1
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe'er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. eLife 2025; 13:RP102819. [PMID: 40192104 PMCID: PMC11975377 DOI: 10.7554/elife.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Andrew R Moorman
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Bhaswati Bhattacharya
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Ian S Prudhomme
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Max Land
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Heather L Alcorn
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Roshan Sharma
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dana Pe'er
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| |
Collapse
|
2
|
Nguyen TD, Konjikusic MJ, Castillo LD, Reiter JF. Smoothened inhibition of PKA at cilia transduces Hedgehog signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646243. [PMID: 40235996 PMCID: PMC11996458 DOI: 10.1101/2025.04.01.646243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Hedgehog (HH) signaling in vertebrates is dependent on the primary cilium, an organelle that scaffolds signal transduction. HH signals induce Smoothened (SMO) enrichment in the cilium and indirectly triggers the conversion of GLI proteins into transcriptional activators of HH target genes. Recently, SMO has been shown to inhibit protein kinase A (PKA). To test the hypothesis that SMO specifically inhibits PKA at cilia to activate the HH signal transduction pathway, we developed a ciliary PKA biosensor. Activation of the HH signal transduction pathway by either Sonic hedgehog (SHH) or SMO agonist (SAG) inhibited ciliary PKA activity. Blocking SMO phosphorylation by GRK2/3 prevented ciliary SMO from inhibiting ciliary PKA activity. Gα i was dispensable for SMO inhibition of ciliary PKA. In contrast, mutating the SMO C-terminal tail protein kinase inhibitor (PKI) pseudosubstrate site interfered with the ability of SMO to inhibit ciliary PKA. Therefore, HH signaling is transduced via SMO direct inhibition of PKA at cilia, in a manner dependent on GRK2/3.
Collapse
|
3
|
Zhang F, Xu LD, Wu S, Wu Q, Wang A, Liu S, Zhang Q, Yu X, Wang B, Pan Y, Huang F, Neculai D, Xia B, Feng XH, Shen L, Zhang Q, Liang T, Huang YW, Xu P. Proteasomal processing of the viral replicase ORF1 facilitates HEV-induced liver fibrosis. Proc Natl Acad Sci U S A 2025; 122:e2419946122. [PMID: 40073055 PMCID: PMC11929459 DOI: 10.1073/pnas.2419946122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic infections with hepatitis E virus (HEV), especially those of genotype 3 (G3), frequently lead to liver fibrosis and cirrhosis in patients. However, the causation and mechanism of liver fibrosis triggered by chronic HEV infection remain poorly understood. Here, we found that the viral multiple-domain replicase (ORF1) undergoes unique ubiquitin-proteasomal processing leading to formation of the HEV-Derived SMAD Activator (HDSA), a viral polypeptide lacking putative helicase and RNA polymerase domains. The HDSA is stable, non-HSP90-bound, localizes to the nucleus, and is abundant in G3 HEV-infected hepatocytes of various origins. Markedly, the HDSA in hepatocytes potentiates the fibrogenic TGF-β/SMAD pathway by forming compact complexes with SMAD3 to facilitate its promoter binding and coactivator recruitment, leading to significant fibrosis in HEV-susceptible gerbils. Virus infection-induced liver fibrosis in HEV-susceptible gerbils could be prevented by mutating the residues P989C, A990C, and A991C (PAA-3C) within ORF1, which are required for proteasomal processing. Thus, we have identified a viral protein derived from host proteasomal processing, defined its notable role in liver fibrosis and highlighted the nature of an unanticipated host-HEV interaction that facilitates hepatitis E pathogenesis.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Dong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Shiying Wu
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qirou Wu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ailian Wang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shengduo Liu
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yinghao Pan
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fei Huang
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Dante Neculai
- Department of Cell Biology Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bing Xia
- Department of Thoracic Cancer, Affiliated Hangzhou Cancer Hospital, Westlake University, Hangzhou 310030, China
| | - Xin-Hua Feng
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center Zhejiang University, Hangzhou 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Intelligent Medicine, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Ministry of Education Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Ku PI, Sreeja JS, Chadha A, Williams DS, Engelke MF, Subramanian R. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. SCIENCE ADVANCES 2025; 11:eadt5439. [PMID: 40073114 PMCID: PMC11900865 DOI: 10.1126/sciadv.adt5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear. We developed an assay to visualize GLI2, the primary GLI activator isoform, at single-particle resolution within the cilium. We found that GLI2 is a cargo of intraflagellar transport (IFT) machinery. Anterograde-biased IFT loading of GLI2 in a restricted time window following pathway activation results in the tip accumulation of GLI2. Unexpectedly, we found that the conserved Hh regulator KIF7, a nonmotile kinesin, is important for the temporal control of IFT-mediated GLI2 transport and retention of GLI2 at the cilium tip. Our findings underscore a design principle where a cilia-specific cytoskeletal transport system and an Hh pathway-specific cytoskeletal protein collaboratively regulate GLI2 trafficking for Hh signaling.
Collapse
Affiliation(s)
- Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jamuna S. Sreeja
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Abhishek Chadha
- Departments of Ophthalmology and Neurobiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - David S. Williams
- Departments of Ophthalmology and Neurobiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martin F. Engelke
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
De Decker M, Zelina P, Moens TG, Beckers J, Contardo M, Dittlau KS, Van Schoor E, Ronisz A, Eggermont K, Moisse M, Chandran S, Veldink JH, Thal DR, Van Den Bosch L, Pasterkamp RJ, Van Damme P. C21ORF2 mutations point towards primary cilia dysfunction in amyotrophic lateral sclerosis. Brain 2025; 148:803-816. [PMID: 39703094 PMCID: PMC11884758 DOI: 10.1093/brain/awae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 12/21/2024] Open
Abstract
Progressive loss of motor neurons is the hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS), but the underlying disease mechanisms remain incompletely understood. In this study, we investigate the effects of C21ORF2 mutations, a gene recently linked to ALS, and find that primary cilia are dysfunctional. Human patient-derived mutant C21ORF2 motor neurons have a reduced ciliary frequency and length. We report that C21ORF2 is located at the basal body of the primary cilium, and mutations associated with ALS alter this localization. Furthermore, we show that a reduction of C21ORF2 levels in cell lines and motor neurons is sufficient to cause fewer primary cilia and reduced cilial length. This ciliary dysfunction leads to defective downstream sonic hedgehog signalling and reduces the expression of cellular retinoic acid binding protein 1 (CRABP1), a protein involved in motor neuron maintenance and survival. In a compartmentalized co-culture system of motor neurons and muscle cells, these ciliary defects were associated with a reduced ability of neuromuscular junction formation. Interestingly, these cilia defects are seemingly not restricted to C21ORF2 ALS, as we also observed perturbed primary cilia in cultured motor neurons and post-mortem motor cortex from patients with the most common genetic subtype of ALS caused by repeat expansions in the C9ORF72 gene. Finally, overexpression of C21ORF2 in mutant C21ORF2 motor neurons rescued the ciliary frequency and length, CRAPBP1 expression and neuromuscular junction formation, confirming the importance of primary cilia for motor neuron function. These results point towards primary cilia dysfunction contributing to motor neuron degeneration in ALS and open new avenues for further research and interventions for this as yet untreatable disease.
