic markers and are able to induce mineralized nodule formation in vitro. A disorganization of the trabecular bone at the growth zone level was observed in vivo after intraosseous AT6-1 cell injection as well as cortical erosion. The tumor itself is associated with bone formation as revealed by SEM analysis and polarized light microscopy. ZOL prevents the development of such osteoblastic lesions, related to a direct inhibitory effect on tumor cell proliferation independent of caspase 3 activation, but associated with cell cycle arrest. A new rat model of osteoblastic bone metastases was validated in immunocompetent rats and used to show the relevance of using ZOL in such lesions, as this compound shows bifunctional effects on both bone remodelling and tumor cell proliferation.
Collapse
|
37
|
Paule B, Terry S, Kheuang L, Soyeux P, Vacherot F, de la Taille A. The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol 2007; 25:477-89. [PMID: 17541600 DOI: 10.1007/s00345-007-0175-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 04/20/2007] [Indexed: 12/23/2022] Open
Abstract
The nuclear factor of kappa beta (NF-kappaB) transcription factor regulates the transcription of numerous genes including that of interleukin 6 (IL-6). The IL-6 acts as an autocrine and paracrine growth factor of androgen-independent prostate cancer. An aberrant expression of the IL-6 gene and an increase in IL-6 expression are detected in bone metastatic and hormone-refractory prostate cancer. IL-6 has been suggested to have a crucial role in the resistance to chemotherapy or hormonal therapy involving apoptotic cell death. The NF-kappaB/IL-6 dependent pathways promote tumour-cell survival and in most situations protect cells against apoptotic stimuli. These data provide a rational framework for targeting NF-kappaB and IL-6 activity in novel biologically based therapies for aggressive and androgen independent prostate cancers.
Collapse
Affiliation(s)
- Bernard Paule
- AP-HP, Groupe Hospitalier Henri Mondor, Service d'Urologie, 94000 Créteil, France
| | | | | | | | | | | |
Collapse
|
38
|
Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, van Bezooijen RL, van der Pluijm G, Löwik CWGM, Ackermann K, Pyerin W, Hamdy FC, Thalmann GN, Cecchini MG. Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:160-75. [PMID: 17200191 PMCID: PMC1762703 DOI: 10.2353/ajpath.2007.051276] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate and mammary cancer bone metastases can be osteoblastic or osteolytic, but the mechanisms determining these features are unclear. Bone morphogenetic and Wnt proteins are osteoinductive molecules. Their activity is modulated by antagonists such as noggin and dickkopf-1. Differential expression analysis of bone morphogenetic and Wnt protein antagonists in human prostate and mammary cancer cell lines showed that osteolytic cell lines constitutively express in vitro noggin and dickkopf-1 and at least one of the osteolytic cytokines parathyroid hormone-related protein, colony-stimulating factor-1, and interleukin-8. In contrast, osteoinductive cell lines express neither noggin nor dickkopf-1 nor osteolytic cytokines in vitro. The noggin differential expression profile observed in vitro was confirmed in vivo in prostate cancer cell lines xenografted into bone and in clinical samples of bone metastasis. Forced noggin expression in an osteoinductive prostate cancer cell line abolished the osteoblast response induced in vivo by its intraosseous xenografts. Basal bone resorption and tumor growth kinetics were marginally affected. Lack of noggin and possibly dickkopf-1 expression by cancer cells may be a relevant mechanism contributing to the osteoblast response in bone metastases. Concomitant lack of osteolytic cytokines may be permissive of this effect. Noggin is a candidate drug for the adjuvant therapy of bone metastasis.
Collapse
Affiliation(s)
- Ruth Schwaninger
- Urology Research Laboratory, Department of Urology, University of Bern, Murtenstrasse 35, CH-3010, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Williams SA, Singh P, Isaacs JT, Denmeade SR. Does PSA play a role as a promoting agent during the initiation and/or progression of prostate cancer? Prostate 2007; 67:312-29. [PMID: 17143882 DOI: 10.1002/pros.20531] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer cells, like normal prostate epithelial cells, produce high levels of the differentiation marker and serine protease prostate-specific antigen (PSA). PSA is used extensively as a biomarker to screen for prostate cancer, to detect recurrence following local therapies, and to follow response to systemic therapies for metastatic disease. While much is known about PSA's role as a biomarker, only a relatively few studies address the role played by PSA in the pathobiology of prostate cancer. Autopsy studies have documented that not only do prostate cancer cells maintain production of high amounts of PSA but they also maintain the enzymatic machinery required to process PSA to an enzymatically active form. A variety studies performed over the last 10 years have hinted at a role for PSA in growth, progression, and metastases of prostate cancer. A fuller understanding of PSA's functional role in prostate cancer biology, however, has been hampered by the lack of appropriate models and tools. Therefore, the purpose of this review is not to address issues related to PSA as a biomarker. Instead, by reviewing what is known about the genetics, biochemistry, and biology of PSA in normal and malignant prostate tissue, insights may be gained into the role PSA may be playing in the pathobiology of prostate cancer that can connect measurement of this biomarker to an understanding of the underlying etiology and progression of the disease.
