1
|
Aragón-Raygoza A, Strable J. Diverse roles of ethylene in maize growth and development, and its importance in shaping plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1854-1865. [PMID: 39973110 PMCID: PMC12066121 DOI: 10.1093/jxb/eraf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception, and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize, with an emphasis on the role of ethylene in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.
Collapse
Affiliation(s)
| | - Josh Strable
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
2
|
Pan L, Li R, Wu J, Li Y. The petunia heavy metal P-type ATPase PhHMA5II1 interacts with copper chaperons and regulate Cu detoxification. PLANT CELL REPORTS 2025; 44:29. [PMID: 39800793 DOI: 10.1007/s00299-024-03387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/20/2024] [Indexed: 05/02/2025]
Abstract
KEY MESSAGE An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P1B-type heavy-metal ATPases (HMAs), PhHMA5II1. Heterologous expression of PhHMA5II1 in yeast (Saccharomyces cerevisiae) showed Cu transport activity. The expression of PhHMA5II1 in roots and shoots was unaffected by excess Cu. CRISPR/Cas9-edited mutant lines and PhHMA5II1 overexpressing transgenic plants were generated to investigate the functions of PhHMA5II1 in petunia. The PhHMA5II1 knockout mutant was hypersensitive to excess Cu and accumulated more Cu in roots compared to wild-type petunia. Overexpression of PhHMA5II1 enhanced Cu tolerance and reduced Cu accumulation in roots. Furthermore, PhHMA5II1 localized in endoplasmic reticulum, and the localization was unaffected by excess Cu. Yeast two-hybrid experiments and bimolecular fluorescence complementation assays demonstrate that PhHMA5II1 interact with petunia copper chaperons, PhATX1 and PhCCH. Finally, RNA-sequencing revealed that knockout PhHMA5II1 affected the expression of genes involved in cell-wall organization, copper ion homeostasis, and response to oxidative stress. Taken together, PhHMA5II1 plays an important role in Cu detoxification in petunia.
Collapse
Affiliation(s)
- Liru Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruiling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinglei Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Sun M, Deng Y. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109182. [PMID: 39405998 DOI: 10.1016/j.plaphy.2024.109182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al3+ transport remains unexplored. This study identified eight HmHMA genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific HmHMA genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al3+ stress, indicating their potential role in Al3+ tolerance. HmHMA2 showed significant expression in roots, especially under Al3+ stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al3+ tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
5
|
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2674. [PMID: 39409543 PMCID: PMC11478528 DOI: 10.3390/plants13192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L-1. The signaling pathway of ethylene starts with its binding to five membrane-anchored receptors, which results in the deactivation of Constitutive Triple Response 1 (CTR1, a protein kinase) that does not exert its inhibitory effect on Ethylene Insensitive 2 (EIN2) by phosphorylating its cytosolic C-terminal domain. An analysis of germination in the presence of inhibitors of ethylene synthesis or action, and using seeds from mutant lines altered in terms of the genes involved in ethylene synthesis (acs) and the signaling pathway (etr1, ein2, ein4, ctr1 and erf1), demonstrates the involvement of ethylene in the regulation of seed dormancy. The promoting effect of ethylene is also regulated through crosstalk with abscisic acid (ABA) and gibberellins (GAs), essential hormones involved in seed germination and dormancy, and Reactive Oxygen Species (ROS). Using a mutant of the proteolytic N-degron pathway, Proteolysis (PRT6), the Ethylene Response Factors (ERFs) from group VII (HRE1, HRE2, RAP 2.2, RAP2.3 and RAP 2.12) have also been identified as being involved in seed insensitivity to ethylene. This review highlights the key roles of EIN2 and EIN3 in the ethylene signaling pathway and in interactions with different hormones and discusses the responsiveness of seeds to ethylene, depending on the species and the dormancy status.
Collapse
|
6
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
7
|
Cao S, Wang M, Pan J, Luo D, Mubeen S, Wang C, Yue J, Wu X, Wu Q, Zhang H, Chen C, Rehman M, Xie S, Li R, Chen P. Physiological, transcriptome and gene functional analysis provide novel sights into cadmium accumulation and tolerance mechanisms in kenaf. J Environ Sci (China) 2024; 137:500-514. [PMID: 37980034 DOI: 10.1016/j.jes.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Kenaf is considered to have great potential for remediation of heavy metals in ecosystems. However, studies on molecular mechanisms of root Cd accumulation and tolerance are still inadequate. In this study, two differently tolerant kenaf cultivars were selected as materials and the physiological and transcriptomic effects were evaluated under Cd stress. This study showed that 200 µmol/L CdCl2 treatment triggered the reactive oxygen species (ROS) explosion and membrane lipid peroxidation. Compared with the Cd-sensitive cultivar 'Z', the Cd-tolerant cultivar 'F' was able to resist oxidative stress in cells by producing higher antioxidant enzyme activities and increasing the contents of ascorbic acid (AsA) and glutathione (GSH). The root cell wall of 'F' exhibited higher polysaccharide contents under Cd treatment, providing more Cd-binding sites. There were 3,439 differentially expressed genes (DEGs) that were co-regulated by Cd treatment in two cultivars. Phenylpropanoid biosynthesis and plant hormone signal transduction pathways were significantly enriched by functional annotation analysis. DEGs associated with pectin, cellulose, and hemi-cellulose metabolism were involved in Cd chelation of root cell wall; V-ATPases, ABCC3 and Narmp3 could participated in vacuolar compartmentalization of Cd; PDR1 was responsible for Cd efflux; the organic acid transporters contributed to the absorption of Cd in soil. These genes might have played key roles in kenaf Cd tolerance and Cd accumulation. Moreover, HcZIP2 was identified to be involved in Cd uptake and transport in kenaf. Our findings provide a deeper understanding of the molecular pathways underlying Cd accumulation and detoxification mechanisms in kenaf.
Collapse
Affiliation(s)
- Shan Cao
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meng Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qijing Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hui Zhang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Canni Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sichen Xie
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Li J, Zhang Z, Shi G. Genome-Wide Identification and Expression Profiling of Heavy Metal ATPase (HMA) Genes in Peanut: Potential Roles in Heavy Metal Transport. Int J Mol Sci 2024; 25:613. [PMID: 38203784 PMCID: PMC10779257 DOI: 10.3390/ijms25010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The heavy metal ATPase (HMA) family belongs to the P-type ATPase superfamily and plays an essential role in the regulation of metal homeostasis in plants. However, the gene family has not been fully investigated in peanut. Here, a genome-wide identification and bioinformatics analysis was performed on AhHMA genes in peanut, and the expression of 12 AhHMA genes in response to Cu, Zn, and Cd was evaluated in two peanut cultivars (Silihong and Fenghua 1) differing in Cd accumulation. A total of 21 AhHMA genes were identified in the peanut genome, including ten paralogous gene pairs derived from whole-genome duplication, and an additional gene resulting from tandem duplication. AhHMA proteins could be divided into six groups (I-VI), belonging to two clades (Zn/Co/Cd/Pb-ATPases and Cu/Ag-ATPases). Most AhHMA proteins within the same clade or group generally have a similar structure. However, significant divergence exists in the exon/intron organization even between duplicated gene pairs. RNA-seq data showed that most AhHMA genes are preferentially expressed in roots, shoots, and reproductive tissues. qRT-PCR results revealed that AhHMA1.1/1.2, AhHMA3.1/3.2, AhHMA7.1/7.4, and AhHMA8.1 might be involved in Zn transport in peanut plants, while AhHMA3.2 and AhHMA7.5 might be involved in Cd transport. Our findings provide clues to further characterize the functions of AhHMA genes in metal uptake and translocation in peanut plants.
