1
|
Kim YC, Watanabe Y, Lücke AC, Song X, de Oliveira Souza R, Stass R, Azar SR, Rossi SL, Claser C, Kümmerer BM, Crispin M, Bowden TA, Huiskonen JT, Reyes-Sandoval A. Immunogenic recombinant Mayaro virus-like particles present natively assembled glycoprotein. NPJ Vaccines 2024; 9:243. [PMID: 39690153 PMCID: PMC11652679 DOI: 10.1038/s41541-024-01021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Virus-like particles (VLPs) are an established vaccine platform and can be strong immunogens capable of eliciting both humoral and cellular immune responses against a range of pathogens. Here, we show by cryo-electron microscopy that VLPs of Mayaro virus, which contain envelope glycoproteins E1-E2 and capsid, exhibit an architecture that closely resembles native virus. In contrast to monomeric and soluble envelope 2 (E2) glycoprotein, both VLPs as well as the adenovirus and modified vaccinia virus Ankara (MVA) vaccine platforms expressing the equivalent envelope glycoproteins E1-E2, and capsid induced highly neutralising antibodies after immunisation. The levels of neutralising antibodies elicited by the viral-vectored vaccines of structural proteins and VLPs increased significantly upon boosting. Immunisation of Mayaro virus VLPs in mice with or without an adjuvant (poly:IC) yielded similar levels of neutralising antibodies suggesting that the VLPs may be used for immunisation without the need for an adjuvant. A single or two doses of non-adjuvanted 5 µg of MAYV VLP vaccination provided significant protection against viremia and MAYV-induced foot swelling in the C57BL/6 mouse challenge model. MAYV VLPs represent a non-infectious vaccine candidate, which may constitute a complementary option for future immunisation strategies against this important emerging alphavirus.
Collapse
Affiliation(s)
- Young Chan Kim
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Yasunori Watanabe
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Arlen-Celina Lücke
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Xiyong Song
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sasha R Azar
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site-Bonn-Cologne, Bonn, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro s/n. Unidad Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
2
|
Condezo GN, San Martín C. Maturation of Viruses. Subcell Biochem 2024; 105:503-531. [PMID: 39738956 DOI: 10.1007/978-3-031-65187-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity. During maturation, structural and physical changes prepare the viral particles for delivering their genome into cells at the right time and location. The virion must be stabilized for travel across harsh extracellular conditions, while enabling disassembly for genome exposure to replication and translation machineries. That is, maturation has to produce metastable particles. Common maturation strategies include structural reordering, controlled proteolysis, or posttranslational modifications. Here we outline the maturation process in representative members of the six realms proposed by the latest virus taxonomic classification.
Collapse
Affiliation(s)
- Gabriela N Condezo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Song D, Jia X, Gao Y, Xiao T, Dan J, Shen R, Cai J, Liang J, Zhu W, Hu J, Yan G, Zhang Q, Lin Y. STT3A-mediated viral N-glycosylation underlies the tumor selectivity of oncolytic virus M1. Oncogene 2023; 42:3575-3588. [PMID: 37864032 DOI: 10.1038/s41388-023-02872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Oncolytic viruses are emerging as promising anticancer agents. Although the essential biological function of N-glycosylation on viruses are widely accepted, roles of N-glycan and glycan-processing enzyme in oncolytic viral therapy are remain elusive. Here, via cryo-EM analysis, we identified three distinct N-glycans on the envelope of oncolytic virus M1 (OVM) as being necessary for efficient receptor binding. E1-N141-glycan has immediate impact on the binding of MXRA8 receptor, E2-N200-glycan mediates the maturation of E2 from its precursor PE2 which is unable to bind with MXRA8, and E2-N262-glycan slightly promotes receptor binding. The necessity of OVM N-glycans in receptor binding make them indispensable for oncolysis in vitro and in vivo. Further investigations identified STT3A, a key catalytic subunit of oligosaccharyltransferase (OST), as the determinant of OVM N-glycosylation, and STT3A expression in tumor cells is positively correlated with OVM-induced oncolysis. Increased STT3A expression was observed in various solid tumors, pointing to a broad-spectrum anticancer potential of OVM. Collectively, our research supports the importance of STT3A-mediated N-glycosylation in receptor binding and oncolysis of OVM, thus providing a novel predictive biomarker for OVM.
Collapse
Affiliation(s)
- Deli Song
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xudong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuanzhu Gao
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Dan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Runling Shen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qinfen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Pathogenicity and Structural Basis of Zika Variants with Glycan Loop Deletions in the Envelope Protein. J Virol 2022; 96:e0087922. [PMID: 36377874 PMCID: PMC9749469 DOI: 10.1128/jvi.00879-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The glycan loop of Zika virus (ZIKV) envelope protein (E) contains the glycosylation site and has been well documented to be important for viral pathogenesis and transmission. In the present study, we report that deletions in the E glycan loop, which were recorded in African ZIKV strains previously, have re-emerged in their contemporary Asian lineages. Here, we generated recombinant ZIKV containing specific deletions in the E glycan loop by reverse genetics. Extensive in vitro and in vivo characterization of these deletion mutants demonstrated an attenuated phenotype in an adult A129 mouse model and reduced oral infections in mosquitoes. Surprisingly, these glycan loop deletion mutants exhibited an enhanced neurovirulence phenotype, and resulted in a more severe microcephalic brain in neonatal mouse models. Crystal structures of the ZIKV E protein and a deletion mutant at 2.5 and 2.6 Å, respectively, revealed that deletion of the glycan loop induces encephalitic flavivirus-like conformational alterations, including the appearance of perforations on the surface and a clear change in the topology of the loops. Overall, our results demonstrate that the E glycan loop deletions represent neonatal mouse neurovirulence markers of ZIKV. IMPORTANCE Zika virus (ZIKV) has been identified as a cause of microcephaly and acquired evolutionary mutations since its discovery. Previously deletions in the E glycan loop were recorded in African ZIKV strains, which have re-emerged in the contemporary Asian lineages recently. The glycan loop deletion mutants are not glycosylated, which are attenuated in adult A129 mouse model and reduced oral infections in mosquitoes. More importantly, the glycan loop deletion mutants induce an encephalitic flavivirus-like conformational alteration in the E homodimer, resulting in a significant enhancement of neonatal mouse neurovirulence. This study underscores the critical role of glycan loop deletion mutants in ZIKV pathogenesis, highlighting a need for global virological surveillance for such ZIKV variants.