Collapse
Affiliation(s)
- Mathias De Decker
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Thomas G Moens
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Matilde Contardo
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Evelien Van Schoor
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Alicja Ronisz
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Siddharthan Chandran
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), 3000 Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- VIB, Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philip Van Damme
- Department of Neurosciences, Laboratory of Neurobiology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Gao X, Jing D, Zhang Y, Zhu F, Yang Y, Zhou G. Unveiling the Role of GRK2: From Immune Regulation to Cancer Therapeutics. Mediators Inflamm 2025; 2025:8837640. [PMID: 40224487 PMCID: PMC11986179 DOI: 10.1155/mi/8837640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/04/2025] [Indexed: 04/15/2025] Open
Abstract
G protein-coupled receptors (GPCRs) represent humans' most prominent family of membrane proteins. In contrast, G protein-coupled receptor kinases (GRKs) play a pivotal role in the rapid desensitization of GPCRs. GRK2 is a particularly significant member of the GRK family. Recent studies have demonstrated that GRK2 primarily regulates immune cell function and homeostasis through receptor desensitization. Over the past decade, substantial progress has been made in elucidating the role of GRK2 in various human diseases. Notably, GRK2 is implicated in a range of autoimmune disorders, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), multiple sclerosis (MS), Sjögren's syndrome (SS), autoimmune myocarditis, hepatitis, and Graves' disease. Furthermore, emerging research has expanded our understanding of GRK2's involvement in cancer biology. Comprehensive investigations into the biological and pathological functions of GRK2 have facilitated the development of therapeutic strategies aimed at targeting the GRK2 signaling pathway in cancer, inflammation, and autoimmune diseases. Promising results have been observed with targeted biologics in preclinical and clinical trials. This review aims to elucidate the multifaceted role of GRK2 in immune function, autoimmune diseases, and cancer to uncover the remaining complexities associated with this kinase. A thorough understanding of GRK2 may position it as a potent therapeutic target in treating inflammation and cancer.
Collapse
Affiliation(s)
- Xizhuang Gao
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| |
Collapse
|
7
|
Yoshida S, Yoshida K. Regulatory mechanisms governing GLI proteins in hedgehog signaling. Anat Sci Int 2025; 100:143-154. [PMID: 39576500 DOI: 10.1007/s12565-024-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 02/16/2025]
Abstract
The Hedgehog (Hh) signaling pathway is critical for regulating cell growth, survival, fate determination, and the overall patterning of both vertebrate and invertebrate body plans. Aberrations in Hh signaling are associated with congenital abnormalities and tumorigenesis. In vertebrates, Hh signaling depends uniquely on primary cilia, microtubule-based organelles that extend from the cell surface. Over the last 2 decades, studies have demonstrated that key molecules regulating Hh signaling dynamically accumulate in primary cilia via intraflagellar transport systems. Moreover, through the primary cilia, extracellular signals are converted to stabilize GLI2 and GLI3 that are transcription factors that play a central role in regulating Hh signaling at the post-translational modification level. Recent in vivo and anatomical studies have uncovered crucial molecules that facilitate the conversion of extracellular signals into the intracellular stabilization of GLI2/GLI3 via primary cilia, emphasizing their essential roles in tissue development and tumorigenesis. This review explores the regulatory mechanisms of GLI2/GLI3 with a focus on mammalian tissue development.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan.
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
8
|
Liu F, Medyukhina A, Olesen KM, Shirinifard A, Jin H, Li L, Mapelli M, Khairy K, Han YG. Canonical Hedgehog Signaling Controls Astral Microtubules and Mitotic Spindle Orientation in Neural Progenitors and iPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639780. [PMID: 40060449 PMCID: PMC11888381 DOI: 10.1101/2025.02.23.639780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mitotic spindle orientation is crucial for cell fate determination and tissue organization. Although the intracellular machinery governing spindle orientation is well characterized, whether and how secreted factors, such as morphogens, regulate this process remains poorly understood. This study investigated the role of Hedgehog (HH) signaling in modulating mitotic spindle orientation in neural progenitor cells and in induced pluripotent stem cells (iPSCs). Time-lapse microscopy of cerebral organoids and iPSCs revealed that HH signaling increases the angle of the mitotic spindle relative to the apical surface, prolongs mitosis, and enhances spindle rotation. Mechanistically, HH signaling reduces both the number and the length of astral microtubules, key regulators of spindle orientation. This reduction correlates with increased spindle angle in iPSCs. Furthermore, we show that canonical HH signaling, involving GLI-dependent transcriptional regulation, contributes to these effects. RNA sequencing and gene set enrichment analysis (GSEA) revealed that HH signaling upregulates genes associated with microtubule depolymerization, suggesting a transcriptional mechanism by which HH signaling influences astral microtubule dynamics and, consequently, mitotic spindle orientation. These findings highlight a novel link between a morphogen, transcriptional regulation, and the control of mitotic spindle orientation, with implications for development and tissue homeostasis.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Medyukhina
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kris M Olesen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lei Li
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marina Mapelli
- European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Takahashi Y, Ishida Y, Yoshida S, Shin HW, Katoh Y, Nakayama K. Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression. J Cell Sci 2025; 138:jcs263556. [PMID: 39801296 DOI: 10.1242/jcs.263556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.
Collapse
Affiliation(s)
- Yuto Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Wang Y, Kraemer N, Schneider J, Ninnemann O, Weng K, Hildebrand M, Reid J, Li N, Hu H, Mani S, Kaindl AM. Togaram1 is expressed in the neural tube and its absence causes neural tube closure defects. HGG ADVANCES 2025; 6:100363. [PMID: 39385469 PMCID: PMC11541697 DOI: 10.1016/j.xhgg.2024.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Neural tube closure defect pathomechanisms in human embryonic development are poorly understood. Here we identified spina bifida patients expressing novel variants of the TOGARAM gene family. TOGARAM1 has been associated with the ciliopathy Joubert syndrome, but its connection to spina bifida and role in neural development is unknown. We show that Togaram1 is expressed in the neural tube and Togaram1 knockout mice have abnormal cilia, reduced sonic hedgehog (Shh) signaling, abnormal neural tube patterning, and display neural tube closure defects. Neural stem cells from Togaram1 knockout embryos showed reduced cilia and defects in Shh signaling. Overexpression in IMCD3 and HEK293 cells of TOGARAM1 carrying the variant found in the spina bifida patient resulted in cilia defect along with reduced pericentriolar material one (PCM1), a critical constituent of centriolar satellites involved in transporting proteins toward the centrosome and primary cilia. Our results demonstrate the role of TOGARAM1 in regulating Shh signaling during early neural development that is critical for neural tube closure and elucidates potential mechanisms whereby the ciliopathy-associated gene TOGARAM1 gives rise to spina bifida aperta in humans.