Collapse
Affiliation(s)
| | | | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (J.L.); (Z.Z.)
| |
Collapse
|
9
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, Müller L, Uzun B, Jewell DA, Dong J, Shakeel SN, Groth G, Binder BM, Grigoryan G, Schaller GE. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2215195120. [PMID: 37253004 PMCID: PMC10266040 DOI: 10.1073/pnas.2215195120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
Collapse
Affiliation(s)
- Beenish J. Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | | | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - David A. Jewell
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - Jian Dong
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN37996
| | - Gevorg Grigoryan
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
11
|
Yang Z, Wu HT, Yang H, Chen WD, Liu JL, Yang F, Tai L, Li BB, Yuan B, Liu WT, Zhang YF, Luo YR, Chen KM. Overexpression of Sedum SpHMA2, SpHMA3 and SpNramp6 in Brassica napus increases multiple heavy metals accumulation for phytoextraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130970. [PMID: 36801723 DOI: 10.1016/j.jhazmat.2023.130970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Phytoextraction is an environmentally friendly phytoremediation technology that can reduce the total amount of heavy metals (HMs) in the soil. Hyperaccumulators or hyperaccumulating transgenic plants with biomass are important biomaterials for phytoextraction. In this study, we show that three different HM transporters from the hyperaccumulator Sedum pumbizincicola, SpHMA2, SpHMA3, and SpNramp6, possess Cd transport. These three transporters are located at the plasma membrane, tonoplast, and plasma membrane, respectively. Their transcripts could be strongly stimulated by multiple HMs treatments. To create potential biomaterials for phytoextraction, we overexpressed the three single genes and two combining genes, SpHMA2&SpHMA3 and SpHMA2&SpNramp6, in rapes having high biomass and environmental adaptability, and found that the aerial parts of the SpHMA2-OE3 and SpHMA2&SpNramp6-OE4 lines accumulated more Cd from single Cd-contaminated soil because SpNramp6 transports Cd from root cells to the xylem and SpHMA2 from the stems to the leaves. However, the accumulation of each HM in the aerial parts of all selected transgenic rapes was strengthened in multiple HMs-contaminated soils, probably due to the synergistic transport. The HMs residuals in the soil after the transgenic plant phytoremediation were also greatly reduced. These results provide effective solutions for phytoextraction in both Cd and multiple HMs-contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wan-Di Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
N. D. V, Matsumura H, Munshi AD, Ellur RK, Chinnusamy V, Singh A, Iquebal MA, Jaiswal S, Jat GS, Panigrahi I, Gaikwad AB, Rao AR, Dey SS, Behera TK. Molecular mapping of genomic regions and identification of possible candidate genes associated with gynoecious sex expression in bitter gourd. FRONTIERS IN PLANT SCIENCE 2023; 14:1071648. [PMID: 36938036 PMCID: PMC10017754 DOI: 10.3389/fpls.2023.1071648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Bitter gourd is an important vegetable crop grown throughout the tropics mainly because of its high nutritional value. Sex expression and identification of gynoecious trait in cucurbitaceous vegetable crops has facilitated the hybrid breeding programme in a great way to improve productivity. In bitter gourd, gynoecious sex expression is poorly reported and detailed molecular pathways involve yet to be studied. The present experiment was conducted to study the inheritance, identify the genomic regions associated with gynoecious sex expression and to reveal possible candidate genes through QTL-seq. Segregation for the gynoecious and monoecious sex forms in the F2 progenies indicated single recessive gene controlling gynoecious sex expression in the genotype, PVGy-201. Gynoecious parent, PVGy-201, Monoecious parent, Pusa Do Mausami (PDM), and two contrasting bulks were constituted for deep-sequencing. A total of 10.56, 23.11, 15.07, and 19.38 Gb of clean reads from PVGy-201, PDM, gynoecious bulk and monoecious bulks were generated. Based on the ΔSNP index, 1.31 Mb regions on the chromosome 1 was identified to be associated with gynoecious sex expression in bitter gourd. In the QTL region 293,467 PVGy-201 unique variants, including SNPs and indels, were identified. In the identified QTL region, a total of 1019 homozygous variants were identified between PVGy1 and PDM genomes and 71 among them were non-synonymous variants (SNPS and INDELs), out of which 11 variants (7 INDELs, 4 SNPs) were classified as high impact variants with frame shift/stop gain effect. In total twelve genes associated with male and female gametophyte development were identified in the QTL-region. Ethylene-responsive transcription factor 12, Auxin response factor 6, Copper-transporting ATPase RAN1, CBL-interacting serine/threonine-protein kinase 23, ABC transporter C family member 2, DEAD-box ATP-dependent RNA helicase 1 isoform X2, Polygalacturonase QRT3-like isoform X2, Protein CHROMATIN REMODELING 4 were identified with possible role in gynoecious sex expression. Promoter region variation in 8 among the 12 genes indicated their role in determining gynoecious sex expression in bitter gourd genotype, DBGy-1. The findings in the study provides insight about sex expression in bitter gourd and will facilitate fine mapping and more precise identification of candidate genes through their functional validation.
Collapse
Affiliation(s)
- Vinay N. D.
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hideo Matsumura
- Gene Research Centre, Shinshu University, Ueda, Nagano, Japan
| | - Anilabha Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ranjith Kumar Ellur
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ankita Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gograj Singh Jat
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ipsita Panigrahi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ambika Baladev Gaikwad
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - A. R. Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
13
|
Yang Y, Hao C, Du J, Xu L, Guo Z, Li D, Cai H, Guo H, Li L. The carboxy terminal transmembrane domain of SPL7 mediates interaction with RAN1 at the endoplasmic reticulum to regulate ethylene signalling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:878-892. [PMID: 35832006 DOI: 10.1111/nph.18376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis, copper (Cu) transport to the ethylene receptor ETR1 mediated using RAN1, a Cu transporter located at the endoplasmic reticulum (ER), and Cu homeostasis mediated using SPL7, the key Cu-responsive transcription factor, are two deeply conserved vital processes. However, whether and how the two processes interact to regulate plant development remain elusive. We found that its C-terminal transmembrane domain (TMD) anchors SPL7 to the ER, resulting in dual compartmentalisation of the transcription factor. Immunoprecipitation coupled mass spectrometry, yeast-two-hybrid assay, luciferase complementation imaging and subcellular co-localisation analyses indicate that SPL7 interacts with RAN1 at the ER via the TMD. Genetic analysis revealed that the ethylene-induced triple response was significantly compromised in the spl7 mutant, a phenotype rescuable by RAN1 overexpression but not by SPL7 without the TMD. The genetic interaction was corroborated by molecular analysis showing that SPL7 modulates RAN1 abundance in a TMD-dependent manner. Moreover, SPL7 is feedback regulated by ethylene signalling via EIN3, which binds the SPL7 promoter and represses its transcription. These results demonstrate that ER-anchored SPL7 constitutes a cellular mechanism to regulate RAN1 in ethylene signalling and lay the foundation for investigating how Cu homeostasis conditions ethylene sensitivity in the developmental context.
