1
|
Jang Y, Lee H, Park H. Surveillance System for Infectious Disease Prevention and Management: Direction of Korea's Infectious Disease Surveillance System. J Korean Med Sci 2025; 40:e108. [PMID: 40034093 PMCID: PMC11876785 DOI: 10.3346/jkms.2025.40.e108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025] Open
Abstract
Emerging infectious diseases have risen sharply due to population growth, urbanization, travel, trade, and environmental changes, with outbreaks like severe acute respiratory syndrome, Middle East respiratory syndrome, and coronavirus disease 2019 highlighting the global need for effective surveillance systems. Various infectious disease surveillance systems are applied depending on the surveillance objectives, target populations, and geographical scope. While Korea has a robust surveillance system, challenges remain in integrating data, enhancing coordination, and improving response efficiency. This article reviews the types and roles of infectious disease surveillance systems through a literature review and proposes strategies for improving Korea's surveillance system by comparing it with those of other countries, including the World Health Organization (WHO). To strengthen Korea's surveillance framework, a comprehensive strategy should be implemented to interconnect multiple surveillance mechanisms and enhance real-time data sharing. A centralized data platform must integrate these systems, leveraging artificial intelligence and big data analytics for faster outbreak analysis. International collaboration through data-sharing networks with the WHO, European Center for Disease Prevention and Control, and U.S Centers for Disease Control and Prevention is essential, along with standardized reporting formats to improve interoperability.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
- Institute for Future Public Health, Graduate School of Public Health, Korea University, Seoul, Korea
| | - Hyungmin Lee
- Division of Immunization Policy, Korea Disease Control and Prevention Agency, Cheongju, Korea.
| | - Hyekyung Park
- Former Director General of the Korea Disease Control and Prevention Agency, Cheongju, Korea
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Kawabe H, Manfio L, Magana Pena S, Zhou NA, Bradley KM, Chen C, McLendon C, Benner SA, Levy K, Yang Z, Marchand JA, Fuhrmeister ER. Harnessing Non-standard Nucleic Acids for Highly Sensitive Icosaplex (20-Plex) Detection of Microbial Threats for Environmental Surveillance. ACS Synth Biol 2025; 14:470-484. [PMID: 39898969 PMCID: PMC11854376 DOI: 10.1021/acssynbio.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Environmental surveillance and clinical diagnostics heavily rely on the polymerase chain reaction (PCR) for target detection. A growing list of microbial threats warrants new PCR-based detection methods that are highly sensitive, specific, and multiplexable. Here, we introduce a PCR-based icosaplex (20-plex) assay for detecting 18 enteropathogen and two antimicrobial resistance genes. This multiplexed PCR assay leverages the self-avoiding molecular recognition system (SAMRS) to avoid primer dimer formation, the artificially expanded genetic information system (AEGIS) for amplification specificity, and next-generation sequencing for amplicon identification. Using parallelized multitarget TaqMan Array Cards (TAC) to benchmark performance of the 20-plex assay on wastewater, soil, and human stool samples, we found 90% agreement on positive calls and 89% agreement on negative calls. Additionally, we show how long-read and short-read sequencing information from the 20-plex can be used to further classify allelic variants of genes and distinguish subspecies. The strategy presented offers sensitive, affordable, and robust multiplex detection that can be used to support efforts in wastewater-based epidemiology, environmental monitoring, and human/animal diagnostics.
Collapse
Affiliation(s)
- Hinako Kawabe
- Chemical
Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Luran Manfio
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
| | - Sebastian Magana Pena
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
| | - Nicolette A. Zhou
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Kevin M. Bradley
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Cen Chen
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Chris McLendon
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Karen Levy
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Zunyi Yang
- Foundation
for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, Florida 32615, United States
- Firebird
Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, Florida 32615, United States
| | - Jorge A. Marchand
- Chemical
Engineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Science Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Erica R. Fuhrmeister
- Department
of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Science Institute, University
of Washington, Seattle, Washington 98195, United States
- Civil and
Environmental Engineering, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Marjuki H, Hoffman MM, Edgel KA, Geist CC, Schilling MA, Pannebaker DL, Moeller TD, Graham WD, Vasquez GM, Lescano AR, Soto GM, Prouty MG. U.S. Naval Medical Research Unit SOUTH's Contributions to Strengthening Global Health Security in Peru and Across Latin America. J Infect Dis 2025; 231:S1-S9. [PMID: 39928387 DOI: 10.1093/infdis/jiae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Infectious diseases (IDs) contribute to major causes of mortality and chronic morbidity in Central and South America. Interest in improving general understanding, prevention, and treatment options motivates the U.S. Department of Defense to establish and run overseas ID institutions to enhance force health protection. One of 6 Department of Defense overseas ID institutions, U.S. Naval Research Medical Unit (NAMRU) SOUTH, has safely and ethically conducted biomedical research, ID surveillance, and medical countermeasure testing and evaluation in Peru and surrounding countries. In its over 40-year history, NAMRU SOUTH medical research collaborations have achieved many milestones leading to critical ID information sharing, funding, services, and education mutually beneficial to the U.S. and regional partners in Latin America.
Collapse
Affiliation(s)
| | | | | | - Charla C Geist
- Air Force Medical Agency, Department of the Air Force, Falls Church
- Office of the Joint Surgeon General, National Guard Bureau, Arlington, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pan Y, Sun D, Kong L, Liu Y, Li H, Yu D, Jiang W, Zhan J. Self-adaptive carbon nanozyme regulation of ROS balance for bacteria-infected wound therapy. CHEMICAL ENGINEERING JOURNAL 2024; 499:155904. [DOI: 10.1016/j.cej.2024.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Kawabe H, Manfio L, Pena SM, Zhou NA, Bradley KM, Chen C, McLendon C, Benner SA, Levy K, Yang Z, Marchand JA, Fuhrmeister ER. Harnessing non-standard nucleic acids for highly sensitive icosaplex (20-plex) detection of microbial threats. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313328. [PMID: 39314929 PMCID: PMC11419210 DOI: 10.1101/2024.09.09.24313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Environmental surveillance and clinical diagnostics heavily rely on the polymerase chain reaction (PCR) for target detection. A growing list of microbial threats warrants new PCR-based detection methods that are highly sensitive, specific, and multiplexable. Here, we introduce a PCR-based icosaplex (20-plex) assay for detecting 18 enteropathogen and two antimicrobial resistance genes. This multiplexed PCR assay leverages the self-avoiding molecular recognition system (SAMRS) to avoid primer dimer formation, the artificially expanded genetic information system (AEGIS) for amplification specificity, and next-generation sequencing for amplicon identification. We benchmarked this assay using a low-cost, portable sequencing platform (Oxford Nanopore) on wastewater, soil, and human stool samples. Using parallelized multi-target TaqMan Array Cards (TAC) to benchmark performance of the 20-plex assay, there was 74% agreement on positive calls and 97% agreement on negative calls. Additionally, we show how sequencing information from the 20-plex can be used to further classify allelic variants of genes and distinguish sub-species. The strategy presented offers sensitive, affordable, and robust multiplex detection that can be used to support efforts in wastewater-based epidemiology, environmental monitoring, and human/animal diagnostics.
Collapse
Affiliation(s)
- Hinako Kawabe
- Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Luran Manfio
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
| | - Sebastian Magana Pena
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Cen Chen
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Chris McLendon
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Alachua, FL 32615, USA
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Jorge A. Marchand
- Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering and Science Institute, University of Washington, Seattle, Seattle, WA, 98195, USA
| | - Erica R. Fuhrmeister
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Seattle, WA, 98195, USA
- Civil and Environmental Engineering, University of Washington, Seattle, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
El-Didamony SE, Kalaba MH, Sharaf MH, El-Fakharany EM, Osman A, Sitohy M, Sitohy B. Melittin alcalase-hydrolysate: a novel chemically characterized multifunctional bioagent; antibacterial, anti-biofilm and anticancer. Front Microbiol 2024; 15:1419917. [PMID: 39091304 PMCID: PMC11293514 DOI: 10.3389/fmicb.2024.1419917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The prevalent life-threatening microbial and cancer diseases and lack of effective pharmaceutical therapies created the need for new molecules with antimicrobial and anticancer potential. Bee venom (BV) was collected from honeybee workers, and melittin (NM) was extracted from BV and analyzed by urea-polyacrylamide gel electrophoresis (urea-PAGE). The isolated melittin was hydrolyzed with alcalase into new bioactive peptides and evaluated for their antimicrobial and anticancer activity. Gel filtration chromatography fractionated melittin hydrolysate (HM) into three significant fractions (F1, F2, and F3), that were characterized by electrospray ionization mass spectrometry (ESI-MS) and evaluated for their antimicrobial, anti-biofilm, antitumor, and anti-migration activities. All the tested peptides showed antimicrobial and anti-biofilm activities against Gram-positive and Gram-negative bacteria. Melittin and its fractions significantly inhibited the proliferation of two types of cancer cells (Huh-7 and HCT 116). Yet, melittin and its fractions did not affect the viability of normal human lung Wi-38 cells. The IC50 and selectivity index data evidenced the superiority of melittin peptide fractions over intact melittin. Melittin enzymatic hydrolysate is a promising novel product with high potential as an antibacterial and anticancer agent.
