1
|
Yamazaki T, Kosugi Y, Makibe F, Matsuo J. Molecular Characterization of Virulence-Related Genes in Listeria monocytogenes Isolated from Retail Meats in Sapporo, Japan. Curr Microbiol 2025; 82:139. [PMID: 39961869 DOI: 10.1007/s00284-025-04121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/05/2025] [Indexed: 03/20/2025]
Abstract
Listeria monocytogenes is the causative agent of the globally prevalent foodborne illness listeriosis. Infection is caused by the ingestion of food contaminated with L. monocytogenes, which invades host cells via the bacterial cell surface protein internalin A (InlA). Fewer outbreaks of listeriosis have been reported in Japan than in other countries, suggesting that circulating L. monocytogenes strains in Japan have an increased prevalence of InlA mutations or mutations in other virulence factors, thereby impairing cell invasion. Herein, we investigated the molecular characteristics of inlA and other key virulence factors in L. monocytogenes isolated from retail meats sold in Japan. We isolated L. monocytogenes from retail meats in Sapporo, Japan and investigated the presence of five virulence-related genes (actA, hlyA, iap, plcA, and prfA). We also determined the sequences of the inlA gene, which encodes InlA. Ninety-three L. monocytogenes strains (31.0%) were isolated from 300 meat samples. The major serogroup of the strains was serogroup IIc (49.5%), followed by serogroup IIa (41.9%). Overall, 98.9% of the 93 strains possessed the five examined virulence-related genes. However, 51.6% of these strains exhibited premature stop codons in inlA. We showed that approximately half of the L. monocytogenes strains contaminating retail meats in Sapporo, Japan express mutated InlA, suggesting that their ability to invade host cells may be impaired. This may be one reason why fewer listeriosis outbreaks occur in Japan than in other countries, and provides new insight into geographical differences in the incidence of a common infectious disease.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan
| | - Yume Kosugi
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan
| | - Fumika Makibe
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan
| | - Junji Matsuo
- School of Medical Technology, Health Sciences University of Hokkaido, 2-5 Ainosato, Kita-ku, Sapporo, 002-8072, Japan.
| |
Collapse
|
2
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
3
|
Foltran BB, Gaspar JP, Silva IRM, Pires HM, Andrade FB, Costa GM, Paixao JEL, Fernandes LGV, Teixeira AF, Nascimento ALTO. New insights into the putative role of leucine-rich repeat proteins of Leptospira interrogans and their participation in host cell invasion: an in silico analysis. Front Cell Infect Microbiol 2024; 14:1492352. [PMID: 39735260 PMCID: PMC11674859 DOI: 10.3389/fcimb.2024.1492352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Pathogenic Leptospira are spirochetes that cause leptospirosis, a worldwide zoonotic disease. Leptospirosis affects humans and animals, with approximately 1 million human infections and 60,000 deaths per year. The diversity of leptospiral strains and serovars allied to the fact that pathogenesis is not yet fully understood, make the development of an effective vaccine against leptospirosis a challenge. Outer membrane and secreted proteins are considered potential antigens since they play a vital role in mediating interactions with host molecules. Several domains or motifs have been reported to participate in the leptospiral infection process. Among them, leucine-rich repeat (LRR) proteins have been highlighted as attractive multipurpose proteins, exhibiting a broad spectrum of ligands and having a putative role in bacterial pathogenesis. Indeed, genome annotation of leptospiral species pointed out that LRR proteins are predominant in pathogenic strains, a feature that corroborates this hypothesis. A few LRR proteins of L. santarosai, L. borgpetersenii and L. interrogans have been studied and their possible role in virulence was proposed. Yet, a mechanistic and broad investigation of LRR proteins was not fully performed. In this review, a comprehensive in silico analysis of 21 LRR proteins of L. interrogans was performed in relation to structure, function, dynamics and virulent potential that will contribute to understanding the key role of these domains in the underlying mechanisms of leptospiral infection.
Collapse
Affiliation(s)
- Bruno B. Foltran
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - João P. Gaspar
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Igor R. M. Silva
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Henrique M. Pires
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda B. Andrade
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Giovanna M. Costa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Julia E. L. Paixao
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luis G. V. Fernandes
- Infectious Bacterial Disease Research Unit, USDA Agricultural Research Service, National Animal Disease Center, Ames, IA, United States
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
4
|
Shi W, Zhang Q, Li H, Du D, Ma X, Wang J, Jiang J, Liu C, Kou L, Ren J. Biofilm Formation, Motility, and Virulence of Listeria monocytogenes Are Reduced by Deletion of the Gene lmo0159, a Novel Listerial LPXTG Surface Protein. Microorganisms 2024; 12:1354. [PMID: 39065121 PMCID: PMC11278909 DOI: 10.3390/microorganisms12071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that causes listeriosis in humans and other animals. Surface proteins with the LPXTG motif have important roles in the virulence of L. monocytogenes. Lmo0159 is one such protein, but little is known about its role in L. monocytogenes virulence, motility, and biofilm formation. Here, we constructed and characterized a deletion mutant of lmo0159 (∆lmo0159). We analyzed not only the capacity of biofilm formation, motility, attachment, and intracellular growth in different cell types but also LD50; bacterial load in mice's liver, spleen, and brain; expression of virulence genes; and survival time of mice after challenge. The results showed that the cross-linking density of the biofilm of ∆lmo0159 strain was lower than that of WT by microscopic examination. The expression of biofilm-formation and virulence genes also decreased in the biofilm state. Subsequently, the growth and motility of ∆lmo0159 in the culture medium were enhanced. Conversely, the growth and motility of L. monocytogenes were attenuated by ∆lmo0159 at both the cellular and mouse levels. At the cellular level, ∆lmo0159 reduced plaque size; accelerated scratch healing; and attenuated the efficiency of adhesion, invasion, and intracellular proliferation in swine intestinal epithelial cells (SIEC), RAW264.7, mouse-brain microvascular endothelial cells (mBMEC), and human-brain microvascular endothelial cells (hCMEC/D3). The expression of virulence genes was also inhibited. At the mouse level, the LD50 of the ∆lmo0159 strain was 100.97 times higher than that of the WT strain. The bacterial load of the ∆lmo0159 strain in the liver and spleen was lower than that of the WT strain. In a mouse model of intraperitoneal infection, the deletion of the lmo0159 gene significantly prolonged the survival time of the mice, suggesting that the lmo0159 deletion mutant also exhibited reduced virulence. Thus, our study identified lmo0159 as a novel virulence factor among L. monocytogenes LPXTG proteins.
Collapse
Affiliation(s)
- Weidi Shi
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Qiwen Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Dongdong Du
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China;
| | - Xun Ma
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction, Shihezi 832000, China
| | - Jianjun Jiang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Caixia Liu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Lijun Kou
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| | - Jingjing Ren
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (W.S.); (Q.Z.); (H.L.); (J.J.); (C.L.); (L.K.); (J.R.)