Collapse
Affiliation(s)
- Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
14
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
15
|
Zhen Y, Ge L, Chen Q, Xu J, Duan Z, Loor JJ, Wang M. Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock-Environment-Plant-Human Health Axis and Microbial Homeostasis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6943-6962. [PMID: 35666880 DOI: 10.1021/acs.jafc.2c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu-NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoqing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| |
Collapse
|
16
|
Gómez-Gallego T, Valderas A, van Tuinen D, Ferrol N. Impact of arbuscular mycorrhiza on maize P 1B-ATPases gene expression and ionome in copper-contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113390. [PMID: 35278990 DOI: 10.1016/j.ecoenv.2022.113390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, symbionts of most land plants, increase plant fitness in metal contaminated soils. To further understand the mechanisms of metal tolerance in the AM symbiosis, the expression patterns of the maize Heavy Metal ATPase (HMA) family members and the ionomes of non-mycorrhizal and mycorrhizal plants grown under different Cu supplies were examined. Expression of ZmHMA5a and ZmHMA5b, whose encoded proteins were predicted to be localized at the plasma membrane, was up-regulated by Cu in non-mycorrhizal roots and to a lower extent in mycorrhizal roots. Gene expression of the tonoplast ZmHMA3a and ZmHMA4 isoforms was up-regulated by Cu-toxicity in shoots and roots of mycorrhizal plants. AM mitigates the changes induced by Cu toxicity on the maize ionome, specially at the highest Cu soil concentration. Altogether these data suggest that in Cu-contaminated soils, AM increases expression of the HMA genes putatively encoding proteins involved in Cu detoxification and balances mineral nutrient uptake improving the nutritional status of the maize plants.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ascensión Valderas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Diederik van Tuinen
- INRAE/AgroSup/Université de Bourgogne UMR1347 Agroécologie, ERL CNRS, 6300 Dijon, France
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
17
|
Hao C, Yang Y, Du J, Deng XW, Li L. The PCY-SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark-induced leaf senescence in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2116623119. [PMID: 35022242 PMCID: PMC8784109 DOI: 10.1073/pnas.2116623119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
Leaf senescence is a critical process in plants and has a direct impact on many important agronomic traits. Despite decades of research on senescence-altered mutants via forward genetics and functional assessment of senescence-associated genes (SAGs) via reverse genetics, the senescence signal and the molecular mechanism that perceives and transduces the signal remain elusive. Here, using dark-induced senescence (DIS) of Arabidopsis leaf as the experimental system, we show that exogenous copper induces the senescence syndrome and transcriptomic changes in light-grown plants parallel to those in DIS. By profiling the transcriptomes and tracking the subcellular copper distribution, we found that reciprocal regulation of plastocyanin, the thylakoid lumen mobile electron carrier in the Z scheme of photosynthetic electron transport, and SAG14 and plantacyanin (PCY), a pair of interacting small blue copper proteins located on the endomembrane, is a common thread in different leaf senescence scenarios, including DIS. Genetic and molecular experiments confirmed that the PCY-SAG14 module is necessary and sufficient for promoting DIS. We also found that the PCY-SAG14 module is repressed by a conserved microRNA, miR408, which in turn is repressed by phytochrome interacting factor 3/4/5 (PIF3/4/5), the key trio of transcription factors promoting DIS. Together, these findings indicate that intracellular copper redistribution mediated by PCY-SAG14 has a regulatory role in DIS. Further deciphering the copper homeostasis mechanism and its interaction with other senescence-regulating pathways should provide insights into our understanding of the fundamental question of how plants age.
Collapse
Affiliation(s)
- Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Ma Y, Wei N, Wang Q, Liu Z, Liu W. Genome-wide identification and characterization of the heavy metal ATPase (HMA) gene family in Medicago truncatula under copper stress. Int J Biol Macromol 2021; 193:893-902. [PMID: 34728304 DOI: 10.1016/j.ijbiomac.2021.10.197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/08/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
In nature, the normal growth, development, and quality of plants are significantly affected by many abiotic stresses, such as drought, salinity, low temperature, and heavy metals. Among heavy metals, copper is an essential element for plant growth and development but also has a toxic effect on plants when its concentration is excessive. Therefore, plants have evolved a complex regulatory network to regulate the balance of copper ions in cells. Heavy metal ATPases (HMAs), which transport heavy metals to intracellular compartments or detoxify heavy metals present at excessive concentrations, have been extensively studied in model plant species. However, no comprehensive and systematic surveys of members of the HMA gene family have been conducted in the model legume species Medicago truncatula. Here, nine putative MtHMAs were identified in the M. truncatula genome. These MtHMAs were phylogenetically divided into two distinct groups. The members in each group had a relatively conserved gene structure and motif composition. The number of introns in the MtHMAs varied from 5 to 16, with the majority of these genes containing 8 introns. The expression patterns showed that MtHMAs exhibit preferential or distinct expression patterns among different tissues. Finally, the expression patterns of the members of this gene family were verified in the leaves and roots of plants under Cu stress. Our findings will be valuable for the functional investigation and application of members of this gene family in M. truncatula and other related legume species.
Collapse
Affiliation(s)
- Yitong Ma
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Center for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Wei
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Center for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiuxia Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Center for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Center for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Center for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Transcriptome Profiling of Cu Stressed Petunia Petals Reveals Candidate Genes Involved in Fe and Cu Crosstalk. Int J Mol Sci 2021; 22:ijms222111604. [PMID: 34769033 PMCID: PMC8583722 DOI: 10.3390/ijms222111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu–Fe crosstalk in flowers.
Collapse
|
20
|
Wang X, Song M, Flaishman MA, Chen S, Ma H. AGAMOUS Gene as a New Sex-Identification Marker in Fig ( Ficus carica L.) Is More Efficient Than RAN1. FRONTIERS IN PLANT SCIENCE 2021; 12:755358. [PMID: 34745187 PMCID: PMC8564383 DOI: 10.3389/fpls.2021.755358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Fig is an ancient gynodioecious fruit tree with females for commercial fruit production and hermaphrodites (males) sometimes used as pollen providers. An early sex-identification method would improve breeding efficiency. Three AGAMOUS (AG) genes were recruited from the Ficus carica genome using AG sequences from Ficus microcarpa and Ficus hispida. FcAG was 5230 bp in length, with 7 exons and 6 introns, and a 744-bp coding sequence. The gene was present in both female and male fig genomes, with a 15-bp deletion in the 7th exon. The other two AG genes (FcAG2-Gall_Stamen and FcAG3-Gall_Stamen) were male-specific, without the 15-bp deletion (759-bp coding sequence), and were only expressed in the gall and stamen of the male fig fruit. Using the deletion as the forward primer (AG-Marker), male plants were very efficiently identified by the presence of a 146-bp PCR product. The previously reported fig male and female polymorphism gene RESPONSIVE-TO-ANTAGONIST1 (RAN1) was also cloned and compared between male and female plants. Fifteen SNPs were found in the 3015-bp protein-coding sequence. Among them, 12 SNPs were identified as having sex-differentiating capacity by checking the sequences of 27 known male and 24 known female cultivars. A RAN1-Marker of 608 bp, including 6 SNPs, was designed, and a PCR and sequencing-based method was verified with 352 fig seedlings from two hybrid populations. Our results confirmed that the newly established AG-Marker is as accurate as the RAN1-Marker, and provide new clues to understanding Ficus sex determination.