Collapse
Affiliation(s)
- Yanyan Wang
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Joanna Schneider
- Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Kai Weng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Michael Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Melbourne, VIC, Australia; Neuroscience Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Reid
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Shyamala Mani
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitatsmedizin Berlin, Berlin, Germany; German Epilepsy Center for Children and Adolescents, Charité - Universitatsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Zhang J, Kaur G, Cai E, Gutierrez OT, Liu X, Baboo S, Diedrich JK, Zhu JF, Myers BR, Yates JR, Ge X. Proximity based proteomics reveals Git1 as a regulator of Smoothened signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631593. [PMID: 39829937 PMCID: PMC11741329 DOI: 10.1101/2025.01.06.631593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood. To address this question, we leveraged the proximity labeling tool TurboID and conducted a time-resolved proteomic study of Smo-associated proteins over the course of Hh signaling activation. Our results not only confirmed previously reported Smo interactors but also uncovered new Smo-associated proteins. We characterized one of these new Smo interactors, Grk-interacting protein 1 (Git1), previously known to modulate GPCR signaling. We found that Git1 localizes to the base of the primary cilium, where it controls the cilium transport of Grk2, an early event in Hh signaling. Loss of Git1 impairs Smo phosphorylation by Grk2, a critical step for Smo-PKA interaction, leading to attenuated Hh signaling and reduced cell proliferation in granule neuron precursors. These results revealed a critical regulatory mechanism of Grk2 phosphorylation on Smo in the primary cilium. Our Smo-TurboID proteomic dataset provides a unique resource for investigating Smo regulations across different stages of Hh pathway activation.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA
| | - Gurleen Kaur
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA
| | - Eva Cai
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA
| | - Oscar Torres Gutierrez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA
| | - Xiaoliang Liu
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA
| | - Sabyasachi Baboo
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, San Diego, California, USA
| | - Jolene K Diedrich
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, San Diego, California, USA
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John R Yates
- Departments of Molecular Medicine and Neurobiology, the Scripps Research Institute, San Diego, California, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, USA
| |
Collapse
|
12
|
Ferguson R, Subramanian V. Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation. Cells 2024; 13:1957. [PMID: 39682705 PMCID: PMC11639927 DOI: 10.3390/cells13231957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Talpid3 is a basal body protein required for the formation of primary cilia, an organelle involved in signal transduction. Here, we asked if Talpid3 has a role in the regulation of differentiation and/or self-renewal of ES cells and whether cells lacking cilia due to a deletion in Talpid3 can be reprogrammed to induced pluripotent stem (iPS) cells. We show that mouse embryonic limb fibroblasts which lack primary cilia with a targeted deletion in the Talpid3 (Ta3) gene can be efficiently reprogrammed to iPS cells. Furthermore, vector-free Ta3-/- iPS cells retain ES cell features and are able to self-renew. However, both Ta3-/- iPS and ES cells are unable to form visceral endoderm and differentiate poorly into neurons. The observed defects are not a consequence of reprogramming since Ta3-/- ES cells also exhibit this phenotype. Thus, Talpid3 and primary cilia are required for some differentiation events but appear to be dispensable for stem cell self-renewal and reprogramming.
Collapse
Affiliation(s)
| | - Vasanta Subramanian
- Department of Life Sciences, University of Bath, Building 4 South, Bath BA2 7AY, UK;
| |
Collapse
|
13
|
Konopka A, Gawin K, Barszcz M. Hedgehog Signalling Pathway and Its Role in Shaping the Architecture of Intestinal Epithelium. Int J Mol Sci 2024; 25:12007. [PMID: 39596072 PMCID: PMC11593361 DOI: 10.3390/ijms252212007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The hedgehog (Hh) signalling pathway plays a key role in both embryonic and postnatal development of the intestine and is responsible for gut homeostasis. It regulates stem cell renewal, formation of the villous-crypt axis, differentiation of goblet and Paneth cells, the cell cycle, apoptosis, development of gut innervation, and lipid metabolism. Ligands of the Hh pathway, i.e., Indian hedgehog (Ihh) and Sonic hedgehog (Shh), are expressed by superficial enterocytes but act in the mesenchyme, where they are bound by a Patched receptor localised on myofibroblasts and smooth muscle cells. This activates a cascade leading to the transcription of target genes, including those encoding G1/S-specific cyclin-D2 and -E1, B-cell lymphoma 2, fibroblast growth factor 4, and bone morphogenetic protein 4. The Hh pathway is tightly connected to Wnt signalling. Ihh is the major ligand in the Hh pathway. Its activation inhibits proliferation, while its blocking induces hyperproliferation and triggers a wound-healing response. Thus, Ihh is a negative feedback regulator of cell proliferation. There are data indicating that diet composition may affect the expression of the Hh pathway genes and proteins, which in turn, induces changes in mucosal architecture. This was shown for fat, vitamin A, haem, berberine, and ovotransferrin. The Hh signalling is also affected by the intestinal microbiota, which affects the intestinal barrier integrity. This review highlights the critical importance of the Hh pathway in shaping the intestinal mucosa and summarises the results obtained so far in research on the effect of dietary constituents on the activity of this pathway.
Collapse
Affiliation(s)
- Adrianna Konopka
- Laboratory of Analysis of Gastrointestinal Tract Protective Barrier, Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Kamil Gawin
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Marcin Barszcz
- Laboratory of Analysis of Gastrointestinal Tract Protective Barrier, Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| |
Collapse
|
14
|
Li F, Li Z, Wei C, Xu L, Liang Y, Yan J, Li Y, He B, Sun C. Application of hydrogels for targeting cancer stem cells in cancer treatment. Biomed Pharmacother 2024; 180:117486. [PMID: 39321506 DOI: 10.1016/j.biopha.2024.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/β-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.
Collapse
Affiliation(s)
- Fashun Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
15
|
Ku PI, Sreeja JS, Chadha A, Williams DS, Engelke MF, Subramanian R. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615198. [PMID: 39386719 PMCID: PMC11463396 DOI: 10.1101/2024.09.26.615198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Calibrated transcriptional outputs in cellular signaling require fine regulation of transcription factor activity. In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, the GLI (Glioma-associated-oncogene) transcription factors, depends on the primary cilium. In particular, the formation of the activator form of GLI upon pathway initiation requires its concentration at the distal cilium tip. However, the mechanisms underlying this critical step in Hh signaling are unclear. We developed a real-time imaging assay to visualize GLI2, the primary GLI activator isoform, at single particle resolution within the cilium. We observed that GLI2 is a cargo of Intraflagellar Transport (IFT) machinery and is transported with anterograde bias during a restricted time window following pathway activation. Our findings position IFT as a crucial mediator of transcription factor transport within the cilium for vertebrate Hh signaling, in addition to IFT's well-established role in ciliogenesis. Surprisingly, a conserved Hh pathway regulator, the atypical non-motile kinesin KIF7, is critical for the temporal control of GLI2 transport by IFT and the spatial control of GLI2 localization at the cilium tip. This discovery underscores the collaborative role of a motile and a non-motile cilium-specific cytoskeletal system in determining the transcriptional output during Hh signaling.