| |
Collapse
|
5
|
Chen X, Chang Y, Ye M, Wang Z, Wu S, Duan N. Rational Design of a Robust G-Quadruplex Aptamer as an Inhibitor to Alleviate Listeria monocytogenes Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15946-15958. [PMID: 38519414 DOI: 10.1021/acsami.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Listeria monocytogenes (LM) is one of the most invasive foodborne pathogens that cause listeriosis, making it imperative to explore novel inhibiting strategies for alleviating its infection. The adhesion and invasion of LM within host cells are partly orchestrated by an invasin protein internalin A (InlA), which facilitates bacterial passage by interacting with the host cell E-cadherin (E-Cad). Hence, in this work, we proposed an aptamer blocking strategy by binding to the region on InlA that directly mediated E-Cad receptor engagement, thereby alleviating LM infection. An aptamer GA8 with a robust G-quadruplex (G4) structural feature was designed through truncation and base mutation from the original aptamer A8. The molecular docking and dynamics analysis showed that the InlA/aptamer GA8 binding interface was highly overlapping with the natural InlA/E-Cad binding interface, which confirmed that GA8 can tightly and stably bind InlA and block more distinct epitopes on InlA that involved the interaction with E-Cad. On the cellular level, it was confirmed that GA8 effectively blocked LM adhesion with an inhibition rate of 78%. Overall, the robust G4 aptamer-mediated design provides a new direction for the development of inhibitors against other wide-ranging and emerging pathogens.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Khan F, Jeong GJ, Javaid A, Thuy Nguyen Pham D, Tabassum N, Kim YM. Surface adherence and vacuolar internalization of bacterial pathogens to the Candida spp. cells: Mechanism of persistence and propagation. J Adv Res 2023; 53:115-136. [PMID: 36572338 PMCID: PMC10658324 DOI: 10.1016/j.jare.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The co-existence of Candida albicans with the bacteria in the host tissues and organs displays interactions at competitive, antagonistic, and synergistic levels. Several pathogenic bacteria take advantage of such types of interaction for their survival and proliferation. The chemical interaction involves the signaling molecules produced by the bacteria or Candida spp., whereas the physical attachment occurs by involving the surface proteins of the bacteria and Candida. In addition, bacterial pathogens have emerged to internalize inside the C. albicans vacuole, which is one of the inherent properties of the endosymbiotic relationship between the bacteria and the eukaryotic host. AIM OF REVIEW The interaction occurring by the involvement of surface protein from diverse bacterial species with Candida species has been discussed in detail in this paper. An in silico molecular docking study was performed between the surface proteins of different bacterial species and Als3P of C. albicans to explain the molecular mechanism involved in the Als3P-dependent interaction. Furthermore, in order to understand the specificity of C. albicans interaction with Als3P, the evolutionary relatedness of several bacterial surface proteins has been investigated. Furthermore, the environmental factors that influence bacterial pathogen internalization into the Candida vacuole have been addressed. Moreover, the review presented future perspectives for disrupting the cross-kingdom interaction and eradicating the endosymbiotic bacterial pathogens. KEY SCIENTIFIC CONCEPTS OF REVIEW With the involvement of cross-kingdom interactions and endosymbiotic relationships, the bacterial pathogens escape from the environmental stresses and the antimicrobial activity of the host immune system. Thus, the study of interactions between Candida and bacterial pathogens is of high clinical significance.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
7
|
Shivaee A, Bahonar S, Goudarzi M, Hematian A, Hajikhani B, Sadeghi Kalani B. Investigating the effect of the inhibitory peptide on L.monocytogenes cell invasion: an in silico and in vitro study. Gut Pathog 2023; 15:51. [PMID: 37880736 PMCID: PMC10601259 DOI: 10.1186/s13099-023-00576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS L.monocytogenes monocytogenes is an omnipresent bacterium that causes a fatal food-borne illness, listeriosis. The connection of this bacterium to E-cadherin through internalin A plays a significant role in the internalization of the bacteria. In this study, this interaction has been investigated for the design of an inhibitory peptide. METHODS The interaction of the proteins involved in the entry of bacteria was evaluated by molecular docking. According to their interactions, an inhibitory peptide was designed to bind to internalin A by server peptiderive. Its effects on L.monocytogenes invasion on the Caco-2 cell line and biofilm formation were also assessed. FINDINGS Docking results showed that the peptide has a high affinity for binding to Internalin A. The synthesized peptide at a concentration of 64 µg/ml inhibited 80% of the invasion of L.monocytogenes into the Caco-2 cell line. Furthermore, the studied peptide at the highest concentration had a slight inhibitory effect on biofilm formation. CONCLUSION These results reveal that short polypeptides can impede the invasion of target cells by L. monocytogenes in vitro and could be advantageous as restoring agents in vivo.
Collapse
Affiliation(s)
- Ali Shivaee
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bahonar
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hematian
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Bahareh Hajikhani
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
8
|
Yamazaki T, Nagatoishi S, Yamawaki T, Nozawa T, Matsunaga R, Nakakido M, Caaveiro JMM, Nakagawa I, Tsumoto K. Anti-InlA single-domain antibodies that inhibit the cell invasion of Listeria monocytogenes. J Biol Chem 2023; 299:105254. [PMID: 37716701 PMCID: PMC10582769 DOI: 10.1016/j.jbc.2023.105254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Listeriosis, caused by infection with Listeria monocytogenes, is a severe disease with a high mortality rate. The L. monocytogenes virulence factor, internalin family protein InlA, which binds to the host receptor E-cadherin, is necessary to invade host cells. Here, we isolated two single-domain antibodies (VHHs) that bind to InlA with picomolar affinities from an alpaca immune library using the phage display method. These InlA-specific VHHs inhibited the binding of InlA to the extracellular domains of E-cadherin in vitro as shown by biophysical interaction analysis. Furthermore, we determined that the VHHs inhibited the invasion of L. monocytogenes into host cells in culture. High-resolution X-ray structure analyses of the complexes of VHHs with InlA revealed that the VHHs bind to the same binding site as E-cadherin against InlA. We conclude that these VHHs have the potential for use as drugs to treat listeriosis.
Collapse
Affiliation(s)
- Taichi Yamazaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Tsukushi Yamawaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Listeria InlB Expedites Vacuole Escape and Intracellular Proliferation by Promoting Rab7 Recruitment via Vps34. mBio 2023; 14:e0322122. [PMID: 36656016 PMCID: PMC9973280 DOI: 10.1128/mbio.03221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.
Collapse
|
10
|
Adhikari P, Florien N, Gupta S, Kaushal A. Recent Advances in the Detection of Listeria monocytogenes. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Listeria monocytogenes is the third-most severe pathogen causing a yearly outbreak of food poisoning in the world that proliferates widely in the environment. Infants, pregnant mothers, and immuno-compromised people are at high risk. Its ability to grow in both biotic and abiotic environments leads to epidemics that infect 5 out of 10 people annually. Because of the epithelial adhesion (by E-cadherin binding), it can suppress immune cells and thrive in the gastrointestinal tract till the brain through blood flow (E-cadherin). Microbial culture is still used as a gold standard, but takes a long time and often yields false positive results due to incompetence and temperature variations. Therefore, in order to treat it rather than using broad spectrum antibiotics, a standardized time-saving and highly specific technology for early detection is very important. It has been observed that the production of a particular antibody is delaying (so does the detection process) as a result of the inadequate understanding of the pathophysiology of the bacteria. This book chapter provides a brief summary of a pathogen as well as the scientific advances that led to its identification more easily.
Collapse
|
11
|
Zhou S, Liu Z, Song J, Chen Y. Disarm The Bacteria: What Temperate Phages Can Do. Curr Issues Mol Biol 2023; 45:1149-1167. [PMID: 36826021 PMCID: PMC9955262 DOI: 10.3390/cimb45020076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of phage applications and clinical treatment, virulent phages have been in the spotlight whereas temperate phages received, relatively speaking, less attention. The fact that temperate phages often carry virulent or drug-resistant genes is a constant concern and drawback in temperate phage applications. However, temperate phages also play a role in bacterial regulation. This review elucidates the biological properties of temperate phages based on their life cycle and introduces the latest work on temperate phage applications, such as on host virulence reduction, biofilm degradation, genetic engineering and phage display. The versatile use of temperate phages coupled with their inherent properties, such as economy, ready accessibility, wide variety and host specificity, make temperate phages a solid candidate in tackling bacterial infections.