Collapse
|
7
|
Westcott CE, Qazi S, Maiocco AM, Mukhopadhyay S, Sokoloski KJ. Binding of hnRNP I-vRNA Regulates Sindbis Virus Structural Protein Expression to Promote Particle Infectivity. Viruses 2022; 14:v14071423. [PMID: 35891402 PMCID: PMC9318202 DOI: 10.3390/v14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Alphaviruses cause significant outbreaks of febrile illness and debilitating multi-joint arthritis for prolonged periods after initial infection. We have previously reported that several host hnRNP proteins bind to the Sindbis virus (SINV) RNAs, and disrupting the sites of these RNA-protein interactions results in decreased viral titers in tissue culture models of infection. Intriguingly, the primary molecular defect associated with the disruption of the hnRNP interactions is enhanced viral structural protein expression; however, the precise underlying mechanisms spurring the enhanced gene expression remain unknown. Moreover, our previous efforts were unable to functionally dissect whether the observed phenotypes were due to the loss of hnRNP binding or the incorporation of polymorphisms into the primary nucleotide sequence of SINV. To determine if the loss of hnRNP binding was the primary cause of attenuation or if the disruption of the RNA sequence itself was responsible for the observed phenotypes, we utilized an innovative protein tethering approach to restore the binding of the hnRNP proteins in the absence of the native interaction site. Specifically, we reconstituted the hnRNP I interaction by incorporating the 20nt bovine immunodeficiency virus transactivation RNA response (BIV-TAR) at the site of the native hnRNP I interaction sequence, which will bind with high specificity to proteins tagged with a TAT peptide. The reestablishment of the hnRNP I-vRNA interaction via the BIV-TAR/TAT tethering approach restored the phenotype back to wild-type levels. This included an apparent decrease in structural protein expression in the absence of the native primary nucleotide sequences corresponding to the hnRNP I interaction site. Collectively, the characterization of the hnRNP I interaction site elucidated the role of hnRNPs during viral infection.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Shefah Qazi
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Anna M. Maiocco
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +1-(502)-852-1249
| |
Collapse
|
8
|
Abstract
Alphaviruses are enveloped viruses transmitted by arthropod vectors to vertebrate hosts. The surface of the virion contains 80 glycoprotein spikes embedded in the membrane, and these spikes mediate attachment to the host cell and initiate viral fusion. Each spike consists of a trimer of E2-E1 heterodimers. These heterodimers interact at the following two interfaces: (i) the intradimer interactions between E2 and E1 of the same heterodimer and (ii) the interdimer interactions between E2 of one heterodimer and E1 of the adjacent heterodimer (E1'). We hypothesized that the interdimer interactions are essential for trimerization of the E2-E1 heterodimers into a functional spike. In this work, we made a mutant virus (chikungunya piggyback [CPB]) where we replaced six interdimeric residues in the E2 protein of Sindbis virus (wild-type [WT] SINV) with those from the E2 protein from chikungunya virus and studied its effect in both mammalian and mosquito cell lines. CPB produced fewer infectious particles in mammalian cells than in mosquito cells, relative to WT SINV. When CPB virus was purified from mammalian cells, particles showed reduced amounts of glycoproteins relative to the capsid protein and contained defects in particle morphology compared with virus derived from mosquito cells. Using cryo-electron microscopy (cryo-EM), we determined that the spikes of CPB had a different conformation than WT SINV. Last, we identified two revertants, E2-H333N and E1-S247L, that restored particle growth and assembly to different degrees. We conclude the interdimer interface is critical for spike trimerization and is a novel target for potential antiviral drug design. IMPORTANCE Alphaviruses, which can cause disease when spread to humans by mosquitoes, have been classified as emerging pathogens, with infections occurring worldwide. The spikes on the surface of the alphavirus particle are absolutely required for the virus to enter a new host cell and initiate an infection. Using a structure-guided approach, we made a mutant virus that alters spike assembly in mammalian cells but not mosquito cells. This finding is important because it identifies a region in the spike that could be a target for antiviral drug design.
Collapse
|
9
|
Emerging chikungunya virus variants at the E1-E1 inter-glycoprotein spike interface impact virus attachment and Inflammation. J Virol 2021; 96:e0158621. [PMID: 34935436 DOI: 10.1128/jvi.01586-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intra-host evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, co-occurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by anti-glycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The re-emerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has been only attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T to increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 inter-spike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further defines the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.
Collapse
|
10
|
Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature 2021; 598:677-681. [PMID: 34646021 DOI: 10.1038/s41586-021-03909-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an enveloped RNA virus that causes encephalitis and potentially mortality in infected humans and equines1. At present, no vaccines or drugs are available that prevent or cure diseases caused by VEEV. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) was recently identified as a receptor for the entry of VEEV into host cells2. Here we present the cryo-electron microscopy structure of the LDLRAD3 extracellular domain 1 (LDLRAD3-D1) in complex with VEEV virus-like particles at a resolution of 3.0 Å. LDLRAD3-D1 has a cork-like structure and is inserted into clefts formed between adjacent VEEV E2-E1 heterodimers in the viral-surface trimer spikes through hydrophobic and polar contacts. Mutagenesis studies of LDLRAD3-D1 identified residues that are involved in the key interactions with VEEV. Of note, some of the LDLRAD3-D1 mutants showed a significantly increased binding affinity for VEEV, suggesting that LDLRAD3-D1 may serve as a potential scaffold for the development of inhibitors of VEEV entry. Our structures provide insights into alphavirus assembly and the binding of receptors to alphaviruses, which may guide the development of therapeutic countermeasures against alphaviruses.