Collapse
|
16
|
Walker MF, Zhang J, Steiner W, Ku PI, Zhu JF, Michaelson Z, Yen YC, Lee A, Long AB, Casey MJ, Poddar A, Nelson IB, Arveseth CD, Nagel F, Clough R, LaPotin S, Kwan KM, Schulz S, Stewart RA, Tesmer JJG, Caspary T, Subramanian R, Ge X, Myers BR. GRK2 kinases in the primary cilium initiate SMOOTHENED-PKA signaling in the Hedgehog cascade. PLoS Biol 2024; 22:e3002685. [PMID: 39138140 PMCID: PMC11322411 DOI: 10.1371/journal.pbio.3002685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/21/2024] [Indexed: 08/15/2024] Open
Abstract
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Collapse
Affiliation(s)
- Madison F. Walker
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States of America
| | - William Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Abhishek Poddar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | | | - Ryan Clough
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sarah LaPotin
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stefan Schulz
- 7TM Antibodies GmbH, Jena, Germany
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
17
|
Yoshida S, Kawamura A, Aoki K, Wiriyasermkul P, Sugimoto S, Tomiyoshi J, Tajima A, Ishida Y, Katoh Y, Tsukada T, Tsuneoka Y, Yamada K, Nagamori S, Nakayama K, Yoshida K. Positive regulation of Hedgehog signaling via phosphorylation of GLI2/GLI3 by DYRK2 kinase. Proc Natl Acad Sci U S A 2024; 121:e2320070121. [PMID: 38968120 PMCID: PMC11252808 DOI: 10.1073/pnas.2320070121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/02/2024] [Indexed: 07/07/2024] Open
Abstract
Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Akira Kawamura
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Katsuhiko Aoki
- Radioisotope Research Facilities, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Laboratory of Amyloid Regulation, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Junnosuke Tomiyoshi
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Ayasa Tajima
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, Chiba274-8510, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo143-8540, Japan
| | - Kohji Yamada
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Shushi Nagamori
- Center for Stable Isotope Medical Research, The Jikei University School of Medicine, Tokyo105-8461, Japan
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo105-8461, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo105-8461, Japan
| |
Collapse
|
18
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
19
|
Li D, Cheng K, Zhu X. Construction and Identification of a Novel Mice Model of Microphthalmia. Transl Vis Sci Technol 2024; 13:11. [PMID: 39007834 PMCID: PMC467107 DOI: 10.1167/tvst.13.7.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Microphthalmia is a rare developmental eye disease that affects 1 in 7000 births. Currently, there is no cure for this condition. This study aimed to construct a stable mouse model of microphthalmia, thus providing a new tool for the study of the etiology of microphthalmia. Methods The Hedgehog signaling pathway plays a crucial role in eye development. One of the key mechanisms of the Sonic Hedgehog signaling is the strong transcriptional activation ability of GLI3, a major mediator of this pathway. This study used CRISPR/Cas9 system to construct a novel TgGli3Ki/Ki lens-specific over-expression mouse line. To identify the ocular characteristics of this line, quantitative PCR, Western blot, hematoxylin and eosin staining, immunofluorescent staining, and RNA-seq were performed on the ocular tissues of this line and normal mice. Results The TgGli3Ki/Ki lens-specific over-expression mouse model exhibits the ocular phenotype of microphthalmia. In the TgGli3Ki/Ki mouse, Gli3 is over-expressed in the lens, and the size of the eyeball and lens is significantly smaller than the normal one. RNA-seq analysis using the lens and the retina samples from TgGli3Ki/Ki and normal mice indicates that the phototransduction pathway is ectopically activated in the lens. Immunofluorescent staining of the lens samples confirmed this activation. Conclusions The TgGli3Ki/Ki mouse model consistently manifests the stereotypical microphthalmia phenotype across generations, making it an excellent tool for studying this severe eye disease. Translational Relevance This study developed a novel animal model to facilitate clinical research on microphthalmia.
Collapse
Affiliation(s)
- Dan Li
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaiwen Cheng
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
20
|
Soussi G, Girdziusaite A, Jhanwar S, Palacio V, Notaro M, Sheth R, Zeller R, Zuniga A. TBX3 is essential for establishment of the posterior boundary of anterior genes and upregulation of posterior genes together with HAND2 during the onset of limb bud development. Development 2024; 151:dev202722. [PMID: 38828908 PMCID: PMC11190573 DOI: 10.1242/dev.202722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.
Collapse
Affiliation(s)
- Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Ausra Girdziusaite
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Shalu Jhanwar
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
21
|
Walker MF, Zhang J, Steiner W, Ku PI, Zhu JF, Michaelson Z, Yen YC, Lee A, Long AB, Casey MJ, Poddar A, Nelson IB, Arveseth CD, Nagel F, Clough R, LaPotin S, Kwan KM, Schulz S, Stewart RA, Tesmer JJG, Caspary T, Subramanian R, Ge X, Myers BR. GRK2 Kinases in the Primary Cilium Initiate SMOOTHENED-PKA Signaling in the Hedgehog Cascade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540226. [PMID: 37214942 PMCID: PMC10197709 DOI: 10.1101/2023.05.10.540226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the vertebrate primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Collapse
|
22
|
Zhao C, Gao C, Zhu Y, Zhang Q, Lin P. A novel GLI3 frameshift mutation in a Chinese pedigree with polydactyly: A case report. Heliyon 2024; 10:e28638. [PMID: 38571622 PMCID: PMC10988035 DOI: 10.1016/j.heliyon.2024.e28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Background GLI3 gene mutations can result in various forms of polysyndactyly, such as Greig cephalopolysyndactyly syndrome (GCPS, MIM: #175700), Pallister-Hall syndrome (PHS, MIM: #146510), and isolated polydactyly (IPD, MIM: #174200, #174700). Reports on IPD-associated GLI3 mutations are rare. In this study, a novel GLI3 mutation was identified in a Chinese family with IPD. Results We report a family with six members affected by IPD. The family members demonstrated several special phenotypes, including sex differences, abnormal finger joint development, and different polydactyly types. We identified a novel frameshift variant in the GLI3 gene (NM_000168.6: c.1820_1821del, NP_000159.3: p.Tyr607Cysfs*9) by whole-exome sequencing. Further analysis suggested that this mutation was the cause of polydactyly in this family. Conclusions The discovery of this novel frameshift variant in our study further solidifies the relationship between IPD and GLI3 and expands the previously established spectrum of GLI3 mutations and associated phenotypes.
Collapse
Affiliation(s)
- Chi Zhao
- Department of Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Chengcheng Gao
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, 310030, China
| | - Yijun Zhu
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Qi Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co., Ltd., Hangzhou, Zhejiang Province, 310030, China
| | - Ping Lin
- Department of Orthopaedic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang Province, 321000, China
| |
Collapse
|
23
|
Sun M, Gao Y, Li Z, Yang L, Liu G, Xu Z, Guo R, You Y, Yang Z. ERK signaling expands mammalian cortical radial glial cells and extends the neurogenic period. Proc Natl Acad Sci U S A 2024; 121:e2314802121. [PMID: 38498715 PMCID: PMC10990156 DOI: 10.1073/pnas.2314802121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The molecular basis for cortical expansion during evolution remains largely unknown. Here, we report that fibroblast growth factor (FGF)-extracellular signal-regulated kinase (ERK) signaling promotes the self-renewal and expansion of cortical radial glial (RG) cells. Furthermore, FGF-ERK signaling induces bone morphogenic protein 7 (Bmp7) expression in cortical RG cells, which increases the length of the neurogenic period. We demonstrate that ERK signaling and Sonic Hedgehog (SHH) signaling mutually inhibit each other in cortical RG cells. We provide evidence that ERK signaling is elevated in cortical RG cells during development and evolution. We propose that the expansion of the mammalian cortex, notably in human, is driven by the ERK-BMP7-GLI3R signaling pathway in cortical RG cells, which participates in a positive feedback loop through antagonizing SHH signaling. We also propose that the relatively short cortical neurogenic period in mice is partly due to mouse cortical RG cells receiving higher SHH signaling that antagonizes ERK signaling.