Collapse
Affiliation(s)
- Xu Wang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Miaoyu Song
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Moshe A. Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Wu D, Tanaka R, Li X, Ramstein GP, Cu S, Hamilton JP, Buell CR, Stangoulis J, Rocheford T, Gore MA. High-resolution genome-wide association study pinpoints metal transporter and chelator genes involved in the genetic control of element levels in maize grain. G3-GENES GENOMES GENETICS 2021; 11:6156830. [PMID: 33677522 PMCID: PMC8759812 DOI: 10.1093/g3journal/jkab059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Despite its importance to plant function and human health, the genetics underpinning element levels in maize grain remain largely unknown. Through a genome-wide association study in the maize Ames panel of nearly 2,000 inbred lines that was imputed with ∼7.7 million SNP markers, we investigated the genetic basis of natural variation for the concentration of 11 elements in grain. Novel associations were detected for the metal transporter genes rte2 (rotten ear2) and irt1 (iron-regulated transporter1) with boron and nickel, respectively. We also further resolved loci that were previously found to be associated with one or more of five elements (copper, iron, manganese, molybdenum, and/or zinc), with two metal chelator and five metal transporter candidate causal genes identified. The nas5 (nicotianamine synthase5) gene involved in the synthesis of nicotianamine, a metal chelator, was found associated with both zinc and iron and suggests a common genetic basis controlling the accumulation of these two metals in the grain. Furthermore, moderate predictive abilities were obtained for the 11 elemental grain phenotypes with two whole-genome prediction models: Bayesian Ridge Regression (0.33–0.51) and BayesB (0.33–0.53). Of the two models, BayesB, with its greater emphasis on large-effect loci, showed ∼4–10% higher predictive abilities for nickel, molybdenum, and copper. Altogether, our findings contribute to an improved genotype-phenotype map for grain element accumulation in maize.
Collapse
Affiliation(s)
- Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Suong Cu
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
22
|
Sheng H, Jiang Y, Rahmati M, Chia JC, Dokuchayeva T, Kavulych Y, Zavodna TO, Mendoza PN, Huang R, Smieshka LM, Miller J, Woll AR, Terek OI, Romanyuk ND, Piñeros M, Zhou Y, Vatamaniuk OK. YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in Brachypodium. PLANT PHYSIOLOGY 2021; 186:655-676. [PMID: 33576792 PMCID: PMC8154065 DOI: 10.1093/plphys/kiab054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/18/2021] [Indexed: 05/05/2023]
Abstract
Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.
Collapse
Affiliation(s)
- Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Yulin Jiang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Maryam Rahmati
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tatyana Dokuchayeva
- Cornell Nutrient Analysis Laboratory, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yana Kavulych
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Tetiana-Olena Zavodna
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Patrick N Mendoza
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rong Huang
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Louisa M Smieshka
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Julia Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Arthur R Woll
- Cornell University, Cornell High Energy Synchrotron Source (CHESS), Ithaca, NY 14853, USA
| | - Olga I Terek
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Nataliya D Romanyuk
- Department of Biology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Miguel Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, USA
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Author for communication:
| |
Collapse
|
23
|
Zamora-Ballesteros C, Pinto G, Amaral J, Valledor L, Alves A, Diez JJ, Martín-García J. Dual RNA-Sequencing Analysis of Resistant ( Pinus pinea) and Susceptible ( Pinus radiata) Hosts during Fusarium circinatum Challenge. Int J Mol Sci 2021; 22:5231. [PMID: 34063405 PMCID: PMC8156185 DOI: 10.3390/ijms22105231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Fusarium circinatum causes one of the most important diseases of conifers worldwide, the pine pitch canker (PPC). However, no effective field intervention measures aiming to control or eradicate PPC are available. Due to the variation in host genetic resistance, the development of resistant varieties is postulated as a viable and promising strategy. By using an integrated approach, this study aimed to identify differences in the molecular responses and physiological traits of the highly susceptible Pinus radiata and the highly resistant Pinus pinea to F. circinatum at an early stage of infection. Dual RNA-Seq analysis also allowed to evaluate pathogen behavior when infecting each pine species. No significant changes in the physiological analysis were found upon pathogen infection, although transcriptional reprogramming was observed mainly in the resistant species. The transcriptome profiling of P. pinea revealed an early perception of the pathogen infection together with a strong and coordinated defense activation through the reinforcement and lignification of the cell wall, the antioxidant activity, the induction of PR genes, and the biosynthesis of defense hormones. On the contrary, P. radiata had a weaker response, possibly due to impaired perception of the fungal infection that led to a reduced downstream defense signaling. Fusarium circinatum showed a different transcriptomic profile depending on the pine species being infected. While in P. pinea, the pathogen focused on the degradation of plant cell walls, active uptake of the plant nutrients was showed in P. radiata. These findings present useful knowledge for the development of breeding programs to manage PPC.
Collapse
Affiliation(s)
- Cristina Zamora-Ballesteros
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Gloria Pinto
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Joana Amaral
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain;
| | - Artur Alves
- Centre for Environmental and Marine Studies, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (G.P.); (J.A.); (A.A.)
| | - Julio J. Diez
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| | - Jorge Martín-García
- Sustainable Forest Management Research Institute, University of Valladolid—INIA, 34004 Palencia, Spain; (J.J.D.); (J.M.-G.)