Collapse
Affiliation(s)
- Samia E. El-Didamony
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University (Girls), Nasr City, Egypt
| | - Mohamed H. Kalaba
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University (Boys), Cairo, Egypt
| | - Mohamed H. Sharaf
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University (Boys), Cairo, Egypt
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt
- Pharos University in Alexandria, Alexandria, Egypt
| | - Ali Osman
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Department of Clinical Microbiology, Infection, and Immunology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection, and Immunology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Al-Tarawneh A, Ali T, Al-Taani GM. Public Patterns and Determinants of Antibiotic Self-Medication and Antibiotic Knowledge in Southern Jordan. Antibiotics (Basel) 2024; 13:98. [PMID: 38275327 PMCID: PMC10812463 DOI: 10.3390/antibiotics13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Antibiotic self-medication, which refers to acquisition and using antibiotics to treat infections based on personal experience and/or without a doctor's advice or prescription, is a significant public health issue jeopardizing patient health outcomes. The purpose of the present cross-sectional online survey was to assess the frequency of self-medication among the general public in various geographical locations in southern Jordan, as well as to examine the determinants to self-medication. The survey was distributed through several social media networks over the period November-December 2022, and included demographic information as well as items related to the use and abuse of antibiotics, information sources about antibiotics, the duration of use of antibiotics, and assessment of the public knowledge about appropriate antibiotic use. Inferential analysis, such as the Chi-Square test and logistic regression, were adopted to assess the associations between the different variables with self-medication. A total of 984 respondents were enrolled in the study. Of these, 752 had been using antibiotics during the last year. However, the self-medicating cases were 413 of the 752. The main source of information about the utilization of antibiotics among participants in the survey was pharmacists. The participants commonly (36.0%) tended to use antibiotics until the symptoms disappeared. Nearly half of the respondents reported usually taking antibiotics for treating a runny nose (rhinorrhea). The logistic regression analysis indicated that self-medication with antibiotics was significantly associated with female gender (p-value < 0.001), low educational level (p-value = 0.014), rural living location (p-value 0.003), no health insurance (p-value = 0.001) and occupation (p-value = 0.005). Meanwhile age had no significant relationship to self-medication. Finally, the results revealed poor understanding of key appropriate antibiotic usage, which inevitably influences self-medication practice. It is crucial to come up with several programs and governmental policies to suppress widespread antibiotic self-medication as it will affect the health of future generations of Jordanian citizens.
Collapse
Affiliation(s)
- Alaa Al-Tarawneh
- Department of Allied Medical Sciences, Karak University College, Al-Balqa Applied University, Karak 19117, Jordan; (A.A.-T.); (T.A.)
| | - Tasneem Ali
- Department of Allied Medical Sciences, Karak University College, Al-Balqa Applied University, Karak 19117, Jordan; (A.A.-T.); (T.A.)
| | - Ghaith M Al-Taani
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
8
|
Li J, Tang Y, Bai Y, Zhang Z, Zhang S, Chen T, Zhao F, Guo Z. A pomegranate seed-structured nanozyme-based colorimetric immunoassay for highly sensitive and specific biosensing of Staphylococcus aureus. Analyst 2024; 149:563-570. [PMID: 38099463 DOI: 10.1039/d3an01621h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus (S. aureus) infections are a serious threat to human health. The development of rapid and sensitive detection methods for pathogenic bacteria is crucial for accurate drug administration. In this research, by combining the advantages of enzyme-linked immunosorbent assay (ELISA), we synthesized nanozymes with high catalytic performance, namely pomegranate seed-structured bimetallic gold-platinum nanomaterials (Ps-PtAu NPs), which can catalyze a colorless TMB substrate into oxidized TMB (oxTMB) with blue color to achieve colorimetric analysis of S. aureus. Under the optimal conditions, the proposed biosensor could quantitatively detect S. aureus at levels ranging from 1.0 × 101 to 1.0 × 106 CFU mL-1 with a limit of detection (LOD) of 3.9 CFU mL-1. Then, an integrated color picker APP on a smartphone enables on-site point-of-care testing (POCT) of S. aureus with LOD as low as 1 CFU mL-1. Meanwhile, the proposed biosensor is successfully applied to the detection of S. aureus in clinical samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jinghui Li
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Yipeng Tang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Yunpeng Bai
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Zhejun Zhang
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Shaopeng Zhang
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
| | - Tongyun Chen
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Feng Zhao
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
| | - Zhigang Guo
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, 300070, China
- Chest Hospital, Tianjin University, Tianjin, 300072, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, 300222, China
- Tianjin Cardiovascular Diseases Institute, Tianjin, 300222, China
| |
Collapse
|
9
|
Rofael S, Leboreiro Babe C, Davrandi M, Kondratiuk AL, Cleaver L, Ahmed N, Atkinson C, McHugh T, Lowe DM. Antibiotic resistance, bacterial transmission and improved prediction of bacterial infection in patients with antibody deficiency. JAC Antimicrob Resist 2023; 5:dlad135. [PMID: 38098890 PMCID: PMC10720947 DOI: 10.1093/jacamr/dlad135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Background Antibody-deficient patients are at high risk of respiratory tract infections. Many therefore receive antibiotic prophylaxis and have access to antibiotics for self-administration in the event of breakthrough infections, which may increase antimicrobial resistance (AMR). Objectives To understand AMR in the respiratory tract of patients with antibody deficiency. Methods Sputum samples were collected from antibody-deficient patients in a cross-sectional and prospective study; bacteriology culture, 16S rRNA profiling and PCR detecting macrolide resistance genes were performed. Bacterial isolates were identified using MALDI-TOF, antimicrobial susceptibility was determined by disc diffusion and WGS of selected isolates was done using Illumina NextSeq with analysis for resistome and potential cross-transmission. Neutrophil elastase was measured by a ProteaseTag immunoassay. Results Three hundred and forty-three bacterial isolates from sputum of 43 patients were tested. Macrolide and tetracycline resistance were common (82% and 35% of isolates). erm(B) and mef(A) were the most frequent determinants of macrolide resistance. WGS revealed viridans streptococci as the source of AMR genes, of which 23% also carried conjugative plasmids linked with AMR genes and other mobile genetic elements. Phylogenetic analysis of Haemophilus influenzae isolates suggested possible transmission between patients attending clinic.In the prospective study, a negative correlation between sputum neutrophil elastase concentration and Shannon entropy α-diversity (Spearman's ρ = -0.306, P = 0.005) and a positive relationship with Berger-Parker dominance index (ρ = 0.502, P < 0.001) were found. Similar relationships were noted for the change in elastase concentration between consecutive samples, increases in elastase associating with reduced α-diversity. Conclusions Measures to limit antibiotic usage and spread of AMR should be implemented in immunodeficiency clinics. Sputum neutrophil elastase may be a useful marker to guide use of antibiotics for respiratory infection.
Collapse
Affiliation(s)
- Sylvia Rofael
- Centre for Clinical Microbiology, University College London, Royal Free Campus, Pond Street, London, UK
- Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Clara Leboreiro Babe
- Centre for Clinical Microbiology, University College London, Royal Free Campus, Pond Street, London, UK
| | - Mehmet Davrandi
- Centre for Clinical Microbiology, University College London, Royal Free Campus, Pond Street, London, UK
| | - Alexandra L Kondratiuk
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, Pears Building, Rowland Hill Street, London, UK
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London, UK
| | - Naseem Ahmed
- Centre for Clinical Microbiology, University College London, Royal Free Campus, Pond Street, London, UK
| | - Claire Atkinson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, Pears Building, Rowland Hill Street, London, UK
- Cancer Biology and Therapy Research Group, Divisionof Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Timothy McHugh
- Centre for Clinical Microbiology, University College London, Royal Free Campus, Pond Street, London, UK
| | - David M Lowe
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, Pears Building, Rowland Hill Street, London, UK
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, Pond Street, London, UK
| |
Collapse
|
10
|
Ozdenerol E, Bingham-Byrne RM, Seboly J. Female Leadership during COVID-19: The Effectiveness of Diverse Approaches towards Mitigation Management during a Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7023. [PMID: 37947579 PMCID: PMC10649683 DOI: 10.3390/ijerph20217023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
This paper tackles the question of how female leaders at national levels of government managed COVID-19 response and recovery from the first COVID-19 case in their respective countries through to 30 September 2021. The aim of this study was to determine which COVID-19 mitigations were effective in lowering the viral reproduction rate and number of new cases (per million) in each of the fourteen female presidents' countries-Bangladesh, Barbados, Belgium, Bolivia, Denmark, Estonia, Finland, Germany, Iceland, Lithuania, New Zealand, Norway, Serbia, and Taiwan. We first compared these countries by finding a mean case rate (29,420 per million), mean death rate (294 per million), and mean excess mortality rate (+1640 per million). We then analyzed the following mitigation measures per country: school closing, workplace closing, canceling public events, restrictions on gatherings, closing public transport, stay-at-home requirements, restrictions on internal movement, international travel controls, income support, debt/contract relief, fiscal measures, international support, public information campaigns, testing policy, contact tracing, emergency investment in healthcare, investment in vaccines, facial coverings, vaccination policy, and protection of the elderly. We utilized the random forest approach to examine the predictive significance of these variables, providing more interpretability. Subsequently, we then applied the Wilcoxon rank-sum statistical test to see the differences with and without mitigation in effect for the variables that were found to be significant by the random forest model. We observed that different mitigation strategies varied in their effectiveness. Notably, restrictions on internal movement and the closure of public transportation proved to be highly effective in reducing the spread of COVID-19. Embracing qualities such as community-based, empathetic, and personable leadership can foster greater trust among citizens, ensuring continued adherence to governmental policies like mask mandates and stay-at-home orders, ultimately enhancing long-term crisis management.
Collapse
Affiliation(s)
- Esra Ozdenerol
- Spatial Analysis and Geographic Education Laboratory, Department of Earth Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Rebecca Michelle Bingham-Byrne
- Spatial Analysis and Geographic Education Laboratory, Department of Earth Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Jacob Seboly
- Department of Geosciences, Mississippi State University, Starkville, MS 39762, USA;
| |
Collapse
|
11
|
Yan Y, Wang M, Zhao M, Zhang J, Liu Y, Gao X. pH Switchable Nanozyme Platform for Healing Skin Tumor Wound Infected with Drug-Resistant Bacteria. Adv Healthc Mater 2023; 12:e2301375. [PMID: 37399839 DOI: 10.1002/adhm.202301375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Nanozymes capable of generating reactive oxygen species have recently emerged as promising treatments for wounds infected with drug-resistant bacteria, possessing a reduced possibility of inducing resistance. However, the therapeutic effect is limited by a shortage of endogenous oxy-substrates and undesirable off-target biotoxicity. Herein, a ferrocenyl coordination polymer (FeCP) nanozyme, featuring pH switchable peroxidase (POD)- and catalase (CAT)-like activity is incorporated with indocyanine green (ICG) and calcium peroxide (CaO2 ) to fabricate an H2 O2 /O2 self-supplying system (FeCP/ICG@CaO2 ) for precise treatment of bacterial infections. At the wound site, CaO2 reacts with water to generate H2 O2 and O2 . Acting as a POD mimic under an acidic bacterial microenvironment, FeCP catalyzes H2 O2 into hydroxyl radicals to prevent infection. However, FeCP switches to CAT-like activity in neutral tissue, decomposing H2 O2 into H2 O and O2 to prevent oxidative damage and facilitate wound healing. Additionally, FeCP/ICG@CaO2 shows photothermal therapy capability, as ICG can emit heat under near-infrared laser irradiation. This heat assists FeCP in fully exerting its enzyme-like activity. Thus, this system achieves an antibacterial efficiency of 99.8% in vitro for drug-resistant bacteria, and effectively overcomes the main limitations of nanozyme-based treatment assays, resulting in satisfactory therapeutic effects in repairing normal and special skin tumor wounds infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Yong Yan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Mengqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jing Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
12
|
Parker MFL, López-Álvarez M, Alanizi AA, Luu JM, Polvoy I, Sorlin AM, Qin H, Lee S, Rabbitt SJ, Pichardo-González PA, Ordonez AA, Blecha J, Rosenberg OS, Flavell RR, Engel J, Jain SK, Ohliger MA, Wilson DM. Evaluating the Performance of Pathogen-Targeted Positron Emission Tomography Radiotracers in a Rat Model of Vertebral Discitis-Osteomyelitis. J Infect Dis 2023; 228:S281-S290. [PMID: 37788505 PMCID: PMC11009497 DOI: 10.1093/infdis/jiad159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.