Collapse
Affiliation(s)
- Shiyue Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhengjie Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiaoyang Song
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yibao Chen
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
12
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Selection of Listeria monocytogenes InlA-Binding Peptides Using Phage Display—Novel Compounds for Diagnostic Applications? Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Listeria monocytogenes is a pathogenic, gram-positive bacterium causing foodborne infections and listeriosis, an infection responsible for serious medical conditions, especially for pregnant women, newborns, or people with a weak immune system. Even after antibiotic treatment, 30% of clinical infections result in death. L. monocytogenes is able to enter and multiply in mammalian cells. Invasion into epithelial cells in the human intestine is mediated by the interaction of the bacterial surface protein internalin A (InlA) with the host cell receptor E-cadherin (E-cad). We have used phage display to select InlA-specific peptides consisting of 12 amino acids using a randomized, recombinant peptide library. We could demonstrate that the selected peptides bound to recombinant InlA protein as well as to L. monocytogenes cells. In vitro, some of the peptides inhibited the interaction between recombinant InlA and human E-cad. As far as we know, this is the first publication on the development of InlA-specific peptide ligands. In the future, our peptides might be used for the development of innovative diagnostic tools or even therapeutic approaches.
Collapse
|
14
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
15
|
Sánchez-González R, Leyton P, Aguilar LF, Reyna-Jeldes M, Coddou C, Díaz K, Mellado M. Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study. Microorganisms 2022; 10:microorganisms10081483. [PMID: 35893541 PMCID: PMC9330556 DOI: 10.3390/microorganisms10081483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, antimicrobial resistance is a serious concern associated with the reduced efficacy of traditional antibiotics and an increased health burden worldwide. In response to this challenge, the scientific community is developing a new generation of antibacterial molecules. Contributing to this effort, and inspired by the resveratrol structure, five new resveratrol-dimers (9a−9e) and one resveratrol-monomer (10a) were synthetized using 2,5-dibromo-1,4-diaminobenzene (8) as the core compound for Schiff base bridge conformation. These compounds were evaluated in vitro against pathogenic clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus sp., and Listeria monocytogenes. Antibacterial activity measurements of resveratrol-Schiff base derivatives (9a−9e) and their precursors (4−8) showed high selectivity against Listeria monocytogenes, being 2.5 and 13.7 times more potent than chloramphenicol, while resveratrol showed an EC50 > 320 µg/mL on the same model. Moreover, a prospective mechanism of action for these compounds against L. monocytogenes strains was proposed using molecular docking analysis, finding a plausible inhibition of internalin C (InlC), a surface protein relevant in bacteria−host interaction. These results would allow for the future development of new molecules for listeriosis treatment based on compound 8.
Collapse
Affiliation(s)
- Rodrigo Sánchez-González
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Patricio Leyton
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Luis F. Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (M.R.-J.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (M.R.-J.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Correspondence: (K.D.); (M.M.)
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Correspondence: (K.D.); (M.M.)
| |
Collapse
|
16
|
Zaitsev SS, Khizhnyakova MA, Feodorova VA. Retrospective Investigation of the Whole Genome of the Hypovirulent Listeria monocytogenes Strain of ST201, CC69, Lineage III, Isolated from a Piglet with Fatal Neurolisteriosis. Microorganisms 2022; 10:microorganisms10071442. [PMID: 35889161 PMCID: PMC9324732 DOI: 10.3390/microorganisms10071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes (Lm), the causative agent for both human and animal listeriosis, is considered to be a rare but potentially fatal foodborne pathogen. While Lm strains associated with current cases of human listeriosis are now being intensely investigated, our knowledge of this microorganism which has caused listerial infection in the past is still extremely limited. The objective of this study was a retrospective whole-genome sequence analysis of the Lm collection strain, 4/52-1953, isolated in the middle of the 20th century from a piglet with listerial neuroinfection. The multi-locus sequence typing (MLST) analysis based on seven housekeeping genes (abcZ, bglA, cat, dapE, dat, ldh, and lhkA) showed that the Lm strain 4/52-1953 was assigned to the sequence type 201 (ST201), clonal complex 69 (CC69), and phylogenetic lineage III. The strain 4/52-1953, similarly to other ST201 strains, probably originated from the ST9, CC69 via ST157. At least eight different STs, ST69, ST72, ST130, ST136, ST148, ST469, ST769, and ST202, were identified as the descendants of the first generation and a single one, ST2290, was proved to be the descendant of the second generation. Among them there were strains either associated with some sporadic cases of human and animal listerial infection in the course of more than 60 years worldwide or isolated from food samples, fish and dairy products, or migratory birds. Phylogenetic analysis based on whole genomes of all the Lm strains available in the NCBI GenBank (n = 256) demonstrated that the strain 4/52-1953 belonged to minor Cluster I, represented by lineage III only, while two other major Clusters, II and III, were formed by lineages I and II. In the genome of the strain 4/52-1953, 41 virulence-associated genes, including the Listeria pathogenicity island 1 (LIPI-1), and LIPI-2 represented by two internalin genes, the inlA and inlB genes, and five genes related to antibiotic resistance, were found. These findings can help to make the emergence of both hyper- and hypovirulent variants, including those bearing antibiotic resistance genes, more visible and aid the aims of molecular epidemiology as well.
Collapse
Affiliation(s)
- Sergey S Zaitsev
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Mariya A Khizhnyakova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Valentina A Feodorova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| |
Collapse
|
17
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
18
|
Hsu SH, Yang CW. Insight into the Structure, Functions, and Dynamics of the Leptospira Outer Membrane Proteins with the Pathogenicity. MEMBRANES 2022; 12:membranes12030300. [PMID: 35323775 PMCID: PMC8951592 DOI: 10.3390/membranes12030300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
Leptospirosis is a widespread zoonosis that frequently occurs in tropical and subtropical countries. Leptospira enters the host through wounds or mucous membranes and spreads to the whole body through the blood, causing systemic infection. Kidneys are the preferential site where Leptospira accumulates, especially in the renal interstitium and renal tubule epithelial cells. Clinical symptoms in humans include high fever, jaundice, renal failure, and severe multiple-organ failure (Weil’s syndrome). Surface-exposed antigens are located at the outermost layer of Leptospira and these potential virulence factors are likely involved in primary host-pathogen interactions, adhesion, and/or invasion. Using the knockout/knockdown techniques to the evaluation of pathogenicity in the virulence factor are the most direct and effective methods and many virulence factors are evaluated including lipopolysaccharides (LPS), Leptospira lipoprotein 32 (LipL32), Leptospira ompA domain protein 22 (Loa22), LipL41, LipL71, Leptospira immunoglobulin-like repeat A (LigA), LigB, and LipL21. In this review, we will discuss the structure, functions, and dynamics of these virulence factors and the roles of these virulence factors in Leptospira pathogenicity. In addition, a protein family with special Leucine-rich repeat (LRR) will also be discussed for their vital role in Leptospira pathogenicity. Finally, these surface-exposed antigens are discussed in the application of the diagnosis target for leptospirosis and compared with the serum microscope agglutination test (MAT), the gold standard for leptospirosis.