Collapse
|
11
|
Elmasri Z, Nasal BL, Jose J. Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding. Pathogens 2021; 10:984. [PMID: 34451448 PMCID: PMC8399458 DOI: 10.3390/pathogens10080984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus-host interactions in infected cells will lead to the identification of new targets for antiviral discovery.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Benjamin L. Nasal
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
12
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
13
|
Cryo-EM structure of the mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses. Nat Commun 2021; 12:3038. [PMID: 34031424 PMCID: PMC8144435 DOI: 10.1038/s41467-021-23400-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging arbovirus of the Americas that may cause a debilitating arthritogenic disease. The biology of MAYV is not fully understood and largely inferred from related arthritogenic alphaviruses. Here, we present the structure of MAYV at 4.4 Å resolution, obtained from a preparation of mature, infective virions. MAYV presents typical alphavirus features and organization. Interactions between viral proteins that lead to particle formation are described together with a hydrophobic pocket formed between E1 and E2 spike proteins and conformational epitopes specific of MAYV. We also describe MAYV glycosylation residues in E1 and E2 that may affect MXRA8 host receptor binding, and a molecular “handshake” between MAYV spikes formed by N262 glycosylation in adjacent E2 proteins. The structure of MAYV is suggestive of structural and functional complexity among alphaviruses, which may be targeted for specificity or antiviral activity. Mayaro virus (MAYV) is an emerging arbovirus in Central and South America that is transmitted by mosquitoes and causes arthritogenic disease. Here, the authors present the 4.4 Å resolution cryo-EM structure of MAYV and describe specific features of the virus, which could be exploited for the design of MAYV-specific diagnostics and therapeutics.
Collapse
|
14
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
15
|
Li H, Sun J, Xiao S, Zhang L, Zhou D. Triterpenoid-Mediated Inhibition of Virus-Host Interaction: Is Now the Time for Discovering Viral Entry/Release Inhibitors from Nature? J Med Chem 2020; 63:15371-15388. [PMID: 33201699 DOI: 10.1021/acs.jmedchem.0c01348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fatal infectious diseases caused by HIV-1, influenza A virus, Ebola virus, and currently pandemic coronavirus highlight the great need for the discovery of antiviral agents in mechanisms different from current viral replication-targeted approaches. Given the critical role of virus-host interactions in the viral life cycle, the development of entry or shedding inhibitors may expand the current repertoire of antiviral agents; the combination of antireplication inhibitors and entry or shedding inhibitors would create a multifaceted drug cocktail with a tandem antiviral mechanism. Therefore, we provide critical information about triterpenoids as potential antiviral agents targeting entry and release, focusing specifically on the emerging aspect of triterpenoid-mediated inhibition of a variety of virus-host membrane fusion mechanisms via a trimer-of-hairpin motif. These properties of triterpenoids supply their host an evolutionary advantage for chemical defense and may protect against an increasingly diverse array of viruses infecting mammals, providing a direction for antiviral drug discovery.
Collapse
Affiliation(s)
- Haiwei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
16
|
Aksnes I, Markussen T, Braaen S, Rimstad E. Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses 2020; 12:v12101071. [PMID: 32987930 PMCID: PMC7650630 DOI: 10.3390/v12101071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation. In this study, we mutated the N-glycosylation consensus motifs of the E1 and E2 glycoproteins of a SAV3 infectious clone using site-directed mutagenesis. Mutation of the glycosylation motif in E1 gave a complete inactivation of the virus as no viral replication could be detected in cell culture and infectious particles could not be rescued. In contrast, infectious virus particles could be recovered from the SAV3 E2 mutants (E2319Q, E2319A), but not if they were accompanied by lack of N-glycosylation in E1. Compared to the non-mutated infectious clone, the SAV3-E2319Q and SAV3-E2319A recombinant viruses produced less cytopathic effects in cell culture and lower amounts of infectious viral particles. In conclusion, the substitution in the N-linked glycosylation site in E2 attenuated SAV3 in cell culture. The findings could be useful for immunization strategies using live attenuated vaccines and testing in fish will be desirable to study the clone’s properties in vivo.
Collapse
|
17
|
Dunbar CA, Rayaprolu V, Wang JCY, Brown CJ, Leishman E, Jones-Burrage S, Trinidad JC, Bradshaw HB, Clemmer DE, Mukhopadhyay S, Jarrold MF. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infect Dis 2019; 5:892-902. [PMID: 30986033 DOI: 10.1021/acsinfecdis.8b00356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sindbis virus (SINV) is an enveloped, single-stranded RNA virus, which is transmitted via mosquitos to a wide range of vertebrate hosts. SINV produced by vertebrate, baby hamster kidney (BHK) cells is more than an order of magnitude less infectious than SINV produced from mosquito (C6/36) cells. The cause of this difference is poorly understood. In this study, charge detection mass spectrometry was used to determine the masses of intact SINV particles isolated from BHK and C6/36 cells. The measured masses are substantially different: 52.88 MDa for BHK derived SINV and 50.69 MDa for C6/36 derived. Further analysis using several mass spectrometry-based methods and biophysical approaches indicates that BHK derived SINV has a substantially higher mass than C6/36 derived because in the lipid bilayer, there is a higher portion of lipids containing long chain fatty acids. The difference in lipid composition could influence the organization of the lipid bilayer. As a result, multiple stages of the viral lifecycle may be affected including assembly and budding, particle stability during transmission, and fusion events, all of which could contribute to the differences in infectivity.
Collapse
Affiliation(s)
- Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Vamseedhar Rayaprolu
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Joseph C.-Y. Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Christopher J. Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - Sara Jones-Burrage
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East Tenth Street, Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor. Cell 2019; 177:1725-1737.e16. [PMID: 31080061 DOI: 10.1016/j.cell.2019.04.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 04/01/2019] [Indexed: 11/21/2022]
Abstract
Mxra8 is a receptor for multiple arthritogenic alphaviruses that cause debilitating acute and chronic musculoskeletal disease in humans. Herein, we present a 2.2 Å resolution X-ray crystal structure of Mxra8 and 4 to 5 Å resolution cryo-electron microscopy reconstructions of Mxra8 bound to chikungunya (CHIKV) virus-like particles and infectious virus. The Mxra8 ectodomain contains two strand-swapped Ig-like domains oriented in a unique disulfide-linked head-to-head arrangement. Mxra8 binds by wedging into a cleft created by two adjacent CHIKV E2-E1 heterodimers in one trimeric spike and engaging a neighboring spike. Two binding modes are observed with the fully mature VLP, with one Mxra8 binding with unique contacts. Only the high-affinity binding mode was observed in the complex with infectious CHIKV, as viral maturation and E3 occupancy appear to influence receptor binding-site usage. Our studies provide insight into how Mxra8 binds CHIKV and creates a path for developing alphavirus entry inhibitors.