Collapse
Affiliation(s)
- Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, New York
| | - Marina López-Álvarez
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Aryn A Alanizi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Justin M Luu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Alexandre M Sorlin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Sanghee Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Sarah J Rabbitt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco
- UCSF Department of Microbiology and Immunology, San Francisco, California
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
13
|
Nandhini P, Gupta PK, Mahapatra AK, Das AP, Agarwal SM, Mickymaray S, Alothaim AS, Rajan M. In-Silico molecular screening of natural compounds as a potential therapeutic inhibitor for Methicillin-resistant Staphylococcus aureus inhibition. Chem Biol Interact 2023; 374:110383. [PMID: 36754228 DOI: 10.1016/j.cbi.2023.110383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a life-threatening superbug causing infectious diseases such as pneumonia, endocarditis, osteomyelitis, etc. Conventional antibiotics are ineffective against MRSA infections due to their resistance mechanism against the antibiotics. The Penicillin Binding Protein (PBP2a) inhibits the activity of antibiotics by hydrolyzing the β-lactam ring. Thus, alternate treatment methods are needed for the treatment of MRSA infections. Natural bioactive compounds exhibit good inhibition efficiency against MRSA infections by hindering its enzymatic mechanism, efflux pump system, etc. The present work deals with identifying potential and non-toxic natural bioactive compounds (ligands) through molecular docking studies through StarDrop software. Various natural bioactive compounds which are effective against MRSA infections were docked with the protein (6VVA). The ligands having good binding energy values and pharmacokinetic and drug-likeness properties have been illustrated as potential ligands for treating MRSA infections. From this exploration, Luteolin, Kaempferol, Chlorogenic acid, Sinigrin, Zingiberene, 1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-1-ene, and Curcumin have found with good binding energies of -8.6 kcal/mol, -8.4 kcal/mol, -8.2 kcal/mol, -7.5 kcal/mol, -7.4 kcal/mol, -7.3 kcal/mol, and -7.2 kcal/mol, respectively.
Collapse
Affiliation(s)
- Palanichamy Nandhini
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India
| | - Prashant Kr Gupta
- Ayurinformatics Laboratory, Department of Kaumarbhritya, All India Institute of Ayurveda, Sarita Vihar, New Delhi, India
| | - Arun Kumar Mahapatra
- Ayurinformatics Laboratory, Department of Kaumarbhritya, All India Institute of Ayurveda, Sarita Vihar, New Delhi, India
| | - Agneesh Pratim Das
- ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida-201301, India
| | - Subhash Mohan Agarwal
- ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida-201301, India
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
| |
Collapse
|
14
|
Al Tall Y, Al-Nassar B, Abualhaijaa A, Sabi SH, Almaaytah A. The design and functional characterization of a novel hybrid antimicrobial peptide from Esculentin-1a and melittin. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e97116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial agents are one of the most widely used drugs in medicine. In the last fifty years, the misuse of these agents caused the emergence of resistant strains of bacteria that led to an increase in life-threatening infections. The need to develop new agents has become a priority, and antimicrobial peptides attained high consideration. The antimicrobial activities of a novel In-house designed hybrid cationic peptide (BKR1) were studied against different strains of Gram-negative bacteria. This was done using the broth dilution method as outlined by the Clinical and Laboratory Institute (CLSI). Checkerboard assy was employed to investigate the synergistic activity of BKR1 peptide with four antibiotics (Levofloxacin, chloramphenicol, rifampicin, and ampicillin). Finally, the cytotoxicity of BKR1 was evaluated against human blood cells and mammalian kidney cells (Vero cells). BKR1 displayed bactericidal activity against tested strains of Gram-negative bacteria, with zero hemolytic effects. It also acts as a strong adjuvant with levofloxacin, chloramphenicol, and rifampicin against resistant strains of P. aeruginosa and E. coli. This study represents the design and elucidation of the antimicrobial activities of a novel hybrid antimicrobial peptide named (BKR1). Our results indicate thar BKR1 is a promising candidate to treat resistant infectious diseases individually or as an adjuvant with conventional antibiotics.
Collapse
|
15
|
Staples JA, Ho M, Ferris D, Hayek J, Liu G, Tran KC, Sutherland JM. Outpatient Versus Inpatient Intravenous Antimicrobial Therapy: A Population-Based Observational Cohort Study of Adverse Events and Costs. Clin Infect Dis 2022; 75:1921-1929. [PMID: 35439822 DOI: 10.1093/cid/ciac298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Bacterial infections such as osteomyelitis and endocarditis routinely require several weeks of treatment with intravenous (IV) antimicrobials. Outpatient parenteral antimicrobial therapy (OPAT) programs allow patients to receive IV antimicrobials in an outpatient clinic or at home. The outcomes and costs of such treatments remain uncertain. METHODS We conducted a retrospective observational cohort study over a 5-year study interval (1 June 2012 to 31 March 2018) using population-based linked administrative data from British Columbia, Canada. Patients receiving OPAT following a hospitalization for bacterial infection were matched based on infection type and implied duration of IV antimicrobials to patients receiving inpatient parenteral antimicrobial therapy (IPAT). Cumulative adverse events and direct healthcare costs were estimated over a 90-day outcome interval. RESULTS In a matched cohort of 1842 patients, adverse events occurred in 35.6% of OPAT patients and 39.0% of IPAT patients (adjusted odds ratio, 1.04 [95% confidence interval {CI}, .83-1.30; P = .61). Relative to IPAT patients, OPAT patients were significantly more likely to experience hospital readmission (30.5% vs 23.0%) but significantly less likely to experience Clostridioides difficile diarrhea (1.2% vs 3.1%) or death (2.0% vs 8.8%). Estimated mean direct healthcare costs were $30 166 for OPAT patients and $50 038 for IPAT patients (cost ratio, 0.60; average cost savings with OPAT, $17 579 [95% CI, $14 131-$21 027]; P < .001). CONCLUSIONS Outpatient IV antimicrobial therapy is associated with a similar overall prevalence of adverse events and with substantial cost savings relative to patients remaining in hospital to complete IV antimicrobials. These findings should inform efforts to expand OPAT use.
Collapse
Affiliation(s)
- John A Staples
- Department of Medicine, University of British Columbia, Vancouver, Canada.,Centre for Clinical Epidemiology & Evaluation, Vancouver, Canada.,Centre for Health Services and Policy Research, School of Population and Public Health, University of British Columbia, Vancouver, Canada.,Centre for Health Evaluation & Outcome Sciences, Vancouver, Canada
| | - Meghan Ho
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Dwight Ferris
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jan Hayek
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Guiping Liu
- Centre for Health Services and Policy Research, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| | - Karen C Tran
- Department of Medicine, University of British Columbia, Vancouver, Canada.,Centre for Health Evaluation & Outcome Sciences, Vancouver, Canada
| | - Jason M Sutherland
- Centre for Health Services and Policy Research, School of Population and Public Health, University of British Columbia, Vancouver, Canada.,Centre for Health Evaluation & Outcome Sciences, Vancouver, Canada
| |
Collapse
|
16
|
Valentine JA, Mena L, Millett G. Telehealth Services: Implications for Enhancing Sexually Transmitted Infection Prevention. Sex Transm Dis 2022; 49:S36-S40. [PMID: 36219706 DOI: 10.1097/olq.0000000000001699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACT In the United States, sexually transmitted infections (STIs) are among the most persistent threats to health equity. Increasing access to STI prevention and control services through the provision of Remote Health and Telehealth can improve sexual health outcomes. Telehealth has been shown to increase access to care and even improve health outcomes. The increased flexibility offered by Telehealth services accommodates both patient and provider. Although both Telehealth and Remote Health strategies are important for STI prevention, share common attributes, and, in some circumstances, overlap, this article will focus more specifically on considerations for Telehealth and how it can contribute to increasing health equity by offering an important complement to and, in some cases, substitute for in-person STI services for some populations. Telehealth assists a variety of different populations, including those experiencing STI disparities; however, although the Internet offers a promising resource for many American households and increasing percentages of Americans are using its many resources, not all persons have equal access to the Internet. In addition to tailoring STI programs to accommodate unique patient populations, these programs will likely be faced with adapting services to fit reimbursement and licensing regulations.