Collapse
Affiliation(s)
- Mengge Sun
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Yanjing Gao
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Rongliang Guo
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Yan You
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai200032, China
| |
Collapse
|
24
|
Leung AOW, Poon ACH, Wang X, Feng C, Chen P, Zheng Z, To MK, Chan WCW, Cheung M, Chan D. Suppression of apoptosis impairs phalangeal joint formation in the pathogenesis of brachydactyly type A1. Nat Commun 2024; 15:2229. [PMID: 38472182 PMCID: PMC10933404 DOI: 10.1038/s41467-024-45053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.
Collapse
Affiliation(s)
- Adrian On Wah Leung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew Chung Hin Poon
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xue Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Feng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Zhengfan Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michael KaiTsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| | - Martin Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
25
|
Xu J, Wu X, Zhu H, Zhu Y, Du K, Deng X, Wang C. CRP inhibits the osteoblastic differentiation of OPCs via the up-regulation of primary cilia and repression of the Hedgehog signaling pathway. Med Oncol 2024; 41:72. [PMID: 38345752 DOI: 10.1007/s12032-024-02301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
Inflammation disrupts bone metabolism and leads to bone damage. C-reactive protein (CRP) is a typical inflammation marker. Although CRP measurement has been conducted for many decades, how osteoblastic differentiation influences molecular mechanisms remains largely unknown. The present study attempted to investigate the effects of CRP on primary cultured osteoblast precursor cells (OPCs) while elucidating the underlying molecular mechanisms. OPCs were isolated from suckling Sprague-Dawleyrats. Fewer OPCs were observed after recombinant C-reactive protein treatment. In a series of experiments, CRP inhibited OPC proliferation, osteoblastic differentiation, and the OPC gene expression of the hedgehog (Hh) signaling pathway. The inhibitory effect of CRP on OPC proliferation occurred via blockade of the G1-S transition of the cell cycle. In addition, the regulation effect of proto cilium on osteoblastic differentiation was analyzed using the bioinformatics p. This revealed the primary cilia activation of recombinant CRP effect on OPCs through in vitro experiments. A specific Sonic Hedgehog signaling agonist (SAG) rescued osteoblastic differentiation inhibited by recombinant CRP. Moreover, chloral hydrate, which removes primary cilia, inhibited the Suppressor of Fused (SUFU) formation and blocked Gli2 degradation. This counteracted osteogenesis inhibition caused by CRP. Therefore, these data depict that CRP can inhibit the proliferation and osteoblastic differentiation of OPCs. The underlying mechanism could be associated with primary cilia activation and Hh pathway repression.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangmei Wu
- Department of Physiology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yinghua Zhu
- Department of Pre-Hospital Emergency, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 400014, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Deng
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Changdong Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
26
|
Li Z, Liu G, Yang L, Sun M, Zhang Z, Xu Z, Gao Y, Jiang X, Su Z, Li X, Yang Z. BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period. Protein Cell 2024; 15:21-35. [PMID: 37300483 PMCID: PMC10762677 DOI: 10.1093/procel/pwad036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Collapse
Affiliation(s)
- Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Mengge Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yanjing Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Xin Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zihao Su
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Zhou M, Han Y, Jiang J. Ulk4 promotes Shh signaling by regulating Stk36 ciliary localization and Gli2 phosphorylation. eLife 2023; 12:RP88637. [PMID: 38096226 PMCID: PMC10721220 DOI: 10.7554/elife.88637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis through the Gli family of transcription factors. Gli is thought to be activated at the tip of primary cilium, but the underlying mechanism has remained poorly understood. Here, we show that Unc-51-like kinase 4 (Ulk4), a pseudokinase and a member of the Ulk kinase family, acts in conjunction with another Ulk family member Stk36 to promote Gli2 phosphorylation and Hh pathway activation. Ulk4 interacts with Stk36 through its N-terminal region containing the pseudokinase domain and with Gli2 via its regulatory domain to bridge the kinase and substrate. Although dispensable for Hh-induced Stk36 kinase activation, Ulk4 is essential for Stk36 ciliary tip localization, Gli2 phosphorylation, and activation. In response to Hh, both Ulk4 and Stk36 colocalize with Gli2 at ciliary tip, and Ulk4 and Stk36 depend on each other for their ciliary tip accumulation. We further show that ciliary localization of Ulk4 depends on Stk36 kinase activity and phosphorylation of Ulk4 on Thr1023, and that ciliary tip accumulation of Ulk4 is essential for its function in the Hh pathway. Taken together, our results suggest that Ulk4 regulates Hh signaling by promoting Stk36-mediated Gli2 phosphorylation and activation at ciliary tip.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
28
|
Agata A, Ohtsuka S, Noji R, Gotoh H, Ono K, Nomura T. A Neanderthal/Denisovan GLI3 variant contributes to anatomical variations in mice. Front Cell Dev Biol 2023; 11:1247361. [PMID: 38020913 PMCID: PMC10651735 DOI: 10.3389/fcell.2023.1247361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Changes in genomic structures underlie phenotypic diversification in organisms. Amino acid-changing mutations affect pleiotropic functions of proteins, although little is known about how mutated proteins are adapted in existing developmental programs. Here we investigate the biological effects of a variant of the GLI3 transcription factor (GLI3R1537C) carried in Neanderthals and Denisovans, which are extinct hominins close to modern humans. R1537C does not compromise protein stability or GLI3 activator-dependent transcriptional activities. In contrast, R1537C affects the regulation of downstream target genes associated with developmental processes. Furthermore, genome-edited mice carrying the Neanderthal/Denisovan GLI3 mutation exhibited various alterations in skeletal morphology. Our data suggest that an extinct hominin-type GLI3 contributes to species-specific anatomical variations, which were tolerated by relaxed constraint in developmental programs during human evolution.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Ohtsuka
- Laboratories for Experimental Animals, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Noji
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
29
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
30
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
He Y, Liu HH, Zhou XL, He TT, Zhang AZ, Wang X, Wei SZ, Li HT, Chen LS, Chang L, Zhao YL, Jing MY. Rutaecarpine Ameliorates Murine N-Methyl-N'-Nitro-N-Nitrosoguanidine-Induced Chronic Atrophic Gastritis by Sonic Hedgehog Pathway. Molecules 2023; 28:6294. [PMID: 37687125 PMCID: PMC10489734 DOI: 10.3390/molecules28176294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
CAG is a burdensome and progressive disease. Numerous studies have shown the effectiveness of RUT in digestive system diseases. The therapeutic effects of RUT on MNNG-induced CAG and the potential mechanisms were probed. MNNG administration was employed to establish a CAG model. The HE and ELISA methods were applied to detect the treatment effects. WB, qRT-PCR, immunohistochemistry, TUNEL, and GES-1 cell flow cytometry approaches were employed to probe the mechanisms. The CAG model was successfully established. The ELISA and HE staining data showed that the RUT treatment effects on CAG rats were reflected by the amelioration of histological damage. The qRT-PCR and WB analyses indicated that the protective effect of RUT is related to the upregulation of the SHH pathway and downregulation of the downstream of apoptosis to improve gastric cellular survival. Our data suggest that RUT induces a gastroprotective effect by upregulating the SHH signaling pathway and stimulating anti-apoptosis downstream.