Collapse
|
19
|
The Alphavirus E2 Membrane-Proximal Domain Impacts Capsid Interaction and Glycoprotein Lattice Formation. J Virol 2019; 93:JVI.01881-18. [PMID: 30463969 DOI: 10.1128/jvi.01881-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses are small enveloped RNA viruses that bud from the host cell plasma membrane. Alphavirus particles have a highly organized structure, with a nucleocapsid core containing the RNA genome surrounded by the capsid protein, and a viral envelope containing 80 spikes, each a trimer of heterodimers of the E1 and E2 glycoproteins. The capsid protein and envelope proteins are both arranged in organized lattices that are linked via the interaction of the E2 cytoplasmic tail/endodomain with the capsid protein. We previously characterized the role of two highly conserved histidine residues, H348 and H352, located in an external, juxtamembrane region of the E2 protein termed the D-loop. Alanine substitutions of H348 and H352 inhibit virus growth by impairing late steps in the assembly/budding of virus particles at the plasma membrane. To investigate this budding defect, we selected for revertants of the E2-H348/352A double mutant. We identified eleven second-site revertants with improved virus growth and mutations in the capsid, E2 and E1 proteins. Multiple isolates contained the mutation E2-T402K in the E2 endodomain or E1-T317I in the E1 ectodomain. Both of these mutations were shown to partially restore H348/352A growth and virus assembly/budding, while neither rescued the decreased thermostability of H348/352A. Within the alphavirus particle, these mutations are positioned to affect the E2-capsid interaction or the E1-mediated intertrimer interactions at the 5-fold axis of symmetry. Together, our results support a model in which the E2 D-loop promotes the formation of the glycoprotein lattice and its interactions with the internal capsid protein lattice.IMPORTANCE Alphaviruses include important human pathogens such as Chikungunya and the encephalitic alphaviruses. There are currently no licensed alphavirus vaccines or effective antiviral therapies, and more molecular information on virus particle structure and function is needed. Here, we highlight the important role of the E2 juxtamembrane D-loop in mediating virus budding and particle production. Our results demonstrated that this E2 region affects both the formation of the external glycoprotein lattice and its interactions with the internal capsid protein shell.
Collapse
|
20
|
San Martín C. Virus Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:129-158. [DOI: 10.1007/978-3-030-14741-9_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Chen L, Wang M, Zhu D, Sun Z, Ma J, Wang J, Kong L, Wang S, Liu Z, Wei L, He Y, Wang J, Zhang X. Implication for alphavirus host-cell entry and assembly indicated by a 3.5Å resolution cryo-EM structure. Nat Commun 2018; 9:5326. [PMID: 30552337 PMCID: PMC6294011 DOI: 10.1038/s41467-018-07704-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/12/2018] [Indexed: 11/09/2022] Open
Abstract
Alphaviruses are enveloped RNA viruses that contain several human pathogens. Due to intrinsic heterogeneity of alphavirus particles, a high resolution structure of the virion is currently lacking. Here we provide a 3.5 Å cryo-EM structure of Sindbis virus, using block based reconstruction method that overcomes the heterogeneity problem. Our structural analysis identifies a number of conserved residues that play pivotal roles in the virus life cycle. We identify a hydrophobic pocket in the subdomain D of E2 protein that is stabilized by an unknown pocket factor near the viral membrane. Residues in the pocket are conserved in different alphaviruses. The pocket strengthens the interactions of the E1/E2 heterodimer and may facilitate virus assembly. Our study provides structural insights into alphaviruses that may inform the design of drugs and vaccines.
Collapse
Affiliation(s)
- Lihong Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China.,University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Ming Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China
| | - Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China.,School of Life Science, University of Science and Technology of China, 230026, Hefei, People's Republic of China
| | - Zhenzhao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Lingfei Kong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China
| | - Shida Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China
| | - Zaisi Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China
| | - Lili Wei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 150069, Harbin, People's Republic of China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, 100049, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Versatile targeting system for lentiviral vectors involving biotinylated targeting molecules. Virology 2018; 525:170-181. [PMID: 30290312 DOI: 10.1016/j.virol.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
Abstract
Conjugating certain types of lentiviral vectors with targeting ligands can redirect the vectors to specifically transduce desired cell types. However, extensive genetic and/or biochemical manipulations are required for conjugation, which hinders applications for targeting lentiviral vectors for broader research fields. We developed envelope proteins fused with biotin-binding molecules to conjugate the pseudotyped vectors with biotinylated targeting molecules by simply mixing them. The envelope proteins fused with the monomeric, but not tetrameric, biotin-binding molecules can pseudotype lentiviral vectors and be conjugated with biotinylated targeting ligands. The conjugation is stable enough to redirect lentiviral transduction in the presence of serum, indicating their potential in in vivo . When a signaling molecule is conjugated with the vector, the conjugation facilitates transduction and signaling in a receptor-specific manner. This simple method of ligand conjugation and ease of obtaining various types of biotinylated ligands will make targeted lentiviral transduction easily applicable to broad fields of research.
Collapse
|
23
|
Schuchman RM, Vancini R, Piper A, Breuer D, Ribeiro M, Ferreira D, Magliocca J, Emmerich V, Hernandez R, Brown DT. Role of the vacuolar ATPase in the Alphavirus replication cycle. Heliyon 2018; 4:e00701. [PMID: 30094371 PMCID: PMC6074608 DOI: 10.1016/j.heliyon.2018.e00701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
We have shown that Alphaviruses can enter cells by direct penetration at the plasma membrane (R. Vancini, G. Wang, D. Ferreira, R. Hernandez, and D. Brown, J Virol, 87:4352–4359, 2013). Direct penetration removes the requirement for receptor-mediated endocytosis exposure to low pH and membrane fusion in the process of RNA entry. Endosomal pH as well as the pH of the cell cytoplasm is maintained by the activity of the vacuolar ATPase (V-ATPase). Bafilomycin is a specific inhibitor of V-ATPase. To characterize the roll of the V-ATPase in viral replication we generated a Bafilomycin A1(BAF) resistant mutant of Sindbis virus (BRSV). BRSV produced mature virus and virus RNA in greater amounts than parent virus in BAF-treated cells. Sequence analysis revealed mutations in the E2 glycoprotein, T15I/Y18H, were responsible for the phenotype. These results show that a functional V-ATPase is required for efficient virus RNA synthesis and virus maturation in Alphavirus infection.