Collapse
|
19
|
Lachtara B, Wieczorek K, Osek J. Genetic Diversity and Relationships of Listeria monocytogenes Serogroup IIa Isolated in Poland. Microorganisms 2022; 10:532. [PMID: 35336111 PMCID: PMC8951407 DOI: 10.3390/microorganisms10030532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, 100 L. monocytogenes isolates of serogroup IIa from food and food production environments in Poland were characterized towards the presence of virulence, resistance, and stress response genes using whole-genome sequencing (WGS). The strains were also molecularly typed and compared with multi-locus sequence typing (MLST) and core genome MLST analyses. The present isolates were grouped into 6 sublineages (SLs), with the most prevalent SL155 (33 isolates), SL121 (32 isolates), and SL8 (28 isolates) and classified into six clonal complexes, with the most prevalent CC155 (33 strains), CC121 (32 isolates), and CC8 (28 strains). Furthermore, the strains were grouped to eight sequence types, with the most prevalent ST155 (33 strains), ST121 (30 isolates), and ST8 (28; strains) followed by 60 cgMLST types (CTs). WGS data showed the presence of several virulence genes or putative molecular markers playing a role in pathogenesis of listeriosis and involved in survival of L. monocytogenes in adverse environmental conditions. Some of the present strains were molecularly closely related to L. monocytogenes previously isolated in Poland. The results of the study showed that food and food production environments may be a source of L. monocytogenes of serogroup IIa with pathogenic potential.
Collapse
Affiliation(s)
| | | | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100 Pulawy, Poland; (B.L.); (K.W.)
| |
Collapse
|
20
|
Immunoinformatics Insights into the Internalin A and B Proteins to Design a Multi-Epitope Subunit Vaccine for L. monocytogenes. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10359-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Ireton K, Mortuza R, Gyanwali GC, Gianfelice A, Hussain M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol Microbiol 2021; 116:1407-1419. [PMID: 34704304 DOI: 10.1111/mmi.14836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a food-borne bacterium that causes gastroenteritis, meningitis, or abortion. L. monocytogenes induces its internalization (entry) into human cells and either spreads laterally in tissues or transcytoses to traverse anatomical barriers. In this review, we discuss mechanisms by which five structurally related proteins of the "internalin" family of L. monocytogenes (InlA, InlB, InlC, InlF, and InlP) interact with distinct host receptors to promote infection of human cells and/or crossing of the intestinal, blood-brain, or placental barriers. We focus on recent results demonstrating that the internalin proteins InlA, InlB, and InlC exploit exocytic pathways to stimulate transcytosis, entry, or cell-to-cell spread, respectively. We also discuss evidence that InlA-mediated transcytosis contributes to traversal of the intestinal barrier, whereas InlF promotes entry into endothelial cells to breach the blood-brain barrier. InlB also facilitates the crossing of the blood-brain barrier, but does so by extending the longevity of infected monocytes that may subsequently act as a "Trojan horse" to transfer bacteria to the brain. InlA, InlB, and InlP each contribute to fetoplacental infection by targeting syncytiotrophoblast or cytotrophoblast layers of the placenta. This work highlights the diverse functions of internalins and the complex mechanisms by which these structurally related proteins contribute to disease.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Roman Mortuza
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mazhar Hussain
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Architecturally complex O-glycopeptidases are customized for mucin recognition and hydrolysis. Proc Natl Acad Sci U S A 2021; 118:2019220118. [PMID: 33658366 DOI: 10.1073/pnas.2019220118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A challenge faced by peptidases is the recognition of highly diverse substrates. A feature of some peptidase families is the capacity to specifically use post-translationally added glycans present on their protein substrates as a recognition determinant. This is ultimately critical to enabling peptide bond hydrolysis. This class of enzyme is also frequently large and architecturally sophisticated. However, the molecular details underpinning glycan recognition by these O-glycopeptidases, the importance of these interactions, and the functional roles of their ancillary domains remain unclear. Here, using the Clostridium perfringens ZmpA, ZmpB, and ZmpC M60 peptidases as model proteins, we provide structural and functional insight into how these intricate proteins recognize glycans as part of catalytic and noncatalytic substrate recognition. Structural, kinetic, and mutagenic analyses support the key role of glycan recognition within the M60 domain catalytic site, though they point to ZmpA as an apparently inactive enzyme. Wider examination of the Zmp domain content reveals noncatalytic carbohydrate binding as a feature of these proteins. The complete three-dimensional structure of ZmpB provides rare insight into the overall molecular organization of a highly multimodular enzyme and reveals how the interplay of individual domain function may influence biological activity. O-glycopeptidases frequently occur in host-adapted microbes that inhabit or attack mucus layers. Therefore, we anticipate that these results will be fundamental to informing more detailed models of how the glycoproteins that are abundant in mucus are destroyed as part of pathogenic processes or liberated as energy sources during normal commensal lifestyles.
Collapse
|
23
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
24
|
Retrospective Use of Whole-Genome Sequencing Expands the Multicountry Outbreak Cluster of Listeria monocytogenes ST1247. Int J Genomics 2021; 2021:6636138. [PMID: 33869622 PMCID: PMC8035026 DOI: 10.1155/2021/6636138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes sequence type 1247 clonal complex 8 caused a prolonged multicountry outbreak in five EU countries: Denmark, Estonia, Finland, France, and Sweden. A total of 22 disease cases were identified with onset of symptoms between July 2014 and February 2019. Five patients died due to, or with, the disease. The retrospective analysis of L. monocytogenes isolate VLTRLM2013 revealed the presence of an outbreak-related strain (cgMLST type L2-SL8-ST1247-CT4158) in ready-to-eat fish product more than a year prior to the first outbreak-related cases. Reference outbreak strain and VLTRLM2013 strain were compared using core genome and whole-genome multilocus sequence typing analyses. Genomic level differences of the persistent L. monocytogenes strains associated with a prolonged multicountry foodborne listeriosis outbreak are described. It was concluded that the persistent nature of the multicountry outbreak-related L. monocytogenes strain VLTRLM2013 together with stress island, virulence, and antibiotic resistance genes could potentially be the determining factors for the extensive and prolonged outbreak affecting five European Union countries. Our results support the systematic application of whole-genome sequencing in food and public health surveillance and further encourages its wide adoption.
Collapse
|
25
|
Dash S, Duraivelan K, Samanta D. Cadherin-mediated host-pathogen interactions. Cell Microbiol 2021; 23:e13316. [PMID: 33543826 DOI: 10.1111/cmi.13316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules mediate cell-to-cell and cell-to-matrix adhesions and play an immense role in a myriad of physiological processes during the growth and development of a multicellular organism. Cadherins belong to a major group of membrane-bound cell surface proteins that, in coordination with nectins, drive the formation and maintenance of adherens junctions for mediating cell to cell adhesion, cellular communication and signalling. Alongside adhesive function, the involvement of cadherins in mediating host-pathogen interactions has been extensively explored in recent years. In this review, we provide an in-depth understanding of microbial pathogens and their virulence factors that exploit cadherins for their strategical invasion into the host cell. Furthermore, macromolecular interactions involving cadherins and various microbial factors such as secretory toxins and adhesins lead to the disintegration of host cell junctions followed by the entry of the pathogen or triggering downstream signalling pathways responsible for successful invasion of the pathogenic microbes are discussed. Besides providing a comprehensive insight into some of the structural complexes involving cadherins and microbial factors to offer the mechanistic details of host-pathogen interactions, the current review also highlights novel constituents of various cell signalling events such as endocytosis machinery elicited upon microbial infections.
Collapse
Affiliation(s)
- Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
26
|
Microscale communication between bacterial pathogens and the host epithelium. Genes Immun 2021; 22:247-254. [PMID: 34588625 PMCID: PMC8497271 DOI: 10.1038/s41435-021-00149-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
Pathogenic bacteria have evolved a variety of highly selective adhesins allowing these microbes to engage specific surface determinants of their eukaryotic host cells. Receptor clustering induced by the multivalent microorganisms will not only anchor the bacteria to the tissue, but will inevitably trigger host cell signaling. It has become clear, that these bacteria-initiated signaling events can be seen as a form of localized communication with host epithelial cells. Such a microscale communication can have immediate consequences in the form of changes in host cell membrane morphology or cytoskeletal organization, but can also lead to transcriptional responses and medium- and long-term alterations in cellular physiology. In this review, we will discuss several examples of this form of microscale communication between bacterial pathogens and mammalian host cells and try to delineate their downstream ramifications in the infection process. Furthermore, we will highlight recent findings that specialized pathogenic bacteria utilize the adhesin-based interaction to diffuse the short-range messenger molecule nitric oxide into the host tissue. While anti-adhesive strategies to disrupt the initial bacterial attachment have not yet translated into medical applications, the ability to interfere with the microscale communication emanating on the host side provides an unconventional approach for preventing infectious diseases.