Collapse
Affiliation(s)
- Yong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.W.)
| | - Hong-Hong Liu
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Xue-Lin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100039, China
| | - Ting-Ting He
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Ao-Zhe Zhang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Xin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.W.)
| | - Shi-Zhang Wei
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Hao-Tian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Sheng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.W.)
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yan-Ling Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.H.); (X.W.)
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Man-Yi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
32
|
Mann B, Crawford JC, Reddy K, Lott J, Youn YH, Gao G, Guy C, Chou CH, Darnell D, Trivedi S, Bomme P, Loughran AJ, Thomas PG, Han YG, Tuomanen EI. Bacterial TLR2/6 Ligands Block Ciliogenesis, Derepress Hedgehog Signaling, and Expand the Neocortex. mBio 2023; 14:e0051023. [PMID: 37052506 PMCID: PMC10294647 DOI: 10.1128/mbio.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.
Collapse
Affiliation(s)
- Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kavya Reddy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Josi Lott
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Perrine Bomme
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Allister J. Loughran
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Li K, Sun S, Lu Y, Liang W, Xu X, Zhang H, Chang Z, Wang C, Gao Y, Chen L. MT1M regulates gastric cancer progression and stemness by modulating the Hedgehog pathway protein GLI1. Biochem Biophys Res Commun 2023; 670:63-72. [PMID: 37276792 DOI: 10.1016/j.bbrc.2023.05.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Gastric cancer (GC) is a highly prevalent and aggressive malignancy with a poor prognosis. Recent evidence suggested that metallothionein 1 M (MT1M) may play a critical role in cancer development, progression, and drug resistance; however, its role in GC remains largely unknown. In this study, we investigated the expression and function of MT1M in GC both in vitro and in vivo. We found that MT1M expression was significantly downregulated in GC tissues and cell lines. Decreased expression of MT1M was associated with worse clinical prognosis, particularly in patients treated with 5-fluorouracil. Low expression of MT1M was indicative of poor overall survival (OS, HR 0.56 [95% CI 0.37-0.84], P < 0.005), first progression survival (FP, HR 0.54 [95% CI 0.36-0.79], P < 0.005), and post-progression survival (PPS, HR 0.65 [95% CI 0.45-0.94], P < 0.05). We also demonstrated that overexpression of MT1M inhibited cell proliferation and induced apoptosis in GC cells and in tumor xenografts, and it improved chemosensitivity to 5-fluorouracil. Furthermore, we found that MT1M overexpression could inhibit stem cell characteristics by targeting GLI1 and affecting GLI1 ubiquitination. Collectively, these findings indicated that MT1M may act as a tumor suppressor in GC and could serve as a potential therapeutic target to attenuate stemness and chemotherapy resistance of GC.
Collapse
Affiliation(s)
- Kai Li
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuyang Sun
- Department of Gastroenterology, Affiliated Beijing Chest Hospital of Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yixun Lu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenquan Liang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinxin Xu
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhengyao Chang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chuang Wang
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunhe Gao
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Chen
- Department of General Surgery & Institute of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
34
|
Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R, Bernardini L, Ciolfi A, Moeinzadeh MH, Klever MK, Altay A, Vallecillo-García P, Carpentieri G, Delledonne M, Ort MJ, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation. Nat Commun 2023; 14:2034. [PMID: 37041138 PMCID: PMC10090176 DOI: 10.1038/s41467-023-37585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFβ and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFβ, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.
Collapse
Affiliation(s)
- Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany.
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Elisabetta Flex
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, 00161, Rome, Italy
| | - Sunhild Hartmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - M-Hossein Moeinzadeh
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | - Marius-Konstantin Klever
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Aybuge Altay
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | | | - Giovanna Carpentieri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Melanie-Jasmin Ort
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, 10126, Italy
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020, Salzburg, Austria
| | - Sven Geißler
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Sigmar Stricker
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, 23562, Germany.
- DZHK (German Centre for Cardiovascular Research) Germany, partner site Hamburg, Lübeck, Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
35
|
Tang C, Wang J, Yao M, Ji X, Shi W, Xu C, Zeng LH, Wu X. Hippo signaling activates hedgehog signaling by Taz-driven Gli3 processing. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:3. [PMID: 36720733 PMCID: PMC9889595 DOI: 10.1186/s13619-022-00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 02/02/2023]
Abstract
The overlapping roles of Hippo and Hedgehog signaling in biological functions and diseases prompt us to investigate their potential interactions. Activation of Hippo signaling enhances the transcriptional output of Hedgehog signaling, and the role of Hippo signaling in regulating Hedgehog signaling relies on the Hippo pathway key effector, Taz. Interestingly, Taz exhibits a gradient expression across the posterior-to-anterior of limb bud mesoderms, similar to Sonic hedgehog (Shh). Importantly, Taz drives PKA to phosphorylate Gli3, resulting in the Gli3 processing into its repressor and attenuation of Hedgehog signaling in the Shh-independent manner. Specifically, Taz deletion in mouse embryonic limb bud mesenchyme not only enhances the Hedgehog signaling but partially restores the phenotypes from Shh deletion in causing severe defects of anteroposterior patterning and digit number and identity. Together, these results uncover Taz-dependent Gli3 processing as a hitherto uncharacterized mechanism controlling Hedgehog signaling, highlighting its cross-regulation by Hippo signaling.