- Department of Vegetal Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
24
|
Zhang H, Guo Z, Zhuang Y, Suo Y, Du J, Gao Z, Pan J, Li L, Wang T, Xiao L, Qin G, Jiao Y, Cai H, Li L. MicroRNA775 regulates intrinsic leaf size and reduces cell wall pectin levels by targeting a galactosyltransferase gene in Arabidopsis. THE PLANT CELL 2021; 33:581-602. [PMID: 33955485 PMCID: PMC8136896 DOI: 10.1093/plcell/koaa049] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
Plants possess unique primary cell walls made of complex polysaccharides that play critical roles in determining intrinsic cell and organ size. How genes responsible for synthesizing and modifying the polysaccharides in the cell wall are regulated by microRNAs (miRNAs) to control plant size remains largely unexplored. Here we identified 23 putative cell wall-related miRNAs, termed as CW-miRNAs, in Arabidopsis thaliana and characterized miR775 as an example. We showed that miR775 post-transcriptionally silences GALT9, which encodes an endomembrane-located galactosyltransferase belonging to the glycosyltransferase 31 family. Over-expression of miR775 and deletion of GALT9 led to significantly enlarged leaf-related organs, primarily due to increased cell size. Monosaccharide quantification, confocal Raman imaging, and immunolabeling combined with atomic force microscopy revealed that the MIR775A-GALT9 circuit modulates pectin levels and the elastic modulus of the cell wall. We also showed that MIR775A is directly repressed by the transcription factor ELONGATED HYPOCOTYL5 (HY5). Genetic analysis confirmed that HY5 is a negative regulator of leaf size that acts through the HY5-MIR775A-GALT9 repression cascade to control pectin levels. These findings demonstrate that miR775-regulated cell wall remodeling is an integral determinant of intrinsic leaf size in A. thaliana. Studying other CW-miRNAs would provide more insights into cell wall biology.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Jianmei Du
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Li Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Tianxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Liang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, 100101 Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
25
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
27
|
He G, Qin L, Tian W, Meng L, He T, Zhao D. Heavy Metal Transporters-Associated Proteins in S. tuberosum: Genome-Wide Identification, Comprehensive Gene Feature, Evolution and Expression Analysis. Genes (Basel) 2020; 11:genes11111269. [PMID: 33126505 PMCID: PMC7694169 DOI: 10.3390/genes11111269] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
- Institute of New Rural Development of Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
- Guizhou Academy of Agricultural Science, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| |
Collapse
|
28
|
Wang L, Zhang F, Qiao H. Chromatin Regulation in the Response of Ethylene: Nuclear Events in Ethylene Signaling. SMALL METHODS 2020; 4:1900288. [PMID: 34189257 PMCID: PMC8238466 DOI: 10.1002/smtd.201900288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 05/15/2023]
Abstract
Plant hormones, produced in response to environmental stimuli, regulate almost all aspects of plant growth and development. Ethylene is a gaseous plant hormone that plays pleotropic roles in plant growth, plant development, fruit ripening, stress responses, and pathogen defenses. After decades of research, the key components of ethylene signaling have been identified and characterized. Although the molecular mechanisms of the sensing of ethylene signal and the transduction of ethylene signaling have been studied extensively, how chromatin influences ethylene signaling and ethylene response is a new area of research. This review describes the current understanding of how chromatin modifications, specifically histone acetylation, regulate ethylene signaling and the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
29
|
Shirasawa K, Yakushiji H, Nishimura R, Morita T, Jikumaru S, Ikegami H, Toyoda A, Hirakawa H, Isobe S. The Ficus erecta genome aids Ceratocystis canker resistance breeding in common fig (F. carica). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1313-1322. [PMID: 31978270 PMCID: PMC7317799 DOI: 10.1111/tpj.14703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 05/31/2023]
Abstract
Ficus erecta, a wild relative of the common fig (F. carica), is a donor of Ceratocystis canker resistance in fig breeding programmes. Interspecific hybridization followed by recurrent backcrossing is an effective method to transfer the resistance trait from wild to cultivated fig. However, this process is time consuming and labour intensive for trees, especially for gynodioecious plants such as fig. In this study, genome resources were developed for F. erecta to facilitate fig breeding programmes. The genome sequence of F. erecta was determined using single-molecule real-time sequencing technology. The resultant assembly spanned 331.6 Mb with 538 contigs and an N50 length of 1.9 Mb, from which 51 806 high-confidence genes were predicted. Pseudomolecule sequences corresponding to the chromosomes of F. erecta were established with a genetic map based on single nucleotide polymorphisms from double-digest restriction-site-associated DNA sequencing. Subsequent linkage analysis and whole-genome resequencing identified a candidate gene for the Ceratocystis canker resistance trait. Genome-wide genotyping analysis enabled the selection of female lines that possessed resistance and effective elimination of the donor genome from the progeny. The genome resources provided in this study will accelerate and enhance disease-resistance breeding programmes in fig.
Collapse
Affiliation(s)
| | | | | | - Takeshige Morita
- Agricultural Technology Research CenterHiroshima Prefectural Technology Research InstituteHigashihiroshimaJapan
| | - Shota Jikumaru
- Agricultural Technology Research CenterHiroshima Prefectural Technology Research InstituteHigashihiroshimaJapan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
31
|
Wang HQ, Sun LP, Wang LX, Fang XW, Li ZQ, Zhang FF, Hu X, Qi C, He JM. Ethylene mediates salicylic-acid-induced stomatal closure by controlling reactive oxygen species and nitric oxide production in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110464. [PMID: 32234220 DOI: 10.1016/j.plantsci.2020.110464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/20/2023]
Abstract
Both salicylic acid (SA) and ethylene induce stomatal closure and positively regulate stomatal immunity, but their interactions in guard cell signaling are unclear. Here, we observed that SA induced the expression of ethylene biosynthetic genes; the production of ethylene, reactive oxygen species (ROS) and nitric oxide (NO); and stomatal closure in Arabidopsis thaliana. However, SA-induced stomatal closure was inhibited by an ethylene biosynthetic inhibitor and mutations in ethylene biosynthetic genes, ethylene-signaling genes [RESPONSE TO ANTAGONIST 1 (RAN1), ETHYLENE RESPONSE 1 (ETR1), ETHYLENE INSENSITIVE 2 (EIN2), EIN3 and ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2)], NADPH oxidase genes [ATRBOHD and ATRBOHF], and nitrate reductase genes (NIA1 and NIA2). Furthermore, SA-triggered ROS production in guard cells was impaired in ran1, etr1, AtrbohD and AtrbohF, but not in ein2, ein3 or arr2. SA-triggered NO production was impaired in all ethylene-signaling mutants tested and in nia1 and nia2. The stomata of mutants for CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) showed constitutive ROS and NO production and closure. These results indicate that ethylene mediates SA-induced stomatal closure by activating ATRBOHD/F-mediated ROS synthesis in an RAN1-, ETR1- and CTR1-dependent manner. This in turn induces NIA1/2-mediated NO production and subsequent stomatal closure via the ETR1, EIN2, EIN3 and ARR2-dependent pathway(s).
Collapse
Affiliation(s)
- Hui-Qin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li-Ping Sun
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Li-Xiao Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Wei Fang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhong-Qi Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Fang-Fang Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Hu
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Cheng Qi
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
32
|
Narendrula-Kotha R, Theriault G, Mehes-Smith M, Kalubi K, Nkongolo K. Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:1-27. [PMID: 30725190 DOI: 10.1007/398_2018_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metals are major abiotic stressors of many organisms, but their toxicity in plants is not as studied as in microorganisms and animals. Likewise, research in plant responses to metal contamination is sketchy. Candidate genes associated with metal resistance in plants have been recently discovered and characterized. Some mechanisms of plant adaptation to metal stressors have been now decrypted. New knowledge on microbial reaction to metal contamination and the relationship between bacterial, archaeal, and fungal resistance to metals has broadened our understanding of metal homeostasis in living organisms. Recent reviews on metal toxicity and resistance mechanisms focused only on the role of transcriptomics, proteomics, metabolomics, and ionomics. This review is a critical analysis of key findings on physiological and genetic processes in plants and microorganisms in responses to soil metal contaminations.
Collapse
Affiliation(s)
| | - Gabriel Theriault
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | | | - Kersey Kalubi
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
- Department of Biology, Laurentian University, Sudbury, ON, Canada.
| |
Collapse
|
33
|
Hoppen C, Groth G. Novel insights into the transfer routes of the essential copper cofactor to the ethylene plant hormone receptor family. PLANT SIGNALING & BEHAVIOR 2020; 15:1716512. [PMID: 31985325 PMCID: PMC7053957 DOI: 10.1080/15592324.2020.1716512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The plant hormone ethylene is a key regulator of growth, development and stress adaptation at all stages of the plant life cycle. Signal perception and response to the plant hormone are mediated by a family of receptor kinases localized at the ER-Golgi network which gain their high affinity and specificity for the chemically simple ethylene molecule by an essential copper cofactor bound at their transmembrane domain. Transfer of this cofactor from the plant plasma membrane to the ER-localized receptors requires secured cellular transport of the reactive transition metal. In a recent study, we disclosed the transport proteins involved in the copper transfer to the receptors and identified that cytoplasmic chaperones of the ATX1-family and a membrane-bound P-type ATPase are involved in copper routing. Strictly speaking, our data show that receptors can acquire their copper load by different routes and adopt the metal ion from the plasma membrane either by sequential transfer from soluble chaperones of the ATX1-family via the ER-bound copper-transporting ATPase RAN1 or by direct transfer from the soluble chaperones. Here, we have studied the properties of the soluble plant copper chaperone isoforms, ATX1 and CCH, in more detail. Our data support different cellular functions of these isoforms on copper mobilization.