Collapse
|
27
|
Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. Int J Mol Sci 2020; 21:ijms21249419. [PMID: 33321935 PMCID: PMC7764581 DOI: 10.3390/ijms21249419] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes, an important foodborne pathogen, may be present in different kinds of food and in food processing environments where it can persist for a long time. In this study, 28 L. monocytogenes isolates from fish and fish manufactures were characterized by whole genome sequencing (WGS). Core genome multilocus sequence typing (cgMLST) analysis was applied to compare the present isolates with publicly available genomes of L. monocytogenes strains recovered worldwide from food and from humans with listeriosis. All but one (96.4%) of the examined isolates belonged to molecular serogroup IIa, and one isolate (3.6%) was classified to serogroup IVb. The isolates of group IIa were mainly of MLST sequence types ST121 (13 strains) and ST8 (four strains) whereas the isolate of serogroup IVb was classified to ST1. Strains of serogroup IIa were further subtyped into eight different sublineages with the most numerous being SL121 (13; 48.1% strains) which belonged to six cgMLST types. The majority of strains, irrespective of the genotypic subtype, had the same antimicrobial resistance profile. The cluster analysis identified several molecular clones typical for L. monocytogenes isolated from similar sources in other countries; however, novel molecular cgMLST types not present in the Listeria database were also identified.
Collapse
|
28
|
Crystal structure of Leptospira leucine-rich repeat 20 reveals a novel E-cadherin binding protein to induce NGAL expression in HK2 cells. Biochem J 2020; 477:4313-4326. [DOI: 10.1042/bcj20200547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Leptospirosis is the most common zoonotic disease caused by pathogenic Leptospira, which is classified into three groups according to virulence. Its pathogenic and intermediate species contain leucine-rich repeat (LRR) proteins that are rarely expressed in non-pathogenic strains. In this study, we presented the crystal structure of LSS_11580 (rLRR20) from pathogenic L. santarosai serovar Shermani. X-ray diffraction at a resolution of 1.99 Å revealed a horseshoe-shaped structure containing seven α-helices and five β-sheets. Affinity assays indicated that rLRR20 interacts with E-cadherin on the cell surface. Interestingly, its binds to the extracellular (EC) 1 domain in human epithelial (E)-cadherin, which is responsible for binding to another E-cadherin molecule in neighboring cells. Several charged residues on the concave face of LRR20 were predicted to interact with EC1 domain. In the affinity assays, these charged residues were replaced by alanine, and their affinities to E-cadherin were measured. Three vital residues and mutation variants of LRR20, namely D56A, E59A, and E123A, demonstrated significantly reduced affinity to E-cadherin compared with the control. Besides, we also demonstrated that rLRR20 induced the expression of neutrophil gelatinase-associated lipocalin (NGAL) in HK2 cells. The low ability of the three mutation variants to induce NGAL expression further demonstrates this induction. The present findings indicate that LRR20 from pathogenic Leptospira binds to E-cadherin and interacts with its EC1 domain. In addition, its induction of NGAL expression in HK2 cells is associated with acute kidney injury in human.
Collapse
|
29
|
Pickering AC, Fitzgerald JR. The Role of Gram-Positive Surface Proteins in Bacterial Niche- and Host-Specialization. Front Microbiol 2020; 11:594737. [PMID: 33193271 PMCID: PMC7658395 DOI: 10.3389/fmicb.2020.594737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Gram-positive bacterial pathogens have an array of proteins on their cell surface that mediate interactions with the host environment. In particular, bacterial cell wall-associated (CWA) proteins play key roles in both colonization and pathogenesis. Furthermore, some CWA proteins promote specialization for host-species or mediate colonization of specific anatomical niches within a host. In this mini review, we provide examples of the many ways by which major pathogens, such as Staphylococci, Streptococci and Listeria monocytogenes, utilize CWA proteins for both host- and niche-specialization. We describe different biological mechanisms mediated by CWA proteins including: the acquisition of iron from hemoglobin in the bloodstream, adherence to and invasion of host cells, and innate immune evasion through binding to the plasma proteins fibrinogen, immunoglobulin G, and complement. We also discuss the limitations of using animal models for understanding the role of specific CWA proteins in host-specialization and how transformative technologies, such as CRISPR-Cas, offer tremendous potential for developing transgenic models that simulate the host environment of interest. Improved understanding of the role of CWA proteins in niche- or host-specificity will allow the design of new therapeutic approaches which target key host–pathogen interactions underpinning Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Amy C Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Antimicrobial effect of spore-forming probiotics Bacillus laterosporus and Bacillus megaterium against Listeria monocytogenes. Arch Microbiol 2020; 202:2791-2797. [PMID: 32743669 DOI: 10.1007/s00203-020-02004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
There are several reports on the detection of Listeria monocytogenes in Iran, which has been identified as a major public health problem. In addition, due to drug resistance and strong biofilm formation of this pathogen, new approaches such as using probiotics are needed to combat this bacterium. The aim of this study was to investigate the effect of spore-forming probiotics on the expression of virulence genes hly, plc, inlA, and invasion of L. monocytogenes. Spore-forming probiotics were co-cultured with L. monocytogenes at different time points and following cell count, the expression level of virulence genes of L. monocytogenes was assessed by real-time PCR. To investigate the effect of the isolated strains on the invasiveness of L. monocytogenes at different time points, HT-29 cell line was used. Sporulated probiotics reduced the growth of L. monocytogenes in broth medium at different time periods. The number of L. monocytogenes co-cultured with Bacillus laterosporus decreased by 1, 3, 3, and 6 log at 2, 4, 8 and 24 h after treatment, respectively. In addition, the expression of virulence genes was decreased at different time points and the expression of hly and plcA genes was more affected. The invasion rate of L. monocytogenes on HT-29 cells was decreased by 1 to 6 log at different time points. Both probiotic strains inhibited bacterial growth at different time points; however, more sensitive methods should be established for an accurate assessment.
Collapse
|
31
|
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats. Proteins 2020; 88:840-852. [DOI: 10.1002/prot.25876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/03/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied SciencesNational University of Mongolia Ulaanbaatar Mongolia
- Department of Physics, School of Mathematics and Natural SciencesMongolian National University of Education Ulaanbaatar Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied SciencesNational University of Mongolia Ulaanbaatar Mongolia
| | | | - Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats Noboribetsu Japan
- Center for Medical Education, Sapporo Medical University Sapporo Japan
| |
Collapse
|
32
|
A Structural Study on the Listeria Monocytogenes Internalin A-Human E-cadherin Interaction: A Molecular Tool to Investigate the Effects of Missense Mutations. Toxins (Basel) 2020; 12:toxins12010060. [PMID: 31968631 PMCID: PMC7020427 DOI: 10.3390/toxins12010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a widespread foodborne pathogen of high concern and internalin A is an important virulence factor that mediates cell invasion upon the interaction with the host protein E-cadherin. Nonsense mutations of internalin A are known to reduce virulence. Although missense mutations are largely overlooked, they need to be investigated in respect to their effects in cell invasion processes. This work presented a computational workflow to early characterize internalin A missense mutations. The method reliably estimated the effects of a set of engineered missense mutations in terms of their effects on internalin A–E-cadherin interaction. Then, the effects of mutations of an internalin A variant from a L. monocytogenes isolate were calculated. Mutations showed impairing effects on complex stability providing a mechanistic explanation of the low cells invasion capacity previously observed. Overall, our results provided a rational approach to explain the effects of internalin A missense mutations. Moreover, our findings highlighted that the strength of interaction may not directly relate to the cell invasion capacity reflecting the non-exclusive role of internalin A in determining the virulence of L. monocytogenes. The workflow could be extended to other virulence factors providing a promising platform to support a better molecular understanding of L. monocytogenes epidemiology.