Collapse
Affiliation(s)
- Chao Tang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XNational Clinical Research Center for Child Health of the Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310052 China
| | - Jirong Wang
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Minli Yao
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Xing Ji
- grid.239552.a0000 0001 0680 8770Translational Research Program in Pediatric Orthopaedics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Wei Shi
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Chengyun Xu
- grid.13402.340000 0004 1759 700XDepartment of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058 China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou, 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, 310058, China. .,Department of Orthopeadic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
36
|
Lau CI, Yánez DC, Papaioannou E, Ross S, Crompton T. Sonic Hedgehog signalling in the regulation of barrier tissue homeostasis and inflammation. FEBS J 2022; 289:8050-8061. [PMID: 34614300 DOI: 10.1111/febs.16222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023]
Abstract
Epithelial barrier tissues such as the skin and airway form an essential interface between the mammalian host and its external environment. These physical barriers are crucial to prevent damage and disease from environmental insults and allergens. Failure to maintain barrier function against such risks can lead to severe inflammatory disorders, including atopic dermatitis and asthma. Here, we discuss the role of the morphogen Sonic Hedgehog in postnatal skin and lung and the impact of Shh signalling on repair, inflammation, and atopic disease in these tissues.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK.,School of Medicine, Universidad San Francisco de Quito, Ecuador
| | - Eleftheria Papaioannou
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
37
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|
38
|
Tian M, He X, Wang W, Feng Y, Zhang D, Li Z, Liu D. Transcriptome Analysis Reveals Genes Contributed to Min Pig Villi Hair Follicle in Different Seasons. Vet Sci 2022; 9:639. [PMID: 36423088 PMCID: PMC9697675 DOI: 10.3390/vetsci9110639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 02/01/2025] Open
Abstract
The Min pig, a local pig breed in China, has a special trait which has intermittent villus and coat hair regeneration. However, the regulation and mechanism of villus in Min pigs have not yet been described. We observed and described the phenotype of Min pig dermal villi in detail and sequenced the mRNA transcriptome of Min pig hair follicles. A total of 1520 differentially expressed genes (DEG) were obtained.K-means hierarchical clustering showed that there was a significant expression pattern difference in winter compared with summer. Gene enrichment and network analysis results showed that the hair growth in Min pigs was closely related to the composition of desmosomes and regulated by an interaction network composed of eight core genes, namely DSP, DSC3, DSG4, PKP1, TGM1, KRT4, KRT15, and KRT84. Methylation analysis of promoters of target genes showed that the PKP1 gene was demethylated. Our study will help to supplement current knowledge of the growth mechanism of different types of hair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
39
|
Hirose T, Sugitani Y, Kurihara H, Kazama H, Kusaka C, Noda T, Takahashi H, Ohno S. PAR3 restricts the expansion of neural precursor cells by regulating hedgehog signaling. Development 2022; 149:277212. [DOI: 10.1242/dev.199931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
During brain development, neural precursor cells (NPCs) expand initially, and then switch to generating stage-specific neurons while maintaining self-renewal ability. Because the NPC pool at the onset of neurogenesis crucially affects the final number of each type of neuron, tight regulation is necessary for the transitional timing from the expansion to the neurogenic phase in these cells. However, the molecular mechanisms underlying this transition are poorly understood. Here, we report that the telencephalon-specific loss of PAR3 before the start of neurogenesis leads to increased NPC proliferation at the expense of neurogenesis, resulting in disorganized tissue architecture. These NPCs demonstrate hyperactivation of hedgehog signaling in a smoothened-dependent manner, as well as defects in primary cilia. Furthermore, loss of PAR3 enhanced ligand-independent ciliary accumulation of smoothened and an inhibitor of smoothened ameliorated the hyperproliferation of NPCs in the telencephalon. Thus, these findings support the idea that PAR3 has a crucial role in the transition of NPCs from the expansion phase to the neurogenic phase by restricting hedgehog signaling through the establishment of ciliary integrity.
Collapse
Affiliation(s)
- Tomonori Hirose
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
- Cancer Institute 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Japanese Foundation for Cancer Research 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
| | - Yoshinobu Sugitani
- Cancer Institute 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Japanese Foundation for Cancer Research 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Juntendo University School of Medicine 3 Department of Pathology and Oncology , , Tokyo 113-8421 , Japan
| | - Hidetake Kurihara
- Juntendo University Graduate School of Medicine 4 Department of Anatomy and Life Structure , , Tokyo 113-8421 , Japan
- Department of Physical Therapy, Faculty of Health Science, Aino University 5 , Osaka 567-0012 , Japan
| | - Hiromi Kazama
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| | - Chiho Kusaka
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| | - Tetsuo Noda
- Cancer Institute 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Japanese Foundation for Cancer Research 2 Department of Cell Biology , , , Tokyo 135-8550 , Japan
- Director's Room, Cancer Institute, Japanese Foundation for Cancer Research 6 , Tokyo 135-8550 , Japan
| | - Hidehisa Takahashi
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| | - Shigeo Ohno
- Yokohama City University School of Medicine 1 Department of Molecular Biology , , Yokohama 236-0004 , Japan
| |
Collapse
|
40
|
Zhou M, Han Y, Wang B, Cho YS, Jiang J. Dose-dependent phosphorylation and activation of Hh pathway transcription factors. Life Sci Alliance 2022; 5:5/11/e202201570. [PMID: 36271509 PMCID: PMC9445324 DOI: 10.26508/lsa.202201570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Graded Hedgehog (Hh) signaling is mediated by graded Cubitus interruptus (Ci)/Gli transcriptional activity, but how the Hh gradient is converted into the Ci/Gli activity gradient remains poorly understood. Here, we show that graded Hh induces a progressive increase in Ci phosphorylation at multiple Fused (Fu)/CK1 sites including a cluster located in the C-terminal Sufu-binding domain. We demonstrated that Fu directly phosphorylated Ci on S1382, priming CK1 phosphorylation on adjacent sites, and that Fu/CK1-mediated phosphorylation of the C-terminal sites interfered with Sufu binding and facilitated Ci activation. Phosphorylation at the N-terminal, middle, and C-terminal Fu/CK1 sites occurred independently of one another and each increased progressively in response to increasing levels of Hh or increasing amounts of Hh exposure time. Increasing the number of phospho-mimetic mutations of Fu/CK1 sites resulted in progressively increased Ci activation by alleviating Sufu-mediated inhibition. We found that the C-terminal Fu/CK1 phosphorylation cluster is conserved in Gli2 and contributes to its dose-dependent activation. Our study suggests that the Hh signaling gradient is translated into a Ci/Gli phosphorylation gradient that activates Ci/Gli by gradually releasing Sufu-mediated inhibition.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
41
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
42
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
43
|
Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, Zhang J, Hedeen DS, Zhu JF, Capener JL, Bröckel JW, Vu L, King CC, Ruiz-Perez VL, Ge X, Veglia G, Herberg FW, Taylor SS, Myers BR. A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat Struct Mol Biol 2022; 29:990-999. [PMID: 36202993 PMCID: PMC9696579 DOI: 10.1038/s41594-022-00838-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/22/2022] [Indexed: 02/03/2023]
Abstract
The Hedgehog (Hh) cascade is central to development, tissue homeostasis and cancer. A pivotal step in Hh signal transduction is the activation of glioma-associated (GLI) transcription factors by the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO). How SMO activates GLI remains unclear. Here we show that SMO uses a decoy substrate sequence to physically block the active site of the cAMP-dependent protein kinase (PKA) catalytic subunit (PKA-C) and extinguish its enzymatic activity. As a result, GLI is released from phosphorylation-induced inhibition. Using a combination of in vitro, cellular and organismal models, we demonstrate that interfering with SMO-PKA pseudosubstrate interactions prevents Hh signal transduction. The mechanism uncovered echoes one used by the Wnt cascade, revealing an unexpected similarity in how these two essential developmental and cancer pathways signal intracellularly. More broadly, our findings define a mode of GPCR-PKA communication that may be harnessed by a range of membrane receptors and kinases.