Collapse
Affiliation(s)
- Jo A Valentine
- From the Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | - Leandro Mena
- From the Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
17
|
Sun L, Li M, Yang J, Li J. Cell Membrane-Coated Nanoparticles for Management of Infectious Diseases: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Wan P, Wang Y, Guo W, Song Z, Zhang S, Wu H, Yan W, Deng M, Xiao C. Low-Molecular-Weight Polylysines with Excellent Antibacterial Properties and Low Hemolysis. ACS Biomater Sci Eng 2022; 8:903-911. [PMID: 35050580 DOI: 10.1021/acsbiomaterials.1c01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The steady development of bacterial resistance has become a global public health issue, and new antibacterial agents that are active against drug-resistant bacteria and less susceptible to bacterial resistance are urgently needed. Here, a series of low-molecular-weight cationic polylysines (Cx-PLLn) with different hydrophobic end groups (Cx) and degrees of polymerization (PLLn) was synthesized and used in antibacterial applications. All the obtained Cx-PLLn have antibacterial activity. Among them, C6-PLL13 displays the best antibacterial effect for Gram-positive bacteria, that is, Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA), and highest selectivity against Gram-positive bacteria. A mechanistic study revealed that the C6-PLL13 destroys the integrity of the bacterial cell membrane and causes effective bacterial death. Owing to this membrane-disrupting property, C6-PLL13 showed rapid bacterial killing kinetics and was not likely to develop resistance after repeat treatment (up to 13 generations). Moreover, C6-PLL13 demonstrated a significant therapeutic effect on an MRSA infection mouse model, which further proved that this synthetic polymer could be used as an effective weapon against bacterial infections.
Collapse
Affiliation(s)
- Pengqi Wan
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Wei Guo
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhengwei Song
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Wei Yan
- Ministry of Education, Key Laboratory of Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Mingxiao Deng
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
19
|
Dai X, Li Y, Liu X, Lei Z, Yang L, Xu Q, Gao F. Biodegradable Fe( ii)/Fe( iii)-coordination-driven nanoassemblies for chemo/photothermal/chemodynamic synergistic therapy of bacterial infection. NEW J CHEM 2022. [DOI: 10.1039/d2nj03803j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study provides a novel approach for preparing biodegradable nanoassemblies with synergistic chemo/photothermal/chemodynamic performance to selectively combat bacterial infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhangyi Lei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
20
|
Prasad HSN, Ananda A, Lohith T, Prabhuprasad P, Jayanth H, Krishnamurthy N, Sridhar M, Mallesha L, Mallu P. Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Jiao H, Guo J, Cui Y, Yu X, Liao Y, Ying Y, Li Z, Yao K, Huang H. Plasmon‐Enhanced Photocatalytic Activity of Organic Heterostructure for Indoor‐Light Antibacterial Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hui‐Feng Jiao
- School of Basic Medicine Nanchang University Nanchang 330031 China
| | - Jiaxu Guo
- School of Basic Medicine Nanchang University Nanchang 330031 China
| | - Yuying Cui
- Institute of Photovoltaics/Department of Materials Science and Engineering Nanchang University Nanchang 330031 China
| | - Xin Yu
- Institute of Photovoltaics/Department of Materials Science and Engineering Nanchang University Nanchang 330031 China
| | - Yunfei Liao
- School of Basic Medicine Nanchang University Nanchang 330031 China
| | - Yiran Ying
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Zhongan Li
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Kai Yao
- Institute of Photovoltaics/Department of Materials Science and Engineering Nanchang University Nanchang 330031 China
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| | - Haitao Huang
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
| |
Collapse
|
22
|
Lin X, Fang Y, Hao Z, Wu H, Zhao M, Wang S, Liu Y. Bacteria-Triggered Multifunctional Hydrogel for Localized Chemodynamic and Low-Temperature Photothermal Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103303. [PMID: 34643054 DOI: 10.1002/smll.202103303] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic infections seriously threaten public health and have been considered as one of the most critical challenges in clinical therapy. Construction of a safe and efficient photothermal antibacterial platform is a promising strategy for treatment of bacterial infections. Considering that high temperature does harm to the normal tissues and cells, herein, a bacteria-triggered multifunctional hydrogel is constructed for low-temperature photothermal sterilization with high efficiency by integrating localized chemodynamic therapy (L-CDT). The hydrogel is constructed by incorporating copper sulfide nanoparticles (CuSNPs ) with photothermal profile into the network of hyaluronic acid (HA) and Fe3+ -EDTA complexes, named as CHFH (CuSNPs -HA-Fe3+ -EDTA hydrogel). Bacteria can be accumulated on the surface of CHFH, which secretes hyaluronidase to decompose the HA and release Fe3+ . The Fe3+ is reduced into Fe2+ in microenvironment of bacteria to trigger Fenton reaction. The generated hydroxyl radicals result in sterilization based on L-CDT within short range. By integrating with photothermal property of CuSNPs , low-temperature photothermal therapy (LT-PTT) for sterilization is realized, which improves the antibacterial efficiency while minimizes damage to normal tissues. The CHFH is further used to prepare Band aid which effectively promotes the Staphylococcus aureus-infected wound healing process in vivo, confirming the great potential for clinical application.
Collapse
Affiliation(s)
- Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
23
|
Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infect Drug Resist 2021; 14:4363-4374. [PMID: 34707380 PMCID: PMC8544126 DOI: 10.2147/idr.s337611] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Infections due to multidrug-resistant Enterobacteriaceae have become major international public health problem due to the inadequate treatment options and the historically lagged pace of development of novel antimicrobial drugs. Inappropriate antimicrobial use in humans and animals coupled with increased global connectivity aided to the transmission of drug-resistant Enterobacteriaceae infections. Carbapenems are the medications of choice for extended-spectrum beta-lactamase and AmpC producers, but alternatives are currently needed because carbapenem resistance is increasing globally. This review pointed to discuss emerging drug-resistant Enterobacteriaceae, its epidemiology and novel treatment options for infections, which date back from 2010 to 2019 by searching Google Scholar, PubMed, PMC, Hinari and other different websites. The occurrence of carbapenem-resistant Enterobacteriaceae is reported worldwide with great regional variability. The rise of carbapenem-resistant Enterobacteriaceae poses a threat to all nations. Enzyme synthesis, efflux pumps, and porin mutations are the main methods by which Enterobacteriaceae acquire resistance to carbapenems. The major resistance mechanism among these is enzyme synthesis. Most carbapenem resistance is caused by three enzyme groups: Klebsiella pneumoniae carbapenemase (Ambler class A), metallo-ß-lactamases (Ambler class B), and oxacillinase-48 (Ambler class D). Ceftazidime–avibactam, which was newly licensed for carbapenemase producers, is the most common treatment option for infections. Meropenem–vaborbactam, imipenem–relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam–avibactam are recently reported to be active against carbapenem-resistant Enterobacteriaceae; and are also in ongoing trials for different populations and combinations with other antibacterial agents. Overall, treatment must be tailored to the patient’s susceptibility profile, type and degree of infection, and personal characteristics.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yeshimebet Kassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Melaku Ashagire
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| |
Collapse
|
24
|
Takai J, Shimada T, Nakamura T, Engel JD, Moriguchi T. Gata2 heterozygous mutant mice exhibit reduced inflammatory responses and impaired bacterial clearance. iScience 2021; 24:102836. [PMID: 34471858 PMCID: PMC8390858 DOI: 10.1016/j.isci.2021.102836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases continually pose global medical challenges. The transcription factor GATA2 establishes gene networks and defines cellular identity in hematopoietic stem/progenitor cells and in progeny committed to specific lineages. GATA2-haploinsufficient patients exhibit a spectrum of immunodeficiencies associated with bacterial, viral, and fungal infections. Despite accumulating clinical knowledge of the consequences of GATA2 haploinsufficiency in humans, it is unclear how GATA2 haploinsufficiency compromises host anti-infectious defenses. To address this issue, we examined Gata2-heterozygous mutant (G2 Het) mice as a model for human GATA2 haploinsufficiency. In vivo inflammation imaging and cytokine multiplex analysis demonstrated that G2 Het mice had attenuated inflammatory responses with reduced levels of inflammatory cytokines, particularly IFN-γ, IL-12p40, and IL-17A, during lipopolysaccharide-induced acute inflammation. Consequently, bacterial clearance was significantly impaired in G2 Het mice after cecal ligation and puncture-induced polymicrobial peritonitis. These results provide direct molecular insights into GATA2-directed host defenses and the pathogenic mechanisms underlying observed immunodeficiencies in GATA2-haploinsufficient patients.
Collapse
Affiliation(s)
- Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Takashi Shimada
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Tadaho Nakamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - James Douglas Engel
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| |
Collapse
|
25
|
Alshammari SZ, AlFayyad I, Altannir Y, Al-Tannir M. Parental Awareness and Attitude about Childhood Immunization in Riyadh, Saudi Arabia: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168455. [PMID: 34444205 PMCID: PMC8393381 DOI: 10.3390/ijerph18168455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 11/25/2022]
Abstract
Parental beliefs about vaccination are one of the main factors in reaching high vaccination rates. This cross-sectional study aims to assess the awareness and attitudes regarding routine childhood immunization among Saudi parents in Riyadh, Saudi Arabia. This survey, with a pretested 18-item questionnaire, was conducted on parents having at least one child from Riyadh, Saudi Arabia, between 1 May 2019 and 1 November 2019. The validated questionnaire consisted of three sections; participants’ demographics, awareness, and attitude regarding the immunization of their children. In total, 1200 parents participated in the study, 883 (73.3%) of the parents scored a good knowledge of childhood immunization, and 93% knew that routine vaccination protects children from infectious diseases and their complications. Around 10% stated that immunization can cause autism. Only parents in age groups 30–39 and 40–49 were 1.76 (p < 0.05) times and 1.92 (p < 0.05) times, respectively, more likely to exhibit good knowledge. About 522 (43.6) of the parents attained a positive attitude toward immunization. Adherence to the immunization schedule was confirmed important by 93%, while 91% presumed that immunization keeps their children healthy. Additionally, immunization was perceived as important by 94% of parents and only 8% agreed that immunization is prohibited by religion. Females were 1.45 (p < 0.05) times more likely to exhibit positive attitudes than males. Parents have good knowledge and a positive attitude towards child immunization. However, parental education should be focused on the fact that religion supports immunization, and more awareness should be focused on the lack of correlation between autism and vaccination.
Collapse
Affiliation(s)
- Shuaa Z. Alshammari
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (S.Z.A.); (I.A.)
| | - Isamme AlFayyad
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (S.Z.A.); (I.A.)
| | - Youssef Altannir
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia;
| | - Mohamad Al-Tannir
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (S.Z.A.); (I.A.)