Collapse
|
33
|
Ferwerda B, Maury MM, Brouwer MC, Hafner L, van der Ende A, Bentley S, Lecuit M, van de Beek D. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes. Front Microbiol 2019; 10:2702. [PMID: 31849867 PMCID: PMC6901971 DOI: 10.3389/fmicb.2019.02702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that can be found in a broad range of environments, including soil, food, animals, and humans. L. monocytogenes can cause a foodborne disease manifesting as sepsis and meningo-encephalitis. To evaluate signals of selection within the core genome of neuroinvasive L. monocytogenes strains, we sequenced 122 L. monocytogenes strains from cerebrospinal fluid (CSF) of Dutch meningitis patients and performed a genome-wide analysis using Tajima’s D and ω (dN/dS). We also evaluated the residual variation intolerance score (RVIS), a computationally less demanding methodology, to identify loci under selection. Results show that the large genetic distance between the listerial lineages influences the Tajima’s D and ω (dN/dS) outcome. Within genetic lineages we detected signals of selection in 6 of 2327 loci (<1%), which were replicated in an external cohort of 105 listerial CSF isolates from France. Functions of identified loci under selection were within metabolism pathways (lmo2476, encoding aldose 1-epimerase), putative antimicrobial resistance mechanisms (lmo1855, encoding PBPD3), and virulence factors (lmo0549, internalin-like protein; lmo1482, encoding comEC). RVIS over the two genetic lineages showed signals of selection in internalin-like proteins loci potentially involved in pathogen-host interaction (lmo0549, lmo0610, and lmo1290). Our results show that RVIS can be used to detect bacterial loci under selection.
Collapse
Affiliation(s)
- Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Mathijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas Hafner
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Harter E, Lassnig C, Wagner EM, Zaiser A, Wagner M, Rychli K. The Novel Internalins InlP1 and InlP4 and the Internalin-Like Protein InlP3 Enhance the Pathogenicity of Listeria monocytogenes. Front Microbiol 2019; 10:1644. [PMID: 31396177 PMCID: PMC6664051 DOI: 10.3389/fmicb.2019.01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
The pathogenicity of the human foodborne pathogen Listeria monocytogenes relies on virulence factors such as internalins. In 2009/2010 two L. monocytogenes strains were responsible for a serious listeriosis outbreak in Austria, Germany, and the Czech Republic. One of these clones, QOC1, which caused 14 cases including five fatalities, encodes the novel internalins inlP1, inlPq and inlP4, and the novel internalin-like protein inlP3 in the genomic region of hypervariable genetic hotspot 9 in addition to the standard set of virulence genes. The in silico prevalence study revealed that these genes rarely occur in L. monocytogenes, mainly in minor clonal complexes. To obtain first insights of the role of these genes in the pathogenicity of L. monocytogenes, we studied the gene expression under conditions mimicking the ingestion in the host. Expression of inlP1, inlP3, inlPq and inlP4 was increased under gastric stress and in intracellular bacteria grown in intestinal epithelial cells. Furthermore, colonization of the liver and the spleen was slightly, but significantly reduced 72 h post infection in an oral mouse infection model when inlP1 or inlP4 was deleted. Moreover, the impact of InlP1 and InlP3 in virulence was shown in vitro in human intestinal epithelial cells. In this study we conclusively demonstrate a potential contribution of uncommon novel internalins and an internalin-like protein to the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Eva Harter
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics and Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Wagner
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation – FFoQSI GmbH, Tulln, Austria
| | - Andreas Zaiser
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation – FFoQSI GmbH, Tulln, Austria
| | - Kathrin Rychli
- Department for Farm Animals and Public Health in Veterinary Medicine, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
35
|
Su X, Cao G, Zhang J, Pan H, Zhang D, Kuang D, Yang X, Xu X, Shi X, Meng J. Characterization of internalin genes in Listeria monocytogenes from food and humans, and their association with the invasion of Caco-2 cells. Gut Pathog 2019; 11:30. [PMID: 31198443 PMCID: PMC6558679 DOI: 10.1186/s13099-019-0307-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Internalins are surface proteins that are utilized by Listeria monocytogenes to facilitate its invasion into human intestinal epithelial cells. The expression of a full-length InlA is one of essential virulence factors for L. monocytogenes to cross the intestinal barrier in order to invade epithelial cells. Results In this study, the gene sequences of inlA in 120 L. monocytogenes isolates from food (n = 107) and humans (n = 13) were analyzed. Premature stop codon (PMSC) mutations in inlA were identified in 51 isolates (50 from food and 1 from human). Six mutation types of PMSCs were identified. Among the 51 isolates with PMSCs in inlA, there were 44 serogroup 1/2c, 3c isolates from food, of which seven belonged to serogroups 1/2a, 3a. A total of 153,382 SNPs in 2247 core genes from 42 genomes were identified and used to construct a phylogenetic tree. Serotype 1/2c isolates with inlA PMSC mutations were grouped together. Cell culture studies on 21 isolates showed that the invasion to Caco-2 cells was significantly reduced among isolates with inlA PMSC mutations compared to those without PMSC mutations (P < 0.01). The PMSC mutations in inlA correlated with the inability of the L. monocytogenes isolates to invade Caco-2 cells (Pearson’s coefficient 0.927, P < 0.01). Conclusion Overall, the study has revealed the reduced ability of L. monocytogenes to invade human intestinal epithelial cells in vitro was linked to the presence of PMSC mutations in inlA. Isolates with PMSC mutations shared the same genomic characteristics indicating the genetic basis on the potential virulence of L. monocytogenes invasion. Electronic supplementary material The online version of this article (10.1186/s13099-019-0307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xudong Su
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Guojie Cao
- 2Department of Nutrition & Food Science, University of Maryland, College Park, MD 20742 USA
| | - Jianmin Zhang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Haijian Pan
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Daofeng Zhang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dai Kuang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiaowei Yang
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xuebin Xu
- 3Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336 China
| | - Xianming Shi
- 1Department of Food Science and Technology, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianghong Meng
- 2Department of Nutrition & Food Science, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
36
|
Sai K, Parsons C, House JS, Kathariou S, Ninomiya-Tsuji J. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J Cell Biol 2019; 218:1994-2005. [PMID: 30975711 PMCID: PMC6548127 DOI: 10.1083/jcb.201810014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
RIPK3, a key mediator of necroptosis, has been implicated in the host defense against viral infection primary in immune cells. However, gene expression analysis revealed that RIPK3 is abundantly expressed not only in immune organs but also in the gastrointestinal tract, particularly in the small intestine. We found that orally inoculated Listeria monocytogenes, a bacterial foodborne pathogen, efficiently spread and caused systemic infection in Ripk3-deficient mice while almost no dissemination was observed in wild-type mice. Listeria infection activated the RIPK3-MLKL pathway in cultured cells, which resulted in suppression of intracellular replication of Listeria Surprisingly, Listeria infection-induced phosphorylation of MLKL did not result in host cell killing. We found that MLKL directly binds to Listeria and inhibits their replication in the cytosol. Our findings have revealed a novel functional role of the RIPK3-MLKL pathway in nonimmune cell-derived host defense against Listeria invasion, which is mediated through cell death-independent mechanisms.