Collapse
Affiliation(s)
- Ryan M Schuchman
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Ricardo Vancini
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Amanda Piper
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Denitra Breuer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Mariana Ribeiro
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Davis Ferreira
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.,Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joseph Magliocca
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Veronica Emmerich
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Dennis T Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Brown RS, Wan JJ, Kielian M. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew. Viruses 2018; 10:E89. [PMID: 29470397 PMCID: PMC5850396 DOI: 10.3390/v10020089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research.
Collapse
Affiliation(s)
- Rebecca S Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Judy J Wan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Sharma R, Kesari P, Kumar P, Tomar S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018; 515:223-234. [DOI: 10.1016/j.virol.2017.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
26
|
Gunn BM, Jones JE, Shabman RS, Whitmore AC, Sarkar S, Blevins LK, Morrison TE, Heise MT. Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 2018; 515:250-260. [PMID: 29324290 PMCID: PMC7119116 DOI: 10.1016/j.virol.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
Mannose binding lectin (MBL) generally plays a protective role during viral infection, yet MBL-mediated complement activation promotes Ross River virus (RRV)-induced inflammatory tissue destruction, contributing to arthritis and myositis. As MBL binds to carbohydrates, we hypothesized that N-linked glycans on the RRV envelope glycoproteins act as ligands for MBL. Using a panel of RRV mutants lacking the envelope N-linked glycans, we found that MBL deposition onto infected cells was dependent on the E2 glycans. Moreover, the glycan-deficient viruses exhibited reduced disease and tissue damage in a mouse model of RRV-induced myositis compared to wild-type RRV, despite similar viral load and inflammatory infiltrates within the skeletal muscle. Instead, the reduced disease induced by glycan-deficient viruses was linked to decreased MBL deposition and complement activation within inflamed tissues. These results demonstrate that the viral N-linked glycans promote MBL deposition and complement activation onto RRV-infected cells, contributing to the development of RRV-induced myositis. Mannose-binding lectin promotes induction of complement-mediated arthritis and myositis during Ross River virus infection. Mannose Binding Lectin deposition onto Ross River virus-infected cells is dependent on glycans on the viral E2 glycoprotein. Viral mutants lacking E2 glycans exhibit reduced disease in a model of Ross River virus-induced arthritis and myositis. Ross River virus E2 glycan mutants cause reduced Mannose Binding Lectin deposition and complement activation.
Collapse
Affiliation(s)
- Bronwyn M Gunn
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Jennifer E Jones
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Reed S Shabman
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA
| | - Alan C Whitmore
- Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Sanjay Sarkar
- Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| | - Lance K Blevins
- Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA
| | - Thomas E Morrison
- Dept. of Microbiology, University of Colorado School of Medicine, 12800 E. 19th Ave., RC1N 9119, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Mark T Heise
- Dept. of Microbiology and Immunology, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA; Dept. of Genetics, University of North Carolina at Chapel Hill, 160 Dental Circle, 9024 Burnett Womack, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne emerging pathogen that presents a major health impact in humans. The virus causes acute febrile illness accompanied by joint pains and, in many cases, persistent arthralgia lasting for weeks to years. There are currently no licensed antiviral agents available against CHIKV. A few lead compounds and natural products have recently shown promising results and could emerge as effective treatments for CHIKV. Further, with the emerging knowledge of the biology of CHIKV, RNAi-based gene silencing approaches also hold great promise for the treatment of CHIKV. This review summarizes the applicability of RNAi agents, siRNA, shRNA and miRNA central to RNAi as therapeutic approaches against CHIKV.
Collapse
Affiliation(s)
- Deepti Parashar
- National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, Maharashtra, India
| | - Sarah Cherian
- National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411001, Maharashtra, India
| |
Collapse
|
28
|
Veesler D, Kearney BM, Johnson JE. Integration of X-ray crystallography and electron cryo-microscopy in the analysis of virus structure and function. CRYSTALLOGR REV 2015. [DOI: 10.1080/0889311x.2015.1038530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Petterson E, Guo TC, Evensen Ø, Haugland Ø, Mikalsen AB. In vitro adaptation of SAV3 in cell culture correlates with reduced in vivo replication capacity and virulence to Atlantic salmon (Salmo salar L.) parr. J Gen Virol 2015; 96:3023-3034. [PMID: 26297344 DOI: 10.1099/jgv.0.000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonid alphavirus (SAV) is the causative agent of pancreas disease affecting Atlantic salmon and rainbow trout and causes a major burden to the aquaculture industry. This study describes a Norwegian subtype SAV3 virus isolate (SAV3-H10) subjected to serial passages in Chinook salmon embryo cells (CHSE-214) followed by Asian Grouper skin cells (AGK). Two passages from CHSE and one after transfer to AGK cells were chosen for further investigation, based on variation in degree and development of cytopathic effect (CPE). After plaque purification, several in vitro studies were performed. Cell viability after infection, viral replication and ability to cause morphological changes in CHSE and AGK cells was studied for the three isolates. The AGK-transferred isolate was identified with the strongest abilities to reduce cell viability, replicate more and cause more CPE in cell culture when compared with the early and late CHSE-grown isolates. Subsequently, the isolates were tested in an experimental fish challenge, showing higher viral load and higher pathological score for the least cell-cultured isolate. Full-length sequencing of the viral genome of the three isolates revealed divergence in four amino acid positions and the AGK-grown isolate also had a 3 nt deletion in the 3'UTR. In conclusion, we show that cell culture of SAV3-H10 selects for strains inducing earlier CPE in vitro with increased viral replication. In vivo, the effect is reversed, with lower replication levels and lower pathology scores in target organs. This study outlines a path to identify potential virulence motifs of SAV3.