- Correspondence:
| |
Collapse
|
26
|
Akeda Y. Current situation of carbapenem-resistant Enterobacteriaceae and Acinetobacter in Japan and Southeast Asia. Microbiol Immunol 2021; 65:229-237. [PMID: 33913535 DOI: 10.1111/1348-0421.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
In the recent years, issues related to drug-resistant bacteria have evolved worldwide, and various countermeasures have been taken to control their spread. Among a wide variety of drug-resistant bacterial species, carbapenem-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAb), are those for which countermeasures are particularly important. Carbapenems are the last resort antibiotics for any bacterial infection; therefore, infectious diseases caused by these drug-resistant bacteria are difficult to treat. In the case of CRE, since carbapenemases responsible for carbapenem resistance are mostly encoded on transmissible plasmids, it is known that susceptible bacteria can easily become carbapenem-resistant by transfer of plasmids between Enterobacteriaceae. In addition, Enterobacteriaceae are common bacterial species found in the guts of animals, including humans. Acinetobacter is ubiquitously isolated in the environment. Due to these characteristics, it is quite difficult to prevent the intrusion of multi-drug resistant pathogens in hospitals. Therefore, effective countermeasures should be developed and utilized against such dangerous pathogens based on molecular epidemiological analyses. In this review, there are also some examples presented on how to manage to monitor and control those troublesome drug-resistant bacteria conducted in Japan and Southeast Asia.
Collapse
Affiliation(s)
- Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Synthesis of new pyrazolone and pyrazole-based adamantyl chalcones and antimicrobial activity. Biosci Rep 2021; 40:226401. [PMID: 32914839 PMCID: PMC7517278 DOI: 10.1042/bsr20201950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023] Open
Abstract
Chalcones and their derivatives are becoming increasingly popular due to their various pharmacological effects. Chalcone molecules may be extracted from natural resources, entirely synthesised, or biosynthesised by modifying the natural ones. In the present study, five pyrazole-based adamantyl heterocyclic compounds were synthesised by condensation of 1-adamantyl chalcone with substituted phenylhydrazine. The products were characterised by using ¹H NMR, ¹³C NMR and FT-IR spectroscopy. The microbiological activity of these compounds was investigated against bacteria and fungi. The new compounds showed good to moderate activity against the microbial species used for screening. All developed molecules showed antibacterial activity against Gram-negative and Gram-positive. These molecules showed antifungal activities against Fusarium oxysporum fungus and in a dose-dependent manner, apart from RS-1 molecules which showed compromised antifungal activity and even at a high dose.
Collapse
|
28
|
Boukhris I, Smaoui S, Ennouri K, Morjene N, Farhat-Khemakhem A, Blibech M, Alghamdi OA, Chouayekh H. Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model. PLoS One 2020; 15:e0231397. [PMID: 32302332 PMCID: PMC7164649 DOI: 10.1371/journal.pone.0231397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is 'generally recognized as safe' (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life.
Collapse
Affiliation(s)
- Ines Boukhris
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Nawres Morjene
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Monia Blibech
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Othman A. Alghamdi
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Sivakumar M, Surendar S, Jayakumar M, Seedevi P, Sivasankar P, Ravikumar M, Anbazhagan M, Murugan T, Siddiqui SS, Loganathan S. Parthenium hysterophorus Mediated Synthesis of Silver Nanoparticles and its Evaluation of Antibacterial and Antineoplastic Activity to Combat Liver Cancer Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01775-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti-Infective Application of Graphene-Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9:e1901375. [PMID: 31894648 DOI: 10.1002/adhm.201901375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/16/2019] [Indexed: 12/19/2022]
Abstract
The increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene-like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad-spectrum bactericidal activity against Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant-related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
31
|
Luo Y, Ge M, Lin H, He R, Yuan X, Yang C, Wang W, Zhang X. Anti‐Infective Application of Graphene‐Like Silicon Nanosheets via Membrane Destruction. Adv Healthc Mater 2020; 9. [DOI: doi.org/10.1002/adhm.201901375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 09/08/2023]
Abstract
AbstractThe increasing problem of bacterial resistance to the currently effective antibiotics has resulted in the need for increasingly potent therapeutics to eradicate pathogenic microorganisms. 2D nanomaterials (2D NMs) have unique physical and chemical properties that make them attractive candidates for biomedical applications. Recently, the application of 2D NMs as antibacterial agents has attracted significant attention. Herein, a novel 2D graphene‐like silicon nanosheet (GS NS) antimicrobial agent is fabricated from pristine silicon crystals by ultrasonication, which results in a highly exfoliated planar morphology and a significantly larger surface area as compared with bulk silicon. The GS NSs exhibit remarkable in vitro broad‐spectrum bactericidal activity against Gram (−) Escherichia coli and Gram (+) Staphylococcus aureus because of a close interaction with the bacteria, which leads to highly efficient membrane destruction. The in vivo studies demonstrate that the local administration of GS NSs effectively mitigates implant‐related infection by reducing the bacterial burden of the extracted samples and accelerating the remission of local inflammation. Based on these encouraging results, GS NSs are expected to be a useful new member of the 2D NMs family, with the potential of effectively killing pathogenic bacteria in clinical applications.
Collapse
Affiliation(s)
- Yao Luo
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Min Ge
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Renke He
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xiangwei Yuan
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Chao Yang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Wei Wang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| | - Xianlong Zhang
- Department of Orthopaedics Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai Jiao Tong University Shanghai 200233 P. R. China
| |
Collapse
|
32
|
Yan Z, Yin M, Chen J, Li X. Assembly and substrate recognition of curli biogenesis system. Nat Commun 2020; 11:241. [PMID: 31932609 PMCID: PMC6957492 DOI: 10.1038/s41467-019-14145-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023] Open
Abstract
A major component of bacterial biofilms is curli amyloid fibrils secreted by the curli biogenesis system. Understanding the curli biogenesis mechanism is critical for developing therapeutic agents for biofilm-related infections. Here we report a systematic study of the curli biogenesis system, highlighted by structural, biochemical and functional analysis of the secretion channel complexes (CsgF-CsgG) with and without the curli substrate. The dual-pore architecture of the CsgF-CsgG complex was observed and used to develop an approach to inhibit the curli secretion by physically reducing the size of the CsgF pore. We further elucidated the assembly of the CsgFG complex with curli components (CsgA and CsgB) and curli-cell association through CsgF. Importantly, the recognition of the CsgA substrate by CsgG was uncovered. Nine crevices outside of the CsgG channel provide specific and highly-conserved recognition sites for CsgA N-terminus. Together with analysis of CsgE, our study provides comprehensive insights into curli biogenesis. A major component of bacterial biofilms is curli amyloid fibrils secreted by the curli biogenesis system. Here authors use cryo-EM to visualize the secretion channel complexes (CsgF-CsgG) with and without the curli substrate and provide insights into curli biogenesis.
Collapse
Affiliation(s)
- Zhaofeng Yan
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Meng Yin
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jianan Chen
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xueming Li
- Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education, Beijing, China. .,School of Life Sciences, Tsinghua University, Beijing, China. .,Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
33
|
Zhu J, Liu S, Zhang T, Zhang Y, Zhang X, Liu X, Tie Z, Dou Y, Lu Z, Hu Y. Porous gold layer coated silver nanoplates with efficient antimicrobial activity. Colloids Surf B Biointerfaces 2019; 186:110727. [PMID: 31862562 DOI: 10.1016/j.colsurfb.2019.110727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Although silver nanoparticles are considered as promising antibacterial agents because of their antibacterial activity, the acute cytotoxicity of Ag+ released from Ag nanoparticles restricts their potential practical applications. Herein, porous Ag@Au nanoplates, which could balance the Ag+ release and the toxicity of Ag naoparticles, were fabricated by stepwise seed-mediated growth and oxidation. Laser irradiation further boosted their antimicrobial activity, and significantly accelerated the curing rate of wound. Comparing with Ag nanoplates, the irradiated porous Ag@Au nanoplates showed the similar antibiotic ability against S. aureus strains and lower cytotoxicity in vitro. When the porous Ag@Au nanoplates were applied to treat S. aureus-infected wound, they had the best curing effect. Thus, these porous Ag@Au nanoplates could act as promising antibacterial agents for wound healing applications.
Collapse
Affiliation(s)
- Jianfeng Zhu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| | - Shiyi Liu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| | - Taixing Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xudong Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xueqi Liu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zuoxiu Tie
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yue Dou
- Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng, 242000 Anhui, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China.
| |
Collapse
|
34
|
Dash R, Agrawal A, Nagvekar V, Lele J, Di Pasquale A, Kolhapure S, Parikh R. Towards adult vaccination in India: a narrative literature review. Hum Vaccin Immunother 2019; 16:991-1001. [PMID: 31746661 PMCID: PMC7227717 DOI: 10.1080/21645515.2019.1682842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite vast improvements in childhood vaccination coverage in India, adult vaccination coverage is negligible. Our aim was, therefore, to create awareness about the importance of adult immunization. Although the true burden of vaccine-preventable diseases (VPDs) among Indian adults is unknown, adults are particularly vulnerable during outbreaks, due to a lack of immunization, waning immunity, age-related factors (e.g. chronic conditions and immunosenescence), and epidemiological shift. There are no national adult immunization guidelines in India, and although several medical societies have published adult immunization guidelines, these vary, making it unclear who should receive which vaccines (based on age, underlying conditions, etc.). Other barriers to adult immunization include vaccine hesitancy, missed opportunities, and cost. Steps to improve adult vaccination could include: adoption of national guidelines, education of healthcare providers and the public, and promotion of life-course immunization. Improving adult vaccine coverage could help reduce the burden of VPDs, particularly among older adults.