Collapse
Affiliation(s)
- Kazuhito Sai
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - Jun Ninomiya-Tsuji
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| |
Collapse
|
37
|
Mathipa MG, Thantsha MS, Bhunia AK. Lactobacillus casei expressing Internalins A and B reduces Listeria monocytogenes interaction with Caco-2 cells in vitro. Microb Biotechnol 2019; 12:715-729. [PMID: 30989823 PMCID: PMC6559204 DOI: 10.1111/1751-7915.13407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes has been implicated in a number of outbreaks including the recent largest outbreak in South Africa. Current methods for prevention of foodborne L. monocytogenes infection are inadequate, thus raising a need for an alternative strategy. Probiotic bioengineering is considered a prevailing approach to enhance the efficacy of probiotics for targeted control of pathogens. Here, the ability of Lactobacillus casei expressing the L. monocytogenes invasion proteins Internalins A and B (inlAB) to prevent infection was investigated. The inlAB operon was cloned and surface‐expressed on L. casei resulting in a recombinant strain, LbcInlAB, and subsequently, its ability to inhibit adhesion, invasion and translocation of L. monocytogenes through enterocyte‐like Caco‐2 cells was examined. Cell surface expression of InlAB on the LbcInlAB was confirmed by Western blotting and immunofluorescence staining. The LbcInlAB strain showed significantly higher (P < 0.0001) adherence, invasion and translocation of Caco‐2 cells than the wild‐type L. casei strain (LbcWT), as well as reduced L. monocytogenes adhesion, invasion and transcellular passage through the cell monolayer than LbcWT. Furthermore, pre‐exposure of Caco‐2 cells to LbcInlAB significantly reduced L. monocytogenes‐induced cell cytotoxicity and epithelial barrier dysfunction. These results suggest that InlAB‐expressing L. casei could be a potential practical approach for prevention of listeriosis.
Collapse
Affiliation(s)
- Moloko G Mathipa
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa.,Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Mapitsi S Thantsha
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Zheng Q, Lu J, Wang Y, Jiao N. Genomic reconstructions and potential metabolic strategies of generalist and specialist heterotrophic bacteria associated with an estuarySynechococcusculture. FEMS Microbiol Ecol 2019; 95:5303724. [DOI: 10.1093/femsec/fiz017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/26/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jiayao Lu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
39
|
Structure-Guided Exploration of SDS22 Interactions with Protein Phosphatase PP1 and the Splicing Factor BCLAF1. Structure 2019; 27:507-518.e5. [PMID: 30661852 DOI: 10.1016/j.str.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023]
Abstract
SDS22 is an ancient regulator of protein phosphatase-1 (PP1). Our crystal structure of SDS22 shows that its twelve leucine-rich repeats adopt a banana-shaped fold that is shielded from solvent by capping domains at its extremities. Subsequent modeling and biochemical studies revealed that the concave side of SDS22 likely interacts with PP1 helices α5 and α6, which are distal from the binding sites of many previously described PP1 interactors. Accordingly, we found that SDS22 acts as a "third" subunit of multiple PP1 holoenzymes. The crystal structure of SDS22 also revealed a large basic surface patch that enables binding of a phosphorylated form of splicing factor BCLAF1. Taken together, our data provide insights into the formation of PP1:SDS22 and the recruitment of additional interaction proteins, such as BCLAF1.
Collapse
|
40
|
Animal and Human Tissue Models of Vertical Listeria monocytogenes Transmission and Implications for Other Pregnancy-Associated Infections. Infect Immun 2018; 86:IAI.00801-17. [PMID: 29483290 DOI: 10.1128/iai.00801-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intrauterine infections lead to serious complications for mother and fetus, including preterm birth, maternal and fetal death, and neurological sequelae in the surviving offspring. Improving maternal and child heath is a global priority. Yet, the development of strategies to prevent and treat pregnancy-related diseases has lagged behind progress made in other medical fields. One of the challenges is finding tractable model systems that replicate the human maternal-fetal interface. Animal models offer the ability to study pathogenesis and host defenses in vivo However, the anatomy of the maternal-fetal interface is highly divergent across species. While many tools are available to study host responses in the pregnant mouse model, other animals have placentas that are more similar to that of humans. Here we describe new developments in animal and human tissue models to investigate the pathogenesis of listeriosis at the maternal-fetal interface. We highlight gaps in existing knowledge and make recommendations on how they can be filled.
Collapse
|
41
|
Tip-enhanced Raman scattering of DNA aptamers for Listeria monocytogenes. Biointerphases 2018; 13:03C402. [PMID: 29724106 DOI: 10.1116/1.5022303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Optical detection and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. The authors investigate the vibrational signals of deoxyribonucleic acid aptamers specific to Listeria monocytogenes immobilized on gold substrates using tip-enhanced Raman scattering (TERS) spectroscopy and nanoscale imaging. The authors compare topographic and nano-optical signals and investigate the fluctuations of the position-dependent TERS spectra. They perform spatial TERS mapping with 3 nm step size and discuss the limitation of the resulting spatial resolution under the ambient conditions. TERS mapping provides information about the chemical composition and conformation of aptamers and paves the way to future label-free biosensing.
Collapse
|
42
|
Faralla C, Bastounis EE, Ortega FE, Light SH, Rizzuto G, Gao L, Marciano DK, Nocadello S, Anderson WF, Robbins JR, Theriot JA, Bakardjiev AI. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog 2018; 14:e1007094. [PMID: 29847585 PMCID: PMC6044554 DOI: 10.1371/journal.ppat.1007094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/13/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, the placenta protects the fetus against the maternal immune response, as well as bacterial and viral pathogens. Bacterial pathogens that have evolved specific mechanisms of breaching this barrier, such as Listeria monocytogenes, present a unique opportunity for learning how the placenta carries out its protective function. We previously identified the L. monocytogenes protein Internalin P (InlP) as a secreted virulence factor critical for placental infection. Here, we show that InlP, but not the highly similar L. monocytogenes internalin Lmo2027, binds to human afadin (encoded by AF-6), a protein associated with cell-cell junctions. A crystal structure of InlP reveals several unique features, including an extended leucine-rich repeat (LRR) domain with a distinctive Ca2+-binding site. Despite afadin's involvement in the formation of cell-cell junctions, MDCK epithelial cells expressing InlP displayed a decrease in the magnitude of the traction stresses they could exert on deformable substrates, similar to the decrease in traction exhibited by AF-6 knock-out MDCK cells. L. monocytogenes ΔinlP mutants were deficient in their ability to form actin-rich protrusions from the basal face of polarized epithelial monolayers, a necessary step in the crossing of such monolayers (transcytosis). A similar phenotype was observed for bacteria expressing an internal in-frame deletion in inlP (inlP ΔLRR5) that specifically disrupts its interaction with afadin. However, afadin deletion in the host cells did not rescue the transcytosis defect. We conclude that secreted InlP targets cytosolic afadin to specifically promote L. monocytogenes transcytosis across the basal face of epithelial monolayers, which may contribute to the crossing of the basement membrane during placental infection.