Collapse
Affiliation(s)
- Simon A Williams
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
40
|
Nelson EC, Cambio AJ, Yang JC, Ok JH, Lara PN, Evans CP. Clinical implications of neuroendocrine differentiation in prostate cancer. Prostate Cancer Prostatic Dis 2006; 10:6-14. [PMID: 17075603 DOI: 10.1038/sj.pcan.4500922] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cellular signaling pathways of the prostate play a central role in the induction, maintenance, and progression of prostate cancer (CaP). Neuroendocrine (NE) cells demonstrate attributes that suggest they are an integral part of these signaling cascades. We summarize what is known regarding NE cells in CaP focusing on NE cellular transdifferentiation. This significant event in CaP progression appears to be accelerated by androgen deprivation (AD) treatment. We examine biochemical pathways that may impact NE differentiation in a chronological manner focusing on AD therapy (ADT) as a central event in inducing androgen-independent CaP. Our analysis is limited to the common adenocarcinoma pattern of CaP and excludes small-cell and carcinoid prostatic variants. In conclusion, we speculate on the future of treatment and research in this area.
Collapse
Affiliation(s)
- E C Nelson
- Department of Urology, Davis Medical Center, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
41
|
Whitbread AK, Veveris-Lowe TL, Lawrence MG, Nicol DL, Clements JA. The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition. Biol Chem 2006; 387:707-14. [PMID: 16800731 DOI: 10.1515/bc.2006.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several members of the kallikrein-related peptidase family of serine proteases have proteolytic activities that may affect cancer progression; however, the in vivo significance of these activities remains uncertain. We have demonstrated that expression of PSA or KLK4, but not KLK2, in PC-3 prostate cancer cells changed the cellular morphology from epithelial to spindle-shaped, markedly reduced E-cadherin expression, increased vimentin expression and increased cellular migration. These changes are indicative of an epithelial to mesenchymal transition (EMT), a process important in embryonic development and cancer progression. The potential novel role of kallikrein-related peptidases in this process is the focus of this brief review.
Collapse
Affiliation(s)
- Astrid K Whitbread
- Hormone-Dependent Cancer Program, School of Life Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, and Department of Urology, Princess Alexandria Hospital, Brisbane 4000, QLD, Australia
| | | | | | | | | |
Collapse
|
42
|
Chirgwin JM, Guise TA. Does Prostate-Specific Antigen Contribute to Bone Metastases?: Fig. 1. Clin Cancer Res 2006; 12:1395-7. [PMID: 16533760 DOI: 10.1158/1078-0432.ccr-06-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- John M Chirgwin
- The Aurbach Laboratory, Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville, Virginia 22908-1401, USA.
| | | |
Collapse
|
43
|
Cecchini MG, Wetterwald A, Pluijm GVD, Thalmann GN. Molecular and Biological Mechanisms of Bone Metastasis. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.euus.2005.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Direct evidence that PTHrP expression promotes prostate cancer progression in bone. Biochem Biophys Res Commun 2005; 327:468-72. [PMID: 15629138 DOI: 10.1016/j.bbrc.2004.11.162] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Indexed: 10/26/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is an oncoprotein that is expressed in many malignancies as well as normal tissues. At essentially every site of expression, PTHrP regulates cell growth and proliferation. We and other investigators have previously reported that PTHrP is widely expressed by prostate cancer. For this tumor, there are substantial in vitro and correlative data that PTHrP expression regulates the progression of the tumor, especially in bone, but little direct data. We studied the effects of PTHrP expression on prostate cancer behavior directly in a mouse model of human prostate cancer cells that were transfected to express different forms of the polypeptide and then injected intraskeletally. Skeletal progression of the prostate cancer cells was evaluated radiologically and by measurement of serum tumor markers. PTHrP transfection converted a non-invasive cell line into one that progressed in the skeleton: Injection of the PTHrP transfected cells resulted in greater tumor progression in bone when compared to non-transfected cells, and this effect was also influenced by non-amino terminal peptides of PTHrP. Serum measurements of PTHrP, IL-6, IL-8, and calcium reflected tumor burden. Our experiments provide direct in vivo evidence that PTHrP expression results in the skeletal progression of prostate cancer cells.