Collapse
Affiliation(s)
| | | | | | - Jayesh Lele
- Indian Medical Association, National Hospital Board of India, Mumbai, India
| | | | | | | |
Collapse
|
35
|
Com1 as a Promising Protein for the Differential Diagnosis of the Two Forms of Q Fever. Pathogens 2019; 8:pathogens8040242. [PMID: 31752191 PMCID: PMC6963606 DOI: 10.3390/pathogens8040242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Coxiella burnetii is the causative agent of acute and chronic Q fever in humans. Although the isolates studied so far showed a difference in virulence potential between those causing the two forms of the disease, implying a difference in their proteomic profile, the methods used so far to diagnose the two forms of the disease do not provide sufficient discriminatory capability, and human infections may be often misdiagnosed. The aim of the current study was to identify the outer membrane Com1 (CBU_1910) as a candidate protein for serodiagnostics of Q fever. The protein was cloned, expressed, purified, and used as an antigen in ELISA. The protein was then used for the screening of sera from patients suffering from chronic Q fever endocarditis, patients whose samples were negative for phase I immunoglobulin G (IgG), patients for whom at least one sample was positive for phase I IgG, and patients suffering from any kind of rheumatoid disease. Blood donors were used as the control group. Following statistical analysis, 92.4% (122/132) of the samples tested agreed with the negative clinical diagnosis, and 72.2% (26/36) agreed with the positive clinical diagnosis. Moreover, a significant correlation to the presence of the disease (p = 0.00) was calculated. The results support the idea that a Com1 antigen-based serodiagnostic test may be useful for differential diagnosis of chronic Q fever. Further studies are required to compare more immunogenic proteins of the bacterium against samples originating from patients suffering from different forms of the disease.
Collapse
|
36
|
Ryu SY, Wendt GA, Chandler CE, Ernst RK, Goodlett DR. Model-Based Spectral Library Approach for Bacterial Identification via Membrane Glycolipids. Anal Chem 2019; 91:11482-11487. [PMID: 31369253 DOI: 10.1021/acs.analchem.9b03340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By circumventing the need for a pure colony, MALDI-TOF mass spectrometry of bacterial membrane glycolipids (lipid A) has the potential to identify microbes more rapidly than protein-based methods. However, currently available bioinformatics algorithms (e.g., dot products) do not work well with glycolipid mass spectra such as those produced by lipid A, the membrane anchor of lipopolysaccharide. To address this issue, we propose a spectral library approach coupled with a machine learning technique to more accurately identify microbes. Here, we demonstrate the performance of the model-based spectral library approach for microbial identification using approximately a thousand mass spectra collected from multi-drug-resistant bacteria. At false discovery rates < 1%, our approach identified many more bacterial species than the existing approaches such as the Bruker Biotyper and characterized over 97% of their phenotypes accurately. As the diversity in our glycolipid mass spectral library increases, we anticipate that it will provide valuable information to more rapidly treat infected patients.
Collapse
Affiliation(s)
- So Young Ryu
- School of Community Health Sciences , University of Nevada Reno , Reno , Nevada 89557 , United States
| | - George A Wendt
- School of Community Health Sciences , University of Nevada Reno , Reno , Nevada 89557 , United States.,Department of Epidemiology, School of Public Health , University of California Berkeley , Berkeley , California 94720 , United States
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States
| | - David R Goodlett
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States.,International Centre for Cancer Vaccine Science , University of Gdansk , 80-308 Gdansk , Poland
| |
Collapse
|
37
|
Gianfrilli D, Ferlin A, Isidori AM, Garolla A, Maggi M, Pivonello R, Santi D, Sansone A, Balercia G, Granata ARM, Sinisi A, Lanfranco F, Pasqualetti P, Foresta C, Lenzi A. Risk behaviours and alcohol in adolescence are negatively associated with testicular volume: results from the Amico‐Andrologo survey. Andrology 2019; 7:769-777. [DOI: 10.1111/andr.12659] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023]
Affiliation(s)
- D. Gianfrilli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology Sapienza University of Rome Rome Italy
| | - A. Ferlin
- Department of Clinical and Experimental Sciences Unit of Endocrinology and Metabolism University of Brescia Brescia Italy
| | - A. M. Isidori
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology Sapienza University of Rome Rome Italy
| | - A. Garolla
- Unit of Andrology and Reproductive Medicine Department of Medicine University of Padova Padova Italy
| | - M. Maggi
- Sexual Medicine and Andrology Dipartimento Scienze Biomediche Sperimentali e Cliniche ‘Mario Serio’ University of Florence Firenze Italy
| | - R. Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia Università Federico II di Napoli Naples Italy
| | - D. Santi
- Department of Biomedical, Metabolic and Neural Sciences University of Modena and Reggio Emilia Modena Italy
| | - A. Sansone
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology Sapienza University of Rome Rome Italy
| | - G. Balercia
- Endocrinology, Department of Clinical and Molecular Sciences Polytechnic University of Marche Ancona Italy
| | - A. R. M. Granata
- Department of Biomedical, Metabolic and Neural Sciences University of Modena and Reggio Emilia Modena Italy
| | - A. Sinisi
- Andrology Unit Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences University HospitalL. Vanvitelli University of Campania Naples Italy
| | - F. Lanfranco
- Andrology Unit Division of Endocrinology, Diabetology and Metabolism Department of Medical Sciences University of Turin Torino Italy
| | - P. Pasqualetti
- Service of Medical Statistics and Information Technology Fatebenefratelli Foundation for Health Research and Education Rome Italy
| | - C. Foresta
- Unit of Andrology and Reproductive Medicine Department of Medicine University of Padova Padova Italy
| | - A. Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology Sapienza University of Rome Rome Italy
| | | |
Collapse
|
38
|
Risk Factors for Bloodstream Infections Among an Urban Population with Skin and Soft Tissue Infections: A Retrospective Unmatched Case-Control Study. Infect Dis Ther 2018; 8:75-85. [PMID: 30560318 PMCID: PMC6374237 DOI: 10.1007/s40121-018-0227-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 01/19/2023] Open
Abstract
Introduction The prevalence of acute bacterial skin and skin structure infections (ABSSSIs) continues to increase. Bloodstream infection (BSI) is a severe secondary complication of ABSSSI. The objective of this study was to determine clinical and sociodemographic risk factors for BSI in patients with acute bacterial skin and skin structure infections (ABSSSIs) and to determine if sociodemographic factors impact severity at presentation. Methods This was a retrospective unmatched (1:1) case-control study. Predictors of BSI and severe infection were sought through multivariable logistic regression analyses. Cases and controls were collected from two major medical centers located in downtown Detroit, Michigan: the Detroit Medical Center and the Henry Ford Health System. The population of interest included adult patients with community-onset (CO) ABSSSI treated at a participating hospital between January 2010 and December 2015. Cases were defined as those developing BSI within 48 h of admission with CO-ABSSSI as the primary source, while controls were those with CO-ABSSSI without BSI. Results A total of 392 patients (196 cases, 196 controls) were included. Independent predictors of BSI were male gender (aOR 1.85: 95% CI 1.11, 3.66), acute renal failure (aOR 2.08: 95% CI 1.18, 3.66), intravenous drug use (aOR 4.38, 95% CI 2.22, 8.62), and prior hospitalization (aOR 2.41, 95% CI 1.24, 4.93). African American race (aOR 2.18, 95% CI 1.38, 3.4), leukocytosis (aOR 2.24, 95% CI 1.41, 3.55), and prior hospitalization (aOR 2.07, 95% CI 1.19, 3.00) were significantly associated with infection severity. Conclusion Both clinical and sociodemographic factors were associated with BSI and severe infection underscoring the importance of social determinants of health in outcomes among underserved populations.
Collapse
|
39
|
Structure-Function Analysis of the Curli Accessory Protein CsgE Defines Surfaces Essential for Coordinating Amyloid Fiber Formation. mBio 2018; 9:mBio.01349-18. [PMID: 30018113 PMCID: PMC6050966 DOI: 10.1128/mbio.01349-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Curli amyloid fibers are produced as part of the extracellular biofilm matrix and are composed primarily of the major structural subunit CsgA. The CsgE chaperone facilitates the secretion of CsgA through CsgG by forming a cap at the base of the nonameric CsgG outer membrane pore. We elucidated a series of finely tuned nonpolar and charge-charge interactions that facilitate the oligomerization of CsgE and its ability to transport unfolded CsgA to CsgG for translocation. CsgE oligomerization in vitro is temperature dependent and is disrupted by mutations in the W48 and F79 residues. Using nuclear magnetic resonance (NMR), we identified two regions of CsgE involved in the CsgE-CsgA interaction: a head comprising a positively charged patch centered around R47 and a stem comprising a negatively charged patch containing E31 and E85. Negatively charged residues in the intrinsically disordered N- and C-terminal "tails" were not implicated in this interaction. Head and stem residues were mutated and interrogated using in vivo measurements of curli production and in vitro amyloid polymerization assays. The R47 head residue of CsgE is required for stabilization of CsgA- and CsgE-mediated curli fiber formation. Mutation of the E31 and E85 stem residues to positively charged side chains decreased CsgE-mediated curli fiber formation but increased CsgE-mediated stabilization of CsgA. No single-amino-acid substitutions in the head, stem, or tail regions affected the ability of CsgE to cap the CsgG pore as determined by a bile salt sensitivity assay. These mechanistic insights into the directed assembly of functional amyloids in extracellular biofilms elucidate possible targets for biofilm-associated bacterial infections.IMPORTANCE Curli represent a class of functional amyloid fibers produced by Escherichia coli and other Gram-negative bacteria that serve as protein scaffolds in the extracellular biofilm matrix. Despite the lack of sequence conservation among different amyloidogenic proteins, the structural and biophysical properties of functional amyloids such as curli closely resemble those of amyloids associated with several common neurodegenerative diseases. These parallels are underscored by the observation that certain proteins and chemicals can prevent amyloid formation by the major curli subunit CsgA and by alpha-synuclein, the amyloid-forming protein found in Lewy bodies during Parkinson's disease. CsgA subunits are targeted to the CsgG outer membrane pore by CsgE prior to secretion and assembly into fibers. Here, we use biophysical, biochemical, and genetic approaches to elucidate a mechanistic understanding of CsgE function in curli biogenesis.