Collapse
Affiliation(s)
- Cristina Faralla
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| | - Effie E. Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Fabian E. Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Samuel H. Light
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabrielle Rizzuto
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Lei Gao
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Salvatore Nocadello
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer R. Robbins
- Department of Biology, Xavier University, Cincinnati, Ohio, United States of America
| | - Julie A. Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anna I. Bakardjiev
- Benioff Children’s Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
43
|
Zilelidou EA, Skandamis PN. Growth, detection and virulence of Listeria monocytogenes in the presence of other microorganisms: microbial interactions from species to strain level. Int J Food Microbiol 2018; 277:10-25. [PMID: 29677551 DOI: 10.1016/j.ijfoodmicro.2018.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Like with all food microorganisms, many basic aspects of L. monocytogenes life are likely to be influenced by its interactions with bacteria living in close proximity. This pathogenic bacterium is a major concern both for the food industry and health organizations since it is ubiquitous and able to withstand harsh environmental conditions. Due to the ubiquity of Listeria monocytogenes, various strains may contaminate foods at different stages of the supply chain. Consequently, simultaneous exposure of consumers to multiple strains is also possible. In this context even strain-to-strain interactions of L. monocytogenes play a significant role in fundamental processes for the life of the pathogen, such as growth or virulence, and subsequently compromise food safety, affect the evolution of a potential infection, or even introduce bias in the detection by classical enrichment techniques. This article summarizes the impact of microbial interactions on the growth and detection of L. monocytogenes primarily in foods and food-associated environments. Furthermore it provides an overview of L. monocytogenes virulence in the presence of other microorganisms.
Collapse
Affiliation(s)
- Evangelia A Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece.
| |
Collapse
|
44
|
Postinfection Irritable Bowel Syndrome: The Links Between Gastroenteritis, Inflammation, the Microbiome, and Functional Disease. J Clin Gastroenterol 2017; 51:869-877. [PMID: 28885302 DOI: 10.1097/mcg.0000000000000924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Postinfection irritable bowel syndrome (PI-IBS) is a diarrheal disease that develops after infectious gastroenteritis (IGE). Profound alterations in the microbiota accompany IGE yet only 10% of IGE patients progress to PI-IBS. This review explores research linking IGE severity, psychological comorbidity, PI-IBS, and the microbiome in various patient populations. Selective pressures caused by inflammation and increased gastrointestinal motility during gastroenteritis can alter intestinal bacterial phyla including Bacteroidetes, Firmicutes, and Proteobacteria. More specifically, classes such as Bacteroides and Clostridia are differentially abundant in many PI-IBS patients. Altered microbiota may perpetuate a cycle of enteric and systemic inflammation, potently activating neural afferent signaling in the enteric nervous system and causing pain and diarrhea in PI-IBS patients. Altered production of microbial metabolites, for example short chain fatty acids, may have enteric and systemic effects on the host. Longitudinal sampling to characterize changes in the microbiota's genetic, metabolic, and transcriptional activities over time from IGE to PI-IBS may enable improved diagnosis and classification of PI-IBS cases into subtypes, allowing for targeted antibiotic, probiotic, and prebiotic treatments. PI-IBS is a heterogenous and largely organic disease marked by specific alterations in functions of the microbiota and is an important model for studying microbial influences on intestinal, neurological, and psychological host functions.
Collapse
|
45
|
Tarazanova M, Huppertz T, Beerthuyzen M, van Schalkwijk S, Janssen P, Wels M, Kok J, Bachmann H. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates. Front Microbiol 2017; 8:1691. [PMID: 28936202 PMCID: PMC5594101 DOI: 10.3389/fmicb.2017.01691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.
Collapse
Affiliation(s)
- Mariya Tarazanova
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Thom Huppertz
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | | | | | - Patrick Janssen
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Michiel Wels
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| | - Jan Kok
- TI Food and NutritionWageningen, Netherlands
- Molecular Genetics, University of GroningenGroningen, Netherlands
| | - Herwig Bachmann
- NIZOEde, Netherlands
- TI Food and NutritionWageningen, Netherlands
| |
Collapse
|
46
|
Ortega FE, Rengarajan M, Chavez N, Radhakrishnan P, Gloerich M, Bianchini J, Siemers K, Luckett WS, Lauer P, Nelson WJ, Theriot JA. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. Mol Biol Cell 2017; 28:2945-2957. [PMID: 28877987 PMCID: PMC5662255 DOI: 10.1091/mbc.e16-12-0851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes invades epithelial cells by binding to the host cell receptor E-cadherin, a component of the adherens junction. E-cadherin serves primarily as an adhesive to mediate bacterial invasion; the canonical E-cadherin/catenin/F-actin complex is not required for this process. The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required.
Collapse
Affiliation(s)
- Fabian E Ortega
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | | | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | | | - Julie Bianchini
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | | | | | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Julie A Theriot
- Department of Biochemistry, Stanford University, Stanford, CA 94305 .,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
47
|
|
48
|
Mukherjee I, Chakraborty A, Chakrabarti S. Identification of internalin-A-like virulent proteins in Leishmania donovani. Parasit Vectors 2016; 9:557. [PMID: 27765050 PMCID: PMC5073978 DOI: 10.1186/s13071-016-1842-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/09/2016] [Indexed: 11/30/2022] Open
Abstract
Background An active immune surveillance and a range of barriers to infection allow the host to effectively eliminate microbial pathogens. However, pathogens may use diverse strategies to subdue such host defences. For instance, one such mechanism is the use of leucine-rich repeat (LRR) proteins by pathogens (microbial) to cause infection. In this study, we aimed at identifying novel virulence factor(s) in Leishmania donovani, based on the possibility of lateral gene transfers of bacterial virulence factor(s) to L. donovani. Methods Rigorous homology searching protocols including Hidden Markov Model (HMM) and BLASTp based searches were employed to detect remote but significant similarities between L. donovani proteins and bacterial virulence factors. Results We found that some L. donovani proteins are similar to internalin-A (Inl-A) protein of Listeria monocytogenes, a surface LRR protein that helps mediate host cell invasion by interacting with E-cadherin on the cell membrane. However, to date, no such invasion mechanism has been reported in Leishmania donovani, the causative agent of visceral leishmaniasis. Moreover, a comparative LRR motif analysis of L. donovani Inl-A-like proteins against the Inl-A protein of L. monocytogenes revealed existence of characteristic consensus LRR regions, suggesting a reliable evolutionary relationship between them. Further, through rigorous three dimensional (3D) modeling of L. donovani Inl-A-like proteins and subsequent molecular docking studies we suggest the probability of human E-cadherin binding with the L. donovani Inl-A-like proteins. Conclusions We have identified three potential candidates (UniProt ID: E9B7L9, E9BMT7 and E9BUL5) of Inl-A-like LRR containing proteins in L. donovani with the help of systematic whole genome sequence analysis. Thus, herein we propose the existence of a novel class of Inl-A-like virulence factor proteins in L. donovani and other Leishmania species based on sequence similarity, phylogenetic analysis and molecular modelling studies in L. donovani. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1842-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ishita Mukherjee
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Abhijit Chakraborty
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research (CSIR) - Indian Institute of Chemical Biology (IICB), Kolkata, West Bengal, India.
| |
Collapse
|
49
|
Konarev PV, Petoukhov MV, Svergun DI. Rapid automated superposition of shapes and macromolecular models using spherical harmonics. J Appl Crystallogr 2016; 49:953-960. [PMID: 27275142 PMCID: PMC4886985 DOI: 10.1107/s1600576716005793] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented (SUPALM). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models (e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [J. Appl. Cryst. (2001 ▸), 34, 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB. The spherical harmonics algorithm is best suited for low-resolution shape models, e.g. those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.
Collapse
Affiliation(s)
- Petr V. Konarev
- Laboratory of Reflectometry and Small-Angle Scattering, A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Maxim V. Petoukhov
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
| |
Collapse
|
50
|
Gudipaty SA, Rosenblatt J. Epithelial cell extrusion: Pathways and pathologies. Semin Cell Dev Biol 2016; 67:132-140. [PMID: 27212253 DOI: 10.1016/j.semcdb.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.
Collapse
Affiliation(s)
- Swapna Aravind Gudipaty
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Jody Rosenblatt
- Department of Oncological Sciences, Huntsman Cancer Institute, University Of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|