Collapse
|
45
|
Olsson AY, Valtonen-André C, Lilja H, Lundwall A. The evolution of the glandular kallikrein locus: identification of orthologs and pseudogenes in the cotton-top tamarin. Gene 2005; 343:347-55. [PMID: 15588589 DOI: 10.1016/j.gene.2004.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 09/08/2004] [Accepted: 09/23/2004] [Indexed: 01/28/2023]
Abstract
Comparisons of the glandular kallikreins loci in human, mouse and rat revealed remarkable differences. For example, the mouse and the rat lack the genes encoding prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2). In contrast, the intergenic region between KLK1 and KLK15 is devoid of genes and spans only 1.5 kb in humans, but encompasses 23 KLK1-like genes spanning 290 kb in the mouse. To further elucidate the evolution of glandular kallikrein genes, we investigated the structure and organization of these genes in the cotton-top tamarin (Saguinus oedipus), a New World monkey. We conclude that this species has no PSA gene. Moreover, the ortholog of the hK2 gene is a pseudogene, as it contains several mutations that preclude formation of a functional serine protease. The expression of this gene was probably silenced by a 15-bp deletion observed in an androgen response element in the upstream promoter region. Replacing the deleted base pairs in vitro with nucleotides from the human counterpart dramatically restored the transcriptional activity to a level that even surpassed that of the human ortholog. We also determined the nucleotide sequence of KLK15 and the intergenic region between this gene and KLK1 in the cotton-top tamarin. The region between KLK1 and KLK15 is conserved between the cotton-top tamarin and humans, and there are no signs of the extension seen in the mouse. KLK15 appeared to be functional, thus, we predict that it generates a protease with specificity similar to that of the human ortholog.
Collapse
Affiliation(s)
- A Yvonne Olsson
- Wallenberg Laboratories Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Entr. 46, 4th fl. University Hospital (UMAS), S-205 02 Malmö, Sweden.
| | | | | | | |
Collapse
|
46
|
Olsson AY, Bjartell A, Lilja H, Lundwall A. Expression of prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2) in ileum and other extraprostatic tissues. Int J Cancer 2005; 113:290-7. [PMID: 15389512 DOI: 10.1002/ijc.20605] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate-specific antigen (PSA) is a widely used marker for prostate cancer. In the literature, there are reports of nonprostatic expression of PSA that potentially can affect early diagnosis. However, the results are scattered and inconclusive, which motivated us to conduct a more comprehensive study of the tissue distribution of PSA and the closely related protein human glandular kallikrein 2 (hK2). RT-PCR, in situ hybridization and immunohistochemistry were used to detect expression of both PSA and hK2 in secretory epithelial cells of trachea, thyroid gland, mammary gland, salivary gland, jejunum, ileum, epididymis, seminal vesicle and urethra, as well as in Leydig cells, pancreatic exocrine glands and epidermis. Immunometric measurements revealed that the concentration of PSA in nonprostatic tissues represents less than 1% of the amount in normal prostate. Pronounced expression of PSA was detected in the Paneth cells in ileum, which prompted us to compare functional parameters of PSA in ileum and prostate. We found that in homogenates from these 2 tissues, PSA manifested equivalent amidolytic activity and capacity to form complexes with protease inhibitors in blood in vitro. Thus, PSA released from sources other than the prostate may add to the plasma pool of this protein, but given the lower levels detected from those sites, it is unlikely that nonprostatic PSA normally can interfere with the diagnosis of prostate cancer. Nevertheless, this risk should not be neglected as it may be of clinical significance under certain circumstances. Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.
Collapse
Affiliation(s)
- A Yvonne Olsson
- Department of Laboratory Medicine, Lund University, University Hospital UMAS, S-205 02 Malmö, Sweden.
| | | | | | | |
Collapse
|
47
|
Abstract
Metastasis to bone is common in lung, kidney, breast and prostate cancers. However, prostate cancer is unique in that bone is often the only clinically detectable site of metastasis, and the resulting tumours tend to be osteoblastic (bone forming) rather than osteolytic (bone lysing). The interaction between host cells and metastatic cancer cells is an important component of organ-specific cancer progression. How can this knowledge lead to the development of more effective therapies?
Collapse
Affiliation(s)
- Christopher J Logothetis
- Department of Genitourinary Oncology, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
48
|
Yousef GM, Obiezu CV, Luo LY, Magklara A, Borgoño CA, Kishi T, Memari N, Michael LP, Sidiropoulos M, Kurlender L, Economopolou K, Kapadia C, Komatsu N, Petraki C, Elliott M, Scorilas A, Katsaros D, Levesque MA, Diamandis EP. Human Tissue Kallikreins: From Gene Structure to Function and Clinical Applications. Adv Clin Chem 2005; 39:11-79. [PMID: 16013667 DOI: 10.1016/s0065-2423(04)39002-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- George M Yousef
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Human tissue kallikreins (hKs), which are encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Although primarily known for their clinical applicability as cancer biomarkers, recent evidence implicates hKs in many cancer-related processes, including cell-growth regulation, angiogenesis, invasion and metastasis. They have been shown to promote or inhibit neoplastic progression, acting individually and/or in cascades with other hKs and proteases, and might represent attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | | |
Collapse
|
50
|
Borgoño CA, Michael IP, Diamandis EP. Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.257.2.5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone–regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.
Collapse
Affiliation(s)
- Carla A. Borgoño
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Iacovos P. Michael
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|