Collapse
Affiliation(s)
- Elin Petterson
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| | - Aase B Mikalsen
- Norwegian University of Life Sciences, Department of Basic Science and Aquatic Medicine, PO Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
30
|
Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015; 7:3741-67. [PMID: 26184281 PMCID: PMC4517124 DOI: 10.3390/v7072795] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 12/24/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) circulate in nature between arthropod vectors and vertebrate hosts. Arboviruses often cause devastating diseases in vertebrate hosts, but they typically do not cause significant pathology in their arthropod vectors. Following oral acquisition of a viremic bloodmeal from a vertebrate host, the arbovirus disease cycle requires replication in the cellular environment of the arthropod vector. Once the vector has become systemically and persistently infected, the vector is able to transmit the virus to an uninfected vertebrate host. In order to systemically infect the vector, the virus must cope with innate immune responses and overcome several tissue barriers associated with the midgut and the salivary glands. In this review we describe, in detail, the typical arbovirus infection route in competent mosquito vectors. Based on what is known from the literature, we explain the nature of the tissue barriers that arboviruses are confronted with in a mosquito vector and how arboviruses might surmount these barriers. We also point out controversial findings to highlight particular areas that are not well understood and require further research efforts.
Collapse
Affiliation(s)
- Alexander W E Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | - Asher M Kantor
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
31
|
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.
Collapse
|
32
|
Zheng Y, Kielian M. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly. Virology 2015; 484:412-420. [PMID: 26051211 DOI: 10.1016/j.virol.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
Abstract
Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28°C), subsequent incubation of the cells at the non-permissive temperature (37°C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
33
|
Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion. Proc Natl Acad Sci U S A 2015; 112:2034-9. [PMID: 25646410 DOI: 10.1073/pnas.1414190112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.
Collapse
|
34
|
|
35
|
Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv Virol 2014; 2014:259382. [PMID: 25309597 PMCID: PMC4182009 DOI: 10.1155/2014/259382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022] Open
Abstract
Arthropod borne viruses have developed a complex life cycle adapted to alternate between insect and vertebrate hosts. These arthropod-borne viruses belong mainly to the families Togaviridae, Flaviviridae, and Bunyaviridae. This group of viruses contains many pathogens that cause febrile, hemorrhagic, and encephalitic disease or arthritic symptoms which can be persistent. It has been appreciated for many years that these viruses were evolutionarily adapted to function in the highly divergent cellular environments of both insect and mammalian phyla. These viruses are hybrid in nature, containing viral-encoded RNA and proteins which are glycosylated by the host and encapsulate viral nucleocapsids in the context of a host-derived membrane. From a structural perspective, these virus particles are macromolecular machines adapted in design to assemble into a packaging and delivery system for the virus genome and, only when associated with the conditions appropriate for a productive infection, to disassemble and deliver the RNA cargo. It was initially assumed that the structures of the virus from both hosts were equivalent. New evidence that alphaviruses and flaviviruses can exist in more than one conformation postenvelopment will be discussed in this review. The data are limited but should refocus the field of structural biology on the metastable nature of these viruses.
Collapse
|
36
|
Zhou ZH. Structures of viral membrane proteins by high-resolution cryoEM. Curr Opin Virol 2014; 5:111-9. [PMID: 24799302 DOI: 10.1016/j.coviro.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 01/06/2023]
Abstract
Cryo electron microscopy (cryoEM) has emerged as an excellent tool for resolving high-resolution three-dimensional structures of membrane proteins in a lipid-containing environment with interacting partners. The near atomic resolution structures of Venezuelan equine encephalitis virus and dengue virus revealed transmembrane helices in lipid bilayers, receptor-binding glycosylation moieties, and functionally important interactions between their fusion protein and membrane-anchored chaperone protein. For pleomorphic enveloped viruses, such as human immunodeficiency virus, glycoprotein complexes can be imaged in isolation to reveal molecular interactions at different states. These high-resolution cryoEM structures have clarified important domains not previously resolved by crystallography and illustrate exciting opportunities to visualize viral membrane proteins in their native and possibly transiently stable functional states, thus uncovering mechanisms of action and informing anti-viral strategies.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095-7227, USA.
| |
Collapse
|
37
|
Yu G, Vago F, Zhang D, Snyder JE, Yan R, Zhang C, Benjamin C, Jiang X, Kuhn RJ, Serwer P, Thompson DH, Jiang W. Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol 2014; 187:1-9. [PMID: 24780590 DOI: 10.1016/j.jsb.2014.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/18/2022]
Abstract
Single particle cryo-electron microscopy (cryo-EM) is an emerging powerful tool for structural studies of macromolecular assemblies (i.e., protein complexes and viruses). Although single particle cryo-EM requires less concentrated and smaller amounts of samples than X-ray crystallography, it remains challenging to study specimens that are low-abundance, low-yield, or short-lived. The recent development of affinity grid techniques can potentially further extend single particle cryo-EM to these challenging samples by combining sample purification and cryo-EM grid preparation into a single step. Here we report a new design of affinity cryo-EM approach, cryo-SPIEM, that applies a traditional pathogen diagnosis tool Solid Phase Immune Electron Microscopy (SPIEM) to the single particle cryo-EM method. This approach provides an alternative, largely simplified and easier to use affinity grid that directly works with most native macromolecular complexes with established antibodies, and enables cryo-EM studies of native samples directly from cell cultures. In the present work, we extensively tested the feasibility of cryo-SPIEM with multiple samples including those of high or low molecular weight, macromolecules with low or high symmetry, His-tagged or native particles, and high- or low-yield macromolecules. Results for all these samples (non-purified His-tagged bacteriophage T7, His-tagged Escherichiacoli ribosomes, native Sindbis virus, and purified but low-concentration native Tulane virus) demonstrated the capability of cryo-SPIEM approach in specifically trapping and concentrating target particles on TEM grids with minimal view constraints for cryo-EM imaging and determination of 3D structures.
Collapse
Affiliation(s)
- Guimei Yu
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Frank Vago
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Dongsheng Zhang
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan E Snyder
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Yan
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Ci Zhang
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | | | - Xi Jiang
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard J Kuhn
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
38
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
39
|
Crispin M, Harvey DJ, Bitto D, Bonomelli C, Edgeworth M, Scrivens JH, Huiskonen JT, Bowden TA. Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission. J Proteome Res 2014; 13:1702-12. [PMID: 24467287 PMCID: PMC4428802 DOI: 10.1021/pr401162k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cross-species
viral transmission subjects parent and progeny alphaviruses
to differential post-translational processing of viral envelope glycoproteins.