Collapse
|
40
|
Mutch CA, Ordonez AA, Qin H, Parker M, Bambarger LE, Villanueva-Meyer JE, Blecha J, Carroll V, Taglang C, Flavell R, Sriram R, VanBrocklin H, Rosenberg O, Ohliger MA, Jain SK, Neumann KD, Wilson DM. [ 11C]Para-Aminobenzoic Acid: A Positron Emission Tomography Tracer Targeting Bacteria-Specific Metabolism. ACS Infect Dis 2018; 4:1067-1072. [PMID: 29712422 PMCID: PMC6045447 DOI: 10.1021/acsinfecdis.8b00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Imaging studies are frequently used to support the clinical diagnosis of infection. These techniques include computed tomography (CT) and magnetic resonance imaging (MRI) for structural information and single photon emission computed tomography (SPECT) or positron emission tomography (PET) for metabolic data. However, frequently, there is significant overlap in the imaging appearance of infectious and noninfectious entities using these tools. To address this concern, recent approaches have targeted bacteria-specific metabolic pathways. For example, radiolabeled sugars derived from sorbitol and maltose have been investigated as PET radiotracers, since these are efficiently incorporated into bacteria but are poor substrates for mammalian cells. We have previously shown that para-aminobenzoic acid (PABA) is an excellent candidate for development as a bacteria-specific imaging tracer as it is rapidly accumulated by a wide range of pathogenic bacteria, including metabolically quiescent bacteria and clinical strains, but not by mammalian cells. Therefore, in this study, we developed an efficient radiosynthesis for [11C]PABA, investigated its accumulation into Escherichia coli and Staphylococcus aureus laboratory strains in vitro, and showed that it can distinguish between infection and sterile inflammation in a murine model of acute bacterial infection.
Collapse
Affiliation(s)
- Christopher A. Mutch
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lauren E. Bambarger
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Valerie Carroll
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celine Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco CA 94110, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kiel D. Neumann
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
41
|
Kamaladevi A, Marudhupandiyan S, Balamurugan K. Model system based proteomics to understand the host response during bacterial infections. MOLECULAR BIOSYSTEMS 2018; 13:2489-2497. [PMID: 29082410 DOI: 10.1039/c7mb00372b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infectious diseases caused by bacterial pathogens pose a major concern to public health and, thus, greater attention must be given to providing insightful knowledge on host-pathogen interactions. There are several theories addressing the dynamics of complex mechanisms of host-pathogen interactions. The availability of an ample number of universally accepted model systems, including vertebrates, invertebrates, and mammalian cells, provides in-depth transcriptomics data to evaluate these complex mechanisms during host-pathogen interactions. Recent model system based proteomic studies have addressed the issues related to human diseases by establishing the protein profile of model animals that closely resemble the environment. As a result, model system based proteomics has been widely accepted as a powerful and effective approach to understand the highly complex host-pathogen interfaces at their protein levels. This review offers a snapshot of the contributions of selective model systems on host-bacterial pathogen interactions through proteomic approaches.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| | | | | |
Collapse
|
42
|
Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A Gold/Silver Hybrid Nanoparticle for Treatment and Photoacoustic Imaging of Bacterial Infection. ACS NANO 2018; 12:5615-5625. [PMID: 29746090 PMCID: PMC8045556 DOI: 10.1021/acsnano.8b01362] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ag+ ions are a well-known antibacterial agent, and Ag nanoparticles act as a reservoir of these Ag+ ions for targeted therapy of bacterial infections. However, there are no tools to effectively trigger and monitor the release of Ag+ ions from Ag nanoparticles. Photoacoustic (PA) imaging is an emerging noninvasive imaging tool, and gold nanorods (AuNRs) are an excellent contrast agent for PA imaging. In this work, we developed Au/Ag hybrid nanoparticles by coating AuNRs with silver (Ag), which decreased their photoacoustic signal. The as-prepared, Ag-coated Au nanorods (Au/AgNRs) are stable under ambient conditions, but the addition of ferricyanide solution (1 mM) results in oxidative etching of the silver shell. The PA contrast is simultaneously recovered as the silver is released, and this PA signal offers noninvasive monitoring of localized release of Ag+ ions. The released Ag+ ions exhibit a strong bactericidal efficacy similar to equivalent free Ag+ ions (AgNO3), and the nanoparticles killed >99.99% of both (Gram-positive) methicillin-resistant Staphylococcus aureus (MRSA, 32 μM Ag+ equivalent) and (Gram-negative) Escherichia coli (8 μM Ag+ equivalent). The theranostic potential of these nanoparticles was demonstrated in a pilot in vivo study. Mice were inoculated with MRSA and Au/AgNRs were subcutaneously implanted followed by silver etching. There was a 730% increase in the PA signal ( p < 0.01) pre- and post-etching, and the bacterial counts in infected tissues of the treated group were reduced by 1000-fold (log CFU/g = 4.15 vs 7.75) versus the untreated control; this treatment efficacy was confirmed with histology. We further showed that these hybrid nanoparticles could release Ag+ after stimulation by reactive oxygen species including hydrogen peroxide and peroxynitrite. These hybrid Au/Ag nanoparticles are a useful theranostic agent for the photoacoustic imaging and treatment of bacterial infections.
Collapse
Affiliation(s)
- Taeho Kim
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Qiangzhe Zhang
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jin Li
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego (UCSD), La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego (UCSD), La Jolla, California 92093, United States
| |
Collapse
|
43
|
Wiese AD, Griffin MR, Stein CM, Schaffner W, Greevy RA, Mitchel EF, Grijalva CG. Validation of discharge diagnosis codes to identify serious infections among middle age and older adults. BMJ Open 2018; 8:e020857. [PMID: 29921683 PMCID: PMC6009457 DOI: 10.1136/bmjopen-2017-020857] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Hospitalisations for serious infections are common among middle age and older adults and frequently used as study outcomes. Yet, few studies have evaluated the performance of diagnosis codes to identify serious infections in this population. We sought to determine the positive predictive value (PPV) of diagnosis codes for identifying hospitalisations due to serious infections among middle age and older adults. SETTING AND PARTICIPANTS We identified hospitalisations for possible infection among adults >=50 years enrolled in the Tennessee Medicaid healthcare programme (2008-2012) using International Classifications of Diseases, Ninth Revision diagnosis codes for pneumonia, meningitis/encephalitis, bacteraemia/sepsis, cellulitis/soft-tissue infections, endocarditis, pyelonephritis and septic arthritis/osteomyelitis. DESIGN Medical records were systematically obtained from hospitals randomly selected from a stratified sampling framework based on geographical region and hospital discharge volume. MEASURES Two trained clinical reviewers used a standardised extraction form to abstract information from medical records. Predefined algorithms served as reference to adjudicate confirmed infection-specific hospitalisations. We calculated the PPV of diagnosis codes using confirmed hospitalisations as reference. Sensitivity analyses determined the robustness of the PPV to definitions that required radiological or microbiological confirmation. We also determined inter-rater reliability between reviewers. RESULTS The PPV of diagnosis codes for hospitalisations for infection (n=716) was 90.2% (95% CI 87.8% to 92.2%). The PPV was highest for pneumonia (96.5% (95% CI 93.9% to 98.0%)) and cellulitis (91.1% (95% CI 84.7% to 94.9%)), and lowest for meningitis/encephalitis (50.0% (95% CI 23.7% to 76.3%)). The adjudication reliability was excellent (92.7% agreement; first agreement coefficient: 0.91). The overall PPV was lower when requiring microbiological confirmation (45%) and when requiring radiological confirmation for pneumonia (79%). CONCLUSIONS Discharge diagnosis codes have a high PPV for identifying hospitalisations for common, serious infections among middle age and older adults. PPV estimates for rare infections were imprecise.
Collapse
Affiliation(s)
- Andrew D Wiese
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Marie R Griffin
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Mid-South Geriatric Research Education and Clinical Center, VA Tennessee Valley Health Care System, Nashville, Tennessee, USA
| | - C Michael Stein
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William Schaffner
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Edward F Mitchel
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Mid-South Geriatric Research Education and Clinical Center, VA Tennessee Valley Health Care System, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Friedman EE, Dean HD, Duffus WA. Incorporation of Social Determinants of Health in the Peer-Reviewed Literature: A Systematic Review of Articles Authored by the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Public Health Rep 2018; 133:392-412. [PMID: 29874147 DOI: 10.1177/0033354918774788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Social determinants of health (SDHs) are the complex, structural, and societal factors that are responsible for most health inequities. Since 2003, the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP) has researched how SDHs place communities at risk for communicable diseases and poor adolescent health. We described the frequency and types of SDHs discussed in articles authored by NCHHSTP. METHODS We used the MEDLINE/PubMed search engine to systematically review the frequency and type of SDHs that appeared in peer-reviewed publications available in PubMed from January 1, 2009, through December 31, 2014, with a NCHHSTP affiliation. We chose search terms to identify articles with a focus on the following SDH categories: income and employment, housing and homelessness, education and schooling, stigma or discrimination, social or community context, health and health care, and neighborhood or built environment. We classified articles based on the depth of topic coverage as "substantial" (ie, one of ≤3 foci of the article) or "minimal" (ie, one of ≥4 foci of the article). RESULTS Of 862 articles authored by NCHHSTP, 366 (42%) addressed the SDH factors of interest. Some articles addressed >1 SDH factor (366 articles appeared 568 times across the 7 categories examined), and we examined them for each category that they addressed. Most articles that addressed SDHs (449/568 articles; 79%) had a minimal SDH focus. SDH categories that were most represented in the literature were health and health care (190/568 articles; 33%) and education and schooling (118/568 articles; 21%). CONCLUSIONS This assessment serves as a baseline measurement of inclusion of SDH topics from NCHHSTP authors in the literature and creates a methodology that can be used in future assessments of this topic.