Collapse
Affiliation(s)
- Claudia Hoppen
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- CONTACT Georg Groth Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf D-40204, Germany
| |
Collapse
|
34
|
Kastoori Ramamurthy R, Xiang Q, Hsieh EJ, Liu K, Zhang C, Waters BM. New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant spl7 in Arabidopsis thaliana. Metallomics 2019; 10:1824-1840. [PMID: 30460953 DOI: 10.1039/c8mt00287h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron (Fe) and copper (Cu) are essential micronutrients for energy metabolism and reactive oxygen species (ROS) scavenging. Some Cu-containing proteins can be substituted with Fe-containing proteins, and vice versa, while several Arabidopsis genes are regulated by both metals. Few details of how plants coordinate Fe-Cu crosstalk are known. Gene expression was measured in the roots and rosettes of Fe, Cu, and simultaneously Fe and Cu deficient WT plants and a mutant of the Cu-uptake transcription factor SPL7. The spl7 mutant accumulated excess Fe under normal conditions, and lower Fe supply rescued the growth phenotype and normalized the Fe : Cu ratios. Most Fe regulated genes were expressed similarly in the WT and spl7 mutant, although at higher fold-change levels in spl7 mutants. Expression patterns indicated that both SPL7 and the FIT Fe uptake transcription factor influenced the expression of many key Fe uptake genes. Most notably, the newly discovered IMA/FEP genes and the subgroup Ib bHLH genes, which are upstream of Fe uptake responses, were repressed in the WT under Cu deficiency. Several AP2/ethylene response factor (AP2/ERF) genes and other redox homeostasis network genes were derepressed in spl7 mutants. Together, we present new information about Fe-Cu crosstalk in plants that could be applied for developing abiotic stress tolerant crops.
Collapse
|
35
|
Hoppen C, Müller L, Hänsch S, Uzun B, Milić D, Meyer AJ, Weidtkamp-Peters S, Groth G. Soluble and membrane-bound protein carrier mediate direct copper transport to the ethylene receptor family. Sci Rep 2019; 9:10715. [PMID: 31341214 PMCID: PMC6656775 DOI: 10.1038/s41598-019-47185-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2019] [Indexed: 01/11/2023] Open
Abstract
The plant hormone ethylene is a key regulator of plant growth, development and stress adaption. Ethylene perception and response are mediated by a family of integral membrane receptors (ETRs) localized at the ER-Golgi network. The biological function of these receptors relies on a protein-bound copper cofactor. Nonetheless, molecular processes and structures controlling assembly and integration of the metal into the functional plant hormone receptor are still unknown. Here, we have explored the molecular pathways of copper transfer from the plant cytosol to the ethylene receptor family by analyzing protein-protein interactions of receptors with soluble and membrane-bound plant copper carriers. Our results suggest that receptors primarily acquire their metal cofactor from copper transporter RESPONSIVE-TO-ANTAGONIST-1 (RAN1) which has been loaded with the transition metal beforehand by soluble copper carriers of the ATX1-family. In addition, we found evidence for a direct interaction of ETRs with soluble chaperones ANTIOXIDANT-1 (ATX1) and COPPER TRANSPORT PROTEIN (CCH) raising the possibility of a direct copper exchange between soluble chaperones and receptors.
Collapse
Affiliation(s)
- Claudia Hoppen
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, 40225, Germany
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, 40225, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging (CAi), Heinrich Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, 40225, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, 40225, Germany
| | - Dalibor Milić
- Department of Structural and Computational Biology, Max Perutz Labs, Campus-Vienna-Biocenter 5, University of Vienna, 1030, Wien, Austria
| | - Andreas J Meyer
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Stefanie Weidtkamp-Peters
- Center for Advanced Imaging (CAi), Heinrich Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, 40225, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Universitätstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|
36
|
Schott-Verdugo S, Müller L, Classen E, Gohlke H, Groth G. Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain. Sci Rep 2019; 9:8869. [PMID: 31222090 PMCID: PMC6586836 DOI: 10.1038/s41598-019-45189-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
Abstract
The structure, mechanism of action and copper stoichiometry of the transmembrane sensor domain of the plant ethylene receptor ETR1 and homologs have remained elusive, hampering the understanding on how the perception of the plant hormone ethylene is transformed into a downstream signal. We generated the first structural model of the transmembrane sensor domain of ETR1 by integrating ab initio structure prediction and coevolutionary information. To refine and independently validate the model, we determined protein-related copper stoichiometries on purified receptor preparations and explored the helix arrangement by tryptophan scanning mutagenesis. All-atom molecular dynamics simulations of the dimeric model reveal how ethylene can bind proximal to the copper ions in the receptor, illustrating the initial stages of the ethylene perception process.
Collapse
Affiliation(s)
- Stephan Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elisa Classen
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, Jülich, Germany.
- Bioeconomy Science Center, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Bioeconomy Science Center, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
37
|
Zhao H, Wang L, Zhao FJ, Wu L, Liu A, Xu W. SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. PLANT, CELL & ENVIRONMENT 2019; 42:1112-1124. [PMID: 30311663 DOI: 10.1111/pce.13456] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Collapse
Affiliation(s)
- Haixia Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Anna Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Wang L, Qiao H. New Insights in Transcriptional Regulation of the Ethylene Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:790. [PMID: 31275338 PMCID: PMC6591485 DOI: 10.3389/fpls.2019.00790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/31/2019] [Indexed: 05/19/2023]
Abstract
As any living organisms, plants must respond to a wide variety of environmental stimuli. Plant hormones regulate almost all aspects of plant growth and development. Among all the plant hormones, ethylene is the only gaseous plant hormone that plays pleiotropic roles in plant growth, plant development and stress responses. Transcription regulation is one main mechanism by which a cell orchestrates gene activity. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response. Here we review the progress of transcription regulation in the ethylene response.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Hong Qiao,
| |
Collapse
|
39
|
Chen Y, Grimplet J, David K, Castellarin SD, Terol J, Wong DCJ, Luo Z, Schaffer R, Celton JM, Talon M, Gambetta GA, Chervin C. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:63-72. [PMID: 30348329 DOI: 10.1016/j.plantsci.2018.07.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 05/10/2023]
Abstract
Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation.
Collapse
Affiliation(s)
- Yi Chen
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| | - Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de La Rioja, Gobierno de la Rioja, Logroño, Spain.
| | - Karine David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Simone Diego Castellarin
- University of British Columbia, Wine Research Centre, 2205 East Mall, Vancouver, BC, V6T1Z4, Canada.
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - Zhiwei Luo
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Robert Schaffer
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences, INRA, BP 60057, 49071 Beaucouze Cedex, France.