Alphavirus biogenesis has been extensively studied, and the Semliki
Forest virus E1 and E2 glycoproteins have been shown to exhibit differing
degrees of processing of N-linked glycans. However the composition
of these glycans, including that arising from different host cells,
has not been determined. Here we determined the chemical composition
of the glycans from the prototypic alphavirus, Semliki Forest virus,
propagated in both arthropod and rodent cell lines, by using ion-mobility
mass spectrometry and collision-induced dissociation analysis. We
observe that both the membrane-proximal E1 fusion glycoprotein and
the protruding E2 attachment glycoprotein display heterogeneous glycosylation
that contains N-linked glycans exhibiting both limited and extensive
processing. However, E1 contained predominantly highly processed glycans
dependent on the host cell, with rodent and mosquito-derived E1 exhibiting
complex-type and paucimannose-type glycosylation, respectively. In
contrast, the protruding E2 attachment glycoprotein primarily contained
conserved under-processed oligomannose-type structures when produced
in both rodent and mosquito cell lines. It is likely that glycan processing
of E2 is structurally restricted by steric-hindrance imposed by local
viral protein structure. This contrasts E1, which presents glycans
characteristic of the host cell and is accessible to enzymes. We integrated
our findings with previous cryo-electron microscopy and crystallographic
analyses to produce a detailed model of the glycosylated mature virion
surface. Taken together, these data reveal the degree to which virally
encoded protein structure and cellular processing enzymes shape the
virion glycome during interspecies transmission of Semliki Forest
virus.
Collapse
Affiliation(s)
- Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Characterization of an early-stage fusion intermediate of Sindbis virus using cryoelectron microscopy. Proc Natl Acad Sci U S A 2013; 110:13362-7. [PMID: 23898184 DOI: 10.1073/pnas.1301911110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The sequential steps in the alphavirus membrane fusion pathway have been postulated based on the prefusion and postfusion crystal structures of the viral fusion protein E1 in conjunction with biochemical studies. However, the molecular structures of the hypothesized fusion intermediates have remained obscure due to difficulties inherent in the dynamic nature of the process. We developed an experimental system that uses liposomes as the target membrane to capture Sindbis virus, a prototypical alphavirus, in its membrane-binding form at pH 6.4. Cryoelectron micrograph analyses and 3D reconstructions showed that the virus retains its overall icosahedral structure at this mildly acidic pH, except in the membrane-binding region, where monomeric E1 associates with the target membrane and the E2 glycoprotein retains its original trimeric organization. The remaining E2 trimers may hinder E1 homotrimerization and are a potential target for antiviral drugs.
Collapse
|
41
|
Roehrig JT, Butrapet S, Liss NM, Bennett SL, Luy BE, Childers T, Boroughs KL, Stovall JL, Calvert AE, Blair CD, Huang CYH. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Virology 2013; 441:114-25. [DOI: 10.1016/j.virol.2013.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
42
|
Brandler S, Ruffié C, Combredet C, Brault JB, Najburg V, Prevost MC, Habel A, Tauber E, Desprès P, Tangy F. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 2013; 31:3718-25. [PMID: 23742993 DOI: 10.1016/j.vaccine.2013.05.086] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, recently reemerged in the Indian Ocean, India and Southeast Asia, causing millions of cases of severe polyarthralgia. No specific treatment to prevent disease or vaccine to limit epidemics is currently available. Here we describe a recombinant live-attenuated measles vaccine (MV) expressing CHIKV virus-like particles comprising capsid and envelope structural proteins from the recent CHIKV strain La Reunion. Immunization of mice susceptible to measles virus induced high titers of CHIKV antibodies that neutralized several primary isolates. Specific cellular immune responses were also elicited. A single immunization with this vaccine candidate protected all mice from a lethal CHIKV challenge, and passive transfer of immune sera conferred protection to naïve mice. Measles vaccine is one of the safest and most effective human vaccines. A recombinant MV-CHIKV virus could make a safe and effective vaccine against chikungunya that deserves to be further tested in human trials.
Collapse
Affiliation(s)
- Samantha Brandler
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun S, Xiang Y, Akahata W, Holdaway H, Pal P, Zhang X, Diamond MS, Nabel GJ, Rossmann MG. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife 2013; 2:e00435. [PMID: 23577234 PMCID: PMC3614025 DOI: 10.7554/elife.00435] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/18/2013] [Indexed: 01/07/2023] Open
Abstract
A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T = 4 quasi-equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different, possibly representing different phases during initial generation of fusogenic E1 trimers. CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment. DOI:http://dx.doi.org/10.7554/eLife.00435.001.
Collapse
Affiliation(s)
- Siyang Sun
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Ye Xiang
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Wataru Akahata
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Heather Holdaway
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Pankaj Pal
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, United States
| | - Xinzheng Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St Louis, United States
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, United States,For correspondence:
| |
Collapse
|
44
|
Singh RK, Tiwari S, Mishra VK, Tiwari R, Dhole TN. Molecular epidemiology of Chikungunya virus: Mutation in E1 gene region. J Virol Methods 2012; 185:213-20. [DOI: 10.1016/j.jviromet.2012.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
45
|
Plevka P, Battisti A, Winkler D, Tars K, Holdaway H, Bator C, Rossmann M. Sample preparation induced artifacts in cryo-electron tomographs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1043-1048. [PMID: 23040048 PMCID: PMC3507990 DOI: 10.1017/s1431927612001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigated the effects of sample preparation and of the exposure to an electron beam on particles in cryo-electron tomographs. Various virus particles with icosahedral symmetry were examined, allowing a comparison of symmetrically related components that should be identical in structure but might be affected differently by these imaging artifacts. Comparison of tomographic reconstructions with previously determined structures established by an independent method showed that neither freezing nor electron beam exposure produced a significant amount of shrinkage along the z axis (thickness). However, we observed damage to regions of the particles located close to the surface of the vitreous ice.