Collapse
Affiliation(s)
- Eleanor E Friedman
- 1 Association of Schools and Programs of Public Health/CDC Public Health Fellowship Program, Atlanta, GA, USA.,2 Office of Health Equity, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.,3 Chicago Center for HIV Elimination and University of Chicago Department of Medicine, Chicago, IL, USA
| | - Hazel D Dean
- 4 Office of the Director, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wayne A Duffus
- 2 Office of Health Equity, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
45
|
Wi C, Krusemark EA, Voge G, Sohn S, Liu H, Ryu E, Park MA, Castro‐Rodriguez JA, Juhn YJ. Usefulness of asthma predictive index in ascertaining asthma status of children using medical records: An explorative study. Allergy 2018; 73:1276-1283. [PMID: 29319899 DOI: 10.1111/all.13403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Frequent wheezing in original asthma predictive index (API) was defined by parental report of recurrent wheezing within 1 year during the first 3 years of life. The nature of frequent wheezing in children, particularly aged over 3 years, has not been studied. We aimed to assess the frequency and interval of wheezing to define frequent wheezing in ascertaining asthma for children using medical records. METHODS Among children who participated in a previous study (n = 427), all wheezing episodes documented in medical records were collected for children who had ≥2 wheezing episodes PLUS met one major criterion or two minor criteria of API. We compared the distribution of known risk factors for asthma between subjects having two consecutive wheezing episodes with shorter interval (≤1 year) compared to those with longer interval (1 to 3 years). RESULTS A total of 62 children met API at median age of 2.3 years. During follow-up period (median age: 11.3 years), a total of 198 wheezing episodes were observed. 81% of wheezing intervals were within 3 years from the earlier wheezing episode, including 60% within 1 year. Children who met API based on 1-year interval (n = 40) vs 1- to 3-year interval (n = 13) appeared to be similar in regard to the known risk factors for asthma. CONCLUSIONS Our exploratory study finding suggests that children who had frequent wheezing episodes with longer interval (<3 years) need to be considered to be determined as asthma cases when API is applied to retrospective medical records. Prospective studies with a larger sample size need to replicate this finding.
Collapse
Affiliation(s)
- C.‐I. Wi
- Department of Pediatric and Adolescent Medicine Mayo Clinic Rochester MN USA
- Asthma Epidemiology Research Unit Mayo Clinic Rochester MN USA
| | - E. A. Krusemark
- Department of Pediatric and Adolescent Medicine Mayo Clinic Rochester MN USA
- Asthma Epidemiology Research Unit Mayo Clinic Rochester MN USA
| | - G. Voge
- Department of Pediatric and Adolescent Medicine Mayo Clinic Rochester MN USA
- Asthma Epidemiology Research Unit Mayo Clinic Rochester MN USA
- Division of Neonatology Children's Hospitals and Clinics of Minnesota Minneapolis MN USA
| | - S. Sohn
- Division of Biomedical Statistics and Informatics Mayo Clinic Rochester MN USA
| | - H. Liu
- Division of Biomedical Statistics and Informatics Mayo Clinic Rochester MN USA
| | - E. Ryu
- Asthma Epidemiology Research Unit Mayo Clinic Rochester MN USA
- Division of Biomedical Statistics and Informatics Mayo Clinic Rochester MN USA
| | - M. A. Park
- Division of Allergic Diseases Mayo Clinic Rochester MN USA
| | - J. A. Castro‐Rodriguez
- Division of Pediatrics School of Medicine Pontificia Universidad Catolica de Chile Santiago Chile
| | - Y. J. Juhn
- Asthma Epidemiology Research Unit Mayo Clinic Rochester MN USA
- Department of Pediatric and Adolescent Medicine/Internal Medicine Mayo Clinic Rochester MN USA
| |
Collapse
|
46
|
Park B, Choi EJ, Park B, Han H, Cho SJ, Choi HJ, Lee S, Park H. Factors Influencing Vaccination in Korea: Findings From Focus Group Interviews. J Prev Med Public Health 2018; 51:173-180. [PMID: 30071704 PMCID: PMC6078915 DOI: 10.3961/jpmph.18.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/25/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Immunization is considered one of the most successful and cost-effective public health interventions protecting communities from preventable infectious diseases. The Korean government set up a dedicated workforce for national immunization in 2003, and since then has made strides in improving vaccination coverage across the nation. However, some groups remain relatively vulnerable and require intervention, and it is necessary to address unmet needs to prevent outbreaks of communicable diseases. This study was conducted to characterize persistent challenges to vaccination. Methods The study adopted a qualitative method in accordance with the Consolidated Criteria for Reporting Qualitative Research checklist. Three focus group interviews were conducted with 15 professionals in charge of vaccination-related duties. The interviews were conducted according to a semi-structured guideline, and thematic analysis was carried out. Data saturation was confirmed when the researchers agreed that no more new codes could be found. Results A total of 4 main topics and 11 subtopics were introduced regarding barriers to vaccination. The main topics were vaccine hesitancy, personal circumstances, lack of information, and misclassification. Among them, vaccine hesitancy was confirmed to be the most significant factor impeding vaccination. It was also found that the factors hindering vaccination had changed over time and disproportionately affected certain groups. Conclusions The study identified ongoing unmet needs and barriers to vaccination despite the accomplishments of the National Immunization Program. The results have implications for establishing tailored interventions that target context- and group-specific barriers to improve timely and complete vaccination coverage.
Collapse
Affiliation(s)
- Bomi Park
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Eun Jeong Choi
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Bohyun Park
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyejin Han
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Su Jin Cho
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hee Jung Choi
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Seonhwa Lee
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Yan T, O'Brien P, Shelton JM, Whelen AC, Pagaling E. Municipal Wastewater as a Microbial Surveillance Platform for Enteric Diseases: A Case Study for Salmonella and Salmonellosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4869-4877. [PMID: 29630348 DOI: 10.1021/acs.est.8b00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Municipal wastewater (MW) contains a conglomeration of human enteric microbiota from a community and, hence, represents a potential surveillance tool for gastrointestinal infectious disease burden at the community level. To evaluate this, the concentration of Salmonella in MW samples from Honolulu, Hawaii, was monitored over a 54-week period, which showed positive and significant linear and rank correlation with clinical salmonellosis case numbers over the same period. Salmonella isolates were obtained from the MW samples and then compared with clinical isolates obtained by the Hawaii Department of Health State Laboratories over the same period. The MW isolate collection contained 34 serotypes, and the clinical isolate collection contained 47 serotypes, 21 of which were shared between the two isolate collections, including nine of the 12 most commonly detected clinical serotypes. Most notably, nine Salmonella strains, including one outbreak-associated Paratyphi B strain and eight other clinically rare strains, were shared and concurrently detected between the MW and the clinical isolate collections, indicating the feasibility of using enteric pathogens in the MW as a timely indication of community enteric disease activity.
Collapse
Affiliation(s)
- T Yan
- Department of Civil and Environmental Engineering , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - P O'Brien
- State Laboratories Division , Hawaii Department of Health , Honolulu , Hawaii 96782 , United States
| | - J M Shelton
- Department of Civil and Environmental Engineering , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - A C Whelen
- State Laboratories Division , Hawaii Department of Health , Honolulu , Hawaii 96782 , United States
- Department of Microbiology , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - E Pagaling
- Department of Civil and Environmental Engineering , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
48
|
Zhu B, Fu Y, Liu J, Mao Y. Spatial distribution of 12 class B notifiable infectious diseases in China: A retrospective study. PLoS One 2018; 13:e0195568. [PMID: 29621351 PMCID: PMC5886686 DOI: 10.1371/journal.pone.0195568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND China is the largest developing country with a relatively developed public health system. To further prevent and eliminate the spread of infectious diseases, China has listed 39 notifiable infectious diseases characterized by wide prevalence or great harm, and classified them into classes A, B, and C, with severity decreasing across classes. Class A diseases have been almost eradicated in China, thus making class B diseases a priority in infectious disease prevention and control. In this retrospective study, we analyze the spatial distribution patterns of 12 class B notifiable infectious diseases that remain active all over China. METHODS Global and local Moran's I and corresponding graphic tools are adopted to explore and visualize the global and local spatial distribution of the incidence of the selected epidemics, respectively. Inter-correlations of clustering patterns of each pair of diseases and a cumulative summary of the high/low cluster frequency of the provincial units are also provided by means of figures and maps. RESULTS Of the 12 most commonly notifiable class B infectious diseases, viral hepatitis and tuberculosis show high incidence rates and account for more than half of the reported cases. Almost all the diseases, except pertussis, exhibit positive spatial autocorrelation at the provincial level. All diseases feature varying spatial concentrations. Nevertheless, associations exist between spatial distribution patterns, with some provincial units displaying the same type of cluster features for two or more infectious diseases. Overall, high-low (unit with high incidence surrounded by units with high incidence, the same below) and high-high spatial cluster areas tend to be prevalent in the provincial units located in western and southwest China, whereas low-low and low-high spatial cluster areas abound in provincial units in north and east China. CONCLUSION Despite the various distribution patterns of 12 class B notifiable infectious diseases, certain similarities between their spatial distributions are present. Substantial evidence is available to support disease-specific, location-specific, and disease-combined interventions. Regarding provinces that show high-high/high-low patterns of multiple diseases, comprehensive interventions targeting different diseases should be established. As to the adjacent provincial units revealing similar patterns, coordinated actions need to be taken across borders.
Collapse
Affiliation(s)
- Bin Zhu
- School of Public Policy and Administration, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Public Policy, City University of Hong Kong, Hong Kong, China
| | - Yang Fu
- Department of Public Policy, City University of Hong Kong, Hong Kong, China
| | - Jinlin Liu
- School of Public Policy and Administration, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying Mao
- School of Public Policy and Administration, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
49
|
Ali MM, Brown CL, Jahanshahi-Anbuhi S, Kannan B, Li Y, Filipe CDM, Brennan JD. A Printed Multicomponent Paper Sensor for Bacterial Detection. Sci Rep 2017; 7:12335. [PMID: 28951563 PMCID: PMC5615064 DOI: 10.1038/s41598-017-12549-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
We present a simple all-in-one paper-based sensor for E. coli detection using a composite ink made of a fluorogenic DNAzyme probe for bacterial recognition and signal generation, lysozyme that lyses whole bacterial cells, and pullulan/trehalose sugars that stabilize printed bioactive molecules. The paper sensor is capable of producing a fluorescence signal as a readout within 5 minutes upon contacting E. coli, can achieve a limit of detection of 100 cells/mL, in a variety of sample matrixes, without sample enrichment, and remains stable for at least 6 months when stored at ambient temperature. Therefore, this simple paper sensor provides rapid bacterial testing on site, and can be shipped and stored under ambient conditions to benefit users living in resource-limited regions.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada
| | - Christine L Brown
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada
| | - Balamurali Kannan
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4L7, Canada.
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 0A3, Canada.
| |
Collapse
|
50
|
Jhaveri R. Vaccines. Clin Ther 2017; 39:1516-1518. [DOI: 10.1016/j.clinthera.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|