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Gregory Alan Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 33140 Villenave d'Ornon, France.
| | - Christian Chervin
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
40
|
Zhang C, Lu W, Yang Y, Shen Z, Ma JF, Zheng L. OsYSL16 is Required for Preferential Cu Distribution to Floral Organs in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:2039-2051. [PMID: 29939322 DOI: 10.1093/pcp/pcy124] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/21/2018] [Indexed: 05/21/2023]
Abstract
Deficiency of copper (Cu) causes low fertility in many plant species, but the molecular mechanisms underlying distribution of Cu to the floral organs are poorly understood. Here, we found that a member of yellow-stripe like (YSL) family, YSL16 encoding the Cu-nicotianamine (Cu-NA) transporter, was highly expressed in the rachilla, with less expression in the palea and lemma of rice (Oryza sativa). β-Glucuronidase (GUS) staining of transgenic rice carrying the OsYSL16 promoter-GUS showed that OsYSL16 was mainly expressed in vascular bundles of the rachilla as well as the palea and lemma. Knockout of OsYSL16 resulted in decreased Cu distribution to the stamens, but increased distribution to the palea and lemma. A short-term (24 h) 65Cu labeling experiment confirmed increased Cu concentration of palea and lemma in the mutant. Furthermore, we found that redistribution of Cu from the palea and lemma was impaired in the osysl16 mutant after exposure to Cu-free solution. The osysl16 mutant showed low pollen germination, but this was rescued by addition of Cu in the medium. Our results indicate that OsYSL16 expressed in the vascular bundles of the rachilla is important for preferential distribution of Cu to the stamens, while OsYSL16 in vascular bundles of the palea and lemma is involved in Cu redistribution under Cu-limited conditions in rice.
Collapse
Affiliation(s)
- Chang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenhui Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Japan
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Andrés-Colás N, Carrió-Seguí A, Abdel-Ghany SE, Pilon M, Peñarrubia L. Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. FRONTIERS IN PLANT SCIENCE 2018; 9:910. [PMID: 30018625 PMCID: PMC6037871 DOI: 10.3389/fpls.2018.00910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters.
Collapse
Affiliation(s)
- Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Angela Carrió-Seguí
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Salah E. Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Marinus Pilon
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
43
|
Araki R, Mermod M, Yamasaki H, Kamiya T, Fujiwara T, Shikanai T. SPL7 locally regulates copper-homeostasis-related genes in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:137-143. [PMID: 29635212 DOI: 10.1016/j.jplph.2018.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
In Arabidopsis, a central regulator of copper (Cu) homeostasis is the transcription factor SQUAMOSA promoter binding protein-like7 (SPL7). Under Cu deficiency, SPL7 induces the expression of miR398, which suppresses the expression of the genes CSD1 and CSD2, which encode cytosolic and chloroplastic isoforms of Cu/Zn superoxide dismutase, respectively. Consequently, the limited Cu is preferentially assigned to plastocyanin, which is essential for photosynthetic electron transport. Consistent with this function of miR398 related to photosynthesis, its expression is strongly induced in leaves. In this study, however, we showed that SPL7 was transcribed mainly around the vasculature in roots, where Cu levels were likely sensed. To test the possible long-distance signaling of Cu availability from roots to shoots, we conducted a series of grafting experiments using spl7 mutant and wild-type (WT) plants. Expression of Cu-responsive microRNAs and the resulting suppression of CSD1 and CSD2 mRNAs were observed in leaves only when the aerial part was from WT plants, in which a low level of SPL7 was transcribed also in the vascular tissues. Although local sensing of Cu was disturbed in the spl7 mutant, the Cu level was not affected in the shoots. SPL7 is expressed in specific cell layers in both roots and shoots and locally senses Cu availability, transmitting the information to surrounding cells.
Collapse
Affiliation(s)
- Ryoichi Araki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Faculty of Education, Wakayama University, Wakayama 640-8510, Japan
| | - Mélanie Mermod
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroaki Yamasaki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
44
|
Zhang B, Liu H, Ding X, Qiu J, Zhang M, Chu Z. Arabidopsis thalianaACS8 plays a crucial role in the early biosynthesis of ethylene elicited by Cu 2+ ions. J Cell Sci 2018; 131:jcs.202424. [PMID: 28775152 DOI: 10.1242/jcs.202424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022] Open
Abstract
Cu2+ ions are required by all living organisms and play important roles in many bactericides and fungicides. We previously reported that Cu2+ can elicit defense responses, which are dependent on the ethylene signaling pathway in Arabidopsis However, the mechanism by which Cu2+ elicits the biosynthesis of ethylene remains unclear. Here, we show that CuSO4 treatment rapidly increases the production of ethylene. In addition, it upregulates the expression of several defense-related genes and ethylene biosynthesis genes, including genes encoding S-adenosylmethionine synthase, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase. Among these genes, Arabidopsis thaliana (At)ACS8 was identified as essential for the defense response and early ethylene biosynthesis induced by Cu2+ Furthermore, Cu2+-induced AtACS8 expression depended on the copper-response cis-element (CuRE) in the promoter of AtACS8 Our study indicates that Cu2+ specifically activates the expression of AtACS8 to promote the early biosynthesis of ethylene that elicits plant immunity in Arabidopsis plants.
Collapse
Affiliation(s)
- Baogang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China.,Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Xinhua Ding
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Jiajia Qiu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai an, 271018, Shandong, PR China
| |
Collapse
|
45
|
Wang F, Wang L, Qiao L, Chen J, Pappa MB, Pei H, Zhang T, Chang C, Dong CH. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:810-824. [PMID: 28708312 PMCID: PMC5680097 DOI: 10.1111/jipb.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/11/2017] [Indexed: 05/06/2023]
Abstract
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Feifei Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Belen Pappa
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Haixia Pei
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence: Chun-Hai Dong ()
| |
Collapse
|
46
|
Xu Z, Gao L, Tang M, Qu C, Huang J, Wang Q, Yang C, Liu G, Yang C. Genome-wide identification and expression profile analysis of CCH gene family in Populus. PeerJ 2017; 5:e3962. [PMID: 29085758 PMCID: PMC5661435 DOI: 10.7717/peerj.3962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022] Open
Abstract
Copper plays key roles in plant physiological activities. To maintain copper cellular homeostasis, copper chaperones have important functions in binding and transporting copper to target proteins. Detailed characterization and function analysis of a copper chaperone, CCH, is presently limited to Arabidopsis. This study reports the identification of 21 genes encoding putative CCH proteins in Populus trichocarpa. Besides sharing the conserved metal-binding motif MXCXXC and forming a βαββαβ secondary structure at the N-terminal, all the PtCCHs possessed the plant-exclusive extended C-terminal. Based on their gene structure, conserved motifs, and phylogenetic analysis, the PtCCHs were divided into three subgroups. Our analysis indicated that whole-genome duplication and tandem duplication events likely contributed to expansion of the CCH gene family in Populus. Tissue-specific data from PlantGenIE revealed that PtCCH genes had broad expression patterns in different tissues. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that PnCCH genes of P. simonii × P. nigra also had different tissue-specific expression traits, as well as different inducible-expression patterns in response to copper stresses (excessive and deficiency). In summary, our study of CCH genes in the Populus genome provides a comprehensive analysis of this gene family, and lays an important foundation for further investigation of their roles in copper homeostasis of poplar.