Collapse
Affiliation(s)
- John T Happ
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Corvin D Arveseth
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
- Washington University School of Medicine, St. Louis, MO, USA
| | - Jessica Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Isaac B Nelson
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Danielle S Hedeen
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jacob L Capener
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
- Biological and Biomedical Sciences Program, University of North Carolina, Chapel Hill, NC, USA
| | - Jan W Bröckel
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Lily Vu
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - C C King
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones Biomédicas 'Alberto Sols,' Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Friedrich W Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Benjamin R Myers
- Department of Oncological Sciences, Department of Biochemistry, and Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
44
|
Zhu J, Patel R, Trofka A, Harfe BD, Mackem S. Sonic hedgehog is not a limb morphogen but acts as a trigger to specify all digits in mice. Dev Cell 2022; 57:2048-2062.e4. [PMID: 35977544 PMCID: PMC9709693 DOI: 10.1016/j.devcel.2022.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Limb patterning by Sonic hedgehog (Shh), via either graded spatial or temporal signal integration, is a paradigm for "morphogen" function, yet how Shh instructs distinct digit identities remains controversial. Here, we bypass the Shh requirement in cell survival during outgrowth and demonstrate that a transient, early Shh pulse is both necessary and sufficient for normal mouse limb development. Shh response is only short range and is limited to the Shh-expressing zone during this time window. Shh patterns digits 1-3, anterior to this zone, by an indirect mechanism rather than direct spatial or temporal signal integration. Using a genetic relay-signaling assay, we discover that Shh also specifies digit 1/thumb (thought to be exclusively Shh independent) indirectly, and this finding implicates Shh in a unique regulatory hierarchy for digit 1 evolutionary adaptations such as opposable thumbs. This study illuminates Shh as a trigger for an indirect downstream network that becomes rapidly self-sustaining, with mechanistic relevance for limb development, regeneration, and evolution.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Rashmi Patel
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Brian D Harfe
- College of Medicine, Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA.
| |
Collapse
|
45
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
46
|
Lancman JJ, Hasso SM, Suzuki T, Kherdjemil Y, Kmita M, Ferris A, Dong PDS, Ros MA, Fallon JF. Downregulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Dev Dyn 2022; 251:1439-1455. [PMID: 34719843 PMCID: PMC9054941 DOI: 10.1002/dvdy.431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. RESULTS As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. CONCLUSIONS Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.
Collapse
Affiliation(s)
- Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sean M Hasso
- Heat Biologics, Morrisville, North Carolina, USA
| | - Takayuki Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yacine Kherdjemil
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrea Ferris
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria-Sociedad para al Desarrollo Cantabria, Santander, Spain
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - John F Fallon
- Department of Anatomy, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Lemos T, Merchant A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:960943. [PMID: 36091167 PMCID: PMC9453489 DOI: 10.3389/fonc.2022.960943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Hedgehog (HH) pathway is a promising therapeutic target in hematological malignancies. Activation of the pathway has been tied to greater chances of relapse and poorer outcomes in several hematological malignancies and inhibiting the pathway has improved outcomes in several clinical trials. One inhibitor targeting the pathway via the protein Smoothened (SMO), glasdegib, has been approved by the FDA for use with a low dose cytarabine regiment in some high-risk acute myeloid leukemia patients (AML). If further clinical trials in glasdegib produce positive results, there may soon be more general use of HH inhibitors in the treatment of hematological malignancies.While there is clinical evidence that HH inhibitors may improve outcomes and help prevent relapse, a full understanding of any mechanism of action remains elusive. The bulk of AML cells exhibit primary resistance to SMO inhibition (SMOi), leading some to hypothesize that that clinical activity of SMOi is mediated through modulation of self-renewal and chemoresistance in rare cancer stem cells (CSC). Direct evidence that CSC are being targeted in patients by SMOi has proven difficult to produce, and here we present data to support the alternative hypothesis that suggests the clinical benefit observed with SMOi is being mediated through stromal cells in the tumor microenvironment.This paper's aims are to review the history of the HH pathway in hematopoiesis and hematological malignancy, to highlight the pre-clinical and clinical evidence for its use a therapeutic target, and to explore the evidence for stromal activation of the pathway acting to protect CSCs and enable self-renewal of AML and other diseases. Finally, we highlight gaps in the current data and present hypotheses for new research directions.
Collapse
Affiliation(s)
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
48
|
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat Cell Biol 2022; 24:1088-1098. [PMID: 35725768 PMCID: PMC10016618 DOI: 10.1038/s41556-022-00935-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.
Collapse
|
49
|
Sargazi ML, Jafarinejad-Farsangi S, Moazzam-Jazi M, Rostamzadeh F, Karam ZM. The crosstalk between long non-coding RNAs and the hedgehog signaling pathway in cancer. Med Oncol 2022; 39:127. [PMID: 35716241 DOI: 10.1007/s12032-022-01710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Hedgehog (Hh) is a conserved signaling pathway that is involved in embryo development as well as adult tissue maintenance and repair in invertebrates and vertebrates. Abnormal activation of this pathway in various types of malignant drug- and apoptosis-resistant tumors has made it a therapeutic target against tumorigenesis. Thus, understanding the molecular mechanisms that promote the activation or inhibition of this pathway is critical. Long non-coding RNAs (lncRNAs), a subclass of non-coding RNAs with a length of > 200 nt, affect the expression of Hh signaling components via a variety of transcriptional and post-transcriptional processes. This review focuses on the crosstalk between lncRNAs and the Hh pathway in carcinogenesis, outlines the broad role of Hh-related lncRNAs in tumor progression, and illustrates their clinical diagnostic, prognostic, and therapeutic potential in tumors.
Collapse
Affiliation(s)
- Marzieh Lotfian Sargazi
- Student Research Committee, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, 7619813159, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 7619813159, Kerman, Iran.
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 19839-63113, Tehran, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, 7619813159, Kerman, Iran
| | - Zahra Miri Karam
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
50
|
Hantel F, Liu H, Fechtner L, Neuhaus H, Ding J, Arlt D, Walentek P, Villavicencio-Lorini P, Gerhardt C, Hollemann T, Pfirrmann T. Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. J Cell Sci 2022; 135:jcs259209. [PMID: 35543157 PMCID: PMC9264362 DOI: 10.1242/jcs.259209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Cilia are evolutionarily conserved organelles that orchestrate a variety of signal transduction pathways, such as sonic hedgehog (SHH) signaling, during embryonic development. Our recent studies have shown that loss of GID ubiquitin ligase function results in aberrant AMP-activated protein kinase (AMPK) activation and elongated primary cilia, which suggests a functional connection to cilia. Here, we reveal that the GID complex is an integral part of the cilium required for primary cilia-dependent signal transduction and the maintenance of ciliary protein homeostasis. We show that GID complex subunits localize to cilia in both Xenopus laevis and NIH3T3 cells. Furthermore, we report SHH signaling pathway defects that are independent of AMPK and mechanistic target of rapamycin (MTOR) activation. Despite correct localization of SHH signaling components at the primary cilium and functional GLI3 processing, we find a prominent reduction of some SHH signaling components in the cilium and a significant decrease in SHH target gene expression. Since our data reveal a critical function of the GID complex at the primary cilium, and because suppression of GID function in X. laevis results in ciliopathy-like phenotypes, we suggest that GID subunits are candidate genes for human ciliopathies that coincide with defects in SHH signal transduction.
Collapse
Affiliation(s)
- Friederike Hantel
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Lisa Fechtner
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Herbert Neuhaus
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Danilo Arlt
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Christoph Gerhardt
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| |
Collapse
|