Collapse
Affiliation(s)
- P. Plevka
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - A.J. Battisti
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - D.C. Winkler
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - K. Tars
- Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga, LV 1067, Latvia
| | - H.A. Holdaway
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - C.M. Bator
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| | - M.G. Rossmann
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907-2032, USA
| |
Collapse
|
46
|
Abstract
Many pathogens important for medicine, veterinary medicine or public health belong to the genera alphavirus and rubivirus within the family Togaviridae. 29 species of alphaviruses have been reported, and most of them are arboviruses. Chikungnya virus re-emerged in Kenya in 2004 and the epidemics spread to the Indian Ocean islands and many countries in South Asia, South-East Asia and Europe. On the other hand, rubella virus, a sole member of the genus rubivirus, is the causative agent of rubella and congenital rubella syndrome (CRS). Because human is only a natural host of the virus and effective live attenuated vaccines are available, immunization activities are strengthened globally to eliminate rubella and CRS, together with measles.
Collapse
|
47
|
Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN. An assembly model of rift valley Fever virus. Front Microbiol 2012; 3:254. [PMID: 22837754 PMCID: PMC3400131 DOI: 10.3389/fmicb.2012.00254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/29/2012] [Indexed: 11/13/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a bunyavirus endemic to Africa and the Arabian Peninsula that infects humans and livestock. The virus encodes two glycoproteins, Gn and Gc, which represent the major structural antigens and are responsible for host cell receptor binding and fusion. Both glycoproteins are organized on the virus surface as cylindrical hollow spikes that cluster into distinct capsomers with the overall assembly exhibiting an icosahedral symmetry. Currently, no experimental three-dimensional structure for any entire bunyavirus glycoprotein is available. Using fold recognition, we generated molecular models for both RVFV glycoproteins and found significant structural matches between the RVFV Gn protein and the influenza virus hemagglutinin protein and a separate match between RVFV Gc protein and Sindbis virus envelope protein E1. Using these models, the potential interaction and arrangement of both glycoproteins in the RVFV particle was analyzed, by modeling their placement within the cryo-electron microscopy density map of RVFV. We identified four possible arrangements of the glycoproteins in the virion envelope. Each assembly model proposes that the ectodomain of Gn forms the majority of the protruding capsomer and that Gc is involved in formation of the capsomer base. Furthermore, Gc is suggested to facilitate intercapsomer connections. The proposed arrangement of the two glycoproteins on the RVFV surface is similar to that described for the alphavirus E1-E2 proteins. Our models will provide guidance to better understand the assembly process of phleboviruses and such structural studies can also contribute to the design of targeted antivirals.
Collapse
Affiliation(s)
- Mirabela Rusu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
My undergraduate education in mathematics and physics was a good grounding for graduate studies in crystallographic studies of small organic molecules. As a postdoctoral fellow in Minnesota, I learned how to program an early electronic computer for crystallographic calculations. I then joined Max Perutz, excited to use my skills in the determination of the first protein structures. The results were even more fascinating than the development of techniques and provided inspiration for starting my own laboratory at Purdue University. My first studies on dehydrogenases established the conservation of nucleotide-binding structures. Having thus established myself as an independent scientist, I could start on my most cherished ambition of studying the structure of viruses. About a decade later, my laboratory had produced the structure of a small RNA plant virus and then, in another six years, the first structure of a human common cold virus. Many more virus structures followed, but soon it became essential to supplement crystallography with electron microscopy to investigate viral assembly, viral infection of cells, and neutralization of viruses by antibodies. A major guide in all these studies was the discovery of evolution at the molecular level. The conservation of three-dimensional structure has been a recurring theme, from my experiences with Max Perutz in the study of hemoglobin to the recognition of the conserved nucleotide-binding fold and to the recognition of the jelly roll fold in the capsid protein of a large variety of viruses.
Collapse
Affiliation(s)
- Michael G Rossmann
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
49
|
Abstract
We examine virus maturation of selected nonenveloped and enveloped single-stranded RNA viruses, retroviruses, bacteriophages, and herpesviruses. Processes associated with maturation in the RNA viruses range from subtle (nodaviruses and picornaviruses) to dramatic (tetraviruses and togaviruses). The elaborate assembly and maturation pathway of HIV is discussed in contrast to the less sophisticated but highly efficient processes associated with togaviruses. Bacteriophage assembly and maturation are discussed in general terms, with specific examples chosen for emphasis. Finally the herpesviruses are compared with bacteriophages. The data support divergent evolution of nodaviruses, picornaviruses, and tetraviruses from a common ancestor and divergent evolution of alphaviruses and flaviviruses from a common ancestor. Likewise, bacteriophages and herpesviruses almost certainly share a common ancestor in their evolution. Comparing all the viruses, we conclude that maturation is a convergent process that is required to solve conflicting requirements in biological dynamics and function.
Collapse
Affiliation(s)
- David Veesler
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
50
|
Interactions of the cytoplasmic domain of Sindbis virus E2 with nucleocapsid cores promote alphavirus budding. J Virol 2011; 86:2585-99. [PMID: 22190727 DOI: 10.1128/jvi.05860-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphavirus budding from the plasma membrane occurs through the specific interaction of the nucleocapsid core with the cytoplasmic domain of the E2 glycoprotein (cdE2). Structural studies of the Sindbis virus capsid protein (CP) have suggested that these critical interactions are mediated by the binding of cdE2 into a hydrophobic pocket in the CP. Several molecular genetic studies have implicated amino acids Y400 and L402 in cdE2 as important for the budding of alphaviruses. In this study, we characterized the role of cdE2 residues in structural polyprotein processing, glycoprotein transport, and capsid interactions. Along with hydrophobic residues, charged residues in the N terminus of cdE2 were critical for the effective interaction of cores with cdE2, a process required for virus budding. Mutations in the C-terminal signal sequence region of cdE2 affected E2 protein transport to the plasma membrane, while nonbudding mutants that were defective in cdE2-CP interaction accumulated E2 on the plasma membrane. The interaction of cdE2 with cytoplasmic cores purified from infected cells and in vitro-assembled core-like particles suggests that cdE2 interacts with assembled cores to mediate budding. We hypothesize that these cdE2 interactions induce a change in the organization of the nucleocapsid core upon binding leading to particle budding and priming of the nucleocapsid cores for disassembly that is required for virus infection.
Collapse
|