Collapse
Affiliation(s)
- Zhiru Xu
- College of Life Science, Northeast Forestry University, HarBin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
| | - Liying Gao
- College of Life Science, Northeast Forestry University, HarBin, China
| | - Mengquan Tang
- College of Life Science, Northeast Forestry University, HarBin, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Jiahuan Huang
- College of Life Science, Northeast Forestry University, HarBin, China
| | - Qi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, HarBin, China
- School of Forestry, Northeast Forestry University, HarBin, China
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, HarBin, China
| |
Collapse
|
47
|
EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci U S A 2017; 114:10274-10279. [PMID: 28874528 DOI: 10.1073/pnas.1707937114] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ethylene gas is essential for developmental processes and stress responses in plants. Although the membrane-bound protein EIN2 is critical for ethylene signaling, the mechanism by which the ethylene signal is transduced remains largely unknown. Here we show the levels of H3K14Ac and H3K23Ac are correlated with the levels of EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C associates with histone partially through an interaction with EIN2 nuclear-associated protein1 (ENAP1), which preferentially binds to the genome regions that are associated with actively expressed genes both with and without ethylene treatments. Specifically, in the presence of ethylene, ENAP1-binding regions are more accessible upon the interaction with EIN2, and more EIN3 proteins bind to the loci where ENAP1 is enriched for a quick response. Together, these results reveal EIN2-C is the key factor regulating H3K14Ac and H3K23Ac in response to ethylene and uncover a unique mechanism by which ENAP1 interacts with chromatin, potentially preserving the open chromatin regions in the absence of ethylene; in the presence of ethylene, EIN2 interacts with ENAP1, elevating the levels of H3K14Ac and H3K23Ac, promoting more EIN3 binding to the targets shared with ENAP1 and resulting in a rapid transcriptional regulation.
Collapse
|
48
|
Li M, Yang Y, Feng F, Zhang B, Chen S, Yang C, Gu L, Wang F, Zhang J, Chen A, Lin W, Chen X, Zhang Z. Differential proteomic analysis of replanted Rehmannia glutinosa roots by iTRAQ reveals molecular mechanisms for formation of replant disease. BMC PLANT BIOLOGY 2017; 17:116. [PMID: 28693420 PMCID: PMC5504617 DOI: 10.1186/s12870-017-1060-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/22/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND The normal growth of Rehmannia glutinosa, a widely used medicinal plant in China, is severely disturbed by replant disease. The formation of replant disease commonly involves interactions among plants, allelochemicals and microbes; however, these relationships remain largely unclear. As a result, no effective measures are currently available to treat replant disease. RESULTS In this study, an integrated R. glutinosa transcriptome was constructed, from which an R. glutinosa protein library was obtained. iTRAQ technology was then used to investigate changes in the proteins in replanted R. glutinosa roots, and the proteins that were expressed in response to replant disease were identified. An integrated R. glutinosa transcriptome from different developmental stages of replanted and normal-growth R. glutinosa produced 65,659 transcripts, which were accurately translated into 47,818 proteins. Using this resource, a set of 189 proteins was found to be significantly differentially expressed between normal-growth and replanted R. glutinosa. Of the proteins that were significantly upregulated in replanted R. glutinosa, most were related to metabolism, immune responses, ROS generation, programmed cell death, ER stress, and lignin synthesis. CONCLUSIONS By integrating these key events and the results of previous studies on replant disease formation, a new picture of the damaging mechanisms that cause replant disease stress emerged. Replant disease altered the metabolic balance of R. glutinosa, activated immune defence systems, increased levels of ROS and antioxidant enzymes, and initiated the processes of cell death and senescence in replanted R. glutinosa. Additionally, lignin deposition in R. glutinosa roots that was caused by replanting significantly inhibited tuberous root formation. These key processes provide important insights into the underlying mechanisms leading to the formation of replant disease and also for the subsequent development of new control measures to improve production and quality of replanted plants.
Collapse
Affiliation(s)
- Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Fajie Feng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bao Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqiang Chen
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuyun Yang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Gu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Junyi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Aiguo Chen
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
49
|
Zheng F, Cui X, Rivarola M, Gao T, Chang C, Dong CH. Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2821-2832. [PMID: 28541511 PMCID: PMC5853943 DOI: 10.1093/jxb/erx175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/21/2017] [Indexed: 05/29/2023]
Abstract
The plant hormone ethylene affects many biological processes during plant growth and development. Ethylene is perceived by ethylene receptors at the endoplasmic reticulum (ER) membrane. The ETR1 ethylene receptor is positively regulated by the transmembrane protein RTE1, which localizes to the ER and Golgi apparatus. The RTE1 gene family is conserved in animals, plants, and lower eukaryotes. In Arabidopsis, RTE1-HOMOLOG (RTH) is the only homolog of the Arabidopsis RTE1 gene family. The regulatory function of the Arabidopsis RTH in ethylene signaling and plant growth is largely unknown. The present study shows Arabidopsis RTH gene expression patterns, protein co-localization with the ER and Golgi apparatus, and the altered ethylene response phenotype when RTH is knocked out or overexpressed in Arabidopsis. Compared with rte1 mutants, rth mutants exhibit less sensitivity to exogenous ethylene, while RTH overexpression confers ethylene hypersensitivity. Genetic analyses indicate that Arabidopsis RTH might not directly regulate the ethylene receptors. RTH can physically interact with RTE1, and evidence supports that RTH might act via RTE1 in regulating ethylene responses and signaling. The present study advances our understanding of the regulatory function of the Arabidopsis RTE1 gene family members in ethylene signaling.
Collapse
Affiliation(s)
- Fangfang Zheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiankui Cui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Maximo Rivarola
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ting Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genet 2017; 13:e1006703. [PMID: 28388654 PMCID: PMC5400275 DOI: 10.1371/journal.pgen.1006703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/21/2017] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
Copper ions play an important role in ethylene receptor biogenesis and proper function. The copper transporter RESPONSIVE-TO-ANTAGONIST1 (RAN1) is essential for copper ion transport in Arabidopsis thaliana. However it is still unclear how copper ions are delivered to RAN1 and how copper ions affect ethylene receptors. There is not a specific copper chelator which could be used to explore these questions. Here, by chemical genetics, we identified a novel small molecule, triplin, which could cause a triple response phenotype on dark-grown Arabidopsis seedlings through ethylene signaling pathway. ran1-1 and ran1-2 are hypersensitive to triplin. Adding copper ions in growth medium could partially restore the phenotype on plant caused by triplin. Mass spectrometry analysis showed that triplin could bind copper ion. Compared to the known chelators, triplin acts more specifically to copper ion and it suppresses the toxic effects of excess copper ions on plant root growth. We further showed that mutants of ANTIOXIDANT PROTEIN1 (ATX1) are hypersensitive to tiplin, but with less sensitivity comparing with the ones of ran1-1 and ran1-2. Our study provided genetic evidence for the first time that, copper ions necessary for ethylene receptor biogenesis and signaling are transported from ATX1 to RAN1. Considering that triplin could chelate copper ions in Arabidopsis, and copper ions are essential for plant and animal, we believe that, triplin not only could be useful for studying copper ion transport of plants, but also could be useful for copper metabolism study in animal and human.
Collapse
|